
CORE
Back to the

PoC

• ACE

• Target for ACE

• KernelIo

• Target for kernelIo

• Overflows & techs

• KASLR,

PoolSpary,

Info Leaks

• MMU

• Conclusions

ROP
- Historical issue

- First ROP appear in

MSDOS

- Widely used as

bypass for DEP

- Using gadgets

- ROP compilers /

finders

- Depends on prepared

stack layout

http://www.exploit-monday.com/2011/11/man-vs-rop-overcoming-adversity-one.htmlhttps://www.auscert.org.au/render.html?it=13408

http://www.exploit-monday.com/2011/11/man-vs-rop-overcoming-adversity-one.html
https://www.auscert.org.au/render.html?it=13408

Solving old problem

ROP

• offset to code

gadgets - relative

• Reuse of existing

code

• Jumps from one

gadget to another

• Based on gadgets

• Depends heavily on

stack layout

anti-ROP

• Randomization of

function position

• Randomization of

instructions (pos)

• Symbolic execution

at selected points

• CFG

• X

CFG
- Protect virtual calls

- In kernel mode not so

widely used anyway,

unfortunately …

- Per process bitmap

- Per process registered

functions

- Fast lookup!

- Only approximation of

problem

- Handle only old known

ROP way of thinking

- But finally there! Good

job!!

- Not handle stack

hooking / pivoting

- Not handle integrity

problems

- Not handle ROP in

general

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10/

http://www.powerofcommunity.net/poc2014/mj0011.pdf http://www.alex-ionescu.com/?p=246

http://blog.trendmicro.com/trendlabs-security-intelligence/exploring-control-flow-guard-in-windows-10/
http://www.powerofcommunity.net/poc2014/mj0011.pdf
http://www.alex-ionescu.com/?p=246

CF Hijack

continue!
- Do not use ROP for

everything!

- ROP are old & obsolete

- Use functions in smart

way!

- Check args, checks

output, match your

goal!

- Mix ROP and functions

- Misuse functions as

your payload!

- Use stack hooking if

you *really* need ACE

on your code

- Find similar, but

CFG-approved functions!

- 一步一步 (step-by-step)

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx

http://research.microsoft.com/pubs/101332/BGI-SOSP.pdfhttp://research.microsoft.com/pubs/69217/ccs05-cfi.pdf

http://blogs.msdn.com/b/vcblog/archive/2014/12/08/visual-studio-2015-preview-work-in-progress-security-feature.aspx
http://research.microsoft.com/pubs/101332/BGI-SOSP.pdf
http://research.microsoft.com/pubs/69217/ccs05-cfi.pdf

TO THE ROOTS OF

PROBLEM!

Integrity guards
fast, reliable, no easy targets anymore!

Integrity guards

• No PLAIN function pointers anymore!

– Target reduction

– More info leaks needed!

• Protect integrity per object level

– Results in UAF mitigations as byproduct

• Easy implementation

– Objective-C manually (PROTECTED_ASIGN)

– C++ => compiler can hide this logic

• Protect only virtual calls

• Fast : only few instructions added

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1332.pdf

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1332.pdf

Control Flow Stack
Separated stack, only CF instructions can write

to this stack

idea comes to me from this creative guy : https://sk.linkedin.com/pub/ladislav-nevery/26/a87/498

https://sk.linkedin.com/pub/ladislav-nevery/26/a87/498

Control flow stack

• Two stacks

– args & vars

– return pointers

• ROP is not applicable anymore

• Stack hooking and pivoting are offline
as well!

• Special register for cf-stack

– cpl0 & cpl3, maintained by context switch

– No direct write, as (e/r)ip at x86

– Write onto cf-stack only by cf-instructions

• call, jmp, jx, ret, privileged switch

– Processor solution needed …

Safe

Memory

- Code-Pointer

Integrity

- Kuznetsov at OSDI

- Separate memory for

‘sensitive’ pointers

- Isolation on

instruction level by

using segments fs

(gs)

- Impressive results –

performance & output

- No need for addition

instructions / regs

http://www.cs.berkeley.edu/~dawnsong/papers/
osdi14-paper-kuznetsov.pdf

https://www.usenix.org/sites/default/files/conference/
protected-files/osdi14_slides_kuznetsov.pdf

http://www.cs.berkeley.edu/~dawnsong/papers/osdi14-paper-kuznetsov.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_kuznetsov.pdf
https://www.usenix.org/sites/default/files/conference/protected-files/osdi14_slides_kuznetsov.pdf

KERNEL IO – SMEP / SMAP

windows memory layout
On linux caches, on windows pools

http://www.alex-ionescu.com/?p=231 http://www.alex-ionescu.com/?p=246

http://www.alex-ionescu.com/?p=231
http://www.alex-ionescu.com/?p=246

Cool objects everywhere

• Kernel objects in plain state

– function pointers

– object pointers (buffers, other objs)

– object members (size,count,refcount..)

• In modules RW states – plain

– freelists

– ‘vtables’

– locks

• Target pool & find your object

– nt!_eprocess (->VadRoot)

– win32k!tagWND

– page tables (cr3)

– ...

OVERFLOWS

protections

• SMAP

• SMEP

• KASLR

• Pool hardening

response

• Your data is in
kernel already!

• Turn your bug to
boosted kernel io

• ExAllocatePool or

Pagetables

• You pwn pool object

- be relative!

• Try - big allocs ...

POC : http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Pwn2Own-2015-Day-One-results/ba-p/6722204
details soon!

http://h30499.www3.hp.com/t5/HP-Security-Research-Blog/Pwn2Own-2015-Day-One-results/ba-p/6722204

Kernel

Pool
- About BIG allocs :

- Deterministic

- especial windows

- Linux SLUB +1

- User controllable

- alloc

- free

- data control!

- FULL == epic!

- Predictable :

- Pointers

{base + align}

- size

- properties

- Layout-able!

- Targeted overflow

TBD : http://confidence.org.pl/en/agenda/lecture/when-something-overflowing/

http://confidence.org.pl/en/agenda/lecture/when-something-overflowing/

X64 vs overflows!

• virt addr space > phys addr space

– gaps => page_noaccess

• Randomized bases of pools

• Hunting for buffer overflows :

– boost pageheap

– Use virt-phys gap more!

– Use page guards more!

– Randomize more!

https://msdn.microsoft.com/en-us/library/windows/hardware/ff549561%28v=vs.85%29.aspx

https://msdn.microsoft.com/en-us/library/windows/hardware/ff549561(v=vs.85).aspx

reserve, randomize, guard!

Overflow results in trap, no stable UAF,

sometimes wasting address space can secure it

whole! – see cfg ..

Hunting pool overflows

try {

• Over/under flow to
another object

• Try to use UAF

• Performance

• Waste of space

• Small allocs

ex(p/c)ect }

• Results in trap –
page_noaccess

• Reused pool but object
at different address

• Page tables & Vad

– coalescing :/

– classic pageheap problems

• X64 finally, use it!

• Target only big allocs,
and (+inner)arrays
(compile time)

KASLR & MMU

KASLR – user calling!

• _sidt / _sgdt

– Instruction :/

– basically leaks

&ntoskrnl

(use kernelio)

• user32!gSharedInfo

– Bad joke of security

– Leaks session pool

– leaks nt!_eprocess

pointers!

(use kernelio)

http://www.mista.nu/research/mandt-win32k-slides.pdf

http://www.mista.nu/research/mandt-win32k-slides.pdf

KASLR – user calling!

• SESSION_POOL - Problem bro ?

• X64 large address space

• but leaks session pool

• On session pool mighty objects!

win32k!_bitmap
• arbitrary write to boost size, or other
property

• Pool layout & align *NO PROBLEM*
• PWN DONE!

KASLR – timer is calling!
Guess where is pool for nt!_ethread ;)

Timing

attacks

- Doable

- Simple

- MMU mechanism was

build:

- To be fast not

‘too secure’!

- TSX is to be

disabled by

microcode update

- But other research &

approaches well

known!

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/

http://felinemenace.org/~nem
o/docs/TR-HGI-2013-001.pdf

http://labs.bromium.com/2014/10/27/tsx-improves-timing-attacks-against-kaslr/
http://felinemenace.org/~nemo/docs/TR-HGI-2013-001.pdf

MMU continue!
concept, multiple layers of PXN in real

https://labs.mwrinfosecurity.com/http://www.cs.ucla.edu/classes/spring14/cs111/scribe/14b/

https://labs.mwrinfosecurity.com/
http://www.cs.ucla.edu/classes/spring14/cs111/scribe/14b/

Basic

idea

1. Per page privilages

2. Supervisor vs User

priv

3. Make mmap /

VirtualAlloc

4. memcpy data

5. Flag you page as

Supervisor

6. Trigger ACE or Data

access

7. Bypass SMEP

8. Bypass SMAP

http://viralpatel.net/taj/tutorial/paging.php

http://viralpatel.net/taj/tutorial/paging.php

POC – by MWR labs

1.choose address with isolated page

tables

1.To be sure write-where does not hit other

used memory

2.0x100804020001 => far enough in memory

3.mmap 0x100804020001

4.memcpy

5.Patch S/U bits (write-where)

6.S/U bits need to patch per PXE !

7.pwn

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

https://labs.mwrinfosecurity.com/blog/2014/08/15/windows-8-kernel-memory-protections-bypass/

MMU logic

• Unmapped memory

cause PageFault

• Bad access cause

PageFault

• PageFault handler do

lookups

• VAD / vm_area

• On behalf of lookup

will continue

• Create / Read Page

Tables

VAD /

VM_AREA

 malloc is lazy

 Reserve memory in

memory struct (AVL

tree)

 Do not create Page

Table entries!

 PTE are created on

first access in

PageFault handler!

 NULLPTR deref killed

by checking here

 - cheaper, faster

 - simple, not

hardened

 and .. point of

attack

http://www.codemachine.com/article_protopte.html

http://www.codemachine.com/article_protopte.html

MMU

PWNED!
1. write-where

2. nt!_eprocess->VadRoot

(task_struct->mm)

3. Substitue with own

simple member

4. Fake member covers

whole memory range

5. Trigger PageFault

(f.e. nullptr deref ;)

6. PageFault handler

find it in Vad / mm

7. MMU will create page

tables

8. FirstPrototypePte is

physical address, you

choose!

9. Leads to read / write

arbitrary memory!

10.nullptr revival!

Virtual address == SYMBOLIC

Not checked if it is *really* cpl0 or cpl3 page!

KERNEL - FAIL – SAFE – CHECKS
copy_to/from_user

ProbeForRead/Write

The ProbeForRead routine checks that a
user-mode buffer actually resides in the
user portion of the address space, and is
correctly aligned.

Think deeper!

Self -

REF

• write-where to patch

• but where to write ?

• x64 => 4lvl of PXE

• PML4, PDP, PT, PTE

• c3 holds the PML4

base

• others PXE are need

to be readed!

• … unless self

referencing comes in

place!

• bonus cr3 : physical

addresses not so

well randomized ;)

!pte 0x100804020001
How magic is it, self-ref tricking…

Exploring

Potential
 in every PXE is

physical addresses!

 We point to PM4,

after last

translation

 Byte Offset points

to PHYSICAL address

to be read / write /

exec

 Virtual addresses

are just symbolic

links to physical

ones

 RWE to all physical

memory

 Equivalent to broke

KASLR, SMEP, SMAP,

W^X, NonPagePoolNx

Framework

1. Provide page dir

addr

2. Provide write-where

vuln

1. will be used

once in current

state of OS

2. more generic,

write more times

3. Use as KernelIo

4. Snapshot for arm

Conclusions

• Kernel was build meant to be faster
than secure

• Security is (/can be) boosted by
hardware features, incredibly!

• Compiler can secure a lot, especially
for C++

• Patching to add security != security
based model

• Redesigning from scratch is not
undoable, and maybe not bad idea ..

• But I do not expect many core changes,
or changes at all, so facts remains :

– Changes are hard & slow process

– Attack surface is large

• We are hiring!

 Kernel & app sec

 A *LOT* of research

 mobile, pc

 M$, android, OSX ..

Thank You!

Q & A

@K33nTeam

@zer0mem

peter (at) keencloudtech.com

