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Abstract

Pointer analysis is a fundamental static program analysis, with a rich
literature and wide applications. The goal of pointer analysis is to com-
pute an approximation of the set of program objects that a pointer
variable or expression can refer to.

We present an introduction and survey of pointer analysis tech-
niques, with an emphasis on distilling the essence of common analysis
algorithms. To this end, we focus on a declarative presentation of a com-
mon core of pointer analyses: algorithms are modeled as configurable,
yet easy-to-follow, logical specifications. The specifications serve as a
starting point for a broader discussion of the literature, as independent
threads spun from the declarative model.

Y. Smaragdakis and G. Balatsouras. Pointer Analysis. Foundations and Trends®
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Introduction

Pointer analysis or points-to analysis is a static program analysis that
determines information on the values of pointer variables or expres-
sions. Such information offers a static model of a program’s heap. Since
the heap is the primary structure for global program data, pointer anal-
ysis forms the substrate of most inter-procedural static analyses. Vir-
tually all interesting questions one may want to ask of a program will
eventually need to query the possible values of a pointer expression, or
its relationship to other pointer expressions. The exact representation
of such information, i.e., the static abstraction used to model the heap,
often serves as a classifier of the analysis algorithm. Although the litera-
ture is not entirely consistent on high-level terminology, pointer analysis
is a near-synonym of alias analysis. Whereas, however, pointer /points-
to analysis typically tries to model heap objects and asks “what objects
can a variable point to?”, alias analysis algorithms focus on the closely
related question of “can a pair of variables or expressions be aliases,
i.e., point to the same object?” [Landi and Ryder, [1992, Emami et al.,
1994)

In this monograph, we attempt to survey the most common modern
approaches to pointer analysis, with an eye towards ease of exposition



and concreteness. Qur presentation aspires to be rather more tutorial
and hands-on than other surveys of the pointer analysis area. For a
thorough view of the literature, with an emphasis on coverage, readers
can consult Hind| [2001], Ryder| [2003], [Sridharan et al. [2013], and
Kanvar and Khedker [2014].

Our tutorial will develop, in significant detail, a modular, config-
urable model of a standard points-to analysis. This analysis model is
a skeleton on which we progressively add more flesh, to reflect several
realistic features and analysis enhancements from the recent literature.
The analysis model will also serve as a firm basis for high-level tangen-
tial discussions on topics that deviate from the model: alias analysis,
complexity theory results, algorithms not captured well by the formal
model, and more.

Importantly, our analysis model is executable: The specification of
our algorithms is given in Datalog, which is simultaneously a logic
and a realistic programming language. The use of Datalog allows us to
express the precision aspects of pointer analyses concisely, at almost
the same high level as a mathematical formalism, yet with no need to
separately treat the topic of how to implement the algorithms so that
they perform efficiently.

The axes of precision and performance/efficiency characterize every
approach to program reasoning. All interesting questions about uni-
versal (i.e., all-inputs) program behavior are undecidable—see Landi
[1992], Ramalingam| [1994], Reps| [2000] specifically for pointer analysis
problems. Thus, every technique is evaluated both on its precision, i.e.,
the degree to which the result approximates the uncomputable mathe-
matical ideal, and on its performance, i.e., the asymptotic complexity
or practical speed of computation.

We can use these axes to guide a more general overview of the
landscape of techniques for reasoning about program memory, of which
pointer analysis is only one part. Further along the precision axis lie
several approaches such as shape analysis [Sagiv et al., 2002] and sep-
aration logic [Reynolds, 2002, (O’Hearn et al. |2001]. Separation logic
is a full-fledged logic, typically deep in the forests of undecidability,
where reasoning requires close human guidance. Shape analysis is a
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computable, automated program analysis, yet with performance com-
plexity in the territory of intractability: complexity bounds for the best-
known shape analyses are super-exponential.

In contrast, the term “pointer analysis” is typically reserved for
techniques of modest performance cost, scaling to realistic, automated
whole-program analysis efforts. This bias in favor of automation and
scalability to full realistic programs is also reflected throughout our dis-
cussion and analysis formulations. Datalog (with the standard enhance-
ment of an order relation) is a language that captures the PTZME
complexity class [Immerman,|1999, Ch.14]: every Datalog program runs
in polynomial time, and every polynomial algorithm can be written in
Datalog.

Although a polynomial complexity bound is hardly a guarantee of
practical scalability, in broad mathematical strokes it is a reliable dis-
tingushing feature. Indeed, it is tempting to consider “pointer analysis”
to refer precisely to heap analysis algorithms of polynomial complexity.
In our formulation of analyses, we strive to maintain this complexity
boundary. This is reflected in our effort to stay within standard Datalog
(with stratified negation) and only use extensions as syntactic sugar.

We begin with essential background and an illustration of the best
known pointer analysis algorithms.
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The standard formulation of a pointer analysis is as a computation
of the set of objects (the points-to set) that a program variable may
point to during runtime. Let us consider such a computation for a toy
example. The example will serve to illustrate multiple points in the
remainder of our tutorial.

The program fragment below, in a Java-like language, contains two
methods fun1 and fun2. The methods allocate objects and pass them
to a third method, id, which is the identity function.

void fun1() {
Object al = new A1Q);
Object bl = id(al);
}
void fun2() {
Object a2 = new A2Q);
Object b2 = id(a2);
}
Object id(Object a) { return a; 1}

The first question is how objects are statically abstracted in the
analysis. During program run time, methods funl and fun2 may be
invoked millions of times, causing the new instructions to allocate an
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equal number of distinct objects. Since pointer analysis is done stat-
ically, such precision is typically lost in the approximation performed
by the analysis. The conventional approach is to represent objects as
allocation sites, i.e., to consider a single abstract object to stand in for
each run-time object allocated by the same instructionﬂ Therefore, in
our example, instructions new A1() and new A2() are each associated
with a different abstract object. (Since abstract objects are identified
with allocation sites, if another program site contained a textually iden-
tical instruction, e.g., new A1(), it would still be distinguished from the
above. For ease of illustration, we do not show more detailed instruc-
tion identifiers and instead opt to keep our examples unambiguous via
unique type names in allocation sites.)

Based on this heap abstraction, what would we expect to be the
outcome of a pointer analysis of the above program? Certainly variable
al in funl (henceforth denoted funi::al) can point to abstract object
new A1(Q), and similarly for fun2::a2 and new A2(). The rest of the
variables require inter-procedural reasoning to establish their points-
to sets. Since method id returns the object passed into it, the result
is fairly simple. A fully precise points-to answer for the variables and
abstract objects shown is:
funl::al — new A1Q)
funl::bl — new A1Q)
fun2::a2 — new A2()
fun2::b2 — new A2()

id::a — new A1(Q), new A2()

(The — symbol denotes that the left-hand side can point to each
of the comma-separated elements of the right-hand side.)

We will next see what actual analysis algorithms compute relative
to this precise result.

"We will later refine this simple abstraction with the introduction of concepts such
as a context-sensitive heap, heap cloning, the recency abstraction, and more. However,
the base idea of using allocation sites as identifiers of abstract objects remains in all
such refinements. The only significant alternative that we shall examine is the use
of access paths instead of allocation sites in an alias analysis. [Kanvar and Khedker
[2014] offer a thorough treatment of the topic of heap abstractions.
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2.1 Andersen-Style Points-To Analysis, Declaratively

Perhaps the best-known and most straightforward pointer analysis
algorithm family is commonly attributed to Andersen [1994]. An
Andersen-style analysis can be easily expressed as subset constraints:
different program statements induce inferences of the form “points-to
set A is a subset of points-to set B”, or, computationally, “add all
elements from points-to set A to points-to set B”.

We shall use the Datalog language to express such con-
straints/computations. Datalog has been the basis of several imple-
mentations of program analyses, both low-level [Reps| 1994, Whaley
et al., |2005, [Lam et al.] 2005, Whaley and Laml 2004, Bravenboer and
Smaragdakis, [2009a, Smaragdakis et al., 2014, | Madsen et al., 2013] and
high-level [Eichberg et al., 2008, Hajiyev et al., 2006, Naik et al., 2006,
2009].

Computation in Datalog consists of monotonic logical inferences
that repeatedly apply to produce more facts until a fixpoint is reached.
A Datalog rule “C(z,z) < A(z,y), B(y,2).” means that if A(zy) and
B(y,z) are both true, for some values z,y,z, then C(z,z) can be inferred.
Syntactically, the left arrow symbol (+—) separates the inferred facts
(i.e., the head of the rule) from the previously established facts (i.e.,
the body of the rule). (Pure) Datalog is a close relative of Prolog, but
with several significant differences: there are no constructors, thus the
domains of computation are always finite, monotonicity is strictly en-
forced, and there are no computation side-eﬁectsﬂ In this way, com-
putation is strictly declarative: the order of evaluation for clauses and
rules does not affect the final outcome

For our analysis to be expressed in Datalog, we assume that the
program-under-analysis is represented as input relations (typically im-
plemented as database tables) that encode its different elements. Such
pre-processing is a relatively straightforward one-to-one translation.

We show the algorithm on a simple intermediate language with a)
an “alloc” (or “new”) instruction for allocating an object; b) a “move”

2In later chapters we shall use an enhanced Datalog notation, with constructors
and negation. However these features will be employed only in a disciplined way, as
syntactic sugar that can be translated away into pure Datalog relations.
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instruction for copying between local variables; ¢) “store” and “load”
instructions for writing to the heap (i.e., to object fields); and d) a “vir-
tual method call” instruction that calls the method of the appropriate
signature defined in the dynamic class of the receiver object. This lan-
guage is a good model for the core features of a multitude of compiler
and virtual machine intermediate languages.

Figure shows the domain of the analysis (i.e., the different value
sets that constitute the space of our computation), its input relations,
and the computed (intermediate and output) relations. Our presenta-
tion throughout this tutorial will rely on this domain and will incre-
mentally build on the input relations, by mere addition of extra ones.
(The computed relations will be revised more drastically for more so-
phisticated analyses.)

Input relations. The input relations correspond to the intermediate
language for our analysis. They are logically grouped into relations
that represent instructions and relations that represent name-and-type
information. For instance, the ALLOC relation represents every instruc-
tion that allocates a new heap object, heap, and assigns it to local vari-
able var inside method inMeth. (Note that every local variable is defined
in a unique method, hence the inMeth argument is also implied by var
but is included to simplify later rules.) There are similar input relations
for all other instruction types (MOVE, LOAD, STORE, and VCALL).
Similarly, there are relations that encode type system, symbol table,
and program environment information. These are mostly straightfor-
ward. For instance, FORMALARG shows which variable is a formal ar-
gument of a given method at a certain index (i.e., the n-th argument).
LookUP matches a method signature to the actual method definition
inside a type. HEAPTYPE matches an object to its type, i.e., is a func-
tion of its first argument. (Note that we are shortening the term “heap
object” to just “heap” and represent heap objects as allocation sites
throughout.) ACTUALRETURN is also a function of its first argument
(a method invocation site) and returns the local variable at the call
site that receives the method call’s return value. VARTYPE maps a
variable to its type and SUBTYPE links a type to its supertypes, while
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V is a set of program variables

H is a set of heap abstractions (i.e., allocation sites)

M is a set of method identifiers

S is a set of method signatures (including name, type signature)
F is a set of fields

I is a set of instructions

T is a set of class types

N is the set of natural numbers

AvLocC(var : V, heap : H, inMeth : M) # var = new ...
MOovVE(to : V, from : V) # to = from
LoaD(to : V, base : V, fld : F) # to = base.fld
STORE(base : V, fld : F, from : V) # base.fld = from

VCALL(base : V, sig : S, invo : I, inMeth : M)  # base.sig(..)

FORMALARG(meth : M, n : N, arg : V)
ACTUALARG(invo : I, n : N, arg : V)
FORMALRETURN(meth : M, ret : V)
ACTUALRETURN (invo : I, var : V)
THISVAR(meth : M, this : V)
HEAPTYPE(heap : H, type : T)
LookUp(type : T, sig : S, meth : M)
VARTYPE(var: V, type: T),
INMETHOD (instr : I, meth : M)
SUBTYPE(type : T, superT : T)

VARPOINTSTO(var : V, heap : H)
CALLGRAPH (invo : I, meth : M)
FLDPOINTSTO(baseH : H, fid : F, heap : H)
INTERPROCASSIGN(to : V, from : V)
REACHABLE(meth : M)

Figure 2.1: Our domain, input relations, and computed relations (for a context-
insensitive, Andersen-style analysis). The input relations are of two kinds: relations
encoding program instructions (the form of the instruction is shown in a comment)
and relations encoding type system and other environment information.
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INMETHOD is a function from instructions to their containing methods.
(The latter three relations are not used until Chapter [3])

Computed relations. There are five output or intermediate computed
relations: VARPoINTSTO, ..., REACHABLEH The main output rela-
tions are VARPOINTSTO and CALLGRAPH, encoding our points-to
and call-graph information—we later discuss the purpose of the latter,
together with the analysis specification. The VARPOINTSTO relation
links a variable (var) to a heap object (heap). Other intermediate re-
lations (FLDPOINTST'O, INTERPROCASSIGN, REACHABLE) correspond
to standard concepts and are introduced for conciseness and readabil-

ity.

Analysis logic. Figure shows a complete Andersen-style points-to
analysis for our input language. The rules handle all different cases of
input statements in the intermediate language. For instance, the first
rule handles ALLOC statements (i.e., new instructions). The rule states
that, if we have computed that a method is reachable and it contains
the allocation of an abstract object, heap, directly assigned to local
variable var, then var is inferred to point to heap.

The analysis integrates two features that merit discussion, since
they represent standard variability axes in the literature [Ryder, 2003]:
field sensitivity and on-the-fly call-graph construction.

e Field sensitivity refers to the ability of the analysis to distinguish
different fields of the same abstract object, instead of lumping
all fields together. This is reflected in our rules for handling
STORE and LOAD instructions: a STORE input fact, together
with prior VARPOINTSTO inferences, leads to computing a FLD-
PoiNTsToO relation fact for the given heap object and field. The
FLDPOINTSTO facts are later used in the handling of LOAD in-
structions, as the respective rule shows.

SREACHABLE is somewhat of a special case, since we assume it is also used as an
input relation: it needs to initially hold methods that are always reachable, such as
the programs’s main method. We ignore this technicality in the model, rather than
burden our rules with a separate input relation.
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VARPOINTSTO(var, heap)
REACHABLE(meth), ALLOC(var, heap, meth).

VARPOINTSTO(to, heap) <
MOVE(to, from), VARPOINTSTO(from, heap).

FLDPOINTSTO(baseH, fld, heap) <
STORE(base, fid, from), VARPOINTSTO(from, heap),
VARPOINTSTO(base, baseH ).

VARPOINTSTO(to, heap) <
LoAD(to, base, fid), VARPOINTSTO(base, baseH ),
FLDPOINTSTO(baseH, fid, heap).

REACHABLE(toMeth),

VARPOINTSTO(this, heap),

CALLGRAPH(invo, toMeth) <
VCALL(base, sig, invo, inMeth), REACHABLE(inMeth),
VARPOINTSTO(base, heap),
HEAPTYPE(heap, heapT), LOOKUP(heapT, sig, toMeth),
THISVAR(toMeth, this).

INTERPROCASSIGN(to, from) <
CALLGRAPH (invo, meth),
FORMALARG(meth, n, to), ACTUALARG (invo, n, from).

INTERPROCASSIGN(to, from) <
CALLGRAPH(invo, meth),
FORMALRETURN(meth, from), ACTUALRETURN (invo, to).

VARPOINTSTO(to, heap) <
INTERPROCASSIGN(to, from),
VARPOINTSTO(from, heap).

Figure 2.2: Datalog rules for an Andersen-style points-to analysis and call-graph
construction.



12

Core Pointer Analysis

The alternative would be a field-insensitive analysis, which ig-
nores which object field is used in a STORE or LOAD. This han-
dling may sacrifice precision in an effort to keep the size of inferred
facts more manageable.

Yet another option is a field-based analysis [Heintze and Tardieu,
2001a), which distinguishes fields but only identifies FLD-
PoinTsTo facts by the heap object’s type and not its full iden-
tity. That is, fields of different heap objects of the same type are
merged, although the fields themselves are kept separate, unlike
in a field-insensitive analysis.

Without extensive experimentation with real programs, it is hard
to predict whether such tradeoffs will pay off. Performance often
exhibits sharp discontinuities: the lack of precision may end up
also hurting performance, since the manipulated points-to sets
can be larger.

On-the-fly call-graph construction refers to the property that a
points-to analysis also infers simultaneously which methods are
called at each call-site. The two questions of “what objects can
a variable point to?” and “which function can get called at this
call-site?” are closely inter-related in any higher-order language.
The target of, e.g., a Java call obj.fun() is only possible to re-
solve once the type of obj is known. Generally, virtual calls in
object-oriented languages and first-class functions in a functional
language necessitate that call-graph computation have a model
of points-to information. On-the-fly call-graph construction typ-
ically leads to a significantly more precise call-graph, which, in
turn, enhances the precision of the points-to analysis. The two
analyses are in a virtuous circle, with each helping the other
achieve precision without wasting effort in spurious inferences.

On-the-fly call-graph construction is reflected in the rule for
VCALL of Figure This is the most involved rule of our
Andersen-style algorithm. It states that, if the program has an
instruction making a virtual method call over local variable base
(this is an input fact), and if the computation so far has es-
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tablished that base can point to heap object heap in a reachable
method, then the called method is looked up by-signature inside
the type of heap and several further facts are inferred: that the
looked up method is reachable, that it has an edge in the call-
graph from the current invocation site, and that its this variable
can point to heap.

Furthermore, the computed call-graph information is used to flow
points-to information between actual and formal parameters of
methods, as shown in the last three rules of Figure 2.2] For in-
stance, if we have computed a call-graph edge between invocation
site invo and method meth, then we infer an inter-procedural as-
signment to the ¢-th formal argument of meth from the i-th actual
argument at invo, for every i. Such assignments are treated much
like local assignments (MOVE instructions) in the last rule.

Although on-the-fly call-graph construction is typically advanta-
geous, there are several alternatives in the literature—e.g., see(lip
and Palsberg| [2000] for a comparative presentation. A conserva-
tive a priori call-graph computation has the advantage of speed,
as well as of easier handling of complex language features (e.g.,
reflective calls, discussed in Chapter |3). The techniques of Rapid
Type Analysis (RTA) [Bacon and Sweeney, [1996] and Class Hier-
archy Analysis (CHA) [Dean et al (1995 are the most commonly
used in this space. Both techniques employ only type information
to determine an over-approximation of all methods potentially
called at a site.

Rule evaluation. The Datalog rules of our Andersen-style analysis are
pure (with no constructors) and monotonic. Recall that this ensures a
declarative specification: the order of evaluation of rules or examination
of clauses cannot affect the analysis outcome.

For our code example at the beginning of the chapter, the algorithm
would infer an approximation of the fully-precise result discussed ear-
lier:
funl::al — new A1Q)
funl::b1l — new A1(), new A2()
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fun2::a2 — new A2()
fun2::52 — new A1(), new A2()
id::a — new A1(Q), new A2()

The result is not fully precise because it computes extra, spurious
facts: that fun1::b1 can point to abstract object new A2() (and not just
to new A1()) and that fun2:b2 can point to abstract object new A1()
(and not just to new A2()). Let us consider how these inferences are
made. The rules for handling inter-procedural assignments effectively
emulate an assignment from an actual method parameter to a formal
one, and from a formal return variable (inside the called procedure)
to an actual one (inside a caller). For method id, this means that
any elements of the points-to set of id::a will become elements of the
points-to sets of funi::bl and fun2::b2, since the latter are actual
return variables for calls to id and id::a is a formal return variable.

The analysis loses precision relative to an ideal result, but this is
hardly a surprise. Any algorithm for an undecidable problem will sac-
rifice precision for computability. Notably, the algorithm is still sound,
i.e., if a fact is true the algorithm will infer it. Generally, pointer anal-
ysis is a may-analysis: its inferences intend to over-approzimate actual
program behavior. In Chapter 5] we will also see an under-approzimate,
must-analysis.

2.2 Other Approaches

Our Andersen-style analysis model is an excellent presentation vehicle
and base for exploration of different techniques. Nevertheless, it does
not fully capture the considerable variability of the pointer analysis
space. We next discuss the main techniques that the model does not
capture well. The contrast serves to illustrate different approaches.

Steensgaard’s analysis. The best-known non-Andersen family of
points-to analysis algorithms is that based on the work of |[Steensgaard
[1996]. Steensgaard-style pointer analysis is best termed wunification-
based and uses equality constraints as opposed to the subset constraints
of the Andersen approach. Specifically, a Steensgaard-style analysis
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treats every input program statement as an indication that some points-
to sets should be unified, i.e., become one. For example, in an Andersen-
style analysis, a MOVE instruction, “p = q”, leads to the points-to set of
variable q becoming a subset of the points-to set of p. In a Steensgaard-
style analysis, the same MOVE statement leads to the two points-to sets
being merged, i.e., considered equal.

This approach of progressively merging points-to sets extends to the
analysis of all language features. In a straightforward Steensgaard-style
analysis, no abstract object can belong in more than one points-to set:
sharing an object causes the unification of two points-to sets. Consider
our code example at the beginning of the chapter. A Steensgaard-style
algorithm (without further precision enhancements) would infer that
all points-to sets are equal, since funl::al and fun2::a2 are assigned
to id::a and the latter is assigned back to funi::b1 and fun2::b2. The
result is quite impreciseﬁ
funl::al — new A1(), new A2(Q)
funl::bl — new A1(), new A2(Q)
fun2::a2 — new A1(), new A2()
fun2::b2 — new A1(), new A2()

id::a — new A1(), new A2()

The semantics of a Steensgaard-style analysis can be easily ex-
pressed in our Datalog framework. For instance, whereas the Andersen-
style rule for a MOVE instruction is:

VARPOINTSTO(to, heap)
MOoVE(to, from), VARPOINTSTO(from, heap).
the corresponding Steensgaard-style analysis would also contain a sym-

metric rule:
VARPOINTSTO(from, heap) <+

MOVE(to, from), VARPOINTSTO(to, heap).
Expressing a Steensgaard-style points-to analysis in Datalog is

rather misleading, however. For the analyses we present in our Datalog

“Indeed, it is often necessary to artificially limit the application of Steensgaard-
style equality constraints, or all points-to sets would be equal. One such case is the
constructor for a top-of-type-hierarchy class in an object-oriented language: concep-
tually, all abstract objects are used as the this variable in such a constructor call,
so a naive treatment would have all points-to sets be merged.
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models, implementation is straightforward: a standard evaluation of the
Datalog program matches the asymptotic complexity (if not the prac-
tical efficiency) of state-of-the-art manual implementations. This is not
the case for a Steensgaard-style analysis, which emphasizes high perfor-
mance as its hallmark property. Since every abstract object can appear
in at most one points-to set, the analysis can execute in practically-
linear time (relative to the number of input instructions) with the use of
union-find trees. Operations on union-find trees are of amortized near-
constant complexity, and every program statement induces a constant
number of membership checks and set union operations. A straightfor-
ward Datalog execution of the corresponding rules cannot match such
performance, as it will merely copy elements from one points-to set to
another, instead of efficiently unifying their representations.

Overall, Steensgaard-style analyses have been quite popular, espe-
cially in procedural languages such as C, due to their simplicity and
unparalleled speed. However, they have become progressively less used
in recent programming languages and modern settings, where the speed
of an Andersen-style analysis is usually quite sufficient.

Alias analysis, other heap abstractions. Although we, and the ma-
jority of the literature, treat “pointer analysis”, “points-to analysis”,
and “alias analysis” as virtual synonyms, there is occasionally reason
to focus on their subtle differences. Hind, [2001] distinguishes between
alias and points-to analysis, depending on whether an algorithm in-
tends to compute alias pairs or points-to sets, respectively. (Recall
that points-to analysis attempts to answer questions of the form “what
is the set of abstract objects that this variable/expression may point
to?” whereas alias analysis answers the question “can these two vari-
ables/expressions denote the same object?”) “Pointer analysis” is then
the union of “points-to analysis” and “alias analysis”. In this view, alias
analysis may not need explicit representations of heap objects (e.g., ab-
stract objects represented as allocation sites) but instead can directly
compute aliased pairs of variables. Some algorithms, especially on the
high-speed, lower-precision end of the spectrum—e.g., [Zheng and Rug-
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ina;, 2008, are explicitly designed to compute such alias relationships
very efficiently.

More generally, not just variables but entire expressions, or syn-
tactic abstractions over them, can be used as the root elements of an
analysis. This obviates the need to represent allocation sites or objects
explicitly. The access path abstraction approach generalizes alias rela-
tions by expressing all knowledge about the heap in terms of relation-
ships between pointer expressions. An access path is a variable qualified
by a sequence of field names. Access paths can be statically summa-
rized syntactically—e.g., using regular expressions, such as p.f.* to
mean any path starting with p.f—in order to capture unbounded run-
time field chains. An analysis can use access paths internally or in
expressing its computed output. Typically, analyses maintain equiva-
lence classes of access paths—e.g., storing that p.f and q.g.h can be
aliases—although other predicates on access paths may also be prof-
itable to compute. Kanvar and Khedker| [2014] discuss exhaustively a
variety of models for the heap.
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Analysis of Realistic Languages

Our model of a pointer analysis forms a firm base on which more precise
and more complete algorithms can be built. In this chapter we discuss
completeness: how can different language features be modeled in the
course of a pointer analysis? We next see the additions to a core analysis
model that are required. We discuss a variety of languageq features,
each with its own handling but all painting from a common palette, as
simple extensions of our base points-to analysis. There are interesting
subtleties, especially concerning features (e.g., exceptions, reflection)
that essentially represent separate analyses, yet are best handled on-
the-fly, in mutual recursion with the core analysis.

3.1 Arrays and Other Language Features

Our intermediate language of Section ignores several features of
a realistic programming language. Some can be treated entirely anal-
ogously to features shown. For instance, static method calls can be
represented in the input intermediate representation via a separate re-

18
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lation (SCALL(sig: S, invo: I, inMeth: M)) and handled using a subset
of the logic for virtual calls in Figure

A particularly central and interesting language feature for pointer
analysis purposes is arrays. One of the simplest and most common ap-
proaches to array modeling in a pointer analysis is array-insensitivity.
This signifies that the analysis does not distinguish between loads and
stores to different array locations. The result is that precision is lost,
yet the analysis reasoning remains entirely at the level of variables and
heap objects: no reasoning on integer expressions is required.

We can add handling of arrays (for a Java-like language) to our
base pointer analysis model quite straightforwardly. Figure [3.] lists
new input and computed relations, as additions to those in Figure 2.1}
ARRAYLOAD and ARRAYSTORE add to our intemediate language the
usual array access instructions. COMPONENTTYPE represents the type
system information that reflects the element type of an array. (For in-
stance, the component type of A[1[] is A[] and 4ts component type
is A.) A new computed relation ARRAYCONTENTSPOINTTO computes
the points-to set of an array object, by analogy to the earlier FLD-
PoINTSTO predicate for plain heap objects.

ARRAYLOAD(to : V, base : V) # to = base/...]
ARRAYSTORE(base : V, from : V)  # base[...] = from

COMPONENTTYPE(type : T, compT : T)
ARRAYCONTENTSPOINTTO(baseH : H, heap : H)

Figure 3.1: Extra input and computed relations (added to Figure for array
instructions. Note that the index expression is omitted from the ARRAYLOAD and
ARRAYSTORE predicates, since it is completely redundant with our array-insensitive
approach. More sophisticated analyses would need such information.

Figure [3.2] shows the analysis enhancements for array instructions,
with rules to be viewed as additions to Figure Input instructions

'In more precise, context-sensitive, analyses—see Chapter Kastrinis and
Smaragdakis| [2013b] argue that it is profitable to distinguish between static and
virtual calls.
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ARRAYLOAD and ARRAYSTORE are handled by separate rules, with
the computed ARRAYCONTENTSPOINTTO relation to link them. As
can be seen, the logic for array handling is mutually recursive with
the core points-to analysis logic: relation ARRAYCONTENTSPOINTTO
is established based on VARPOINTSTO facts, and vice versa.

ARRAYCONTENTSPOINTTO(baseH, heap) <—
ARRAYSTORE(base, from),
VARPOINTSTO(base, baseH ), VARPOINTSTO(from, heap),
HEAPTYPE(heap, hType), HEAPTYPE(baseH, baseHType),
COMPONENTTYPE(baseHtype, component Type),
SUBTYPE(hType, componentType).

VARPOINTSTO(to, heap) <
ARRAYLOAD(to, base),
VARPOINTSTO(base, baseH), ARRAYCONTENTSPOINTTO(baseH, heap).

Figure 3.2: Datalog rules (additions to Figure [2.2]) for array modeling.

Notably, type information is used for filtering which abstract objects
flow into an array and out of it. In the first rule, the component type of
the concrete type of an abstract array object is retrieved and needs to
be compatible with (i.e., a supertype of) the type of the object stored in
the array. Type checks such as this are often important for precision.
Due to the inherent imprecision of an array-insensitive approach, a
heavy burden is placed on the analysis to recover precision whenever
possible in array manipulation.

3.2 Exception Analysis

Analyzing the exception flow of a program is often treated as a sepa-
rate, high-level analysis—as a client of a pointer analysis, rather than as
an integral part of it [Fu and Ryder} 2007]. Exception flow information
is of direct value for human inspection of the program, thus reinforc-
ing the view of exception analysis as a high-level client. Nevertheless,
experimental results for Java programs have shown that exception anal-
ysis and pointer analysis often enjoy the same symbiotic relationship as
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pointer analysis and (on-the-fly) call-graph construction: the precision
of either analysis is significantly harmed when they are performed sepa-
rately, with conservative assumptions about the other. Bravenboer and
Smaragdakis| [2009b] show that some flavors of pointer analyses (esp.
object-sensitive analyses, which we discuss in Section can be many
times faster and twice as precise with an on-the-fly exception analysis,
performed in mutual recursion with the pointer analysis logic.

Figure [3.3| shows additions to our baseline analysis inputs and com-
puted relations for exception analysis. The input relations encode Java-
like exception throwing and catching instructions in an input program.
The THROW(i,e) relation captures throwing at instruction i an expres-
sion object that is referenced by local variable e. The CATCH(¢,i,a) re-
lation connects an instruction i, which can (directly or via a call) throw
an exception of dynamic type ¢, with the local variable, a, that will be
assigned the exception object at the appropriate catch-site. Although
CATcH does not directly map to individual intermediate language in-
structions, one can compute it easily from such low-level input. (The
existence of a catch instruction is a definite fact, deduced from direct
syntactic inspection of the input program, and not an analysis infer-
ence.) Introducing CATCH as a slightly abstracted input relation allows
the modeling of exception handlers at different degrees of precision—
e.g., a definition of CATCH may or may not consider exception handlers
in-order, may or may not consider only the most-specific handler based
on the declared types, etc. The output relation we want to compute is
THROWPOINTSTO, which captures what exception objects a method
may throw at its callers.

THROW (instr : I, e : V) # throw(e)
CATCH(heapT : T, instr : I, arg : V)  # catch(arg)
THROWPOINTSTO(meth : M, heap : H)

Figure 3.3: Extra input and computed relations (added to Figure[2.1]) for exception
analysis.
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THROWPOINTSTO(meth, heap) <
INMETHOD (instr, meth), THROW (instr, e),
VARPOINTSTO(e, heap), HEAPTYPE(heap, heapT),
ICATCH(heapT, instr, ).

THROWPOINTSTO(meth, heap) <
INMETHOD (invo, meth), CALLGRAPH (invo, toMeth),
THROWPOINTSTO(toMeth, heap), HEAPTYPE(heap, heapT),
ICATCH(heapT, invo, ),

VARPOINTSTO(arg, heap) <
THROW (instr, e), VARPOINTSTO(e, heap),
HEAPTYPE(heap, heapT), CATCH(heapT, instr, arg).

VARPOINTSTO(arg, heap) <
CALLGRAPH (invo, toMeth),
THROWPOINTSTO(toMeth, heap),
HEAPTYPE(heap, heapT), CATCH(heapT, invo, arg).

Figure 3.4: Datalog rules (additions to Figure ) for exception analysis.

Figure shows the exception computation, in mutual recursion
with the points-to analysis. Two syntactic constructs we have not seen
before are “_”, meaning “any value”ﬂ and “!”, signifying negationﬁ

THROWPOINTSTO is our new output relation, which also leads to
more VARPOINTSTO inferences: rules for one relation appeal to the
other. The first rule captures the case of a thrown exception when no

2Semantically, “_” is just a regular logical variable, albeit one that does not need
to have a human-readable name. Different instances of “ 7 are distinct.

3This use of negation is merely a syntactic convenience, since it only applies
to input relations (CATCH), which could also have been negated in advance. As
expected, based on the semantics of “_”, when an “_” variable is in a negated
predicate, the meaning is “there does not exist a value such that...”.

Generally, our rules respect the restriction of stratified negation: negation does
not appear in a recursive cycle. This restriction is a standard assumption for the
polynomial-time execution guarantees of the Datalog language discussed in Chap-

ter E



3.3. Reflection Analysis 23

matching catch instruction exists in the same method. In this case,
the method itself can throw the exception to its callers. The second
rule handles the propagation of an exception thrown by a transitively
called method, in the case that no matching handler exists in the caller.
The third and fourth rules model the complementary case of exceptions
thrown locally or by transitively called methods, but caught. The result
is a VARPOINTSTO inference for the variable to which the exception
object is assigned in the catch clause.

In practice, exception objects may be represented more coarsely
than other program objects, leading to scalability gains [Kastrinis and
Smaragdakis, |2013a]. This approach is straightforward to implement in
the above declarative framework. No changes to the exception-handling
logic are needed—instead, we can merely adjust how new instructions
imply VARPOINTSTO facts, by distinguishing two cases (coarse- vs.
fine-grained representation) in the first rule of Figure based on the
type of the allocated object.

3.3 Reflection Analysis

One of the most significant practical issues facing pointer analysis is
the treatment of dynamic language features: reflection, dynamic load-
ing, dynamic changes to the member lookup process. Such features
are prevalent in dynamic languages (e.g., JavaScript, Python, PHP)
yet also play an ever-increasing role in statically-typed, two-phase-
compiled languages (Java, C#, and more). Few practical pointer analy-
sis approaches currently attempt to statically model dynamic language
features: the typical design choice is to pretend that the dynamic fea-
tures are absent, thus sacrificing the soundness (i.e., property of over-
approximation) of a may-analysis [Livshits et al., 2015]. Nevertheless,
the handling of dynamic features is a promising research frontier that
increasingly receives attention.

Among dynamic features, the best-studied is reflection |Livshits,
2006, |Li et al., [2014]. Reflection, as in the Java language, refers to the
ability to dynamically access members and type information of an ob-
ject, often based on string representations of the member’s or type’s
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name. We next reformulate the reflection analysis approach introduced
by Livshits et al. [2005] for Java. This treatment of reflection is interest-
ing because it is elegant, practically feasible, and highly representative
of disciplined handling of dynamic features in other languages (e.g.,
JavaScript [Madsen et al., [2013]).

A key to the approach is that, much like with earlier language fea-
tures, reflection analysis relies on points-to information, and vice versa.
A typical pattern of reflection usage in Java is with code such as:

String className = ... ; // possibly a constant string
Class ¢ = Class.forName(className) ;
Object o = c.newInstance();

String methodName = ... ; // possibly a constant string
Method m = c.getMethod(methodName, ...);
m.invoke(o, ...);

In the above, a string is used to dynamically look up a class. The
result of the lookup is a class object, uniquely identifying the class at
run-time. The class is then instantiated, yielding an object. A method
with a name given by a string is looked up in the class (producing a
method object) and invoked on the newly-generated object.

The insight behind the static reflection analysis is that the program
text contains string constantsﬂ that can often determine the outcome of
reflection operations. Thus, the challenge becomes to track the flow of
string constants through the program. In our above example, all of the
statements can occur in far-away program locations, across different
methods, invoked through virtual calls from multiple sites, etc. Thus,
a whole-program analysis with an understanding of heap objects is re-
quired to track reflection with any amount of precision. This suggest
the idea that reflection analysis can leverage points-to analysis—it is
a client for points-to information. At the same time, points-to anal-
ysis needs the results of reflection analysis—e.g., to determine which
method gets invoked in the last line of the above example, or what

“More sophisticated analyses (e.g., [Li et al., 2014]) may also perform substring
matching, may track the flow of strings through library methods that produce new
strings, etc. For simplicity, we only model the essence of the analysis, for the simple
case of full string constants.



3.3. Reflection Analysis 25

objects each of the example’s local variables point to. Thus, reflection
analysis and points-to analysis become mutually recursive, or effectively
a single analysis.

We consider the core of the reflection analysis algorithm, which han-
dles the most common reflection features for the Java language, illus-
trated in our above example: creating a class object given a name string
(library method Class.forName), creating a new object given a class ob-
ject (library method Class.newInstance), retrieving a method object
given a class object and a signature (library method Class.getMethod),
and reflectively calling a virtual method on an object (library method
Method.invoke) E|

Reflection analysis adds a few extra (auxiliary) input relations to
the base pointer analysis, as shown in Figure [3.5

CONSTANTFORCLASS(h: H, t: T)
CONSTANTFORMETHOD(h: H, sig: S)
REIFIEDCLASS(¢: T, h: H)
REIFIEDMETHOD (sig: S, h: H)
REIFIEDHEAPALLOCATION(é: I, t: T, h: H)

Figure 3.5: Extra input relations (added to Figure [2.1)) for reflection analysis.

The CONSTANTFORCLASS(h: H, t: T) relation encodes that
class/type t has a name represented by the constant string object & in
the program text, and similarly for relation CONSTANTFORMETHOD (h:
H, sig: S) and method signature sig. Only a small subset of the classes
or methods in the program will have names represented as constant
strings in the program text.

The reflection analysis also needs to invent new abstract objects,
which do not correspond to ALLOC instructions in the program text. We
assume that these are supplied as analysis inputs, via straightforward
pre-processing of the program text. Relation REIFIEDCLASS(¢: T, h: H)

5This treatment ignores several other API calls, which are handled similarly.
These include, for instance, the handling of fields and constructors, other kinds of
method invocations (static, special), reflective access to arrays, other ways to get
class objects, and more.
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links an abstract class object, h, with the class type, ¢, it represents.
(Thus, the static analysis uses a unique abstract object per dynamic
class object.) Similarly, relation REIFIEDMETHOD(sig: S, h: H) links an
abstract method object, h, with method signature sig. (The signature
includes the declaring type.) Finally, REIFIEDHEAPALLOCATION(i: I, t:
T, h: H) returns an abstract object, h, to represent all dynamic objects
of type t that are allocated with a newInstance call at invocation site
1.

Figure[3.6shows the reflection analysis additions to our base pointer
analysis algorithm. To simplify the presentation we consider standard
strings (e.g., "Class.forName") to stand for the signature of the re-
spective method. Note also the use of a static call (relation SCALL, as
discussed in Section in the first rule.

The first rule says that if the first argument (0-th parameter of the
static call) of a forName call points to an object that is a string constant
matching a class name, then the local variable, r, receiving the return
value of the forName call will point to the abstract class object, h, for
the class.

The second rule handles the case of a newInstance call. If the
receiver object, h., of the call is a class object for class ¢, and the
newInstance call is assigned to variable r, then r can point to the spe-
cial allocation site, h, that designates objects of type t allocated at the
newInstance call site.

The third rule gives semantics to getMethod calls. It states that if
such a call is made with receiver b (for “base”) and first argument p
(the string encoding the desired method’s signature), and if the analysis
has already determined the objects that » and p may point to, then,
assuming p points to a string constant encoding a signature, s, that
exists inside the type that b points to, the variable r holding the result
of the getMethod call points to the reflective object, h,,, for this method
signature.

Finally, the fourth rule uses reflection information to infer more
call-graph edges. A new edge can be inferred from the invocation site,
i, of a reflective invoke call to a method m, if the receiver, b, of the
invoke call points to a reflective object encoding a method signature,



3.3. Reflection Analysis 27

VARPOINTSTO(r, h) +
SCALL("Class. forName", i, ), ACTUALRETURN(4, )
ACTUALARG(4, 0, p), VARPOINTSTO(p, ¢),
CONSTANTFORCLASS(¢, t), REIFIEDCLASS(¢, h).

VARPOINTSTO(r, h)
VCALL(’U, "Class.newlInstance”, 1, _),
VARPOINTSTO(v, h.), REIFIEDCLASS(?, h.),
ACTUALRETURN(?, ), REIFIEDHEAPALLOCATION(4, t, h).

VARPOINTSTO(r, hyp,)
VCALL(b, "Class.getMethod", i, ), ACTUALRETURN(:, r),
VARPOINTSTO(b, h.), REIFIEDCLASS(t, h,),
ACTUALARG(i, 1, p),
VARPOINTSTO(p, ¢), CONSTANTFORMETHOD(¢, s),
LookUp(¢, s, ), REIFIEDMETHOD(Ss, hyy,).

CALLGRAPHEDGE(7, m)
VCALL(b, "Method. invoke", i, _),
VARPOINTSTO(b, h,,), REIFIEDMETHOD(s, hy,),
ACTUALARG(i, 1, p), VARPOINTSTO(p, h),
HEAPTYPE(h, t), LOOKUP(t, s, m).

Figure 3.6: Datalog rules (additions to Figure ) for reflection analysis.

and the first argument, p, of the invoke call (the intended receiver of
the reflective invocation) points to an object, h, of a class in which the
lookup of the signature produces the method m.

Although the above rules are occasionally intricate, they are also
concise and elegantly enhance existing pointer analysis algorithms. The
rules offer a minimal but faithful model of the core of a practical re-
flection analysis, performed as part of a pointer analysis.

Discussion. As the preceding sections have shown, much of the com-
plexity of pointer analysis is due to the handling of modern language
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features. These features are not orthogonal: static analysis is a domain
best described as groups of mutually recursive definitions, each han-
dling a certain language feature. The handling of each feature—e.g.,
exceptions or reflection—produces more facts for the rest of the analy-
sis, while, vice versa, facts produced by the rest of the analysis trigger
more inferences for the exception or reflection logic. This consideration
is reflected in practice. The effectiveness of a pointer analysis algorithm,
in terms of both precision and performance, may be dramatically af-
fected by the modeling of extra language features. An algorithm that
appears superior on a core language model may well be inferior once
more of the language features are modeled. The complexity of such
inter-related analyses is also an impetus for declarative modeling, as
in our approach. A declarative specification of the analysis allows for
modular and compact models: none of the specifications of this Chap-
ter required anything but modular additions to the original pointer
analysis framework of Figures 2.1] and [2.2]
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Context Sensitivity

Pointer analysis attempts to offer efficiently computable yet reason-
ably precise models of the program heap. The inter-related and whole-
program nature of the analyses for different language features practi-
cally means that intractability lurks behind even the simplest efforts to
maintain high precision. Although the algorithms we examine in this
tutorial are polynomial (as evidenced by their specification in Datalog)
they can quickly become unscalable for realistic programs, analyzed
against modern, large standard libraries.

For higher-order (object-oriented and functional) languages, the ap-
proach of context sensitivity has arisen as the primary way to enhance
analysis precision without sacrificing scalabilityﬂ A context-sensitive
analysis qualifies variables and abstract objects with context informa-
tion: the analysis collapses information (e.g., “what objects this local
variable can point to”) over executions that map to the same context
value, while separating executions that map to different contexts. This
offers a way to control the precision of the analysis and even select the

!Context sensitivity is of value even to first-order function/procedure calls, but
in such a language (e.g., C) researchers often derive greater value from flow sensi-
tivity—an approach we discuss in Chapter

29
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precision aspects more pertinent to the analysis at hand. Context sen-
sitivity comes in many flavors, such as call-site sensitivity [Sharir and
Pnueli, 1981, [Shivers|, 1991], object sensitivity [Milanova et al., 2002,
2005], and type sensitivity |[Smaragdakis et al. [2011], depending on
what program element is used as context information.

We begin with a general model for context sensitivity. We shall
instantiate the model to discuss various flavors.

4.1 Context-Sensitive Analysis Model

To motivate context-sensitive analysis, consider our earlier example
from Chapter [2] partly reproduced below:

void fun1() {
Object a1l
Object bl

}

... // and similarly for a fun2

Object id(Object a) { return a; }

new A1Q);
id(al);

The Andersen-style analysis of Section is context-insensitive.
We would like to modify it to become context-sensitive, thus achieving
more precision. As we saw, the context-insensitive analysis result differs
from the ideal, fully precise one—e.g., funi::b1 is computed to point
to both abstract objects new A1() and new A2(), whereas in reality it
can only point to the former.

In order to achieve more precision, we can qualify the analysis infer-
ences with context information. There are two kinds of context: calling
context (or often just context), which is used to qualify local variables,
and heap context, which is used to qualify heap abstractions. That is,
if we have two calling contexts ¢! and ¢2 for method id, the analy-
sis will compute separately the points-to information of local variable
a under context cI and under context c2. Similarly, if we have two
heap contexts hci and hc2 at the point of the allocation instruction
new A1(), we will distinguish the allocated object for hci from that for
he2. This distinction will follow the abstract object wherever it flows
in the analysis.
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In later sections, we shall make the above illustration more concrete,
for specific kinds of context information.

To describe context-sensitive analyses in our declarative model, we
merely need to augment our computed relations with context informa-
tion. There are two kinds of context sets in our domain: a set of calling
contexts (or just “contexts”), C, and a set of heap contexts, HC.

Figure [4.] shows the updated input domain and schema of com-
puted relations for a context-sensitive analysis. Most of the figure re-
produces Figure[2.1] for ease of reference. The only additions in the first
three parts of Figure are those of sets C' and HC, as well as that
of adding context parameters in the signatures of computed relations.
The fourth part lists two new special relations, Record and Merge
serving as constructors of contexts. A constructor returns a context
object for each combination of input values.

Figure updates Figure for a context-sensitive analysis. As
can be seen, the rules are isomoprhic to the context-insensitive rules,
with only straightforward modifications.

The main difference in the addition of context sensitivity to the
analysis logic is the use of constructors Record and Merge. As far
as the rest of the analysis is concerned, Record and Merge are black
boxes. Their use makes our analysis parametric. Different implemen-
tations of Record and Merge will yield analyses of different context
sensitivity flavors.

Record is employed in the handling of ALLOC instructions (i.e., new
statements in Java). Every time an allocation site is encountered, the
abstract object for the allocation site is qualified with the heap context
that Record returns. This provides more fine-grained differentiation
than merely using allocation sites as abstractions for objects. Note
that the interface of Record (i.e., its two arguments, heap and ctz)
is general enough to capture all information available to the Datalog
rule for Arroc. (For a given heap object, heap, both the method meth
that allocates it, and the variable var, to which it is assigned, can be
uniquely determined by the identity of this heap object, i.e., there exists
a functional dependency from heap to var and meth. Thus, the latter can
be omitted from the signature of Record.) In other words, Record
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V' is a set of program variables

H is a set of heap abstractions (i.e., allocation sites)

M is a set of method identifiers

S is a set of method signatures (including name, type signature)
F is a set of fields

I is a set of instructions (mainly used for invocation sites)

T is a set of class types

N is the set of natural numbers

C' is a set of (calling) contexts

HC(C is a set of heap contexts

AvLoc(var : V, heap : H, inMeth : M) # var = new ...
MOoVE(to : V, from : V) # to = from
LoaD(to : V, base : V, fld : F) # to = base.fld
STORE(base : 'V, fid : F, from : V) # base.fld = from

VCALL(base : V, sig : S, invo : I, inMeth : M)  # base.sig(..)

FORMALARG(meth : M, n : N, arg : V)
ACTUALARG(invo : I, n : N, arg : V)
FORMALRETURN (meth : M, ret : V)
ACTUALRETURN (invo : I, var : V)
THISVAR(meth : M, this : V)
HEAPTYPE(heap : H, type : T)
LooxkUp(type : T, sig : S, meth : M)
VARTYPE(var: V, type: T),
INMETHOD (instr : I, meth : M)
SUBTYPE(type : T, superT : T)

VARPOINTSTO(var : V, ctz : C, heap : H, hetx : HC')
CALLGRAPH(invo : I, callerCtx : C, meth : M, calleeCtz : C)
FLDPOINTSTO(baseH : H, baseHCtx : HC, fid : F, heap : H, hctr : HC)
INTERPROCASSIGN(to : V, toCtz : C, from : V, fromCtz : C)
REACHABLE(meth : M, ctz : C)

Record (heap : H, ctz : C) = newHCtx : HC
Merge (heap : H, hetz : HC, invo : I, ctz : C') = newCtx : C

Figure 4.1: Our domain, input relations, computed relations, and constructors of
contexts. The input relations are of two kinds: relations encoding program instruc-
tions (the form of the instruction is shown in a comment), and relations encoding
type system and other environment information.
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Record (heap, ctr) = hctz,
VARPOINTSTO(var, ctz, heap, hctz) <
REACHABLE(meth, ctz), ALLOC(var, heap, meth).

VARPOINTSTO(to, ctz, heap, hetr) <
MOoVE(to, from), VARPOINTSTO(from, ctx, heap, hctz).

FLDPOINTSTO(baseH, baseHCtz, fld, heap, hctr) <
STORE(base, fid, from), VARPOINTSTO(from, ctz, heap, hctz),
VARPOINTSTO(base, ctx, baseH, baseHCtz).

VARPOINTSTO(to, ctz, heap, hctz) <—
LOAD(to, base, fid), VARPOINTSTO(base, ctz, baseH, baseHCtz),
FLDPOINTSTO(baseH, baseHCtz, fld, heap, hctz).

Merge (heap, hctz, invo, callerCtz) = calleeClz,
REACHABLE(toMeth, calleeCtz),
VARPOINTSTO(this, calleeCtz, heap, hctr),
CALLGRAPH(invo, callerCtz, toMeth, calleeCtz) <
VCALL(base, sig, invo, inMeth), REACHABLE(inMeth, callerCtz),
VARPOINTSTO(base, callerCtz, heap, hetz),
HEAPTYPE(heap, heapT), LOOKUP(heapT, sig, toMeth),
THISVAR(toMeth, this).

INTERPROCASSIGN(to, calleeCtz, from, callerCtz) <—
CALLGRAPH((invo, callerCtz, meth, calleeCtz),
FORMALARG(meth, n, to), ACTUALARG (invo, n, from).

INTERPROCASSIGN(to, callerCtz, from, calleeCtz) <—
CALLGRAPH(invo, callerCtz, meth, calleeCtz),
FORMALRETURN(meth, from), ACTUALRETURN (invo, to).

VARPOINTSTO(to, toCtz, heap, hctr) <
INTERPROCASSIGN(to, toCtz, from, fromCtz),
VARPOINTSTO(from, fromCtz, heap, hctz).

Figure 4.2: Datalog rules for context-sensitive Andersen-style points-to analysis
and call-graph construction.
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has all possible inputs available to it, and its specific definition can
choose what it wants to use as context. We will see in the next sections
several instances of such choices.

Merge is similar to Record. It takes all available information at
the call site of a method and combines it to create a new calling context
(or just “context”). In this way, variables that pertain to different invo-
cations of the same method are distinguished, as much as the context
granularity allows.

Importantly, the addition of constructors to Datalog makes the lan-
guage Turing-complete, i.e., invalidates the polynomial-time guarantee
for expressible programs. Therefore, care must be taken to ensure that
the analysis terminates. Both our constructors Record and Merge
are recursive: they take as input entities of the same type as the one
they return. Therefore, we cannot preclude their use in non-terminating
computations. To restore our target property of polynomial execution,
in the next sections we limit our attention to definitions of Record
and Merge that create contexts in domains isomorphic to finite sets,
bounded polynomially by the size of the input. (For instance, we may
define the contexts of a given analysis to be of the form “pairs of allo-
cation sites”, or “triples of allocation site x call site x type”, etc.)

4.2 Call-Site Sensitivity

Call-site sensitivity [Sharir and Pnueli, 1981} |Shivers, |[1991] is the oldest
and best-known flavor of context sensitivity. It consists of using call
sites as context. Namely, whenever a method gets called, the context
under which the called method gets analyzed by a k-call-site-sensitive
analysis is a sequence of call sites: the current call site of the method,
the call site of the caller method, the call site of the caller method’s
caller, etc., up to a pre-defined depth, k.

To illustrate, let us consider again our earlier example from Chap-
ter [2} reproduced in full below for ease of reference.

void fun1() {
Object al = new A1Q);
Object bl = id(al);

}
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void fun2() {
Object a2
Object b2

}

Object id(Object a) { return a; }

new A2(Q);
id(a2);

As we saw in Chapter [2, a context-insensitive Andersen-style anal-
ysis produces an over-approximation of the fully precise result. The
return values of the two calls to id are conflated, yielding spurious
assignments to local variables b1 and b2:
funl::al — new A1()
funil::bl — new A1(), new A2()
fun2::a2 — new A2()
fun2::b2 — new A1(), new A2()

id::a — new A1(), new A2(Q)

A call-site sensitive analysis addresses this imprecision. A 1-call-
site-sensitive analysis, for instance, qualifies local variable id: :a by the
call site of method id. This yields analysis results of the form:
funl::al — new A1()
funl::bl — new A1()
fun2::a2 — new A2()
fun2::b2 — new A2()

[1]id::a — new A1Q)
[2]id::a — new A2()

Note how local variable id::a is now analyzed in two contexts. A
projection of the context-sensitive results to context-insensitive ones
would merge the two points-to sets of qualified variables [1]id::a and
[2]id::a, but internally the analysis has kept the distinction, which,
in turn, has resulted in computing the fully-precise result for funi::b1
and fun2: :b2.

Call-site-sensitive analyses can be expressed in our Datalog model
with appropriate instantiations of constructors Record and Merge.
The simplest kind of analysis is 1-call-site sensitive, without any con-
text for heap objects. Such an analysis has C = I (i.e., contexts are
instructions, and specifically call instructions) and HC = {*} (where %
is just a unique element, different from all others in our domains). The
analysis is then defined simply by setting:
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Record (heap, ctr) =
Merge (heap, hctz, invo, ctz) = invo

That is, the analysis keeps no context when an object is created
(Record) while it keeps the invocation site as context in calls (Merge).

Similarly, we can define a 1-call-site-sensitive analysis with a
context-sensitive heap (an approach also known as heap cloning). In
this case, HC = C = I, and our constructors become:

Record (heap, ctx) = ctz
Merge (heap, hctz, invo, ctr) = invo

That is, the analysis uses the current method’s context as a heap con-
text for objects allocated inside the method. As before, the context for
a method call is the call site.

Deeper contexts are equally easy to support, by deconstructing ex-
isting contexts and constructing more complex ones. For instance, a
2-call-site-sensitive analysis with a 1-call-site-sensitive heap would have
C =1x I, HC = I and constructors:

Record (heap, ctz) = first(ctz)
Merge (heap, hctz, invo, ctz) = pair(invo, first(ctz))

(We assume standard functions such as pair and first to construct and
deconstruct sequences.)

In all, call-site sensitivity has been a well-established approach in
the literature and in analysis tools, for over two decades. As also seen
in our example, however, its effectiveness relies on syntactic patterns in
the program. For instance, if an extra level of indirection—e.g., a func-
tion id2 that merely wraps id and is called instead of it—is added to the
example, a 1-call-site sensitive analysis will fail to maintain precision.
In experimental studies on object-oriented languages (e.g., [Lhotdk and
Hendren, 2008)), a different flavor of context sensitivity has been found
to yield higher precision, and often better performance.

4.3 Object Sensitivity

Since its introduction [Milanova et all 2002], object sensitivity has
emerged as the dominant flavor of context sensitivity for object-oriented
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languages. Object sensitivity uses object abstractions, i.e., allocation
sites, as contexts. Specifically, the analysis qualifies a method’s local
variables with the allocation site of the receiver object of the method
call. This kind of context information is non-local: it cannot be gathered
by simple inspection of the call site, since it depends on what the
analysis itself has computed to be the receiver object.

For our earlier example program fragment (Chapter [2[ and Sec-
tion it is not clear whether object sensitivity might gain precision
over a context-insensitive analysis: the implicit receiver (this) of the
two calls to id may be the same or not, depending on the receivers of
the calls to fun1l and fun2. More of the program text is required in or-
der to determine the result of the analysis. For illustration, we update
the program, below, so that the receiver objects of the two calls are
guaranteed distinct. Furthermore, we add an extra level of calling, via
a method id2, which wraps id—a complication that would cause a loss
of precision for a call-site-sensitive analysis.

class S {
Object id(Object a) { return a; }
Object id2(0Object a) { return id(); %
}
class C extends S {
void fun1() {
Object al
Object b1l

new A1Q);
id2(al);

}
}
class D extends S {
void fun2() {
Object a2 = new A2();
Object b2 = id2(a2);

}
}

An object-sensitive analysis maintains full precision for the above
program fragment, even for a context consisting of a single object ab-
straction. The receiver objects of the two calls to id2 (implicitly this)
are distinct abstract objects (guaranteed in the example, since they
are of different dynamic types, C and D). Therefore, the call to id in-
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side id2 is analyzed (at least) twice—once for each context/abstract
receiver object. The result is that the abstract objects that flow to b1
and b2 are kept separate.

Much of the power of object sensitivity is due to this tolerance to
extra levels of calling indirection, as long as the receiver object stays
the same. In contrast, a call-site-sensitive analysis with context depth 1
would not have maintained full precision for the above example, exactly
because of the addition of id2 as an extra intermediate call. A call-
site-sensitive analysis would require two levels of context to regain full
precision. Still, this only offers limited protection: an extra level of
calling indirection (e.g., an id3 that wraps id2) would have necessitated
a third level of call-site context for full precision, and so on.

Object-sensitive analyses can again be expressed quite simply in our
model, with instantiations of constructors Record and Merge. The
simplest kind is a 1-object-sensitive analysis without context for heap
objects. This analysis sets C = H and HC = {x}, with constructors:

Record (heap, ctr) =
Merge (heap, hetz, invo, ctr) = heap

That is, the analysis stores no context for allocated objects. For method
calls (refer to Figure , the context is the allocation site of the re-
ceiver object.

A more ambitious 2-object-sensitive analysis with a 1-context-
sensitive heap has a heap context of one allocation site (HC = H) and
a calling context of two allocation sites (C = H x H). The respective
constructors are:

Record (heap, ctz) = first(ctz)
Merge (heap, hctz, invo, ctz) = pair(heap, hctz)

Or: the context of a method call (determined by Merge) is a 2-element
list consisting of the receiver object and its (heap) context. The heap
context of an object (fixed at allocation, via Record) is the first context
element of the allocating method, i.e., the receiver object on which it
was invoked. Therefore, the context of a method call is the receiver
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object together with the “parent” receiver object (the receiver object
of the method that allocated the receiver object of the call).
Analyses with deeper context are defined similarly.

4.4 Discussion

In practical terms, context sensitivity can be quite effective [Lhotak and
Hendren, 2008]. It yields a way to enhance precision significantly, often
with little to no sacrifice of scalabilityﬂ Additionally, it is seamless
to integrate with other analysis ideas. Although our formulation of
context sensitivity has changed the signature of computed relations, the
change is uniform: relations acquire context and heap context entries,
as applicable. All analysis add-ons from Chapter [3|apply transparently
to a context-sensitive analysis expressed in our formulation, with rather
minimal and straightforward updates.

There are several more aspects of context sensitivity that are of in-
terest. These include further algorithms, complexity results, and more.

Other flavors of context sensitivity. In addition to call-site sensitivity
and object sensitivity, other flavors have been explored in the literature,
and even seem to offer significant advantages.

Type sensitivity [Smaragdakis et al., 2011] is an approach directly
isomorphic to object sensitivity, yet with types used in every place al-
location sites would normally appear. These types represent the class
containing the respective allocation site. Thus, allocation sites in meth-
ods declared in the same class (though not inherited methods) are
merged. The goal of type sensitivity is to coarsen the context of an
object-sensitive analysis, in order to achieve scalability (by avoiding
replication of information between contexts) without much precision
loss.

2Tt is often hard to tune the application of context-sensitivity—i.e., to pick the
right kind of context—so that scalability is maintained and precision is enhanced.
However, no better alternative exists, if higher precision is desired. All other stan-
dard precision enhancements (e.g., flow sensitivity, more precise heap modeling with
shape analysis) typically either fail to improve precision or are impossible to scale,
for a language like Java.
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For instance, for a 2-type-sensitive analysis with a 1-context-
sensitive heap, we would have C = T x T, HC = T and constructors:

Record (heap, ctz) = first(ctz)
Merge (heap, hetz, invo, ctz) = pair(Ca (heap), hetx)

where C4 : H — T is an auxiliary function mapping each heap abstrac-
tion to the class containing the allocation. The type-sensitive analysis
is otherwise isomorphic to an object-sensitive one: any type that ap-
pears in a context has to be the class containing the allocation site that
would appear in the same context position.

Another well-known context-sensitivity approach is that of the
Cartesian Product Algorithm |Agesen, 1995]. The algorithm treats as
context of a method call the abstract values of all parameters to the
method call, including the receiver object and actual arguments. This
approach has not yet been found to yield useful scalability/precision
tradeoffs for pointer analysis, although it has had application in less
expensive analyses (e.g., type inference).

Several more flexible combinations of contexts are possible. An
introspective analysis |Smaragdakis et al., 2014] adjusts its context
per program site, based on easy-to-compute statistics from a context-
insensitive analysis run. (This kind of context adjustment, or refinement
is more common in demand-driven analyses, discussed in Section) A
relative balance between call-site sensitivity and object sensitivity has
been explored with hybrid analysis [Kastrinis and Smaragdakis, [2013b].
A hybrid analysis models separately static and virtual method calls (in-
put relations VCALL and SCALL, from Chapter (3| in our formalism),
favoring object sensitivity for the former and call-site sensitivity for
the latter. For analyses with more than one element of context, the
design space becomes large, with interesting choices at every step—for
instance, how many elements of context should be call sites vs. allo-
cation sites for the analysis of a static method called inside a virtual
method? With appropriate tuning of this form, hybrid analyses have
experimentally yielded superior tradeoffs of precision and performance.
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Complexity. An important note for the area of context-sensitive
pointer analysis concerns the subtlety of definitions and the need for
careful statement of claims and results. This becomes quite evident
in the existence of “paradoxes” often arising in theoretical analyses.
Horwitz| [1997] has proven that precise context-sensitive (but flow-
insensitive—i.e., not taking into account the order of statements; see
Chapter analysis is NP-hard. Yet the analysis considered is vir-
tually identical to our Andersen-style pointer analysis, expressed in
Datalog—a language with guaranteed polynomial execution. The sub-
tle difference concerns the input language. Horwitz’s approach assumes
an intermediate language with arbitrary levels of pointer dereferences.
That is, the analysis considers a statement such as “*a = **a;” to be a
single instruction, whereas our load/store intermediate language would
break the statement up into three instructions:

t = *a;
t2 = *t;
*a = t2;

The difference is that, in our case, the three instructions are not
treated as a unit (i.e., their order and contiguity are not guaranteed),
unlike in the Horwitz result. Treating complex dereferences as a unit
lends a certain amount of flow sensitivity to the analysis, which is suf-
ficient for establishing the A'P-hardness result. Rinetzky et al.| [2008]
study the impact of various forms of limited flow-sensitivity in the com-
plexity of must- and may-alias analysis and they use the term partially
flow-sensitive for the above representation.

A similar recent “paradox” arose from the proof by [Van Horn and
Mairson [2008] that the kKCFA algorithm [Shivers, |1991] is EXPTZME-
complete, for £ > 1. Yet the kCFA algorithm is one of the prototypi-
cal call-site-sensitive analyses, seemingly forming the basis for multiple
implementations guaranteed to run in polynomial time, including our
earlier Datalog formulation. The difference, again, turns out to be in
the input language. As |Might et al. [2010] show, if we assume a func-
tional language, with automatic closure of environment variables, the
abstract-interpretation-based KCFA algorithm has an exponential value
space: although the number of different contexts is polynomial, the
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number of possible values of the environment is not. An analyzed envi-
ronment can have different combinations of closed values for variables
(depending on prior program actions in the abstract interpretation) for
the same context. In this way, a single call may need to be analyzed
for a large number of states (exponential in the number of variables in
the program text). In object-oriented languages, with explicit copying
of variable values at every call site, no such combinatorial explosion
arises: each copied variable acquires the abstract values that the anal-
ysis has computed for it so far, without concern for the values of other
variables. As a result, the algorithm loses some precision but remains
polynomial, as our Datalog implementation suggests.



5

Flow Sensitivity, Must-Analysis, and ... Pointers

Our presentation so far has omitted several interesting topics in the
pointer analysis area. These are tangential to the main emphasis of
earlier chapters, but important in their own, heterogeneous, respects.

5.1 Flow Sensitivity

Flow sensitivity refers to the ability of an analysis to take control flow
into account when analyzing a program. Consider a simple program
fragment:

a = new A1Q);

if (condition()) {
a = new A2Q);
c.f = a;

Will the analysis treat the program statements in order, and with
an understanding of the branching connectives? Thus, will, the £ field
of the object pointed by ¢ be assigned the abstract object new A1()
(an infeasible assignment, based on control flow) or just the object new
A20)7

43
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In the previous chapters, we have implicitly taken a flow-insensitive
approach: we treat all instructions as an unordered set of statements
that induce constraints, regardless of their position in the program.
Thus, we can view the above program fragment as an unordered set
consisting of two ALLOC and one STORE instructions. The result is to
consider the new A1() object to flow to the £ field of whichever object
¢ points to.

However, in reality, adding flow sensitivity to the points-to analysis
of our earlier chapters is an orthogonal matter, addressed by mere pre-
processing. If we put the input program in a static single assignment
(SSA) form, our standard analysis rules yield a flow-sensitive analysism
An SSA representation of the program assigns exactly once to each
variable and merges the matching temporary variables from different
program branches via the use of ¢ (“phi”) statements. ¢ statements are
indicators of the merging of control flow and each analysis can treat
them differently. In our case, an SSA transformation of the input, with
¢ statements treated as successive MOVE instructions, yields a flow-
sensitive analysis. Consider the SSA-transformed version of our earlier
example:

al = new A1Q);
if (condition()) {
a2 = new A20);

c.f = a2;
}
// a3 = phi(al,a2)
a3 = al;
a3 = a2;

(Although we speak of an SSA form, the a3 variable is assigned
twice, as a result of the translation of the special ¢ node. However, the
assignments to a3 are only virtually present, for the purposes of our
pointer analysis, as formulated earlier. We could equivalently add a phi
instruction in our intermediate language—as in the next section—and
treat it similarly to a MOVE instruction in earlier rules.)

! Albeit, without a flow-sensitive object model/heap model. That is, the points-to
sets of local variables are distinguished per program branch, but the points to sets
of objects (relation FLDPOINTSTO in our model) are not.
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The two different branches are now cleanly separated. The program
is represented by two ALLOC instructions, two MOVE instructions and
one LOAD. After the renaming, our analysis no longer confuses the flow
of the two abstract objects, although it has no concept of ordering of
statements.

Our analysis, as formulated earlier, can acquire flow sensitivity by
a mere SSA transformation of the input because it never keeps infor-
mation per-program-point. In contrast, other analyses do, and require
special handling of control-flow constructs. A representative example
is a must-point-to analysis.

5.2 Must-Analysis

The pointer analysis of previous chapters is a may-analysis: it pro-
duces an over-approximation of the fully precise result. The analysis
may freely infer points-to relationships that will not hold in real exe-
cutions, in addition to the ones that will. In contrast, several clients
of pointer analysis information need absolute certainty regarding the
existence of a certain points-to relationship—examples include intru-
sive program refactoring or optimization, high-quality error reporting,
etc. This certainty requires a must-analysis: an under-approximation
of program behavior, inferring results only when it is certain that they
will hold during program execution.

The must- vs. may- flavor of an analysis refers to the intent of
the analysis design. A sound analysis achieves this intent, i.e., is truly
under- or over-approximate as desired. Thus, soundness for a must-
analysis means avoiding spurious inferences, whereas soundness for a
may-analysis means not missing true inferences.

The topic of must- vs. may-analysis extends more generally than
just pointer analysis, to the entire area of static analysis. It is useful to
consistently assign the meaning of under- vs. over-approximate analysis
to the “must” and “may” prefixes, respectively, instead of relying on
intuitive understanding of the English terms. For example, negating
the result of a may-point-to analysis (i.e., taking the complement of its
output) yields a must-not-point-to analysis (and not a may-not-point-
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to analysis): the complement of an over-approximation is an under-
approximation of the precise result.

Applied specifically to pointer analysis, the practical issue is that
common uses of the analysis results subtly introduce negation, thus
violating the over-approximate nature of the analysis. That is, using
the results of a may-point-to analysis as if they were fully precise will
often violate soundness of the client. For instance, when asking the
question “can a heap object field be un-initialized?”, we typically de-
sire an over-approximate answer, i.e., a may-analysis for un-initialized
fields. That is, if the field can possibly be un-initialized in some real
program execution, the analysis should issue a warning about the field.
However, a may-point-to analysis does not give us enough information
to compute this answer! The may-point-to analysis will yield a super-
set of the values assigned to the field. The straightforward definition
of an un-initialized field analysis is to then report as un-initialized the
fields that do not have any values assigned to them. However, this is
an under-approximate result: the field may appear initialized merely
because of the lack of precision of the may-point-to analysis, which
conflates several actual program executions if these map to the same
context or flow abstraction of the may-point-to analysis.

A must-point-to analysis can address this need. We can express
such an analysis in our usual executable formalism, as Datalog infer-
ence rules. A realistic must-analysis has significant complexity and re-
quires careful modeling of language semantics to ensure soundness. In
contrast, our model is a simplistic must-analysis to serve as a point
of reference in our illustration of important concepts. This is unlike
our earlier may-analyses, which closely model perfectly realistic, highly
effective implementations.

Figure shows our input relations for a must-analysis. These are
quite similar to our earlier relations: VCALL remains the same, while
ALLOC, MOVE, LOAD and STORE merely acquire a new argument iden-
tifying the program instruction. We assume an SSA representation,
therefore the assigned variables of ALLOC and MOVE are also uniquely
identified. The meaningful new additions are PHI and NEXT relations.
PHI adds a ¢ instruction to our intermediate language. For simplicity,
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our PHI only merges two data values, instead of an arbitrary number.
The NEXT relation expresses directed edges in the control-flow graph
(CFG): NEXT(i,j) means that i is a CFG predecessor of j.

Figure [5.1] also shows the computed relations of our must-point-to
analysis. These relations are independent of earlier may-point-to rela-
tions (e.g., Figuresor: the must-analysis may run independently
of the may-analysis, and the results of the two can be combined in a
variety of ways.

The two relations computed are MUSTPOINTTO and FLDMUST-
PoinTTO, by analogy to the respective concepts in the may-analysis.
MUuSTPOINTTO(var,heap) means that variable var shall point to the
most recently allocated object of allocation site heap, modulo recur-
sion, i.e., the most recent for the same activation of the enclosing
method. Thus, the abstract object heap represents a single run-time
object, and can be treated as such (e.g., writes to its fields will re-
place earlier values—a concept commonly called strong update). Sim-
ilarly, FLDMUSTPOINTTO(instr, baseH, fld, heap) signifies that, at the
program point immediately after instruction instr, the most recently
allocated object of site baseH always points via its fid field to the most
recently allocated object of site heap (with “more recent” always defined
modulo recursion—we discuss the significance of this later).

Avrroc(i : I, var : 'V, heap : H, inMeth : M)  # i: var = new ...

MOVE(i : I, to : V, from : V) # i: to = from

LoAD(i : I, to : V, base : V, fld : F) # i: to = base.fld
STORE(i : I, base : V, fid : F, from : V) # i base.fld = from
VCALL(base: V, sig: S, invo: I, inMeth: M) # invo: base.sig(..)
PHi(i: I, to : V, from1: V, from2: V) # i to = ¢(froml,from2)
NExT(i: 1, j: 1) # jis OFG successor of i

MusTPOINTTO(var : V, heap : H)
FLDMUSTPOINTTO(instr : I, baseH : H, fid : F, heap : H)

Figure 5.1: Input and computed relations for must-analysis.
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Figure[5.2| presents our model of a must-point-to analysis. For econ-
omy of expression, we introduce FORALL: syntactic sugar that hides a
Datalog pattern for enumerating all members of a set and ensuring
that a condition holds universally. An expression “FORALL(i): P (i) —
Q(4,...)" is true if Q(4,...) holds for all i such that P(4) holds. Such
an expression can be used in a rule body, as a condition for the rule’s
firing.

The first five rules are direct counterparts of the may-analysis rules
from Figure[2.2] All must-point-to inference starts at the point of an ob-
ject allocation and propagates through the program. The last two rules
are more interesting. They show how a model of the heap, captured
by relation FLDMUSTPOINTTO, can propagate from one instruction
to the next. The first of these rules states that if at all predecessors,
i, of an instruction j, a heap object, baseH, is known to point to an-
other heap object, heap, via field fid, then the same inference holds at
instruction j, provided that j is not a store to field fid, a method call,
or an allocation site of one of the two involved objects, baseH and heap.

The final rule is similar: it propagates the same information from
instruction i to j, if instruction j is a STORE to field fid but the analysis
has established that the base variable of the STORE must point to an
object different from baseH.

The rules give a glimpse of the difficulties involved in specifying a
correct must-point-to analysis, as well as of the possibilities. The anal-
ysis model shown leaves significant room for improvement, in several
different ways:

e The analysis is quite conservative in that it stops the propaga-
tion of its heap model on every method call or store to the same
field. In practice, this is typically alleviated by running the must-
analysis after a may-point-to analysis and call-graph computa-
tion (e.g., see |Sridharan et al., 2013]). The latter computes an
over-approximation of the (abstract) objects a base variable can
point to and of the methods possibly invoked at a call site. This
can be used to make the filtering of the last two rules in Fig-
ure[5.2] much more precise, allowing more inferences. For instance,
the use of MUSTPOINTTO in the last rule can be replaced by a
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MusTPOINTTO(var, heap) <
Avrroc(_, var, heap, _).

MusTPOINTTO(to, heap) <
MOVE(_, to, from), MUSTPOINTTO(from, heap).

MusTPOINTTO(to, heap) <
PHI(_, to, from1, from2),
MuSTPOINTTO(from1, heap), MUSTPOINTTO(from2, heap).

FLDMUSTPOINTTO(4, baseH, fld, heap) <
STORE(4, base, fld, from),
MusTPOINTTO( from, heap), MUSTPOINTT O(base, baseH).

MUuSTPOINTTO(to, heap) <
LoAD(i, to, base, fid), MUSTPOINTTO(base, baseH ),
FLDMUSTPOINTTO(4, baseH, fid, heap).

FLDMUSTPOINTTO(j, baseH, fld, heap) <
(FORALL(7): NEXT(7,j) —
FLDMUSTPOINTTO(4, baseH, fid, heap),
ISTORE(j, _, fid, ),
'VCaALL(_, _,j,_),
TALLOC(j, _, baseH),
TALLOC(j, _, heap)).

FLDMUSTPOINTTO(j, baseH, fld, heap) <«
(FORALL(7): NEXT(7,j) —
FLDMUSTPOINTTO(4, baseH, fid, heap),
STORE(j, base, fid, ),
MusTPOINTTO(base, baseH2), baseH2 = baseH).

Figure 5.2: Datalog rules for a simple must-point-to analysis.
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I'VARPOINTSTO: the logic would effectively change from “must-
point-to a different base” to “not-may-point-to the same base”.
Similarly, in the next-to-last rule, the calls that could potentially
result in a write to field fid can be identified and used as a filter,
instead of the generic VCALL(_, _, 4, ).

The rule handling STORE instructions is draconian, with its
premise nearly impossible to establish. The analysis needs to
know with certainty which objects both variable base and variable
from must point to. Therefore, very few FLDMUSTPOINTTO in-
ferences can be made with this analysis model. Recall that must-
point-to information refers to concrete objects: the most recent
instance allocated by a given ALLOC site. Instead, realistic must-
analyses often also represent summary objects and track their
inter-relations. A general way for doing so is via access paths. For
instance, the analysis can track which field expressions, base.fld,
in the program text, are aliases, or which concrete object they
must point to, without establishing which concrete object vari-
able base must point to.

Most importantly, the analysis has no handling of call instruc-
tions. Therefore, it remains strictly intra-procedural. In order to
handle method calls, a must-analysis needs to become context
sensitive. For a straightforward approach, in order to propagate
heap models at a call site, the context used to analyze the callee
needs to uniquely identify the call site: no two control flows can be
conflated. This precludes the use of “novel” context abstractions,
as in object sensitivity and type sensitivity (Chapter . Gener-
ally, the role of context in a must-analysis is quite different from
that in a may-analysis. For instance, a deeper context allows a
must-analysis to infer more facts, instead of fewer. Furthermore, a
context-insensitive fact typically has a “forall contexts” meaning
in a must-analysis, i.e., implies its context-sensitive counterpart.
In a may-analysis the implication is inverse.

The correctness of the rules, and even the form of predicate
MusTPOINTTO, subtly depends on our assumptions. The inter-



5.2. Must-Analysis 51

mediate language is in SSA form, hence every variable has a sin-
gle point of assignment. Thus, MUSTPOINTTO does not need to
include an instruction in its arguments, unlike predicate FLD-
MusTPOINTTO: MUSTPOINTTO facts always hold once estab-
lished, since there are no further assignments.

Furthermore, recall that MUSTPOINTTO(var,heap) means that
variable var can only point to the most recently allocated ob-
ject of allocation site heap, modulo recursion. The “modulo re-
cursion” qualification is important. If MUSTPOINTTO were to
track the true most recently allocated object of site heap, then,
even without assignments, a MUusTPOINTTO fact could be later
invalidated: a method call can (eventually) result in the origi-
nal method being invoked and site heap producing a new object.
Since our analysis is strictly intra-procedural, there is no need
to track the true most recently allocated object for an allocation
site. If, however, we were to propagate FLDMUSTPOINTTO facts
inter-procedurally, we would need such information, which would
likely require tracking MUSTPOINTTO facts per-instruction.

Generally, must-analyses can vary greatly in sophistication and can
be employed in an array of different combinations with may-analyses.
The analysis of Balakrishnan and Reps| [2006], which introduces the
recency abstraction, distinguishes between the most recently allocated
object at an allocation site (a concrete object, allowing strong updates)
and earlier-allocated objects (represented as a summary node). The
analysis additionally keeps information on the size of the set of objects
represented by a summary node. At the extreme, one can find full-
blown shape analysis approaches, such as that of [Sagiv et al. [2002],
which explicitly maintains must- and may- information simultaneously,
by means of three-valued truth values: a relationship can definitely hold
(“must”), definitely not hold (“must not”, i.e., negation of “may”), or
possibly hold (“may”). Summary and concrete nodes are again used
to represent knowledge, albeit in full detail, as captured by arbitrary
predicates whose value is maintained across program statements, at the
cost of a super-exponential worst-case complexity.
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5.3 Other Directions

Several more topics in pointer analysis research have attracted signif-
icant interest and represent promising areas for future work or con-
nections to neighboring fields. We summarize them next, for further
reference.

CFL reachability formulation. In this tutorial, we formulated pointer
analysis algorithms in Datalog. Employing a restricted language not
only offers guarantees of termination and complexity bounds, but also
permits more aggressive optimization of the language features.

Along these lines, pointer analysis and other related analyses have
been formulated as a context-free language (CFL) reachability problem.
The idea is that we may encode an input program as a labeled graph,
and a specific analysis corresponds to the definition of a context-free
grammar, G. The relation being computed holds for two nodes of the
graph if and only if there exists a path from one node to the other, such
that the concatenation of the labels of edges along the path belongs in
the language L(G) defined by G.

Specifically, the input graph consists of nodes that are program ex-
pressions and edges represent relations between those expressions. For
instance, an edge may encode a field access (load/store), a method
invocation, a pointer dereference, etc. The exact choice of domains de-
pends on the specific analysis being run and the problem it addresses.
Since we want to express many input relations, we need many types of
edges, represented as labels (e.g., we can label a field access edge by
the name of the field). For a given analysis, a context-free grammar G
encodes the desired computed relations (e.g., which pointers are mem-
ory aliases) as non-terminal symbols, and supplies derivation rules that
express how they relate to the simpler relations represented by graph
edges. The CFL reachability answer is then commonly computed by
employing a dynamic programming algorithm.

The first application of such a framework in program analysis was
designed to solve various interprocedural dataflow-analysis problems
[Reps et al., 1995], but CFL reachability has since been used in a wide
range of problems, such as: (i) the computation of points-to relations
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[Reps, [1998], (ii) the (demand-driven) computation of may-alias pairs
for a C-like language [Zheng and Ruginal, 2008|, (iii) Andersen-style
pointer analysis for Java [Sridharan et al., [2005].

Any CFL reachability problem can be converted to a Datalog pro-
gram |Reps, 1998, but the inverse is not true (i.e., CFL reachability
corresponds to a restricted class of Datalog programs, the so-called
“chain programs”). Thus, the primary advantage of CFL reachability
is that it permits more efficient implementations.

An even more restrictive variant, Dyck-CFL reachability, can be ob-
tained by restricting the underlying CFL to a Dyck language, i.e., one
that generates balanced-parentheses expressions. Although restrictive,
this approach still suffices for some simple pointer analysis algorithms,
while allowing very aggressive optimization, often with impressive per-
formance gains |[Zhang et al., |2013].

Data-flow analysis. Data-flow analysis is a program analysis frame-
work, widely employed in traditional compiler design. The essence of
data-flow analysis is to maintain information on properties of data val-
ues per-program-point and to propagate this information by defining
monotonic transfer functions (determining how information is propa-
gated between neighboring statements inside a basic block) and con-
fluence operators (determining how information is propagated at basic
block boundaries, where control flow is possibly merged or split). An
implementation applies these propagation operators to change the com-
puted values over all program statements until they reach a fixpoint.

Data-flow analysis is used for the computation of many intra-
procedural properties in compilers, such as variable liveness, reaching
definitions, constantness of values, and more. With appropriate sum-
marization techniques, data-flow results can also be propagated inter-
procedurally.

Pointer analysis, as described in this tutorial, is naturally inter-
procedural and the implementation model we examined, based on the
Datalog language, can be viewed as a generalization of traditional data-
flow equations. (Indeed, modern compiler textbooks [Aho et al., 2006,
12.3] explicitly refer to the Datalog approach as such a generalization
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of data-flow analysis.) Whereas data-flow analysis typically maintains
sets of values (each corresponding to a program element), a Datalog-
based declarative analysis approach populates arbitrary relations over
many values. Instead of fixing a single pattern of recursive definitions
(transfer functions and confluence operators), full freedom is afforded
in defining relations recursively.

Conversely, a flow-sensitive Datalog-based analysis typically em-
ploys precisely the same concepts as a standard data-flow analysis for
linking information across intra-procedural program points.

Constraint graph approaches and optimizations. Several optimiza-
tion techniques have appeared in the pointer analysis literature, based
on the concept of the constraint graph: a graph whose nodes denote
pointer expressions and whose edges denote flow between these pointer
expressions.

Such an edge may arise either: (i) before points-to computation—
due to an explicit assignment instruction “q = p”, for example, that
the input program contains—or (ii) during points-to computation, by
also taking field accesses (i.e., load/store instructions) into account in
order to infer additional flow. These techniques have typically targeted
the C language, where the instructions of interest are pointer derefer-
ences (analogous to field accesses) and also address-of (&) operations
(analogous to assignments of heap allocations).

A variety of constraint graph optimization techniques have been
presented that can be applied either offline (i.e., before points-to com-
putation) [Hardekopf and Lin, 2007b, [Rountev and Chandral 2000],
or online (i.e., during points-to computation) [Fahndrich et al., 1998].
Hybrid approaches also exist [Hardekopf and Lin| [2007a]. The essence
of most of these techniques lies in identifying nodes with guaranteed-
equivalent points-to sets and collapsing them into a single representa-
tive node. Such equivalence classes may arise, for instance, when nodes
participate in a cycle of the constraint graph [Fahndrich et al., 1998,
Heintze and Tardieu, [2001a], or even if they share a common domina-
tor [Nasre, 2012]. The set-based pre-processing technique [Smaragdakis
et al., |2013] generalizes such approaches by also allowing the removal of
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edges (and not just merging of nodes) from the constraint graph. It also
restricts the application of optimizations to an intra-procedural setting,
so that they can be applied in conjunction with nearly any pointer anal-
ysis algorithm, together with on-the-fly call-graph construction.

Binary Decision Diagrams. A promising direction in the implemen-
tation of points-to analysis algorithms consists of the use of ordered
binary decision diagrams (BDDs) for representing relations. A BDD is
a data structure used to encode a Boolean predicate. Effectively it is a
binary decision tree that tries to merge isomorphic subtrees, and can
thus serve as a compressed normalized representation of a relation. A
more detailed description of BDDs and their use for storing pointer
analysis relations is given by Berndl et al. [2003].

A BDD-based implementation is a good fit for a relational view of
the analysis. Therefore, Datalog can be used as a high-level declarative
language for writing analyses, with BDDs used in the implementation
of relations inside the underlying Datalog engine. This is the approach
of the bddbddb system [Whaley and Lam, 2004, [Whaley et al., 2005].
Other approaches, such as the PADDLE framework |Lhotdk and Hen-
dren, 2008, Lhotak, [2006], use a specialized low-level relational lan-
guage, backed by a BDD-based implementation. The analysis itself is
expressed in imperative code so that it becomes easier to interact with
external components.

BDDs have been hugely beneficial in other areas, such as model
checking. For pointer analysis, however, the record is mixed. The per-
formance of a BDD-based approach is very sensitive to the exact choice
of decision variable ordering. In fact, previous approaches have exper-
imented heavily in identifying an efficient ordering that minimizes the
size of the BDDs |[Berndl et al., |2003]. However, finding orderings that
perform well for all of the crucial BDDs in a framework with many
interconnected analyses remains a challenging task that also hurts the
framework’s maintainability significantly; it requires a “trial and error”
process of exploring a huge space of possibilities [Lhotak, 2006, Whaley
et al.,|2005]. Such optimization is also often detrimental for other parts
of the analysis: the overall “best” variable ordering may be severely
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sub-optimal for some analysis relations (while optimizing others). As a
result, non-BDD-based implementations of identical analyses have of-
ten exhibited significant performance improvements, if care is taken to
eliminate space-redundancies in the analysis [Bravenboer and Smarag-
dakis, 2009a]. It remains to be seen whether future BDD-based imple-
mentations can provide the space economy and speed of well-ordered
BDD operations without suffering great costs.

Incrementality and summaries. The analyses we have considered so
far have been all-points, client-agnostic analyses. In contrast, demand-
driven pointer analysis computes only those results that are necessary
for a query at a given program location. Client-driven pointer anal-
ysis takes into account the precision needs of a specific client. Such
analyses have attracted research interest (e.g., [Sridharan et al., 2005
Zheng and Ruginal, [2008] Heintze and Tardieu, [2001b]). The question
is algorithmically interesting, because the base algorithms for pointer
analysis (e.g., our formulation of an Andersen-style analysis) are not
easily incrementalizable. However, different techniques in this space
have achieved significant scalability benefits via approaches that take
into account the needs of clients or specific program points and auto-
matically adjust the precision (e.g., context- or field-sensitivity) of an
analysis [Guyer and Lin, 2003, Sridharan and Bodik, 2006, Liang and
Naik, [2011].

Another direction to analysis incrementality is modular pointer
analysis [Cheng and Hwu, 2000, [Wilson and Lam) 1995]. Modular anal-
ysis computes a summary of the behavior of a function or method and
analyzes the rest of the application against this summary. Well-known
techniques include that of [Wilson and Lam| [1995], which computes
multiple summaries per function and employs memoization of the data-
flow solution for a particular context. Chatterjee et al. [1999] compute
a single summary per function, based on its global effects. Techniques
for computing summaries are an active research topic for more than
pointer analysis [Dillig et al., 2008], and represent a significant future
challenge.
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Correctness and Abstract Interpretation. In this tutorial we ignored
issues of formally establishing the correctness of a pointer analysis. This
topic is also directly related to abstract interpretation: a widely-used
framework for specifying static analyses [Cousot and Cousot|, |1977,
1979]. Abstract interpretation consists of specifying analyses by ab-
stracting over the concrete semantics of a programming language. That
is, given a formally specified language, with concrete semantics for all
language features, an abstract interpretation-based analysis provides
an alternative, abstract semantics over the same language. The key to
the approach is that the two semantics are linked. The abstract and
concrete value domains are connected via abstraction and concretiza-
tion functions. Under the right conditions for these functions relative
to the respective semantics, several correctness results can be derived.
For instance, the soundness of an over-approximate analysis is estab-
lished if a transition from abstract state s to abstract state ¢ in the
abstract semantics models all transitions in the concrete semantics,
i.e., all concrete states abstracting to s can only transition to concrete
states abstracting to .

Abstract interpretation is a very general framework, capturing a
wealth of practical static analyses. It is also the foremost way to for-
mally establish the correctness of an analysis. The approach still re-
quires effort, even for languages that have full formal specifications. In
order to easily link the concrete and abstract semantics, the concrete
semantics of the language is often re-stated, in terms of convenient do-
mains and transition functions. As a result, the obligation is shifted
from proving that the analysis over-approximates concrete execution
to proving that the alternative concrete semantics is equivalent to the
original—a typically easier task.

At the same time, one should employ the framework carefully or risk
a reduced understanding of the properties of the static analysis. The
analysis can occasionally become too expensive because it is allowed to
execute over the analyzed program in a domain that (although finite)
may still model elements such as precise (abstract) execution stacks
or detailed heap images. One such instance is the discovery of [Van
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Horn and Mairson! [2008] that the kCFA algorithm [Shivers, 1991] is
EXPTIME-complete for k > 1, as mentioned in Chapter [4
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Conclusions

In this monograph, we surveyed the pointer analysis area in tutorial
form. Pointer analysis is a mature area with a rich background and in-
tense research interest. Recent years have seen an extension of the set
of clients for the analysis—from traditional compilers to program un-
derstanding, refactoring, verification, and bug detection tools. Further-
more, programming trends have made pointer analysis crucial: recent
mainstream languages are increasingly heap-intensive—the emphasis
has shifted from C-like to object-oriented languages, such as Java and
C#, and to scripting languages, such as JavaScript, Python, and Ruby.

If pointer analysis is a scalable, well-understood approach, one may
rightly wonder why it has not yet been widely applied in language
processing mechanisms. Although several tools employ pointer analysis
algorithms, the techniques we discussed have seen limited use in the
best known compilers, IDEs, or runtime systems.

The reason largely has to do with the advent of more modular com-
pilation and dynamic language features. Pointer analysis approaches
have made great strides but still typically require whole-program avail-
ability and cannot deal soundly with dynamic features. Thus, the next
set of challenges for pointer analysis do not have to do with scalability
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and precision in a controlled setting but with applicability under the
environmental conditions of realistic languages.

If research progress addresses these challenges, we expect that the
use of pointer analysis will become universal in modern programming
tools, lending the analysis huge practical importance for future pro-
gramming tasks.
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