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1. SIMPLE PREFIX B-TREES 

We assume that the reader is familiar with B-trees [4, 81 and with a variation of 
B-trees, called B*-trees [8, lo]. In B*-trees the records of a file together with the 
keys identifying them are only stored in leaf nodes of the tree structure. We call 
the nonleaves branch nodes or branch pages. Leaves can be linked to their neigh- 
bors to allow sequential processing of the leaves without using the branch nodes of 
the B*-tree. 

We call the part of a B*-tree consisting only of the branch nodes the B*-index 
and the ordered set of leaves the B*-file. In the B*-index some keys, which appear 
again in the B*-file with their associated records, are repeated without their records. 
The following observation is important for the rest of this paper: The keys stored 
in the B*-index are only used to direct the search algorithm and to determine in 
which subtree of a given branch node a key and its associated record will be found, 
if they are in the tree at all. 

It is now a fairly obvious observation that we need not necessarily use the keys 
in the B*-file to construct the B*-index. Instead we can use other strings, con- 
structed to have desired properties, for building up the equivalent of the B*-index 
of a B*-tree. 

To give a simple example, we assume that a leaf is already full and contains 
keys 
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Bigbird, Burt, Cookiemonster, Ernie, Snuffleopogus 

In order to insert the key “Grouch” with its record, we must split this leaf into 
two as follows: 

Bigbird, Burt, Cookiemonster Ernie, Grouch, Snuffleopogus 

Instead of storing the key “Ernie” in the index, it obviously suffices to use one of 
the one-letter strings “D”, “E” for the same purpose. In general we can select 
any string s with the property 

Cookiemonster < s 5 Ernie (1) 

and store it in the index part to separate the two nodes. We call such a string s 
a separator (between Cookiemonster and Ernie). It seems prudent to choose one 
of the shortest separators. 

Note. If the keys are words over some alphabet and the ordering of the keys is 
the alphabetic order, then the following property, called the pre$x property, holds: 

Let x and y be any two keys such that x < y. Then there is a unique prefix g of 
y such that (a) g is a separator between x and y, and (b) no other separator 
between x and y is shorter than g. For the rest of this paper, we assume that the 
prefix property holds. 

The technique of moving a shortest separator to the father node when a node is 
being split can be used only for splitting leaves, not branch nodes. When a branch 
node is being split, one of the separators on that node must be moved up one 
level in the tree. 

As mentioned before, a B*-tree can be considered as consisting of a B*-index and 
a B*-file. The B*-index itself is just a conventional B-tree of a subset of the keys 
in the B*-file together with the maintenance algorithms for B-trees described in [4]. 

DeJinition. A simple prefix B-tree is a B*-tree in which the B*-index is replaced 
by a B-tree of (variable length) separators. 

Note. Since a key in a B*-index is also a separator, although not necessarily a 
shortest possible separator, the class of simple prefix B-trees contains the class of 
B*-trees. 

Except for the slight complication of always having variable length separators, 
the search algorithm for simple prefix B-trees is exactly the same as for B*-trees. 

Split interval. The performance bottleneck of our trees is the number of ac- 
cesses to the backup store needed for INSERT, DELETE, and RETRIEVE 
operations. This number is essentially determined by the height of the tree since 
the pages along the retrieval path for some key x from the root to some leaf are 
always needed for those three operations. 

Performance can therefore be improved by making the trees as flat as possible, 
which can be achieved by making the branching degree of the nodes, especially 
in the upper parts of the tree (i.e. near the root), as high as possible. This branch- 
ing degree is determined by the number of (separator, pointer) pairs that can be 
stored on a fixed size page. Pointers are generally rather short and have a fixed 
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size of a few bytes. Keys, however, tend to be rather long. The branching degree 
can therefore be increased by decreasing the length of the separators. This essen- 
tially is the rationale for storing only shortest separators instead of full keys in 
the index part of a simple prefix B-tree. 

This idea can now be carried one step further if we do not insist on splitting a 
leaf precisely in the middle. Instead we could allow a certain split interval around 
the middle (or the median key) of a splitting leaf within which a split point (be- 
tween two adjacent keys xi-l and xi) should be chosen so as to minimize the length 
of the shortest separator si . Note that because of the prefix property the resulting 
separator si can still be chosen as a prefix of the key zi . The size of the split inter- 
val is determined by a parameter UZ . gz is simply the number of separators (or 
bytes) around the middle of the page which we consider for choosing a suitable 
split point. 

The same idea can be applied to splitting branch nodes. A certain interval of 
size Ub around the middle of a page is considered for choosing a split point such 
that a shortest separator within this interval is moved to the father page. 

Effect of ~1 and Ub . An increase of uz should decrease the average length of the 
separators in the index part of the tree, thereby reducing the number of nodes in 
the index part. An increase of Ug should favor the shorter separators in the index to 
be located near the root, thereby increasing the branching degree of nodes near the 
root, where a high branching degree is most beneficial. 

Increasing both (rl and C7b causes two effects working against each other: 
(a) It tends to decrease the height of the index part for the reasons just de- 

scribed. 
(b) The storage utilization decreases (there can now be pages less than half 

full), which requires more pages in the file part and more but shorter entries in 
the index part of a tree. 

We have not analyzed the influence of uz or Ub on the performance of the trees. 
We expect such an analysis to be quite involved and difficult. We are quite con- 
fident, however, that small split intervals improve performance considerably. 
Sets of keys that arise in practical applications are often far from random, and 
clusters of similar keys differing only in the last few letters (e.g. plural forms) are 
quite common. 

As an example, consider the key sequence 

“On, Part, Problem, Problems, Solution, Solutions” 

arising in the tree of Figure 1. Splitting this sequence in the rr-ddle between the 
third and fourth key would yield “Problems” as the shortest separator. Allowing a 
split point to be chosen one key to the left or to the right yields “Pr” or “S’ as 
separators. The split point between “Problems” and ‘Solution” yields the shortest 
separator “S”, which is a prefix of the full key “Solution” and appears in the tree 
of Figure 1. 

2. ALGORITHMS FOR SIMPLE PREFIX B-TREES 

2.1 Search Algorithm 

This algorithm is the same as for B*-trees with variable length keys. 
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2.2 Sequential Processing 

This is very easy and efficient using either the index or the linked list of the leaves. 

2.3 Insertion 

An important part of the insertion algorithm is the search algorithm to determine 
the leaf on which the insertion must be performed. If this leaf must be split, choose 
within the split interval a split point yielding the shortest separator s, which as 
we know can be chosen to be a prefix of a key. Insert s into the index part, propa- 
gating splits toward the root if necessary. To split a branch node choose again a 
shortest separator within the split interval and move it to the father node. 

2.4 Deletion 

Deletion of a key and its associated record is always made from a leaf. Unless a 

merge or an underflow [4] of the leaf is required, the index part of the tree need 
not be affected by deletions. Thus deletions are simpler than in the original B-trees. 
If the deletion causes two leaves to be merged, simply delete the corresponding 
separator from the index part. This will always be a deletion from a leaf of the index 
part, which is organized as a B-tree. Thus these deletions are special cases and 
much simpler than general deletions from B-trees. Other separators in the index 
part of the tree are not affected by such a deletion. 

Note. If the largest or the smallest key on a leaf is deleted, then a separator in 
the index part might be replaced by a shorter separator. Although this can easily 
be done, it is hardly worthwhile. 

2.5 Overflow 

So far we have disregarded overflows caused by insertions or deletions (where they 
are sometimes called underflows [4]). An overflow is performed by moving keys and 
records or separators from a node to a brother node in order to avoid splits or to 
balance storage utilization. Using variable length separators instead of fixed length 
keys means, however, that during an overflow a separator in the father page may 
be replaced by either a longer or a shorter separator. Obviously split intervals 
should also be applied to overflows. 

As opposed to the original B-tree proposal based on fixed length keys, overflows 
may now propagate and cause further splits, merges, or overflows if a separator is 
replaced by a longer or shorter separator. Obviously such propagation will be in- 
frequent. 

Note. Rear compression of keys, described in [8] and [9], is a technique similar 
to using shortest prefixes. Rear compression, however, does not use the important 
device (see Section 3) of the split interval. 

3. EXAMPLE OF A SIMPLE PREFIX B-TREE 

To construct an example of a simple prefix B-tree, the keys of the KWIC index 
[8, p. 4371 were inserted into the tree in the following random order: part, their, 
solve, for, to, an, some, certain, new, equations, problems, on, methods, as, ob- 
taining, a, its, solutions, use, notes, by, computation, in, of, problem, from, note, 
and, solution, which, with, method, computations, the, equation. 
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The nodes are assumed to be able to hold up to two keys or separators and up 
to three pointers. When a leaf becomes too full, i.e. contains exactly three keys, a 
split after the first or second key is allowed to get the shortest separator. Branch 
nodes are split by moving the middle separator to the father. Thus our example 
demonstrates only the effect of the split interval on leaves; it ignores the interplay 
among a fixed page size for a node, the variable length separators, and the resulting 
variable branching degrees of the branch nodes. After inserting all keys, we obtain 
the tree of Figure 1. 

The following observations can be made about our example. Any actual data will 
not quite satisfy the assumptions made for the analysis of simple prefix B-trees: 
that the keys are chosen at random. Thus the average length of a shortest sepa- 
rator for our set of key words is 2.88 rather than 1.47 as would be expected for 
random keys (see Section 6). This is due to the obvious phenomenon of several 
nouns appearing both in singular and plural forms. The long plural forms appear 
necessarily in the set of shortest separators. Our proposal of choosing a split point 
within a certain interval almost compensated for this effect, yielding an average 
length of 1.54 for the separators actually appearing in the index part of the tree. 
This is in good agreement with the expected length of 1.47. 

As mentioned before, the influence of the size of the split interval on the length 
of separators is an open problem. We conjecture that the main benefits of the scheme 
can be obtained by a rather small interval. This means that the good storage utili- 
zation of B-trees in general will not be degraded appreciably. 

4. PREFIX B-TREES 

In this section we describe a modification of simple prefix B-trees with the goal of 
further reducing the size, mainly the height of the index part, of such trees. As- 
sume that the ordering of the keys is the lexicographical order according to the 
collating sequence of the alphabet over which the keys are defined. 

For an arbitrary page P, let T(P) be the subtree of index and leaf pages with root 
P. Reconsider the index part of a simple prefix B-tree. The tree structure determines 
for each page P a largest lower bound A(P) and a smallest upper bound r(P) 
such that, for all keys z or separators s which are or might be stored in T(P), the 
following holds : 

qp) 5 2, < P(P), qp> 5 s < /4P). 

Let lo be the smallest letter in the alphabet and let co be larger than any letter: 

X(R)=Zo, p(R)= w. 

To define X and cc for other nodes, let P be a branch node with lower and upper 
bounds A(P) and p(P), respectively, and the following structure: 

P: PO, SI, PI,. . . , Si, pi, Si+l,. . (9 Sm, Pm 

PO * * * p, are pointers to the sons of P which are branch or leaf nodes; sl. . , s,,, 
are separators, s,,, being the last one on P. Then X(P(p,)) and p(P(pi)), also 
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denoted by X(pi> and p(pi) , are defined as : 

1 

56 
X(pi> = 

for i = 1, 2, . , . , m, 
P(Pi> = 

i 

si+l for i = 0, 1, . . . , m - 1, 

X(P) for i = 0, p(P) for i = m. 

Then obviously all separators or keys in T(pi) must have at least a common 
prefix K(pi), which can be defined as follows: Let z be the longest common prefix 
(possibly the empty string) of X(pi) and p(pi). Then 

[KZi if h(pJ = ?&z and I = zZj+r, where z is an arbitrary 

K(pi) = 

I 

string and the letter Zj+r follows Zj immediately in the col- 
Ming sequence, 

z otherwise. 

X(pi) and p(pi), and therefore also K(Pi), can be derived by traversing the tree 
from the root to the node P(pi). Therefore there is no need to repeatedly store 
the common prefix K(p;) in P(pi); it suffices to store it once and to store the rest 
d of the separators on P(p;). This holds even for the keys on leaves, although 
storage of full keys on leaves or at least the repetition of the common prefix on the 
leaves is desirable for sequential processing of the file without the use of the index 
part. A full separator s on P(p,) is easily reconstructed by the concatenation s = 
K(pi)g. 

For example consider the tree in Figure 1. All the keys in the subtree with the 
root containing “To” have the common prefix “T”. This common prefix can be 
derived according to the above definitions when the father node which contains 
the pair (T, u) is examined. Therefore in a prefix B-tree we would not store the 
common prefix T with the separators in the subtree. 

Using this prefix compression technique yields a new kind of tree which we call 
prejix B-tree. We present another explicit definition of prefix B-trees in Section 5 
after discussing the maintenance algorithms. 

As mentioned before, we hope that prefix B-trees combine some of the advantages 
of B-trees, digital search trees, and key compression without sacrificing the basic 
simplicity of B-trees and the associated algorithms and without inheriting some of 
the disadvantages of digital search trees and key compression techniques. To sub- 
stantiate these claims, let us first consider the algorithms for processing prefix 
B-trees. 

5. ALGORITHMS FOR PREFIX B-TREES 

5.1 Searching 

To search for a key x on a page referenced by p: 

(1) Determine K(P) according to its definition in Section 4. 
(2) Remove K(P) from 5, yielding 2. 
(3) Let page P(p) be organized as follows: 

po*l,p,*bzp2* . . . *smp,* 

if i < & then q := po; 
if & 5 2 < %<+I then q := pi; 
if I, 5 2 then q := p,; 
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(4) if P(p) is a leaf page, then retrieve the record q is referencing; it has key x if there is 
such a record at all 

else begin p := p; goto step (1) end 

Comments on the search algorithm. 
Step (1): If 2 can be in T(P(p)) at all, it must have the prefix K(p). The same 

prefix K(P) was removed from the full separators si to obtain the partial separators 
dj stored on P(p). Therefore to search P(p) use 2 as a search argument and com- 
pare 2 with the dj on P(p). 

Step (3) : Let * be a special symbol which cannot appear in 6j or pj . Even though 
the partial separators dj have variable length, a calculated or binary search is still 
possible. We describe the binary search: Start the search in the middle of the used 
part of the page. With a short sequential character scan locate two neighboring 
* symbols. Since the pj have fixed length, we can determine bj , which is used for 
comparison. The iteration and termination of the scheme on one page is obvious. 

Step (4) : For simplicity we assumed that only pointers to the records are stored 
on the leaf pages. 

When proceeding from P to a son page P’, it is easy to construct X(P’), p(P’), 
and K(P’) and to iterate the search process. It is now clear that prefix B-trees 
avoid the main disadvantages of other compression techniques, namely the need 
to either decompress the keys on P first or to change the search argument to be 
used for comparison with each search step and to rely on additional structure in- 
formation [9] to allow a faster than sequential, e.g. a quadratic, search of P. The 
way the prefixes K(P) are constructed is very reminiscent of the way of construct- 
ing prefixes in traversing digital search trees. 

5.2 Insertion 

A significant part of the process of inserting a record (2, a) with key z and associ- 
ated information a is the search algorithm just described. In most cases, (2, a) 
will simply be inserted into a leaf and the insertion process is completed. 

Node splitting. When a node P splits into P and P”, a separator s must be se- 
lected and a partial separator b must be inserted into the father page & of the 
splitting page P. The prefix for the father page, i.e. K(&), satisfies the property 
that K(Q) is a prefix of s. Thus s = K(&)$, and the partial separator ji can be in- 
serted into & without affecting any other separators on &. The partial separators 
on P and PN may now be shortened in case the new K(P) and K(P”) are longer 
than the old K(P) was. Similarly as for the original B-trees, splits may propagate 
toward the root and trigger further splits or overflows. 

Overjlow. Instead of splitting a full page P, an overflow from P into a brother 
page B can be attempted. Then the separator s between P and B must be replaced 
by another separator t, and accordingly 1 on the common father & must be replaced 
by t^. 

In this process the partial separators on P may shrink; those on B may expand. 
Therefore an overflow to B may not be possible even though B is not full. In this 
case P should be split. Replacing B by i may force further splits, merges, or over- 
flows. This effect is analogous to the one already observed for simple prefix B-trees. 
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5.3 Deletion 

Deletion of (2, a) will always be done on a leaf. If CC is the first or the last key on a 
leaf, then the separator to the left or right brother, part of which is stored in the 
index part, might be shortened. But this is not necessary, since the longer separator 
will still remain a separator. 

Node merging. Owing to the deletion of (CC, a) from a leaf F, F might now be 
merged with a brother G. To merge F and G onto F, remove the corresponding 
partial separator from the father of F. This might trigger further merges or over- 
flows. To merge branch nodes Q and B onto Q, delete the partial separator between 
Q and B on their common father node and recalculate the old and new partial 
separators on Q since they might expand. Obviously the condition for merging Q 
and B is that the expanded partial separators still fit onto Q. 

With the discussion in the preceding sections, we have given a constructive 
definition of prefix B-trees: Prefix B-trees are exactly those trees that arise from 
applying arbitrary sequences of INSERT and DELETE operations to an empty 
file. 

It may be helpful to present an explicit definition of prefix B-trees, defining pre- 
cisely those properties which allow us to distinguish this kind of tree from other 
tree structures. This definition is rather difficult to grasp, however, without first 
understanding the discussion in the preceding sections and the constructive defini- 
tion. 

Definition. A pre$x B-tree is a B*-tree in which the B*-index is replaced by the 
index part of a prefix B-tree. 

Definition. The index part of a pre$x B-tree is a directed tree structure together 
with a particular mode organization and additional properties as follows: 

(a) Tree structure: (i) The tree is completely balanced with respect to path 
length. (ii) The degree cl of a node is variable; d 2 2, but otherwise d is determined 
by the internal organization of a node. 

(b) Node organization: A node P contains an alternating sequence of references 
Pi to other nodes (the sons of P in the tree structure) and partial separators di , 
which are variable length strings over some alphabet. The subsequence of partial 
separators is sorted. Denote the alternating sequence in a node as p. , dl , pl , $2 , 
p2, * * * ,4n , pm * 

(c) Additional properties: For every node p the following holds: 
(i) Let the common prefix K(P) of P be as defined before. Then 

si = K(P)& for i = 1, 2,. . . , m 

are called the separators of P. 
(ii) Let T(P(p;)) be the maximal subtree with root P(p,). Let I be the 

set of all separators of nodes of T(P(pi)) and of all keys on nodes of the B*-file 
referenced from leaves of T( P( pi) ). Then the following hold: 

WY E ‘+‘o) : y < S1 , 

ffy E I : Si 5 y < Si+l for i = 1, 2, . . . , m - 1, 

vy E K(Pm) :&n 5 ‘$4. 
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(iii) If every node has a fixed storage capacity, the storage occupancy is so 
high that no two brothers can be merged. 

We have claimed that prefix B-trees should combine some of the advantages of 
B-trees, digital search trees, and compression techniques without inheriting some 
of their less desirable properties. More precisely we mean the following: 

(1) The basic advantages of B-trees are preserved: 
-a balanced tree organization guaranteeing good worst-case performance, 
-good storage utilization, 
-maintenance algorithms which are only slightly more complicated than those 

for original B-trees with various length keys. 
(2) The technique of choosing shortest separators and pruning off the common 

prefixes K(P) allows storing only partial separators in the index part of the tree. 
The two techniques could be applied independently to a B*-tree. Choosing shortest 
separators is reminiscent of rear compression, and pruning off common prefixes 
is reminiscent of front compression of keys. However, the main disadvantages of 
other compression techniques are avoided. 

(3) The technique of constructing prefixes while traversing the tree during a 
search is reminiscent of digital search trees. However, the danger of obtaining un- 
balanced trees is avoided. 

Note. In certain cases, especially when insertions and deletions are fairly rare, 
it may be desirable to factor out the largest common prefix of the keys or separators 
actually stored in a node P instead of pruning off only K(P). Binary search of a 
page would still be possible. The advantage is additional storage saving; the dis- 
advantage is additional processing required for some insertions or deletions which 
may alter the longest common prefix and therefore also the partial separators on a 
page. 

Note. Recently some research has been done on performing concurrent opera- 
tions on B-trees [6] and on enciphering B-trees [5]. All these results can be extended 
in a rather obvious way to apply to simple prefix B-trees and to prefix B-trees. 

6. PERFORMANCE ANALYSIS OF SIMPLE PREFIX B-TREES 

In Section 2 we have discussed why the performance of our trees depends heavily 
on the length of the separators stored in the B*-index. In this section we therefore 
attempt an approximate analysis of the expected length of the separators in a 
simple prefix B-tree. 

We restrict the analysis to a file with fixed length keys, but we see no reason why 
the results for variable length keys should be significantly different. We do take 
into account of course that we get variable length separators, but we do not con- 
sider the influence of the split intervals. For some comments on the general influence 
of the split interval, see Section 2 and the example in Section 3. 

For our analysis we assume that the keys in the B*-file are random. In practical 
applications this is often no&he case, and it leads to a longer expected separator 
length if one considers a set S of separators containing exactly one shortest sepa- 
rator sj for each consecutive key pair (Zj-1 , zj) in the sorted file. But only a rather 
small subset of S actually appears in the index part, and the technique of using 
the split interval for leaf splitting has the effect of selecting mostly the short sepa- 
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rators in S to be used as separators in the index part. We assume that the split 
interval roughly compensates for the nonrandomness of the keys of actual files 
and that the expected length of the separators in S is a useful first-order approxi- 
mation for the separator length to be expected in practical applications in the in- 
dex part of prefix B-trees. 

Let 21, x2 , . . . , x,+1 be the keys of a file in lexicographical order, and let a be 
the empty word. Then the intervals (e, ~11, (21, ~1, . . . , (xi , xi+J, . . . , (x,-l , CC ] 
are called the gaps of the file. A file of cardinality n - 1 defines n gaps. We say 
that s is a separator for the gap (rj , xi+J or s is a separator between xj and rj+i 
or s fills the gap (xi , xj+l] iff xi < s 5 x,+1 . 

Note. Each nonempty string is a separator for a unique gap defined by a file. 
For each gap there are one or several shortest separators. Choosing a shortest 
separator for each gap yields the set S mentioned before. 

Assume that we have a set of n gaps and a set of m separators. If we assume that 
a separator fills a gap with probability l/n, then the probability that a particular 
gap is not filled by any of the m separators is (1 - l/n)“. Thus the expected num- 
ber of gaps filled by m separators is 

w(n, m) = 72 - n(1 - l/n)“. 

Let the alphabet over which keys are formed have cardinality (Y. Then there are 
exactly (Y’ strings of length 1. For a file of cardinality n - 1, let wi be the expected 
number of gaps of the file filled by the set of cyi separators of length exactly i. Then 

wi = w(n, ai) for i = 1, 2, . . . . 

Note. Let L be the fixed length of the keys of the file. Then each gap filled by a 
separator of length i will also be filled by separators of length i + 1, i + 2, . . . , L. 
For example, the gap (Part, Prob] can be filled by “Pb”, “Pba”, “Pbaa” and also 
by “Pr “, “Pro “, “Prob” of lengths 2, 3, 4. 

Let I be the expected number of gaps actually filled by a separator of length i 
when the shortest possible separators are chosen. Then there will be ~1 = o1 gaps 
filled by separators of length 1, v2 = w2 - vl gaps filled by separators of length 2, 
and in general vl = ~1 - CtZ: vi, 1 = 2,3, . . . gaps filled by separators of length 1. 

Since we have fixed length keys, each gap will eventually be filled by a separator 
of length at most L, and the expected length E(s) of a shortest separator to fill a 
gap should be approximately 

E(s) = l/n 2 In. 
1-l 

LEMMA 6.1. VI = WI - W&l for 1 = 2) 3) . . . . 
PROOF. This follows directly from 

wz = g vi - 

Using E(s) = (l/n)~ko Zvl, VM = wz - wlml, and wz = w(n, a’) = 
n[l - (1 - l/n)““], we easily see that 

L-l 

E(s) = 1 + lq (1 - l/n)“, - L(1 - l/n)“L. 
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Table I. Expected Length of Separators in the Index Part of a Simple Prefix B-Tree 

a = cardinality of alphabet; n = cardinality of file. 

n 

a 103 104 10’ 106 10’ 108 

2 9.634 12.955 16,277 19.599 22.921 26.243 
8 3.546 4.645 5.747 6.855 7.968 9.083 

10 3.263 4.262 5.262 6.262 7.262 8.262 
’ 16 2.775 3.638 4.476 5.283 6.080 6.903 

26 2.483 3.104 3.842 4.615 5.258 5.929 
36 2.238 2.884 3.614 4.140 4.843 5.529 

256 1.774 1.976 2.517 2.936 3.180 3.845 

For the following numerical examples the approximation 
L-l 

E(s) = 1 + ls (1 - l/n)” 

was used. Furthermore it was assumed that (Ye >> n. This means that the long 
separators do not significantly contribute to E(s) and that E(s) becomes nearly, 
i.e. within the accuracy calculated, independent of L. Table I presents E(s) for a 
large range of alphabet sizes CY and file sizes n. 

7. HEIGHT OF A SIMPLE PREFIX B-TREE 

According to [4], the minimal and maximal number of entries in a B-tree are 

I * min = 2(k + l)h-’ - 1, Imax = (2k + l)h - 1. 

We want to compare the number of keys or separators that can be stored in the 
index part-which is a B-tree-of a B*-tree or a simple prefix B-tree for a fixed 
page size and a given height. 

In [41 Imin and Imax were calculated for k = 60 and for experiments with an 
entry that required 14 bytes, e.g. 10 bytes for the key and 4 bytes for the page 
pointers, yielding a page size of 1684 bytes. 

Using full bytes for the symbols of the alphabet (a = 256), we see (Table I) 
that the expected length of a separator up to a file size 10’ is less than 4. Thus let 
us assume pessimistically that a separator requires 4 bytes. Then a half-full page 
will have lc = 105 entries, a full page 210 entries. We also calculate an average I,, 
assuming that each page is three-quarters full and contains 157 entries. (See Table 
II.) 

8. PERFORMANCE OF PREFIX B-TREES 

It seems quite difficult to give a precise analysis of the expected length of the 
common prefixes K(P~) defined in Section 4 or equivalently of the amount of storage 
space that can be saved by using prefix B-trees rather than simple prefix B-trees, 
In [7] a rather crude worst-case analysis is carried out to obtain a lower bound on 
the expected length of the common prefix I. We omit the analysis here, but 
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Table II. Comparison of B*-Trees and Simple Prefix B-Trees 

Page size = 1684 bytes. 

h Imin I B” I m* Imin Z c&Y Z max 

1 1 90 120 1 157 210 
2 121 8280 14640 211 24963 44520 
3 7441 753570 1771560 22471 3944311 9393930 

. 
Y 

\ 
1 

B*-tree Simple prefix B-tree 
Key : 10 bytes Separator: 4 bytes 
Page pointer: 4 bytes Page pointer : 4 bytes 

Table III. Expected Length of the Common Prefix 

I 

k 103 10’ 106 106 

2 
10 

100 
1000 

2 
10 

100 
1000 

2 
10 

100 
1000 

7.60 10.36 
4.80 7.99 
1.90 4.80 

0 1.90 

0.95 
0.75 

0 
0 

0.49 
0 
0 
0 

1.86 
1.30 
0.75 

0 

0.95 
0.75 

0 
0 

13.69 16.95 
11.36 14.69 

7.99 11.36 a=2 

4.80 7.99 

2.63 3.05 

1.93 2.82 
1.30 1.93 a! 26 = 

0.75 1.30 1 

0.99 1.87 

0.97 1.34 
= 0.75 0.97 

0 0.75 3 

a 256 

present the results for a representative collection of file sizes, typical page sizes, 
and alphabet sizes in tabular form. Although these results are probably poor lower 
bounds, they should be helpful design guidelines for the practitioner. 

Table III gives lower bounds (arrived at in [7]) for the expected value of the 
length of the removable common prefix K(P). The parameters should be inter- 
preted as follows: 

LY: size of the alphabet. 
I: size of the separator set stored in the index part. (More precisely, I is only the 

size of the separator set stored in the leaf pages of the index part, but for 
typical applications this is within 1 percent of the total size of the index part.) 

k: average number of partial separators stored on an index page. A crude esti- 
mate of k suffices for using the table. 

9. PREFIX B-TREES AND DENSE INDEXES 

Frequently a file for which an index must be built is not sorted according to the 
order of the keys being used for the index. In this case each key in the file must 
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also appear in the index. Such indexes are often called “dense indexes” or “sec- 
ondary indexes” for obvious reasons. 

It is interesting to observe now that for dense indexes it suffices to always store 
separators of two successive secondary keys in the index instead of full keys. As- 
sume for example that the successive secondary keys on a leaf of the index would 
be . * * xi-1 ) xi ) xi+1 * * . with pointers . - . Q;-1, qi , qi+l . . . to the actual records. 
It is assumed of course that the secondary keys are stored again with the records. 
NOW assume that we construct separators sj with the property 

Then it suffices to construct the secondary index with the leaf pages containing 
only the separators rather than the full keys. The organization of a leaf page could 
then be 

* * * Qi-2 ) Si-1 ) Qi-1 ) Si ) qi ) Si+l ) Qi+l . * * * 

Searching. To search for a record with key y between xi and xi+1 , i.e. xi < y 
< Xi+1 ) search the index of separators. This will yield si 2 y < s<+~ and lead to the 
pointer qi in the index. Then retrieve the record referenced by q; and compare its 
secondary key with y. In case of equality we have found and retrieved the proper 
record; in case of inequality there is no record with the secondary key y in the file. 

Updating. To perform an update, e.g. to insert a record with key y between 
xi and xi+1 , construct a separator sil with the property 

Si I Xi < Si’ 5 y < Si+l 5 Xi+1 * 

If Si is liot a prefix of y, then it is obviously possible to construct sl without re- 
trieving x; ; otherwise 2; must first be retrieved to construct s[. 

Deletion of a record works analogously. 
The expected length of separators in a dense (n z 1) index for a file of size n 

and the lower bounds-derived in Section G-for the length of the removable 
common prefixes can now be used to get an estimate for the number of characters 
per key to be stored in the index. We imply subtract the lower bound for the length 
of the removable prefix in Table III from the expected length of the separator in 
Table I and obtain an upper bound for the expected length of the partial sepa- 
rators. Table IV contains those values for some representative parameters for 
prefix B-trees. 

10. EXPERIMENTAL RESULTS 

Simple prefix B-trees and prefix B-trees have been implemented to compare their 
performance against the performance of B*-trees [l]. The main results concern 
computing time and saving of disk accesses. 

Computing time. The time to perform the algorithms for simple prefix B-trees 
is nearly identical to the time for B”-trees. Prefix B-trees need 50-100 percent 
more time. Considering the algorithms, this is unexpected, and we have, at the 
moment, no satisfactory explanation for this phenomenon. 

Saving of disk accesses. For trees having no more than 200 pages no saving is 
achieved. For trees having between 400 and 800 pages, simple prefix B-trees re- 
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Table IV. Length of Partial Separators in a Prefix B-Tree 

a = size of alphabet; k = average number of entries stored in a node; Z = 
n = size of file and dense index. 

k 103 10’ 10’ 106 

2 
10 

100 
1000 

2 
10 

loo 
1000 

2 
10 

100 
1000 

2.63 2.60 
4.83 4.97 
7.73 8.16 
9.63 11.06 

1.53 1.24 
1.73 1.80 
2.48 2.35 
2.48 3.10 

1.28 1.03 
1.77 1.23 
1.77 1.98 
1.77 1.98 

2.59 2.65 
4.92 4.91 8.29 8.24 a=2 

11.48 11.61 t 

1.21 1.57 
1.91 1.80 a = 2.54 2.69 26 

3.09 3.32 ) 

1.53 1.07 1 
1.55 1.60 
1.77 1.97 a = 256 

2.52 2.19 

Table V. Experimental Results 
B = i*-tree; SPB = simple prefix B-tree; PB = prefix B-tree; n = cardinality of file; 

k = narameter as used in 141: I = maximal length of keys. 

n: 1000 x 5000 16000 

K: 30 20 10 30 20 10 30 20 10 

Number of pages: <SO <80 <80 ~125 2200 ~380 my230 ~380 my760 

Computing time, set 
B,Z= 9 

SPB, 1 = 9 
PB, 1 = 9 

B, 2 = 15 
SPB, 1 = 15 

PB, 1 = 15 
Disk accesses 

B,l= 9 
SPB, 1 = 9 

PB,l= 9 
B, 1 = 15 

SPB, 1 = 15 
PB, 1 = 15 

Length of separators 
SPB, 1 = 9 
SPB, I = 15 
Theoretical value 

Compression factor 
Measured 
Theoretical value 

20 20 20 
20 20 20 
55 40 30 
25 20 15 
25 20 15 
75 60 45 

800 800 900 
800 800 900 
800 800 900 
800 800 900 
800 800 900 
800 800 900 

150 150 150 
130 150 150 
310 280 220 
180 170 170 
166 160 170 
430 340 270 

4700 4800 6609 
4700 4800 5400 
4700 4800 5200 
4700 4800 6609 
4700 4800 4900 
4700 4800 4800 

330 320 350 
350 360 380 
710 600 490 
450 370 400 
420 400 420 
900 800 600 

9600 10700 16400 
9600 9900 13690 
9600 9700 13100 
9600 10700 16400 
9600 12100 
9600 12000 

2,62 3,20 3,50 
2,65 3,20 3,50 
2,99 3,64 3,84 

0,55 0,65 0,85 0,92 1,05 1,37 1,19 1,34 1,67 
0,37 0,48 0,73 0,92 l,oo 1,34 1,19 1,34 1,61 
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quire 20-25 percent fewer disk accesses than B*-trees. Compared to simple prefix 
B-trees, prefix B-trees need about 2 percent fewer disk accesses. 

Length oj separators. The average length of separators in simple prefix B-trees 
was in all cases about 0.35 less than the theoretical values. The compression factor 
in prefix B-trees corresponds with the theoretical results. 

Numerical results. The numerical results listed in Table V were obtained in 
building up B*-trees, simple prefix B-trees, and prefix B-trees by inserting n nodes 
into an initially empty tree. In all cases a = 13 was chosen. 
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