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A System with Physical Memory

Examples: Most Cray machines, early PCs, nearly all
current embedded systems, etc.
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CPU's load or store addresses used directly to access memory.

A System with Virtual Memory
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Physical address

Each process gets its own page table, why?




Separate Virtual Address Spaces

e Each process has its own virtual address space
e OS controls how virtual is assigned to physical memory
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Process Protection

Page table entry contains access rights information

e Hardware enforces this protection (trap into OS if
violation occurs)
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Virtual Memory Lingo
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Blocks are called Pages

Virtual page number | Page offset
31 11 0

Misses are called Page faults (handled as an exception)
Retrieve data from disk

Huge miss penalty, pages are fairly large (4-8K)
Reducing page faults is important

Can handle the faults in software instead of hardware
Using write-through is too expensive, use writeback

Making Translation Faster: The TLB
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Virtual Memory Summary

Virtual memory provides
¢ Protection and sharing
e Illusion of large main memory
e Speed/Caching (when viewed from disk perspective)

e Virtual Memory requires twice as many memory
accesses, so cache page table entries in the TLB.

e Three things can go wrong on a memory access
e TLB miss
e Page fault
e Cache miss

~

Caches and virtual memory?
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Virtually Memory and Caches: 3 Options

1. Physically Addressed Cache

Translate before accessing cache
CPU
VA Cache is:
e Physically Indexed
Trans .
e Physically Tagged
PA
c ¢ Allows multiple processes to have blocks in
ache -
cache at same time, share pages, etc.
PA e Access rights checked as part of translation
MEM
e Speed?
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Virtually Memory and Caches: 3 Options
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2. Virtually Addressed Cache

Translate after accessing cache

CPU
Cache is:
VA e Virtually Indexed
Cache e \Virtually Tagged
VA e Translate Only on Miss!
Trans
PA e The synonym/alias problem
e How would you make this work?
MEM




Virtually Memory and Caches: 3 Options

Virtually Indexed, Physically Tagged Example

3. Virtually Indexed, Physically Tagged

Translate during cache access
CPU

VA | | Cache is:

$ Trans e Physically/Virtually Indexed
¢ Physically Tagged
- PA
_'|:12-§'  Excellent performance
MEM e Requires cache index to remain

invariant across translation. How?
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Virtual address <64> |<— Note Size Here

Virtual page number <51> ’ Page offset <13> |

l

‘ TLB tag compare address <43> ‘ TLB index <8> ‘ ‘ L1 cache index <7> ‘ Block offset <6> ‘

i

ToCPU

TLB data <28>

L1 data <512>

TLB tag <43> L1 cache tag

l L1 tag compare address <28>

‘ Physical address <41>
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Issues With Overlapped TLB Access

Some Page Table Math

e Limits cache parameters: small caches, large page sizes,
or high n-way set-associative caches

e Example: Suppose everything the same except that the
cache is increased to 8 K bytes instead of 4 K

«—11—> 2
h
| || Sheex_lool
This bit is changed
12 by VA translation, but
- 20 - is needed for cache
\Virtual page #| Displ. | lookup

Solutions:
Go to 8K byte page sizes;
Go to 2-way set-associative cache; or
SW guarantee VA[13]=PA[13]

T 2-way set-associative cache

10 1K
4 bytes 4 bytes l
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# of page table entries on 64-bit machine with 4K pages:
264 [ 212 = (only) 2>2 entries
Size of page table:

252 * 8 bytes per table entry = 255 bytes
(only 32 petabytes)

kilo- 219, mega- 229, giga- 230, tera- 249,
peta- 20,
exa- 290, zetta- 270, yotta- 280
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Some Page Table Math

Solutions

Size of page table:
252 * 8 bytes per table entry = 23> bytes

(only 32 petabytes)

Oh, by the way, that’s per process...
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1. Limit Page Table Size

e Keep a limit
e Check limit before going to page

If more entries needed (process needs more memory):
1. Up the limit
2. Add the entries

Good way to do this:
¢ Double page table size at each step:
e Limitis: 0..01..1 (numberQ 271)

Also, can grow bi-directionally (stack/heap)

Solutions

Solutions

2. Inverted Page Table
Il These things are UGLY !!

Each Physical Frame has an entry.

Inverted page table size:
Physical memory size = 8 Gigabytes = 233 bytes
Page frame size = 4K = 212 bytes
233 [ 212 = 221 entries
221 entries * 8 bytes per entry (incl. PID) = 224 bytes
16MB, not too bad (not per process!)
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3. Multilevel Page Tables

Key Idea: Take advantage of sparse use of virtual memory
Create a hierarchy of pages:

Create a red page
table to describe very
large pages (coarse
cut of virtual address
space)

Create a black page
table for each red page
table entry used (finer
cut of superpage)

Not Used




Solution 3: Multi-Level Page Tables Example

Solutions
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Virtual address

‘ Levell I Level2 I Level3 ‘ Page offset

Page table
base register I—*

L1 page table
L2 page table

Page table entry L3 page table
Page table entry

" —( + f
Page table entry

Physical address

| Physical page frame number I Page offset .
Main memory
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4. Page The Page Table

e Compatible with other methods

e Tricky to get right
¢ Need to have page portion that refers to rest of page
table always in memory

Segmentation
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Real Stuff (x86 1A32)

e Segments: Variable-sized pages

Virtual address are segment number + offset

Generally 2 quantities
e Segment register
e Offset is address

Bounds checking

Nice in some ways:
e Program fits in one segment - set ReadOnly/Executable
e Data in another - set ReadWrite/NonExecutable




x86: Segmentation x86: Segment Registers

(From: 1A-32 Intel® Architecture Software Developers Manual) (From: 1A-32 Intel® Architecture Software Developers Manual)
Code
) Segment
Segment Registers
Data
CS Segment
Segmented Model DS Stack
SS Segment
- ES ——— o All segments
S t FS ol are mapped
egments GS . to the same
! - linear-address
Offset Linear - space
|:| Address Data
Logical Space Segment
Address Segment Selector » Da
- Segment
- Data
Segment

L.
-

Pages and Segments Can Co-exist!
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Relating to the MIPS Pipeline Summary

MIPS R3000 Pipeline

Real/Virtual Tag/Index Cache

Multi Level Page Tables

|Inst Fetch | Dcd/ Reg |ALU | E.A. | Memory | Write Reg |
|TLB | I-Cache | RF | Operation | | wB |
| EA.| TLB | D-Cache |

Segments

Pipeline Interaction

Read book for more real stuff
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