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Pool tag scanning is a process commonly used in memory analysis in order to locate kernel
object allocations, enabling investigators to discover evidence of artifacts that may have
been freed or otherwise maliciously hidden from the operating system. The fastest current
scanning techniques require an exhaustive search of physical memory, a process that has a
linear time complexity over physical memory size. We propose a novel technique that we
are calling “pool tag quick scanning” that is able to reduce the scanning space by 1-2
orders of magnitude, resulting in much faster discovery of targeted kernel data structures,

while maintaining a high degree of accuracy.
© 2016 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access
article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The Microsoft Windows operating system maintains
several kernel mode heaps, known as “system memory
pools” which store operating system kernel object alloca-
tions, e.g., _EPROCESS process descriptors, _FILE structures,
etc. Since most pool allocations start with a _POOL_-
HEADER structure, a technique commonly known as “pool
tag scanning” can be used to identify key OS-related
forensic artifacts in physical memory images. Pool tag
scanning was originally used for discovering structures
associated with processes and threads, but is now widely
used to target many kinds of data structures. It is particu-
larly effective in detecting direct kernel object manipula-
tion (DKOM), which is commonly used by malware to hide
processes by removing references to the _EPROCESS allo-
cation from other data structures. It can also be used to
detect freed allocations that have not yet been overwritten.
Yet another use for pool scanning is the recovery of kernel
structures for which no better method has been developed,
such as many structures associated with the Windows GUI
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subsystem. While pool tag scanning is effective, the most
efficient existing techniques require a time consuming,
exhaustive search of all physical memory to find structures
of interest.

While current methods of pool scanning could be
considered fast enough to analyze the majority of today's
commodity systems, the process is linear over RAM size
and sizes are quickly increasing. Windows 10 was recently
released and supports physical RAM sizes of up to 2 TB for
desktop systems. Modern versions of Windows Server
support twice as much (Microsoft (2015b)).

As case loads increase, investigators often turn to batch
processing of evidence. Reductions in the processing time
of individual evidence sources can drastically reduce the
overall analysis time.

During incident response scenarios time is also a critical
factor and analysis is often done remotely over a network
connection. A significant reduction in scanning time and
network bandwidth requirements can make individual
investigators better able to quickly detect and react to
malicious behavior on a network. A fast enough scanning
technique may also be useful for real-time detection of
malware or other threats.

This paper presents a novel technique for pool tag
scanning that limits scanning to only those physical
memory pages that are identified as being a part of a
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system memory pool allocation. This technique greatly
reduces scanning time by reducing the scanning space from
the size of physical memory to the size of the allocated pool
pages, which can easily be several orders of magnitude
smaller. The method also significantly reduces the band-
width requirements of preforming live memory analysis on
a target system over a network.

Related work
Pool tag scanning

Schuster (2006) first introduced techniques for search-
ing an entire image of physical memory for signatures
associated with pool allocations to discover both currently
active and freed (but not yet overwritten) kernel data
structures, a technique now commonly referred to as “pool
tag scanning” or just “pool scanning”. Schuster (2008)
showed that more than 90% of this information can often
be retrieved even 24 h after process termination under
optimum conditions. The two major open source memory
analysis frameworks, Volatility! and Rekall’> currently
implement Schuster's scanning techniques.

Ligh (2013) introduced the -V and -virtual flags to
Volatility. These flags enable pool tag scanning inside of the
kernel's virtual address space, by performing an exhaustive
search of the kernel's entire virtual address space. Since
Volatility has no a priori mechanism for determining which
pages are allocated, this approach requires page table
lookups and address translation for every page in the ker-
nel's address space, a process that reduces the amount of
memory scanned, but is generally much slower than an
exhaustive search of physical memory due to the lookup
and translation overhead.

Cohen (2015) showed that Windows 10 obfuscates
structures that are important to pool scanning with a value
that is based off of the virtual address of the pool allocation.
This makes pool scanning on physical memory ineffective
against Windows 10 targets and thus requires a much
slower exhaustive search of the kernel's virtual address
space.

Kernel symbol lookups

Schreiber first described the internal structure of
Microsoft program database (PDB) files as well as a meth-
odology to look up and parse debug symbols (Schreiber,
2001, pp. 70—-92).

Okolica and Peterson (2010) introduced the idea of
using the debug information embedded in Microsoft's
program database (PDB) files in a memory analysis tool to
calculate symbol addresses in an arbitrary memory dump
for any of the family of Windows NT operating systems.

Cohen and Metz (2014) introduced the functionality to
parse PDB files and calculate kernel symbol addresses into
Rekall.

1 The Volatility Foundation, http://www.volatilityfoundation.org/.
2 The Rekall Team, http://www.rekall-forensic.com/.

Table 1

Selected non-paged pool allocations.
Purpose Pool tag
Driver object Driv
File object File
Kernel module MmLd
Logon session SeLs
Process Proc
Registry hive CM10
TCP endpoint TcpE
TCP listener TcpL
Thread Thre
UDP endpoint UdpA

Memory pools

The Windows kernel maintains several dynamically-
sized memory pools, or heaps, that most kernel-mode
components use to allocate system memory. The non-
paged pool consists of ranges of system virtual addresses
that are guaranteed to reside in physical memory at all
times. The kernel also maintains more than one paged pool
that can be paged into and out of the system. Both memory
pools are located in the system part of the address space
and are mapped in the virtual address space of every pro-
cess. In addition to the paged and non-paged pools, there
are a few other pools with special attributes or uses. For
example, there is a pool region in session space, which is
used for data that is common to all processes in the session
(Russinovich et al., 2012, pp. 212—213).

The majority of key kernel structures, such as those
shown in Table 1 are allocated on the non-paged pool. For
example they include objects associated with running and
terminated processes, network connections, and loaded
kernel modules. Combined with the fact that non-paged
pool pages are guaranteed to be resident in physical
memory, it is evident that the non-paged pool is most
relevant to memory analysts.

The remainder of this paper will focus on analysis of the
non-paged pool for 64-bit versions of Windows from Win-
dows Vista to Windows 8.1; however, the techniques
described here can also be adapted to other pool types and
operating system versions.

Pool sizes

The initial size of the non-paged pool is dependent on
the amount of physical memory on the system, and is 3% of
system RAM or 40 MiB> (whichever is larger). On 64-bit
systems the pool can grow to a maximum of 75% of sys-
tem RAM or 128 GiB (whichever is smaller) (Russinovich
et al.,, 2012, p. 213).

64-bit versions of Windows dynamically allocate the
memory reserved for the pool. While the initial pool sizes
as described above are reserved by the memory manager,
they are very sparsely allocated. The absolute minimum
allocated amount is unknown, but we have observed non-

3 The initial size of the non-paged pool is 10% of system RAM for sys-
tems with less than 400 MiB of RAM.
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paged pools with as few as 64 MiB of allocated pages for
systems with many gigabytes of RAM.

Big page pool

Pool allocations with sizes greater than 4064 bytes on
64-bit Windows and 4080 bytes on 32-bit Windows,
regardless of type, are stored in the big page pool. This table
is also commonly referred to as the “large pool allocation
table”. These allocations can not be found using pool tag
scanning; however, the table is easy to enumerate.

The big page pool table is stored at the symbol nt!
PoolBigPageTable and consists of an array of _POOL_-
TRACKER_BIG_PAGES structures as defined in Fig. 1. The
size of this array is stored at the symbol nt!
PoolBigPageTableSize.

Va will point to the virtual address of the allocation.
Allocations that have been freed will have the least signif-
icant bit of Va set to 1. The allocation's pool tag will be
stored in Key, its type in PoolType, and its size in
NumberOfBytes.

Pool tag scanning

All Windows pool allocations smaller than 4064 bytes
on 64-bit Windows and 4080 bytes on 32-bit Windows
begin with a _POOL_HEADER structure as defined in Fig. 2
and are allocated on ChunkSize boundaries. On modern
versions of Windows ChunkSize is defined as 8 bytes on 32-
bit systems and 16 bytes on 64-bit systems. While scanning
on ChunkSize boundaries there are three main fields that
are suitable for validation at their respective offsets:
BlockSize, PoolType, and PoolTag.

By multiplying BlockSize by ChunkSize we are able to
determine the size of the pool allocation. The allocation size
must be large enough to fit the _POOL_HEADER and the
allocated object itself, including the _OBJECT_HEADER and
any applicable optional headers.

A valid PoolType will contain a _POOL_TYPE value as
defined in Fig. 3. In general non-paged pool allocations will
have an even PoolType value. Allocations that have been
freed will have a PoolType value of zero, but may still be
stored in the non-paged pool.

Pool allocations are associated with a 4-byte pool tag.
Some examples can be found in Table 1. PoolTag will
contain the allocation's pool tag stored as a 32-bit, big-
endian integer. Prior to Windows 8 the kernel marked
“protected” allocations by setting the most significant bit of
PoolTag, so care should be taken to scan for both variants.

Scanning with a signature based solely on these three
fields may still produce false positives, so additional

kd> dt -v _POOL_TRACKER_BIG_PAGES
nt!_POOL_TRACKER_BIG_PAGES
struct _POOL_TRACKER_BIG_PAGES, 4 elements, 0x18 bytes

+0x000 Va : Ptr64 to Void
+0x008 Key : Uint4B
+0x00c PoolType : Uint4B
+0x010 NumberOfBytes : Uint8B

Fig. 1. Definition of _POOL_TRACKER_BIG_PAGES.

kd> dt -v _POOL_HEADER

nt!_POOL_HEADER

struct _POOL_HEADER, 9 elements, 0x10 bytes
+0x000 PreviousSize : Bitfield Pos 0, 8 Bits
+0x000 PoolIndex : Bitfield Pos 8, 8 Bits
+0x000 BlockSize : Bitfield Pos 16, 8 Bits
+0x000 PoolType : Bitfield Pos 24, 8 Bits

+0x000 Ulongl : Uint4B
+0x004 PoolTag : Uint4B
+0x008 ProcessBilled : Ptr64 to struct _EPROCESS

+0x008 AllocatorBackTraceIndex : Uint2B
+0x00a PoolTagHash : Uint2B

Fig. 2. Definition of _POOL_HEADER on 64-bit windows.

kd> dt -v _POOL_TYPE

ntdll!_POOL_TYPE

Enum _POOL_TYPE, 15 total enums
NonPagedPool = OnO
PagedPool = Onl
NonPagedPoolMustSucceed = On2
DontUseThisType = On3
NonPagedPoolCacheAligned = On4
PagedPoolCacheAligned = Onb
NonPagedPoolCacheAlignedMustS = On6
MaxPoolType = On7
NonPagedPoolSession = On32
PagedPoolSession = 0n33
NonPagedPoolMustSucceedSession = On34
DontUseThisTypeSession = 0On35
NonPagedPoolCacheAlignedSession = On36
PagedPoolCacheAlignedSession = On37
NonPagedPoolCacheAlignedMustSSession = 0n38

Fig. 3. Definition of _POOL_TYPE.

validation specific to the type of structures being scanned
for should be used. For example valid _EPROCESS alloca-
tions store the physical address of the process's page table,
commonly known as the DTB, in the field Pcb.Director-
yTableBase. The DTB should not be zero and must be page
aligned, except on systems with page address extension
(PAE) enabled, in which case the alignment is on a 32 byte
boundary. Signatures can be significantly strengthened by
introducing sanity checks based on this and other similar
information.

Pool tag quick scanning

Pool tag scanning has a linear time complexity over its
scanning space; however, since the fastest current methods
require an exhaustive search of physical memory, this
scanning space can be quite large. We have developed a
method of reducing the required scanning space by mul-
tiple orders of magnitude by identifying and scanning only
the memory pages associated with pool allocations, while
still maintaining a high degree of accuracy.

In 64-bit Windows the virtual address ranges for each
pool are managed by a Dynamic Virtual Address (DVA)
subsystem. The DVA allows sparse allocation of virtual
address space, enabling the kernel to reserve a large range
of addressees for a pool, but to only allocate physical pages
when needed. The kernel maintains a virtual address
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Table 2
Relevant kernel symbols for identifying non-paged pool ranges.

Windows version Static ranges

Start of dynamic allocation

Allocation bitmap

Vista SPO MmNonPagedPoolStart — MmNonPagedPoolEnd0
Vista SP1 — 8 N/A
8.1 N/A

MmNonPagedPoolExpansionStart
MiNonPagedPoolStartAligned
MiNonPagedPoolStartAligned

MiNonPagedPoolVaBitMap
MiNonPagedPoolVaBitMap
MiDynamicBitMapNonPagedPool

allocation bitmap for each pool in order to keep track of
which pages in the pool's virtual address range are backed
by allocated physical pages. Each entry in the bitmap rep-
resents a 2 MiB physical allocation. By iterating through a
pool's allocation bitmap, we can identify which pages in the
pool's virtual address range are backed by allocated phys-
ical pages and limit our scanning to those pages.

Virtual address range identification

Before we can start scanning we must first identify the
virtual address ranges associated with the non-paged pool.
The size of the pool (in bytes) is stored at the symbol nt!
MmMaximumNonPagedPoollnBytes.

For Windows Vista SPO the pool is separated into two
distinct address ranges. First, we must scan the ranges
between the addresses stored at the kernel symbols nt!
MmNonPagedPoolStart and nt!MmNonPagedPoolEndO.
These pages are guaranteed to be backed by physical pages,
so we do not have to reference the virtual address bitmap;
however, the bytes allocated in these ranges are included in
nt!MmMaximumNonPagedPoollnBytes. The kernel symbol
nt!MmNonPagedPoolExpansionStart stores the address of
the beginning of the dynamically-allocated portion of the
non-paged pool. To scan this range, we must reference the
allocation bitmap to locate the allocated pages.

For later versions of Windows there is only a single,
dynamically-allocated range and it starts at the address
stored at nt!MiNonPagedPoolStartAligned. To scan this
range, we must reference the allocation bitmap to locate
the allocated pages.

The information in this section is summarized in Table 2.

Bitmap location

Starting with Windows Vista, and in versions of Win-
dows prior to Windows 8.1 the non-paged pool DVA allo-
cation bitmap can be found at the address provided by
symbol nt!MiNonPagedPoolVaBitMap. Starting with Win-
dows 8.1 the allocation bitmap is located at the address
provided by nt!MiDynamicBitMapNonPagedPool. Memory
analysis tools with the ability to parse debug symbols from
PDBs can easily look up the offsets of these symbols inside
of the kernel image and calculate their addresses based on
the kernel's base address.

_RTL_BITMAP iteration

Fig. 4 shows the very simple structure of the bitmaps
used throughout the kernel. SizeOfBitMap specifies the
number of bits in the bitmap and Buffer points to the
beginning of the bitmap data. The bitmap data is stored as a

kd> dt -v _RTL_BITMAP

ntdll!_RTL_BITMAP

struct _RTL_BITMAP, 2 elements, 0x10 bytes
+0x000 SizeOfBitMap : Uint4B
+0x008 Buffer : Ptr64 to Uint4B

Fig. 4. Definition of _RTL_BITMAP.

sequence of 32-bit integers. The first 32 bits of the bitmap
are stored in bits 0—31 of the first integer in the buffer. The
next 32 bits are stored in bits 0—31 of the second integer in
the buffer and so on.

In the case of the pool bitmaps, a set bit represents
2 MiB of virtual address space that is backed by allocated
physical memory. An unset bit represents an unbacked
2 MiB range of virtual address space.

Scanning

Once the relevant memory regions are identified,
scanning is just a matter of iterating through the bitmap to
determine which 2 MiB pages should be scanned using the
techniques described in Schuster (2006).

Metrics

In order to determine the efficacy of quick scanning we
developed both a psquickscan and psscan plugin in our
experimental memory analysis framework. The psquickscan
plugin uses the quick scan technique to search the non-
paged pool for _EPROCESS allocations, while the psscan
plugin performs an exhaustive search of physical memory.
The architecture of the experimental framework itself will
be the subject of a future publication. All tests were per-
formed on a mid-2014, 2.8 GHz MacBook Pro with 16 GiB of
RAM. All reported time measurements are averages over 10
executions with the highest and lowest values removed.

Comparison to pool scanning (physical)

A memory image was taken from a moderately-used
Windows 7 SP1 x64 laptop with 16 GiB of RAM. We then
compared the results from psquickscan to those of psscan as
well as the output of the psscan plugins from both Rekall*
and Volatility” using the default configuration of scanning
physical memory. A summary of the results can be found in
Table 3 along with the average execution time of each

4 Rekall 141,
404536.
5 Volatility 2.4, commit 2c84ee4370eec4ed20ca9ccd6calfo1423be121f.

commit  72405db3ded58de43cf9564aa53c155963
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Table 3
A comparison of psquickscan and psscan results.

Plugin Type Avg. time Running Terminated Prior boot Duplicate®

psquickscan Virtual 0.129s 128 21 0 0

psscan Physical 15.584s 128 22 15 43

psscan (Rekall) Physical 35.967s 128 22 15 43

psscan (Volatility) Physical 25.448s 128 21 15 43

2 Duplicate results are redacted in other columns.

plugin over 10 runs, excluding the highest and lowest
values.

Our psquickscan plugin reported that it scanned only 80
MiB of the 16 GiB memory image, while the psscan plugins
all performed an exhaustive search of the entire 16 GiB
memory image. The significantly reduced scanning space
resulted in a two order of magnitude decrease in scanning
time. Our psscan implementation produced comparable
results to the Rekall and Volatility implementations.

More than 20% of the psscan results reported were exact
duplicates caused by two or more identical _EPROCESS al-
locations being found in physical memory at different off-
sets. This is likely caused by allocations being copied as they
are relocated in physical memory, possibly as a result of the
memory manager using compacting garbage collection
techniques. As these duplicate results are not considered
useful to investigators, we consider them to be invalid and
only focus on unique results. psquickscan did not report any
duplicate results.

There is a minor discrepancy in the Volatility psscan
results as compared to the other psscan implementations.
This can likely be attributed to slight differences in the way
that candidate _EPROCESS structures are validated after
scanning. In this case, Volatility's validation methods
resulted in a single false-negative.

Chow et al. (2005) noted that the effects on RAM resi-
dent data across reboots varies depending on the hardware
used. In some cases, volatile evidence may survive even a
“hard” reboot, when all power is removed from the ma-
chine for a moderate period of time. While this phenom-
enon is hardware dependent, our testing suggests the
laptop that we used as the target of our efficacy testing does
exhibit this behavior. While comparing the psquickscan and
psscan results we noted that the psquickscan results were a
subset of those from psscan. We also noted that all but one
of the remaining psscan results had a creation timestamp
that was several days prior to the system boot time (as
shown by the creation timestamp of the System process).
We can infer that because psscan searches all of physical
memory it is able to locate pool allocations from previous
system boots that have not been overwritten or lost during
the reboot process. Because psquickscan is limited to
searching only the virtual address space of the non-paged
pool it is not able to find these allocations. Given the
increased speed of our technique, we consider this a
reasonable trade-off. In non-time critical situations where
analysis is conducted on machines where data remanence
is possible, a complete scan may be more appropriate;
however, starting in Windows 10 this may not be possible
as all existing techniques for pool scanning on that system
require a search of virtual memory (Cohen (2015)).

A single unique result from the current system boot was
found by all of the psscan implementations and not
psquickscan. In order to determine the cause, further anal-
ysis was needed.

Fig. 5 shows select psscan output from Rekall for the
allocation that was not found by psquickscan. Rekall at-
tempts to map the physical address of the _EPROCESS
struct to a virtual address. By looking at the Offset(V) col-
umn we can see that it fails, providing no address. Since our
memory dump is in the Microsoft Crash Dump format, we
can use WinDbg® to try to determine the reason.

The WinDbg !pfn command gives us information about
a physical memory page by parsing its entry in the nt!
MmPfnDatabase. Fig. 5 shows us that the _EPROCESS allo-
cation of interest resides at physical address 0x9392890. By
dividing this address by the page size (4096) we can obtain
its page frame number (PFN), 0x9392. Passing this number
to the WinDbg !pfn command results in the output in Fig. 6.
We notice that the reference count is 0 and that the page is
on the standby list. This tells us that the page is not mapped
in any virtual address space (Russinovich et al., 2012, pp.
315—316). This demonstrates another limitation with
scanning in the virtual address space. We can not detect
freed allocations that reside in pages that are no longer
mapped into the kernel's address space. Because Windows
zeroes process pages during idle time (Chow et al. (2005)),
allocations like these are rare, but further research is
needed to attempt to quantify the impact of this limitation.

Comparison to pool scanning (virtual)

As stated above, kernel virtual memory scanning tech-
niques are slower than exhaustive physical memory
searches, but for completeness, we present metrics here
showing the speed of kernel virtual memory scanning
versus quick scanning. To compare, we reran our experi-
ments using the -scan_in_kernel flag in Rekall and the
-virtual flag in Volatility. Each of these flags enables pool
scanning in the kernel's virtual memory space.

As shown in Table 4, quick scanning was just as accurate
as an exhaustive search of virtual memory, while being two
orders of magnitude faster. Enabling virtual scanning
caused the scanning time to double in both Volatility and
Rekall as compared to physical scanning as seen in Table 3.
The exhaustive searches performed by Volatility and Rekall
did report a single duplicate value. While duplicate values
are not common when scanning virtual memory space, in

6 Microsoft, 2015a, https://msdn.microsoft.com/en-us/library/
windows/hardware/ff551063(v=vs.85).aspX.
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_EPROCESS (P)

0x000009392890 chrome.exe 4168 -

Offset (V)

PPID DTB

4852 0x00008be6e000

Fig. 5. Select Rekall psscan output.

kd> Ipfn 9392
PFN 00009392 at address FFFFFAS0001BAB60

used entry count

reference coun
o WOGAPIEIA2004C0

Sﬁared

blink 7 share count 0000538F pteaddress FFFFFB8A019886E78
00oo iori
containing page

Cached

40B9ED

Priority S
P

Fig. 6. WinDbg output for PFN 9392.

Table 4

A comparison of virtual scanning.
Plugin Type Avg. time Running Terminated Prior boot Duplicate®
psquickscan Virtual 0.129s 128 21 0 0
psscan (Rekall) Virtual 71.513s 128 21 0 1
psscan (Volatility) Virtual 60.526s 128 19 0 1
2 Duplicate results are redacted in other columns.

Table 5

A sample of psquickscan and psscan results among different OS versions.
OS version Plugin Data scanned RAM size Avg. time Running Terminated Duplicate
Vista SPO psscan 1 GiB 1 GiB 0.356s 46 2 15
Vista SP1 psquickscan 60 MiB 1GiB 0.073s 48 0 0
Vista SP1 psscan 1 GiB 1GiB 0.400s 48 0 0
Vista SP2 psquickscan 76 MiB 1GiB 0.236s 50 1 0
Vista SP2 psscan 1 GiB 1GiB 0.547s 50 1 11
7 SPO psquickscan 64 MiB 2 GiB 0.075s 43 4 0
7 SPO psscan 2 GiB 2 GiB 0.712s 43 6 4
7 SP1 psquickscan 64 MiB 2 GiB 0.075s 50 5 0
7 SP1 psscan 2 GiB 2 GiB 0.691s 50 5 0
8 psquickscan 44 MiB 4 GiB 0.054s 36 3 0
8 psscan 4 GiB 4 GiB 1.433s 36 3 0
8.1 psquickscan 244 MiB 8 GiB 0.170s 45 0 0
8.1 psscan 8 GiB 8 GiB 2.977s 45 0 0

rare circumstances they may occur. These results can be
attributed to analysis during the short window of time
between an allocation being copied for relocation and its
original location being freed from virtual memory.

Sample of results

Comparisons of psscan and psquickscan results across
multiple versions of Windows can be found in Table 5. All
images come from lightly used systems with varying
amounts of physical RAM.

Because the first ranges scanned in Windows Vista SPO
are not associated with dynamically allocated memory,
many duplicate results can be found. The pools in later
versions of Windows are entirely dynamically allocated
and thus do not show this behavior. All other observed
results were as described in the previous sections.

Large memory testing

In order to compare relative scanning speed of each
plugin on systems with large amounts of memory we
collected a memory image from a fresh install of Windows
7 SP1 with the maximum of 192 GiB of RAM. The results of
running the various plugins can be found in Table 6.

The psquickscan plugin reported that it scanned 5.76 GiB
of data and had an average scanning time of under 6 s,
while the psscan plugins scanned the entire 192 GiB and
took several minutes.

It is worth noting that at the time of this writing the
Rekall implementation of psscan does not seem to produce
complete results with large memory images. This is due to a
bug where the Poollndex field of the _POOL_HEADER is not
being validated properly. This bug has been reported to the
developers and only affects the reporting of results. Since
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Table 6

Comparison of scanning speed on a 192 GiB Memory Image.
Plugin Data scanned Avg. time
psquickscan 5.76 GiB 5.797 s
Psscan 192 GiB 3m8.421 s
psscan (Rekall) 192 GiB 6m7.207 s
psscan (Volatility) 192 GiB 4m42412 s

Table 7

Bandwidth comparison using F-Response to scan a Windows target.
RAM size  Plugin Scanned  Time Transferred
2 GiB psquickscan 102 MiB 9489 s 116.115 MiB
2 GiB psscan 2 GiB 28.132s 2.014 GiB
4 GiB psquickscan 122 MiB  9.640 s 177.367 MiB
4 GiB psscan 4 GiB 56.971 s 4.027 GiB
8 GiB psquickscan 246 MiB  15.360 s 299.648 MiB
8 GiB psscan 8 GiB 3m26.449s 8.132 GiB

the entire image is still scanned, the timing data should not
be affected.

Bandwidth testing

In incident response scenarios investigators are often
tasked with locating and triaging indicators of malware
across multiple systems as quickly as possible. A common
solution is to use a system like F-Response’ to directly ac-
cess RAM on a target system remotely. Investigators can
then use standard memory analysis tools to analyze the live
RAM of the target system from a remote, host machine. In
these situations time is often a critical factor and network
bandwidth limitations may be a bottleneck, especially
when analyzing systems that are geographically located far
away from the investigator. Since quick scanning does not
have to perform an exhaustive search of RAM, it is very well
suited to these scenarios.

In order to measure the relative impact of quick scan-
ning on network bandwidth we ran F-Response on a
number of target Windows systems. For each target system,
we mounted the RAM as an iSCSI device on a host Linux
analysis machine located on the same gigabit LAN. While
collecting network packet captures we then ran either our
psquickscan or psscan plugin against the target's live RAM.
After scanning we analyzed the network traffic and noted
the amount of data transferred between the target and host
systems. The results of our analysis can be found in Table 7.
In all instances quick scanning performed much faster with
significantly reduced bandwidth requirements.

Conclusion

Pool quick scanning is a novel technique for pool tag
scanning that limits scanning to only those physical
memory pages that are identified as being a part of a sys-
tem memory pool allocation. This technique greatly re-
duces scanning time by reducing the scanning space from

7 Agile Risk Management LLC, https://www.f-response.com/.

the size of physical memory to the size of the allocated
memory pool pages, which can easily be multiple orders of
magnitude smaller. The method also significantly reduces
the bandwidth requirements of performing live memory
analysis on a target system over a network.

Quick scanning is limited in the sense that it can not
locate allocations that are not mapped in the kernel's vir-
tual address space, such as allocations from previous sys-
tem boots that were not overwritten during the reboot
process. This limitation is not unique to quick scanning, but
is inherent to all methods of scanning virtual memory,
including the existing methods needed to scan Windows 10
systems. Allocations that have not been freed and have
been hidden by DKOM are always mapped in the virtual
address space and can be detected by quick scanning.

Quick scanning is especially useful in incident response
situations where time is a critical factor or in the case of
remote analysis where network bandwidth is limited. Due
to the inherent speed of quick scanning, it may also be
useful for real-time detection of malware or other threats.

Future work

We know that scanning time is linear over scanning
space and that quick scanning allows us to reduce that
space significantly by limiting scanning to only allocated
pool pages. While the theoretical limit of the pool size can
be as high as 75% of system RAM, we have observed allo-
cations ranging from 36 MiB to 246 MiB in size. Future work
will include empirical testing over a wide variety of OS
versions, system RAM sizes, and work loads.
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