Preemptable Ticket Spinlocks: Improving
Consolidated Performance in the Cloud

Jiannan Ouyang

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

ouyang@cs.pitt.edu

Abstract

When executing inside a virtual machine environment, OS level
synchronization primitives are faced with significant challenges
due to the scheduling behavior of the underlying virtual machine
monitor. Operations that are ensured to last only a short amount of
time on real hardware, are capable of taking considerably longer
when running virtualized. This change in assumptions has signif-
icant impact when an OS is executing inside a critical region that
is protected by a spinlock. The interaction between OS level spin-
locks and VMM scheduling is known as the Lock Holder Preemp-
tion problem and has a significant impact on overall VM perfor-
mance. However, with the use of ticket locks instead of generic
spinlocks, virtual environments must also contend with waiters be-
ing preempted before they are able to acquire the lock. This has
the effect of blocking access to a lock, even if the lock itself is
available. We identify this scenario as the Lock Waiter Preemption
problem. In order to solve both problems we introduce Preemptable
Ticket spinlocks, a new locking primitive that is designed to enable
a VM to always make forward progress by relaxing the ordering
guarantees offered by ticket locks. We show that the use of Pre-
emptable Ticket spinlocks improves VM performance by 5.32.X on
average, when running on a non paravirtual VMM, and by 7.91.X
when running on a VMM that supports a paravirtual locking inter-
face, when executing a set of microbenchmarks as well as a realistic
e-commerce benchmark.

Categories and Subject Descriptors D.4.1 [Process Manage-
ment]: Mutual exclusion

Keywords Virtual Machines; Lock Holder Preemption; Paravirtu-
alization

1. Introduction

Synchronization has long been recognized as a source of bottle-
necks in SMP and multicore operating systems. With the increased
use of virtualization, multi-core CPUs, and consolidated Infrastruc-
ture as a Service (IaaS) clouds this issue has become more sig-
nificant due to the Lock Holder Preemption problem [15]. Lock

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’13, March 16-17, 2013, Houston, Texas, USA.

Copyright © 2013 ACM 978-1-4503-1266-0/13/03. .. $15.00

John R. Lange

Department of Computer Science
University of Pittsburgh
Pittsburgh, PA 15260

jacklange@cs.pitt.edu

holder preemption occurs whenever a virtual machine’s (VM’s) vir-
tual CPU (vCPU) is scheduled off of a physical CPU while a lock
is held inside the VM’s context. The result is that when the VM’s
other vCPUs are attempting to acquire the lock they must wait until
the vCPU holding the lock is scheduled back in by the VMM so it
can release the lock. As kernel level synchronization is most often
accomplished using spinlocks, the time spent waiting on a lock is
wasted in a busy loop. While numerous attempts have been made to
address this problem, the solutions have targeted only generic spin-
lock behaviors and not more advanced locking primitives such as
ticket spinlocks (spinlocks that ensure consistent ordering of acqui-
sitions). As a result of the introduction of ticket spinlocks virtual
machine synchronization now must contend not only with Lock
Holder Preemption but also Lock Waiter Preemption.

Ticket spinlocks [9] are a form of spinlock that enforces or-
dering among lock acquisitions. Whenever a thread of execution
attempts to acquire a ticket spinlock it either (1) acquires the lock
immediately, or (2) is granted a ticket which determines the order
among all outstanding lock requests. The introduction of ticket
spinlocks was meant to ensure fairness and prevent starvation
among competing threads by preventing any single thread from
obtaining a lock before another thread that requested it first. In this
manner each thread must wait to acquire a lock until after it has
been held by every other thread that previously tried to acquire
it. This ensures that a given thread is never preempted by another
thread while trying to acquire the same lock, and thus guarantees
that well behaved threads will all acquire the lock in a timely man-
ner.

While ticket spinlocks have been shown to provide advantages
to performance and consistency for native OS environments, they
pose a new challenge for virtualized environments. This is due
to the fact that when running inside a VM, the use of a ticket
spinlock can result in multiple threads waiting to acquire a spinlock
that is currently available. This problem exists whenever a VMM
preempts a waiter that has not yet acquired the lock. In this case
even if the lock is released, no other thread is allowed to acquire it
until the next waiter is allowed to run, resulting in a scenario where
there is contention over an idle resource. We denote this situation
as the Lock Waiter Preemption problem.

Lock holder preemption has traditionally been addressed using
a combination of configuration, software and hardware techniques.
Initial workarounds to the lock holder preemption problem required
that every vCPU belonging to a given VM be gang scheduled in or-
der to avoid this problem altogether [16]. While this eliminates the
lock holder preemption problem, it does so in a way that dramat-
ically reduces the amount of possible consolidation and increases
the amount of cross VM interference. As a result of these draw-
backs, several attempts have been made to address the lock holder

preemption problem on a per vCPU level in order to move away
from the gang scheduling model. These approaches focus on de-
tecting when a given vCPU is stuck spinning on a busy lock, so that
the VMM can adjust its scheduling decisions based on the lock de-
pendency. The detection techniques vary, but can be roughly clas-
sified by where they are implemented: inside the VMM (relying
on hardware virtualization features such as Pause Loop Exiting), or
inside both VMM and guest OS (paravirtual). Unfortunately, while
these approaches have been effective in addressing the lock holder
preemption problem they are unable to handle the lock waiter pre-
emption problem.

We propose to address the problem of lock waiter preemption
through the introduction of a new spinlock primitive called Pre-
emptable Ticket spinlocks. Preemptable Ticket spinlocks improve
the performance of traditional ticket spinlocks by allowing preemp-
tion of a waiter that has been detected to be unresponsive. Unre-
sponsiveness is determined via a linearly increasing timeout that
allows earlier waiters a window of opportunity in which they can
acquire a lock before the lock is offered to later waiters. Preempt-
able Ticket spinlocks provide performance benefits when running
either with or without VMM support (a specialized paravirtual in-
terface), however VMM support does provide overall superior per-
formance.

Preemptable Ticket spinlocks are based on the observation that
forward progress is preferable to fairness in the face of contention.
In the case where lock waiter preemption is preventing a guest from
acquiring a lock, then a thread waiting on the lock should be able
to preempt the next thread in line if that thread is incapable of ac-
quiring the lock in a reasonable amount of time. While Preemptable
Ticket spinlocks do allow preemption, which technically breaks the
ordering guarantees of standard ticket locks, it does so in a way that
minimizes the loss of fairness by always granting priority to earlier
lock waiters. Priority is granted via a time based window which
gradually increases the number of ticket values capable of acquir-
ing the lock. The choice of a time based window is based on the
observation that VMM level preemption typically results in large
periods of unresponsiveness, while other causes of unresponsive-
ness typically result in periods orders of magnitude smaller. This
means that a timeout based detection approach can be implemented
with high accuracy and relatively low overhead. The use of time-
outs also allows the implementation of linearly expanding exclusiv-
ity windows, which ensure that if an earlier ticket holder is able to
acquire a lock it will do so before a later ticket holder is offered the
chance. In this way early ticket holders are only preempted if they
are inactive for a long period of time, almost always as the result of
the vCPU being preempted by the VMM.

In this paper we make the following contributions:

e Identify the lock waiter preemption problem and quantify its
effects on VM performance

e Propose Preemptable Ticket spinlocks as an alternative spinlock
primitive to address the lock waiter preemption problem

e Describe the implementation of Preemptable Ticket spinlocks
inside the Linux kernel and KVM VMM

e Evaluate the performance of Preemptable Ticket spinlocks over
a set of micro and macro level benchmarks

The rest of the paper is organized as follows. Section 2 briefly
reviews previous works. In section 3 we present some background
of the problem. Then in section 4 we introduce our solution, the
Preemptable Ticket spinlock and discuss its implementation issues
in section 5. We evaluate our proposed solution in section 6, and
discuss possible future optimization in 7. Finally, we conclude in
section 8.

2. Related Work

Due to the impact virtual machine scheduling has on synchroniza-
tion performance, significant research efforts have sought to opti-
mize the interaction between the guest OS and VMM. In general
the existing approaches have fallen into the following categories.

Preemption Aware Scheduling Initially, VMM architectures
dealt with guest locking problems by requiring that every VM be
executed using co-scheduling [11]. This approach was adopted by
the virtual machine scheduler in VMware ESX [16]. Advances on
this approach were explored by [18, 19], that proposed an adap-
tive co-scheduling scheme, that allowed the VMM scheduler to
dynamically alternate between co-scheduling and asynchronous
scheduling of a VM’s set of vCPUs. The choice of scheduling ap-
proaches is based on the detection of long lived lock contention in
the guest OS. Finally, in [14] the authors proposed a “balancing
scheduler” scheme that associates a VM’s individual vCPUs with
dedicated physical CPUs, but does not require that the vCPUs be
co-scheduled. These solutions add host side scheduling constraints,
and are complementary to Preemptable Ticket spinlock.

Paravirtual Locks Paravirtual approaches to solve the lock holder
preemption problem was first explored in [15], where the authors
adopted a lock avoidance approach in which the guest OS provided
scheduler hints to the underlying VMM. These hints demarcated
non-preemptable regions of guest execution that corresponded to
critical sections in which a non-blocking lock was held. [6] pro-
posed another paravirtual lock approach (later adopted by Xen and
KVM [12]), that uses a loop counter to detect “unusually long” wait
times for a spinlock. When the time spent waiting for a lock reaches
a given threshold, the VMM is notified via a hypercall that a vCPU
is currently blocked by a held lock. The VMM then halts the wait-
ing vCPU until the lock is detected to be available. These solutions
are capable of delivering good performance, however, paravirtual
approaches require guest kernel modifications, leading to compat-
ibility and standardization issues. Moreover, these approaches are
also designed to handle generic spinlocks, and so do not take into
account the behavior of ticket spinlocks and the resulting problem
caused by lock waiter preemption.

Hardware enabled Pause-Loop Exiting Hardware based so-
lutions to the lock holder preemption problem were introduced
in [17]. In this work authors proposed an approach that relied on a
spin detection buffer (SDB) that served to detect vCPUs spinning
on a preempted lock. Similar hardware feature has already been
adopted by both Intel’s (Pause-Loop Exiting) and AMD’s (Pause
Filter) virtualization extensions. With these features enabled, hard-
ware is able to detect spinning vCPUs by generating VM exits as a
result of executing certain number of pause instructions during the
the spinlocks’ busy wait loops. Unfortunately, even with these fea-
tures in place, it remains difficult for a VMM to accurately detect
a preempted lock holder due to the lack of information resulting
from the semantic gap [5].

Preemptable Adaptive Locks Alternative spinlock behaviors
have been proposed in [7] that allow adaptive preemption of queue-
based locks. This approach has been implemented as adding time
publishing heuristic into queue based lock such as MCS lock [10],
which requires each thread periodically records its current times-
tamp to a shared memory location. The preemptive feature of these
locks allows a thread to be removed from the queue after a certain
period of time. These locks are meant to gracefully fail in the face
of preemption, allowing a thread to specify a timeout value that
determines how long it is willing to wait to acquire a given lock.
However publishing timestamp is too expensive to implement in
kernel spinlock, and a lock that may fail do not directly attempt to
solve either the lock holder or waiter preemption problem. Instead

they provide a mechanism by which the programmer can react to
preemption when it occurs, thus placing a greater burden on OS
developers.

3. VM based OS synchronization

Among the challenges that virtualization poses to OS designers is
fact that the underlying virtual hardware can be arbitrarily sched-
uled by the underlying VMM. This has serious consequences for
timing sensitive operations in the guest OS that requires and as-
sumes exclusive access to the underlying hardware as well as
atomic execute. These regions are generally protected by disabling
interrupts and acquiring a spinlock, based on the assumption that
the operations will be short in duration and so won’t result in long
delays for other contending threads. Unfortunately, due to the se-
mantic gap [5], a VMM is incapable of taking into consideration
current lock state when it is scheduling the CPU amongst various
vCPUs. The result is that occasionally a VM that is holding a lock
for what should be a short period of time is scheduled out by the
underlying VMM, resulting in an orders of magnitude increase in
the duration of a critical region.

Lock Holder Preemption The scheduling out of a vCPU cur-
rently holding a lock is referred to as the Lock Holder Preemp-
tion problem. These situations often result in serious performance
degradation, especially if the lock being held is one that is fre-
quently acquired by other vCPUs in the system. In this case, each
vCPU attempting to acquire the lock will enter into a busy wait
loop and stall the entire vCPU until the VMM reschedules the lock
holder for execution. While OS developers have introduced new
synchronization primitives [8] that avoid some of these pitfalls,
spinlocks remain as one of the primary synchronization primitives
in modern operating systems. Previous work [6] has shown that up
to 7.6% of guest execution time can be attributed to stalls due to
lock holder preemption in generic spinlocks. And this problem get
more severe under queue-based locks, up to 99.3% of guest execu-
tion time can be wasted on spinning.

Solving the lock holder preemption problem has been the focus
of a number of different approaches looking to optimize perfor-
mance for multicore VMs. While these approaches have focused on
different techniques for actually handling a preempted lock holder,
they have all relied on heuristic based detection of lock contention.
In particular, they have focused their efforts on detecting when a
thread begins to spin on a lock that is currently held by a preempted
vCPU. The use of heuristics is necessary to avoid significant perfor-
mance overheads introduced by more accurate sampling or moni-
toring approaches. Once a spinning vCPU has been detected it is up
to the VMM to either schedule out the spinning vCPU or schedule
in the vCPU currently holding the lock.

Ticket Spinlocks Ticket spinlocks are a relatively recent modi-
fication to the global spinlock architecture found in Linux. Intro-
duced in kernel version 2.6.25, ticket spinlocks are designed to
improve lock fairness and prevent starvation. Each ticket spinlock
includes a “head” as well as a “tail” field indicating the current
number of threads waiting for the lock. The lock is always granted
to the next waiter in the queue, thus guaranteeing that locks are
dispatched in FIFO order and no thread will ever experience star-
vation.

Lock Waiter Preemption Restricting lock acquisitions to a FIFO
schedule expands the lock holder preemption problem by creating
an environment where anyone with an earlier position in a lock’s
queue is effectively holding the lock as far as threads later in the
queue are concerned. Thus, when executing inside a virtual ma-
chine environment, if a vCPU currently holding a ticket is pre-
empted, all subsequent ticket holders must wait for the preempted

vCPU to be rescheduled. This can result in execution being blocked
by lock contention even when the lock in question is available. We
call this problem Lock Waiter Preemption.

To determine the severity of the lock waiter preemption prob-
lem, we instrumented the Linux ticket lock implementation to pro-
file VM preemptions during lock operations. Lock preemption was
identified by detecting inordinately long wait times for a given lock,
where long wait times were conservatively chosen to be 2048 iter-
ations of the inner loop of a busy waiting spinlock. On our ma-
chine, 2048 iterations corresponded to roughly 1us, an amount of
time that exceeds the time a thread would spend holding a lock ac-
cording to statistics [6]. Next we separated the lock waiter preemp-
tion scenarios from the set of detected preemptions, by checking
whether the stalled lock was in fact available. To make this deter-
mination we modified the existing spinlock structure to include a
holder_id variable that served as an indicator of lock availabil-
ity. The value of holder_id was set to the thread id of a given
lock holder on acquisition and cleared when the lock was released.

Table 1 includes the results of our analysis after running the
hackbench [1] and ebizzy [2] benchmarks with 1 and 2 VMs. While
the amount of detected preemption was low, previous work [6] has
shown that even with a low rate of preemption, significant perfor-
mance degradation can occur. Furthermore, as more VMs are de-
ployed on the system, it is expected that preemption will increase.
Column 2 shows the number of preemptions that occurred in the
midst of lock operations during the benchmark’s execution. Inter-
estingly, as the number of VMs increased the number of preemp-
tions declined, we surmise that this is due to decreasing VM perfor-
mance due to the overcommitment of resources. Column 3 shows
the number of preemptions in which lock acquisitions were delayed
because of either lock holder or lock waiter preemption. While
these delays were infrequent when compared to the total number
of lock acquisitions in column 2, it should be noted that even a
limited degree of preemption can cause significant performance
degradation. Furthermore, while the total number of preemptions
declined when additional VMs were added, the number of preemp-
tions resulting in stalled lock acquisitions actually increased. More
critically, the stalled lock operations were predominately due to a
preempted lock waiter and not a preempted lock holder. The degree
of the issue is shown more clearly in column 4, which provides the
percentage of stalled lock acquisitions resulting from a preempted
lock waiter. As can be seen, even when a physical machine is over-
committed by a factor of only 2, lock waiter preemption becomes
the dominant source of synchronization overhead.

N Np+No No gie

hackbench x1 1.11E8 1089 452 41.5%
hackbench x2 9.65E7 44342 39221 88.5%
ebizzy x1 2.86E8 294 166 56.5%
ebizzy x2 9.56E5 1017 980 96.4%

Table 1. An analysis of the Lock Waiter Preemption Problem
in the Linux Kernel. N is the number of lock acquisitions, while
Ny, and N, represent the number of lock holder and lock waiter
preemptions, respectively. Ny, /(N + N.,) shows the percentage
of preemptions due to the lock waiter preemption problem.

4. Preemptable Ticket Spinlocks

In order to address the Lock Waiter Preemption problem, we intro-
duce Preemptable Ticket spinlocks. Preemptable Ticket spinlocks
are a hybrid spinlock architecture that combines the features of
both ticket and generic spinlocks in order to preserve the fairness of

ticket spinlocks while avoiding the Lock Waiter Preemption prob-
lem.

4.1 Approach

The intuition behind Preemptable Ticket spinlocks is that making
forward progress is more important than ensuring fairness. Pre-
emptable Ticket spinlocks leverage the advantages of both generic
spinlocks and ticket locks in order to ensure fairness in the absence
of preemption while also supporting out of order lock acquisition
when the waiters in the queue are preempted. In these situations
performance of a given lock waiter is degraded primarily by the
VMM scheduler and not by the violation of the ordering of lock
acquisitions. That is, a lock waiter can be preempted without per-
ceptively adding to the waiter’s execution time.

The primary goal of Preemptable Ticket spinlocks is to add
adaptive preemptibility to ticket locks, while retaining the ordering
guarantees as much as possible. This is done via the use of a pro-
portional timeout threshold that determines the ability of a thread
to acquire a lock based on that thread’s position among the set of
threads currently waiting on the lock. In Preemptable Ticket spin-
locks, a thread can acquire a lock out-of-order if it has been wait-
ing longer than its timeout threshold. We denote such a thread as a
timed out waiter. The timeout threshold is calculated from a stan-
dard timeout period 7 that is multiplied with the thread’s current
lock queue position index n as shown in the following equation,

timeout_threshold =n x T (1)

in which 7 is a constant parameter of Preemptable Ticket spinlock.

To calculate the position index value n, two variables are main-
tained for each lock, (1) num_request indicates the total number
of lock requests of a lock, and (2) num_grant indicates the total
number of lock requests that have been granted. In addition, each
thread has a local variable named t icket, which represents the
queue position of the request. num_request and num_grant
are maintained by each thread in a distributed fashion for each lock.
When acquiring a lock, the current num_request value is stored
into the thread’s local t i cket variable, and then atomically incre-
mented by 1. Conversely, when releasing a lock, num_grant is
atomically incremented by 1.

The location of a thread in a given lock’s queue is denoted as
the position index value n, and is calculated based on a thread’s
ticket value as well as the current value of num_grant,

n = ticket — num_grant 2)

This position value indicates the number of waiters for a
given lock before the current thread. Because ticket stores
the number of outstanding lock requests at the request time, and
num_grant contains the number of lock requests that have
been granted, we can determine the number of pending requests
before current thread (and thus the thread’s queue position) as
(ticket - num_grant). Note that it is possible for a thread
to have a negative position in the queue (t icket < num_grant).
This can result whenever a lock has been preemptively acquired
and the preempted core is then rescheduled at a later point in time.
In this case a negative position indicates that later threads have vi-
olated the lock order, in which case the preempted thread should
attempt to acquire the lock immediately.

With the described behavior, Preemptable Ticket spinlocks are
able to preserve lock ordering in the absence of VM preemption,
while also adapting to increased physical resource contention by
allowing limited ordering violations. Figure 1 provides an illustra-
tive example of the functionality of Preemptable Ticket spinlocks.
The timeout threshold is indicated by the number above each node,
and is set proportionally based on the node’s position in the queue.
In the initial stage (a), four nodes are waiting while N1 is hold-

ing the lock. At this point the vCPU hosting N2 is preempted by
VMM. In the following stage (b), IV 1 releases the lock, causing the
timeout threshold to be updated for each node. At this point the lock
is available but no node can acquire it because the next waiter in the
queue N2 is currently preempted. This is the lock waiter preemp-
tion problem. In stage (c) node N3 reaches the timeout threshold
and acquires the lock out-of-order before N2. Finally at stage (d),
N3 releases the lock, causing N4 to update it’s timeout threshold.
At this point, N4 has still not reached the timeout threshold, so N2
is able to immediately acquire the lock without contention.

P - Preempted R - Running Acquisition Window

0 3t
R R/‘
N1 N2 N3 N4

(a) N1 is holding the lock and N2 is preempted
0 t 2t

N2 N3 N4

N2 N3 N4

(c) N3 times out and gets the lock

0 t

| =)

N2 N4

(d) N3 releases lock

Figure 1. Preemptable Ticket Spinlock Illustration. R indicates
a running vCPU, P means a vCPU is preempted. Nodes in acqui-
sition window are timed out nodes and are able to acquire the lock
in random order. On top of each node is its timeout threshold, and
below is its node ID.

4.2 Preemption Adaptivity

Preemptable Ticket spinlocks are a hybrid lock algorithm that com-
bines the benefits of generic spinlocks and ticket locks by relaxing
the ordering guarantees provided by ticket locks. The underlying
feature of Preemptable Ticket spinlocks is a timeout threshold that
controls when a given waiter can acquire the lock in a random or-

der. The timeout threshold is derived from a tunable constant de-
noted as 7, combined with a waiter’s queue position index n. The
behavior of a Preemptable Ticket spinlock can be tuned to match
the behavior of either a generic spinlock, a ticket lock, or a combi-
nation of the two depending on the value assigned to 7. The follow-
ing equation shows the behavior of Preemptable Ticket spinlock for
different values of 7.

spinlock T=0
lock = { preemtable ticket spinlock 0<7T<©
ticket lock T =00

A 7 value of 0 results in an immediate timeout that mimics
the behavior of a generic spinlock, while setting 7 = oo will
prevent a timeout from ever occurring and so generate the strict
ordering behavior of a standard ticket lock. Preemptable Ticket
spinlocks are thus able to tune their behavior by trading off between
aggressiveness and fairness depending on the state of the system
and the behavior of the underlying VMM scheduler.

A well chosen 7 value can provide both good performance
and fairness. Fairness is ensured when 7 is large enough that lock
waiters will not time out prematurely. Performance is ensured when
7 is small enough that a lock waiter is able to promptly detect when
an earlier waiter is preempted. According to previous work [6],
the lock holding time and preemption time in fact differ by orders
of magnitude. Typically lock holding time is less than 1ps while
the time between a vCPU’s preemption and rescheduling is at least
1ms. Thus we choose a value of 7 that is slightly larger than typical
lock holding time, ~ 2ps for our implementation.

4.3 Fairness

Locking fairness relates to the variance in wait times that threads
experience while trying to acquire a lock. A truly fair lock imple-
mentation should result in a variance near 0, that is every thread
waits the same amount of time to acquire a lock. The standard tech-
nique for achieving fairness is to ensure that locks are granted in the
same order in which the requests were made, FIFO ordering. With
generic spinlocks all waiters have an equal chance of acquiring a
lock, regardless of when the waiter first requested it. This makes
generic spinlocks an “unfair” locking implementation. Ticket spin-
locks implement strict ordering that enforced via the use of tick-
ets assigned consecutively to new lock requests. An earlier waiter
with smaller ticket value always get the lock before a waiter that
requested the lock at a later point in time.

In contrast to these locking behaviors, Preemptable Ticket spin-
locks ensure that,

e For all waiters yet to reach their timeout threshold, strict order-
ing is preserved

e Waiters that have reached their timeout threshold have priority
over those who have not

e All waiters that have reached their timeout threshold have equal
priority among themselves

The first point holds because the timeout threshold is propor-
tional to a waiter’s queue position. Earlier waiters have smaller
thresholds, and thus they time out earlier than those who are later in
the queue. The second point holds because according to equation 2,
the position index of a non-timed-out waiter is larger or equal than
the number of timed out waiters. Thus all non-timed-out waiters
have timeout thresholds no less than x x 7, where x is the number
of waiters who have passed their timeout threshold. With a proper
value of 7 the threshold is long enough for every timed out waiter
to complete their critical sections in the absence of preemption. In
other words, every thread that has reached its timeout threshold
will have time to acquire and release the lock before the next waiter

times out. This ensures that priority is given to a preempted waiter
immediately after it is rescheduled, and furthermore all non-timed-
out waiters will wait until every thread that has timed out has ac-
quired the lock. Thus while ordering is violated, the violations are
minimized to those vCPUs that have been preempted by the VMM.

Based on the description above, it is straight forward to show
that the number of ordering violations experienced by a given lock
is bounded by the number of vCPUs assigned to a VM. Further-
more, the probability that a preempted waiter is unable to immedi-
ately acquire the lock after rescheduling is given by P(z) = z/R,
where z is the number of lock acquisitions that have occurred since
a lock waiter was preempted, and R is the number of outstanding
waiters that have been preempted. Thus for a simple case, where
a set of waiters are preempted and rescheduled simultaneously, we
can derive the cumulative density function shown in figure 2. From
this we can see that the probability that a preempted waiter has ac-
quired the lock increases linearly based on the number of waiters
that were simultaneously preempted by the VMM. The number of
ordering violations is limited by the number of lock waiters pre-
empted by the VMM at any given point at time, and in the worst
case is bounded to the number of active vCPUs assigned to the
VM. While more dynamic scheduling cases will alter the shape of
the CDF, they will not change the worst case bounds.

Cumulative Probability
of Acquiring Lock

P
>

0 0<R<VM_CPUs Lock Transitions

Figure 2. Cumulative Density Function showing the probabil-
ity of having acquired a lock after being rescheduled following a
preemption. The horizontal axis represents the number of lock ac-
quisitions necessary before the preempted waiter is able to acquire
the lock. R is the number of preempted waiters currently contend-
ing for the lock. VM_CPUS is the number of vCPUs assigned to
the VM.

Note that the above discussion only holds for a lock waiter pre-
emption case in which the time spent holding a lock is less than
the base timeout value 7. While our approach is effective in ad-
dressing the lock waiter preemption problem, it is important to note
that it does not address lock holder preemption. In the case of lock
holder preemption, all lock waiters will time out due to the fact that
preemption time is considerably larger than the timeout threshold.
Lock holder preemption represents the worst case in regards to fair-
ness, in that every waiter in the queue will reach its timeout thresh-
old and compete equally for the lock. In this case our approach will
degenerate to a generic spinlock behavior. However this behavior
will still be bounded by the number of vCPUs. Furthermore, we be-
lieve that the case of lock holder preemption will be relatively low
based on our earlier results in Table 1.

4.4 Host Independence

Unlike previous solutions [6, 12—15, 17-19], Preemptable Ticket
spinlocks work in the absence of any VMM side support, which
makes it a solution where host side modifications such as paravir-
tualization are not feasible. Preemptable Ticket spinlocks can be
implemented entirely inside a guest OS and are capable of de-
tecting lock waiter preemption adaptively based on a single time-
out directly measurable by the guest. However, while Preemptable
Ticket spinlocks are capable of operating independently without
VMM support, it is possible to further improve their performance
by combining them with existing lock holder preemption solutions.
This is important because while Preemptable Ticket spinlocks ad-
dress lock waiter preemption they actually increase the likelihood
of lock holder preemption due to the fact that they allow the lock
to be acquired more often. We have investigated the integration of
Preemptable Ticket spinlocks with existing solutions to the lock
holder preemption problem, and provide results of this integration
in our evaluation.

5. Implementing Preemptable Ticket Spinlocks in
Linux/KVM

In order to evaluate the efficacy of Preemptable Ticket spinlocks,
we have implemented them inside version 3.5.0 of the Linux kernel.
Our implementation acts as a drop in replacement for the standard
ticket spinlock implementation currently supported by the kernel.
The implementation consisted of only ~60 lines of C and assem-
bly code, and consists of a modified spinlock datatype as well as
modifications to the lock, unlock, islocked and trylock operations.
The implementation resides entirely in the guest kernel and does
not require any additional VMM side support in order to function
correctly. While Preemptable Ticket spinlocks are capable of func-
tioning fully on top of any virtualization environment, they are also
able to benefit from extended paravirtual operations, which we will
discuss later.

5.1 Preemptable Ticket

Figures 3 shows the implementation of lock and unlock operations.
As part of our modifications we added code to maintain the time-
out threshold, while also changing the semantics of some of the
existing data fields. The existing kernel spinlock data structure con-
tains variables to track the head and tail of a queue in order to im-
plement the proper ticket semantics. These fields are equivalent to
the num_request and num_grant fields we discussed in sec-
tion 4.1. In order to detect a preempted lock waiter we have added
another field named lock which indicates the availability of the
lock.

In the lock function, we declare a local struct inc which acts
as a local copy of the head and tail values, timeout which
is used as the timeout threshold, and current_head which is
another local copy of head used to detect changes to the value
of head. At line 7 the code atomically updates inc in order to
increase the value of head. At this point inc.tail is regarded
as the “ticket” of the current thread. Line 10-11 shows the fast path,
which handles the case of an uncontended lock acquisition.

Lines 13-27 implement the core of the proportional timeout
functionality. The timeout threshold is initialized in line 14, and
updated in line 23 whenever head’s value changes. This ensures
that the timeout threshold is always proportional to the number of
pending lock requests that arrived previously, according to equa-
tion 2. A timed out thread will break out of the loop at line 27. A
thread should also break out of the loop when it’s ticket is equal to
the current head, meaning that it is due to acquire the lock based
on the ticket ordering. Besides, a thread breaks out of the loop if
it’s ticket is less than the current value of head, which can result

from a preemption followed by a rescheduling as discussed in Sec-
tion 4.1. Finally, line 29-35 implement a generic spinlock which is
invoked by every thread that is allowed past the wait loop.

1 #define TIMEOUT_UNIT (1<<14)

2 wvoid __ticket_spin_lock (arch_spinlock_t =xlock)
3

4 register struct _ raw_tickets inc={.tail=1};
5 unsigned int timeout = 0;

6 _ _ticket_t current_head;

7 inc = xadd(&lock—->tickets, inc);

8

9 // fast path

10 if (likely(inc.head == inc.tail))

11 goto spin;

12

13 // wait in queue

14 timeout = TIMEOUT_UNIT

15 * (inc.tail - inc.head);

16 do {

17 current_head =

18 ACCESS_ONCE (lock—->tickets.head) ;

19 if (inc.tail <= current_head) {

20 goto spin;

21 } else if (inc.head != current_head) {

22 inc.head = current_head;

23 timeout = TIMEOUT_UNIT

24 * (inc.tail - inc.head);

25 }

26 cpu_relax();

27 } while (timeout—--);

28

29 spin:

30 for (;;) |

31 if (xchg(&lock->lock, 1) == 0)

32 goto out;

33 cpu_relax () ;

34 }

35 out: barrier();

36}

37

38 wvoid __ticket_spin_unlock (arch_spinlock_t =*
lock) {

39 __add(&lock->tickets.head, 1,

UNLOCK_LOCK_PREFIX) ;
40 xchg (&lock->1lock, 0);
41 1}

Figure 3. Kernel Implementation: lock and unlock

The unlock operation is relatively simple, and is implemented
by combining the unlock operations of both ticket and generic
spinlocks. The operation atomically increments head by 1 and
clears the 1ock value.

While the lock and unlock operations provide the necessary
functionality for basic locking, the Linux kernel also requires ad-
ditional locking semantics for certain cases. In particular Linux
makes consistent use of other spinlock primitives such as islocked
and trylock. In order to fully support Preemptable Ticket spinlocks
through the kernel, we had to modify these operations as well. Fig-
ure 4 shows the implementation of these primitives. At line 3 our
code modifications return true if it detects the presence of earlier
waiters for the lock or if the lock is currently not available. The
trylock operation attempts to acquire a given lock, but immediately
returns O if the lock is not available. In order to support Preempt-
able Ticket spinlocks we modified the implementation at lines 18-
19, where we added an atomic check to determine whether the lock
is free and if there are no earlier waiters. Other than these mini-

1 int __ticket_spin_is_locked(arch_spinlock_t =

lock) |
2 struct _ raw_tickets tmp = ACCESS_ONCE (lock
->tickets);
3 return (tmp.tail != tmp.head) || (
ACCESS_ONCE (lock->1lock)==1);

}

arch_spinlock_t =xlock) {
arch_spinlock_t old, new;
9 *(u64 x)&old = ACCESS_ONCE (* (u64 =)lock);

4
5
6 int __ticket_spin_trylock(
7
8

10 if (old.tickets.head != old.tickets.tail)
11 return 0;

12 if (ACCESS_ONCE (lock->lock) == 1)

13 return 0;

14 new.head_tail = old.head_tail +

15 (1 << TICKET_SHIFT);

16 new.lock = 1;
17 /+* cmpxchg is a full barrier */
18 if (cmpxchg((u64 «)lock, *(u6d x)s&old,

19 *(u64 *)&new) == *(u6bd =*)s&old) {
20 return 1;

21 } else return 0;

22}

Figure 4. Kernel Implementation: islocked and trylock

mal changes, the existing implementations were left as originally
written.

5.2 Paravirtual Preemptable Ticket Spinlock

In addition to the fully encapsulated Preemptable Ticket spinlock
implementation, we also implemented a paravirtual version based
on a paravirtual ticket lock patch submitted to the Linux Kernel
Mailing List (LKML) [12] on May 2, 2012. It includes both guest
and host side modifications, which we adopted and extended to
support Preemptable Ticket spinlocks.

The paravirtual interface includes the ability to capture halt
instructions from the guest vCPU. These instructions are emulated
by switching the halting vCPU to a sleep state until a special
hypercall is received to wake it up. This interface allows a guest
OS to notify the VMM when it is appropriate to place a vCPU into
a sleep state and when to wake it up via a hypercall invocation. The
purpose of this interface is to allow a guest to place a lock waiter
vCPU into sleep state on the host since it is unable to make forward
progress due to a preempted lock holder.

In the original implementation, the halt instruction is executed
whenever a thread reaches a timeout threshold (2048 iterations of a
spinlock by default). As soon as the lock is released, the next waiter
is woken up using a hypercall. This approach essentially converts
a busy wait lock into a blocking lock, and prevents a spinning
vCPU from wasting a significant amount of time spinning on an
unavailable lock.

Our paravirtual Preemptable Ticket spinlock implementation
also executes halt after spinning on the lock variable longer
than a threshold (2048 iterations in this paper). However, when
releasing the lock, a wakeup hypercall is sent for every sleeping
vCPU instead of only the next thread in the queue. Because Pre-
emptable Ticket spinlocks allow out-of-order lock acquisition, an
in-order wake up can actually cause a deadlock scenario when
ticket < num_grant.

While we have implemented a paravirtual version of Preempt-
able Ticket spinlock, it is important to note that they are designed to
function correctly with either full system or paravirtual VMM ar-

chitectures. As we will show, Preemptable Ticket spinlocks provide
performance benefits when used with either environment. The ra-
tionale for a non-paravirtual locking implementation is that while
paravirtual interfaces do provide benefits to performance and in-
formation sharing, they are not always portable and can introduce
compatibility issues across different VMMs as well as different ver-
sions of the same VMM. Preemptable Ticket spinlocks are capable
of functioning on top of any unmodified or paravirtual VMM archi-
tecture.

6. Evaluation

In this section, we empirically evaluate how ticket locks, paravirtual
ticket locks (pv-lock), and paravirtual preemptable ticket locks (pv-
preemptable-lock) improve application performance when running
in a VM on either a full system or paravirtual VMM architecture.
Our evaluation uses a combination of microbenchmarks as well as
areal world workload based on the Dell DVD Store [4] benchmark.

6.1 Experimental Setup

Each experiment was run on a single Dell Optiplex with an 8
core 2.6 GHz Intel Core i7 CPU, 8 GB of RAM, and a 1 Gbit
NIC. The experiments were all executed inside an 8 core VM
image configured to use 1GB RAM. A Fedora 17 environment
was used for both the host and guests, and was configured to use
a modified version of the Linux kernel based on version 3.5.0. In
order to conduct a fair evaluation, we implemented pv-lock and pv-
preemptable-lock in otherwise identical configurations of the 3.5.0
kernel, we also include results that compare the various spinlock
implementations against the stock kernel implementation.

For the evaluation we selected benchmarks that focus on CPU
intensive, memory intensive and I/O intensive workloads. These
benchmarks include three microbenchmarks (ebizzy, hackbench,
and kernbench) as well as a real world web application benchmark
(the Dell DVD store).

Ebizzy [2] is designed to generate a workload that resembles
a common web application server. It is highly threaded, has a
large in-memory working set size, and allocates and deallocates
memory frequently. We execute ebizzy 5 times using 16 threads for
each run, and performance is measured as the sustained throughput
(records/second).

Hackbench [1] is a multi-threaded program that exercises
Unix-socket (or pipe) performance. We execute hackbench 5 times
using 4 threads with 10,000 loops. Performance is measured based
on the completion time (seconds).

Kernbench [3] executes parallel kernel compilations using a
variable degree of parallelization of the compilation process. Kern-
bench was executed 3 times and configured to use 8 compilation
processes in order to saturate the vCPUs of an 8 core VM. Perfor-
mance was measured based on the completion time (seconds).

Dell DVD Stores [4] is an open source simulation of an on-
line e-commerce site. The benchmark interfaces an Apache website
with a MySQL database running in the same VM. For our evalu-
ation we configured a single client machine to emulate 32 inde-
pendent clients each issuing search requests for 3 minutes follow-
ing 1 minute warmup period. Performance is determined based on
the transaction throughput (operations per minute) observed by the
client.

In order to evaluate lock performance under realistic cloud
scenarios we overcommitted the physical resources to a set of VMs
all running the same benchmark. To simplify our evaluation we
recorded the performance of a single VM randomly selected from
the set.

In addition to evaluating different guest locking implementa-
tions, we also evaluated each guest lock implementation when run-
ning on both a paravirtual and full system VMM environment.

These results are meant to demonstrate the portability of the ap-
proaches, and determine how well they will perform in both opti-
mized and non-optimized environments.

6.2 Microbenchmarks

Figure 5 shows the experimental results of the three microbench-
marks for each locking implementation. As expected, performance
degrades as the number of competing VMs increases, however the
degree of degradation depends on the choice of locking behavior.
As cloud providers seek to maximize utilization by increasing con-
solidation as much as possible, the ability to sustain performance
in the face of competing workloads becomes critical. As time spent
waiting for a lock is wasted from the point of view of the resource
provider, we try to measure the degree to which the different lock-
ing approaches can minimize the overheads due to lock contention.

Figures 5(a) shows results of each locking approach on hack-
bench, which mainly exercises the IPC subsystem. While each
locking implementation has comparable performance in the single
VM case, those designed to handle preemption are significantly
better when executing in an overcommitted environment. In the
two VM case, the speedups of preemptable-lock, pv-lock and pv-
preemptable-lock are 3.89.X, 4.80X and 4.97X respectively, indi-
cating that (1) Preemptable Ticket spinlocks significantly improve
lock performance under overcommitted configurations without any
host side support, (2) host side paravirtual interfaces improve lock
performance further, (3) pv-preemptable-lock performs even better
than pv-lock because it addresses both lock holder and waiter pre-
emption. This trend is more obvious in the three VM case, where
the speedups of preemptable-lock, pv-lock and pv-preemptable-lock
are 9.63.X, 13.68X and 15.35X respectively. Note that less than
6% of Preemptable Ticket spinlock overhead can be observed in
one VM case. This is due to the overhead of code added into ticket
lock, which slows down the code path slightly. In less severe over-
committed configurations, where the preemption rate is low, the
overhead becomes observable. However, with greater overcommit-
ting of resources the overhead swamped by the overall performance
improvement.

Figure 5(b) depicts the performance and speedup of each lock
algorithm when executing kernbench. The results show that each of
the four lock algorithms provides comparable performance when
only one VM is executing, and lock preemption is rare. When the
number of VMs increases, all three lock implementations yield sig-
nificantly better performance compared to the generic ticket lock.
Similar to hackbench, the same patterns are observed in the two
VM case. In these scenarios the speedups of preemptable-lock, pv-
lock and pv-preemptable-lock are 2.37X, 2.47X, 3.12X. The re-
sult again confirms our hypothesis that Preemptable Ticket spin-
locks improve performance even without paravirtual interfaces, and
also yield better performance than pv-lock on a host with a paravir-
tual locking interface because it uniquely identifies and adapts to
instances of lock waiter preemption. It is interesting that when con-
figured with three VMs, all three preemption optimized lock algo-
rithms exhibit almost the same performance, around 7.3.X speedup.
A possible reason for this is that kernbench is an I/O intensive
workload, and with three parallel instances running the host I/O
capacity becomes the bottleneck. In such a scenario, locking per-
formance cannot improve performance past what the hardware 1/0
system is capable of.

In figure 5(c) we scale up to five VMs running ebizzy to com-
pare lock algorithms with high preemption rates. Results show that
while comparable performance is achieved under the single VM
case, the high preemption rate (three VMs or more) results in the
Preemptable Ticket spinlocks outperforming the others. Moreover,
preemptable-lock achieves the best speedup in the 3 VM case even
without host side paravirtual support. This may due to the fact

that preemptable-lock does not have context switching overheads
caused by the paravirtual interfaces entering and exiting the VMM.
It also should be noted that pv-lock has superior performance when
executing with 2 VMs. However, as the number of VMs increases
on the same hardware pv-preemptable-lock begins to achieve bet-
ter performance, as a result of the greater levels of contention. In-
tuitively this is because pv-lock is able to perform well when the
preemption rate is low, however it’s performance degrades as the
level of resource contention increases resulting in a greater number
of preemptions.

In summary, the lock waiter preemption problem is a situation
best handled inside a guest OS without the need of VMM support.
Because of this Preemptable Ticket spinlocks are specifically de-
signed for both full system and paravirtual virtual environments.
This allows our approach to adapt to guest behavior, and does
not require communication with the VMM. This property becomes
more significant as more VMs share the host and preemption be-
comes much more frequent. Our results show that when executing
on a non-paravirtual VMM, preemptable-lock is able to improve
guest performance significantly compared to ficket-lock when the
host is overcommitted.

Paravirtual lock interfaces enable the guest to notify the VMM
whenever it should transition a vCPU into and out of a sleep state
due to a long waiting lock. This approach essentially converts a
busy waiting lock in the guest into a sleep and wake up lock in the
host. The benefit arises from the fact that the duration of preemp-
tion for a vCPU is on the order of milliseconds, which is 1000X
longer than normal lock waiting time. With paravirtualization we
are able to reduce this wait time at the cost of additional context
switches and sleep-wakeup overhead. Our results show that pv-lock
and pv-preemptable-lock are able to outperform ticket-lock signifi-
cantly and yield better performance than preemptable-lock in most
overcommitted cases.

While paravirtualization is able to deliver substantial improve-
ments for performance, our pv-preemptable-lock is still able to out-
perform the pv-lock implementation. This is due to the fact that
pv-preemptable-lock is able to address the problem from two di-
rections. First when there is a preempted lock waiter, we do not
require traps into the VMM that trigger sleep and/or wakeup opera-
tions. Instead, the ticket queue is reordered entirely inside the guest
OS. The lock which is only available to the preempted lock waiter
in pv-lock is available to other waiters in pv-preemptable-lock after
a given timeout period. This allows the pv-preemptable-lock im-
plementation to avoid unnecessary overheads due to the exit and
entry costs required for a paravirtual interface. Second, for the case
of preempted lock holders pv-preemptable-lock is able to improve
system performance by leveraging the paravirtual lock interfaces.
In other words, paravirtual locking is required to solve the lock
holder preemption problem, whereas Preemptable Ticket spinlocks
are required to address the lock waiter preemption problem. Ob-
taining the optimized performance requires utilizing a combination
of both approaches.

6.3 Real World Workload benchmark

Finally, we evaluated the performance of different lock implemen-
tations when running a real world web application benchmark. The
Dell DVD Store is a three tier benchmark, where tier 1 is a php
web store application, tier 2 is an apache web server, and tier 3 is a
MySQL database server. For these tests we ran the three tiers along
with a client program sending login and search requests inside of a
single VM environment. The experiments were conducted with up
to 4 VMs executing the benchmark in parallel on the same physi-
cal host in order to show the performance of the different locking
approaches under varying real world load scenarios.

1,00(T

O ticket-lock

O preemptable-lock
O pv-lock

] pv-preemptable-lock
100

10F

Completion Time (seconds)

2
Number of VMs

16 T

Completion Time (seconds)

10,000

1,000

100

O ticket-lock

O preemptable-lock
& pv-lock

3 pv-preemptable-lock

Number of VMs

O preemptable-lock

Throughput (Records/Seconds)

100,000y T

O ticket-lock

O preemptable-lock
O pv-lock

21 pv-preemptable-lock

10,000

1,000

1001

10F

1

Number of VMs

25 T T T

3 ticket-lock

O preemptable-lock
2r O pv-lock

F3 pv-preemptable-lock

14r [ticket-lock 7
] preemptable-lock

120 [pv-lock 6k O ticket-lock
V1 pv-preemptable-lock

100 4 sk O pv-lock

Speedup
©
T
I
Speedup
IS
T

71 pv-preemptable-lock

Speedup

Number of VMs

(a) hackbench

Number of VMs

(b) kernbench

Number of VMs

(c) ebizzy

Figure 5. Microbenchmarks Performance. ficket-lock and preemptable-lock show non-paravirtual performance results for a ticket lock
and Preemptable Ticket spinlock kernel respectively. pv-lock and pv-preemptable-lock show performance results for paravirtual ticket locks

and paravirtual Preemptable Ticket spinlocks

Figure 6 depicts the performance of each lock implementation
when running on both a paravirtual and non-paravirtual VMM.
Again, all lock algorithms show comparable performance under
low overcommitted cases (one or two VMs), however, as the num-
ber of VMs increases, the results begin to mirror what was seen
with the other benchmarks. Three of the preemption optimized al-
gorithms outperformed ticket-lock significantly, which indicates the
severity of performance degradation caused by preemption under
overcommitted cases. While preemptable-lock yields obvious per-
formance boosts without host side support, the two paravirtual so-
lutions improved performance further. Moreover, pv-preemptable-
lock is even better than pv-lock because it’s unique ability to address
lock waiter preemption. pv-lock yields best speedup in case of 2
VMs, but it has largest performance degradation in 1 VM case, and
is outperformed by pv-preemptable-lock as number of VMs goes

up.

7. Discussion and Future Works

By calculating the average speedup across all cases, we get that
Preemptable Ticket spinlock can improve VM performance on
average by 5.32X compared to the existing ticket lock architecture
when running on a full system VMM. On a VMM that supports
a paravirtual locking interface, Preemptable Ticket spinlocks can
achieve 7.91.X speedup over ticket locks on average, and a 1.08.X
speedup compared to pv-lock. The results show that Preemptable
Ticket spinlocks effectively address the lock waiter preemption
problem and can do so without any VMM modification. However
when coupled with a paravirtual locking interface, Preemptable
Ticket spinlocks can improve VM performance further compared
to previous approach.

Though Preemptable Ticket spinlocks have demonstrated the
ability to adapt to preemption on a overcommitted host, there are
still further opportunities to fully optimize the lock behavior. In
particular, further performance gains might be achieved through
the integration of Preemptable Ticket spinlocks with other VMM
scheduling algorithms. For instance, Complete Fair Scheduling
(CFS), as used by KVM, tries to give equal shares of the CPU to
each vCPU. Preemptable Ticket spinlocks could be used to pro-

(] ticket-lock

[0 preemptable-lock
[J pv-lock
[4 pv-preemptable-lock
100,000 T T
@ — |
E] — - —
£ 10000 11 — 1) =7
5 : : :
5
’}3 1,000 -
[
Q
o
5 100 3
o
=
[=2]
S
<
£ 10+]
1 2 3 4
Number of VMs
50 ‘ ‘
45+ 7 4
[ticket-lock =1
40 - [J preemptable-lock 4 T
3 pv-lock :
35~ 72 pv-preemptable-lock : b
g 3¢ : .
= :
& 25- : J
& :
20~ 4
15 : E
10F g
5 4
0 —r—t—r :
4

Number of VMs

Figure 6. Dell DVD Store Performance

vide inputs for other scheduling algorithms, such as co-scheduling
and balanced scheduling, that can utilize dependency information
about the currently running vCPUs. While we expect that a com-
bined approach would improve overall performance, it is important
to note that a combined approach is not required to achieve per-

formance benefits when deploying our approach on other VMM
architectures.

8. Conclusions

In this paper we have introduced Preemptable Ticket spinlocks as a
new locking primitive targeting virtual machine environments that
addresses lock waiter preemption. In particular, Preemptable Ticket
spinlocks are able to avoid performance overheads that result from
both lock holder and lock waiter preemption. While existing so-
lutions are designed to only address lock holder preemption, Pre-
emptable Ticket spinlocks are the first to fully address both preemp-
tion issues. Preemptable Ticket spinlocks are capable of addressing
lock waiter preemption independently from the underlying VMM
architecture, but when combined with a paravirtual lock interface
it can handle lock holder preemption as well. With Preemptable
Ticket spinlocks we are able to show that VM performance can be
improved on average by 5.32X, when running on a non paravir-
tual VMM, and by 7.91.X when running on a VMM that supports
a paravirtual locking interface.

Acknowledgments

We would like to thank Wencan Luo for insightful feedbacks and
Raghavendra K. T. for discussions on the pv-lock patch.We would
like to also thank the anonymous reviewers for helpful comments
on the paper.

References

[1] Hackbench, 2008.
scheduler/tools/hackbench.c/.

http://people.redhat.com/mingo/cfs-

[2] Ebizzy 0.30, 2009. http://sourceforge.net/projects/ebizzy/.

[3] Kernbench 0.50, 2009. http://freecode.com/projects/kernbench.

[4] Dell dvd store database test suite 2.1, December 2010.
http://linux.dell.com/dvdstore/.

[5] CHEN, P. M., AND NOBLE, B. D. When virtual is better than real. In
The 8th Workshop on Hot Topics in Operating Systems (HotOS-VIII)
(2001).

[6] FRIEBEL, T. How to deal with lock-holder preemption. Presented at
the Xen Summit North America, July 2008.

[7]1 HE, B., SCHERER, W., AND SCOTT, M. Preemption adaptivity in
time-published queue-based spin locks. In High Performance Comput-

ing HiPC 2005, D. Bader, M. Parashar, V. Sridhar, and V. Prasanna,
Eds., vol. 3769 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2005, pp. 7-18.

[8] MCKENNEY, P., AND SLINGWINE, J. Read-copy update: Using
execution history to solve concurrency problems. In Parallel and
Distributed Computing and Systems (1998), pp. 509-518.

[9] MELLOR-CRUMMEY, J., AND SCOTT, M. Algorithms for scalable
synchronization on shared-memory multiprocessors. ACM Transac-
tions on Computer Systems (TOCS) 9, 1 (1991), 21-65.

[10] MELLOR-CRUMMEY, J., AND SCOTT, M. Synchronization without
contention. ACM SIGPLAN Notices 26, 4 (1991), 269-278.

[11] OUSTERHOUT, J. Scheduling techniques for concurrent systems.
In Proceedings of the 3rd International Conference on Distributed
Computing Systems (1982), pp. 22-30.

[12] RAGHAVENDRA, K., AND FITZHARDINGE, J. Paravirtualized ticket
spinlocks, May 2012.

[13] RIEL, R. V. Directed yield for pause loop exiting, 2011.

[14] SUKWONG, O., AND KIM, H. S. Is co-scheduling too expensive for
smp vms? In Proceedings of the sixth conference on Computer systems
(New York, NY, USA, 2011), EuroSys "11, ACM, pp. 257-272.

[15] UHLIG, V., LEVASSEUR, J., SKOGLUND, E., AND DANNOWSKI, U.
Towards scalable multiprocessor virtual machines. In Proceedings
of the 3rd conference on Virtual Machine Research And Technology
Symposium - Volume 3 (Berkeley, CA, USA, 2004), VM’04, USENIX
Association, pp. 4—4.

[16] VMWARE, I. Vmware(r) vsphere(tm): The cpu scheduler in vmware
esx(r) 4.1, 2010.

[17] WELLS, P. M., CHAKRABORTY, K., AND SOHI, G. S. Hardware
support for spin management in overcommitted virtual machines. In
Proceedings of the 15th international conference on Parallel architec-
tures and compilation techniques (New York, NY, USA, 2006), PACT
’06, ACM, pp. 124-133.

[18] WENG, C., L1U, Q., YU, L., AND LI, M. Dynamic adaptive schedul-
ing for virtual machines. In Proceedings of the 20th international sym-
posium on High performance distributed computing (New York, NY,
USA, 2011), HPDC ’11, ACM, pp. 239-250.

[19] ZHANG, L., CHEN, Y., DONG, Y., AND Liu, C. Lock-visor: An
efficient transitory co-scheduling for mp guest. In Proceedings of the
41st International Conference on Parallel Processing (Pittsburgh, PA,
USA, 2012), pp. 88-97.

