
Printing Floating-Point Numbers Quickly and Accurately with
Integers

Florian Loitsch
Inria Sophia Antipolis

2004 Route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex
florian.loitsch@inria.fr

Abstract
We present algorithms for accurately converting floating-point
numbers to decimal representation. They are fast (up to 4 times
faster than commonly used algorithms that use high-precision in-
tegers) and correct: any printed number will evaluate to the same
number, when read again.

Our algorithms are fast, because they require only fixed-size
integer arithmetic. The sole requirement for the integer type is that
it has at least two more bits than the significand of the floating-point
number. Hence, for IEEE 754 double-precision numbers (having
a 53-bit significand) an integer type with 55 bits is sufficient.
Moreover we show how to exploit additional bits to improve the
generated output.

We present three algorithms with different properties: the first
algorithm is the most basic one, and does not take advantage of any
extra bits. It simply shows how to perform the binary-to-decimal
transformation with the minimal number of bits. Our second al-
gorithm improves on the first one by using the additional bits to
produce a shorter (often the shortest) result.

Finally we propose a third version that can be used when the
shortest output is a requirement. The last algorithm either pro-
duces optimal decimal representations (with respect to shortness
and rounding) or rejects its input. For IEEE 754 double-precision
numbers and 64-bit integers roughly 99.4% of all numbers can be
processed efficiently. The remaining 0.6% are rejected and need to
be printed by a slower complete algorithm.

Categories and Subject Descriptors I.m [Computing Methodolo-
gies]: Miscellaneous

General Terms Algorithms

Keywords floating-point printing, dtoa

1. Introduction
Printing floating-point numbers has always been a challenge. The
naive approach is not precise enough and yields incorrect results
in many cases. Throughout the 1970s and 1980s many language
libraries and in particular the printf function of most C libraries
were known to produce wrong decimal representations.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’10, June 5–10, 2010, Toronto, Ontario, Canada.
Copyright © 2010 ACM 978-1-4503-0019/10/06. . . $5.00.

In the early 1980s Coonen published a paper [Coonen(1980)]
and a thesis [Coonen(1984)] containing algorithms for accurate yet
economical binary-decimal conversions, but his work went largely
unnoticed (at least with respect to the printing algorithms).

Steele and White’s paper [Steele Jr. and White(1990)]1 had a
much bigger impact. Correct printing become part of the specifica-
tion of many languages and furthermore all major C libraries (and
as a consequence all programs relying on the printf functions)
adapted accurate algorithms and print correct results now.

Steele and White’s algorithm, “Dragon4”, relies on high preci-
sion arithmetic (also known as “bignums”) and even though two
other papers ([Gay(1990)] and [Burger and Dybvig(1996)]) pro-
posed improvements and optimizations to the algorithm this re-
quirement remained. It is natural to wonder if limited-precision
arithmetic could suffice. Indeed, according to Steele and White’s
retrospective of 2003 [Steele Jr. and White(2004)] “[d]uring the
1980s, White investigated the question of whether one could use
limited-precision arithmetic [...] rather than bignums. He had ear-
lier proved by exhaustive testing that just 7 extra bits suffice for
correctly printing 36-bit PDP-10 floating-point numbers, if pow-
ers of ten used for prescaling are precomputed using bignums and
rounded just once”. The document continues by asking whether
“[one could] derive, without exhaustive testing, the necessary
amount of extra precision solely as a function of the precision
and exponent range of a floating-point format”.

In this paper we will present a new algorithm Grisu, which
allows us to answer this question. Grisu requires only two extra
bits and a cache of precomputed powers-of-ten whose size depends
on the exponent range.

However, Grisu does not supersede Dragon4 and its optimized
descendants. While accurate and fast (up to 4 times faster than
previous approaches) it produces suboptimal results. For instance
the IEEE 754 double-precision number representing 0.3 is printed
as 29999999999999998e-17. When read, both numbers will be
approximated to the same floating-point number. They are hence
both accurate representations of the corresponding floating-point
number, but the shorter 0.3 is clearly more desirable.

With just two extra bits it is difficult to do better than in our
example, but often there exists an integer type with more bits. For
IEEE 754 floating-point numbers, which have a significand size of
53, one can use 64 bit integers, providing 11 extra bits. We have
developed an algorithm Grisu2 that uses these extra bits to shorten
the output. However, even 11 extra bits may not be sufficient in
every case. There are still boundary conditions under which Grisu2
will not be able to produce the shortest representation. Since this
property is often a requirement (see [Steele Jr. and White(2004)]

1 A draft of this article had existed long before and had already been
mentioned in ”Knuth Volume 2”[Knuth(1981)] in 1981.

for some examples) we propose a variant, Grisu3, that detects (and
aborts) when its output may not be the shortest. As a consequence
Grisu3 is incomplete and will fail for some percentage of its input.
Given 11 extra bits roughly 99.5% are processed correctly and
are thus guaranteed to be optimal (with respect to shortness and
rounding). The remaining 0.5% are rejected and need to be printed
by another printing algorithm (like Dragon4).

All presented algorithms come with code snippets in C that
show how they can be efficiently implemented. We use C99, as
this version provides the user with a platform independent means
of using 64-bit data types.

In this paper we will concentrate exclusively on IEEE 754
double-precision floating-point numbers. They are the de facto
standard today and while our work applies to other floating-point
representations it would unnecessarily complicate the descriptions.

We will now discuss some basics in Section 2. In Section 3
we present a custom floating-point data-type which will be used
in all remaining sections. Section 4 details the requirements on the
cache of powers-of-ten. In Section 5 we introduce Grisu, and in
Section 6 we present its evolutions Grisu2 and Grisu3. In Section 7
we interpret experimental results. Section 8 discusses related work,
and we finally conclude in Section 9.

2. Floating-Point Numbers
In this section we will give a short introduction on floating-point
numbers. Interested readers may want to consult [Goldberg(1991)]
for a thorough discussion of this subject. For simplicity we will
consider only positive floating-point numbers. It is trivial to extend
the text to handle signs.

Section 2.3 contains examples for all notions we introduce in
this section. Readers might want to have a look at this section
whenever a definition is unclear.

A floating point number, as the name suggests, has a radix point
that can “float”. Concretely a floating-point number v in base b
(usually 2) with precision p is built out of an integer significand
(also known as mantissa or fraction) f v of at most p digits and an
exponent ev, such that v = f v×bev .

Unless otherwise stated, we use the convention that the signifi-
cand of a floating-point number is named f with the variable’s name
as subscript. Similarly the exponent is written as e with the same
subscript. For instance a floating-point number w is assumed to be
composed of f w and ew.

Any significand f satisfies f =
∑p−1

i=0 di×bi, 0 ≤ di < b where
the integers di are called the digits of f . We call a number “normal-
ized” if the most-significant digit dp−1 is non-zero.

If the exponent has unlimited range any non-zero number can be
normalized by “shifting” the significand to the left while adjusting
the exponent accordingly. When the exponent is size-limited then
some numbers can not be normalized. We call non-normalized
numbers that have the minimal exponent “denormals”.

Note. Floating-point numbers may allow different representations
for the same value (for example 12×101 and 1.2×102). The rep-
resentation is however unique when all numbers are either normal-
ized or denormal.

2.1 Rounding and Errors
Floating point numbers have only a limited size and thus a limited
precision. Real numbers must hence be rounded in order to fit
into this finite representation. In this section we will discuss the
rounding mechanisms that are used in this document and introduce
a mechanism to quantify the error they introduce.

The most natural way of rounding is to chose the nearest avail-
able floating-point number. This rounded-to-nearest approach is

straightforward except for half-way cases (in the decimal system
numbers ending with 5).

In this paper we will use the following strategies for half-way
cases:

• up: picks the number closer to +infinity. We will use the nota-
tion [x]↑ when rounding x by this strategy.

• even: picks the number that is even: [x]�. For instance, in the
decimal system, 1.5 would round to 2, whereas 0.5 would round
to 0. This is the default strategy used by IEEE.

Whenever the half-way rounding strategy has no importance we
will use a star to make this fact explicit: [x]?.

We will use the notation x̃ = [x]s
p to indicate that the floating-

point number x̃ contains a normalized significand of size p which
has been computed by rounding-to-nearest using strategy s (up,
even, or any).

We can quantify x̃’s error |x̃− x| as follows: x̃ is of form f×be

and since f has been rounded to nearest |x̃− x| ≤ 0.5×be, or, in
other words, by half a unit in the last place (of the significand).
Following established conventions we will use the shorthand ulp
to describe these units. A ulp needs to be given with respect to
a certain floating-point number. In almost all cases the associated
floating-point number is clear from context. In the remaining cases
we add the associated number as subscript as so: 1 ulpx.

During the remainder of this document we will use the tilde-
notation to indicate that a number has been rounded-to-nearest. In
most cases its error will be 0.5 ulp, but this is not always the case.

2.2 Neighbors and Boundaries
For floating-point number types where the value of each encoded
number is unique we can define predecessors and successors.

Let v = f v×bev be a strictly positive floating-point number. The
predecessor v− of v is the next smallest number. If v is mini-
mal, then we define 0 to be its predecessor. Similarly v+ desig-
nates the successor of v. For the maximal v we define v+ to be
v+ := v +

(
v− v−

)
. That is for this particular v the successor v+

is at the same distance than the predecessor v−. We call v− and v+

neighbors of v.
The boundary between two adjacent numbers v1 and v2 is

simply their arithmetic mean: m := v1+v2
2

. By definition bound-
aries can not be expressed in the given floating-point number
type, since its value lies between two adjacent floating-point num-
bers. Every floating-point number v has two associated boundaries:
m− := v−+v

2
and m+ := v+v+

2
. Clearly, any real number w, such

that m− < w < m+, will round to v. Should w be equal to one
of the boundaries then we assume that w is rounded to even (the
IEEE 754 default). That is, the rounding algorithm will chose the
floating-point number with an even significand.

We conclude this section with a definition we will use frequently
in the remainder of this document.

Definition 2.1. A printed representation R of a floating-point num-
ber v satisfies the internal identity requirement iff R would convert
to v when read again.

For IEEE 754 double-precision numbers (where half-way cases
are rounded to even) this implies [R]�p = v. In other words:

m− ≤ V ≤ m+ when f v is even, and
m− < V < m+ when f v is odd.

2.3 Examples
In this section we show some examples for the previously defined
notions. For simplicity we will work in a decimal system. The
significand’s size p is set to 3, and any exponent is in range 0 to
10. All numbers are either normalized or denormals.

In this configuration the extreme values are min := 1×100

and max := 999×1010. The smallest normalized number equals
100×100. Non-normalized representations like 3×104 are not
valid. The significand must either have three digits or the expo-
nent must be zero.

Let v := 1234 be a real number that should be stored inside
the floating-point number type. Since it contains four digits the
number will not fit exactly into the representation and it must
be rounded. When rounded to the nearest representation then
ṽ := [v]?3 := 123×101 is the only possible representation. The
rounding error is equal to 4 = 0.4 ulp.

Contrary to v the real number w := 1245 lies exactly between to
possible representations. Indeed, 124×101 and 125×101 are both
at distance 5. The chosen representation depends on the rounding
mechanism. If rounded up then the significand 125 is chosen. If
rounded to even then 124 is chosen. For w’ = 1235 both rounding
mechanisms would have chosen 124 as significand.

The neighbors of w are w− := 123×101 and w+ := 125×101.
Its respective boundaries are therefore m− := 123.5×101 and
m+ := 124.5×101. In this case the neighbors were both at the
same distance. This is not true for r := 100×103, with neighbors
r− := 999×102 and r+ := 101×103. Clearly r− is closer to r
than is r+.

For the sake of completeness we now show the boundaries
for the extreme values and the smallest normalized number. The
number min has its lower (resp. upper) boundary at 0.5×101

(resp. 1.5×101). For max, the boundaries are 998.5×1010 and
999.5×1010.

The boundaries for the smallest normalized number are special:
even though its significand is equal to 100 the distance to its
lower neighbor (99×100) is equal to 1 ulp and not just 0.5 ulp.
Therefore its boundaries are 99.5×100 and 100.5×100.

2.4 IEEE 754 Double-Precision
An IEEE 754 double-precision floating-point number, or simply
“double”, is defined as a base 2 data type consisting of 64 bits.
The first bit is the number sign, followed by 11 bits reserved for the
exponent eIEEE, and 52 bits for the significand f IEEE. For the purpose
of this paper the sign-bit is irrelevant and we will assume to work
with positive numbers.

With the exception of some special cases (which will be dis-
cussed shortly) all numbers are normalized which in base 2 implies
a starting 1 bit. For space-efficiency this initial bit is not included
in the encoded significant. IEEE 754 numbers have hence effec-
tively a 53 bit significand where the first 1 bit is hidden (with value
hidden = 252). The encoded exponent eIEEE is an unsigned positive
integer which is biased by bias = 1075. Decoding an eIEEE con-
sist of subtracting 1075. Combining this information, the value v of
any normalized double can be computed as f v := hidden + f IEEE,
ev := eIEEE − bias and hence v = f v×2ev .

Note. This choice of decoding is not unique. Often the significand
is decoded as fraction with a decimal separator after the hidden bit.

IEEE 754 reserves some configurations for special values: when
eIEEE = 0x7FF (its maximum) and f IEEE = 0 then the double is in-
finity (or minus infinity, if the bit-sign is set). When eIEEE = 0x7FF
and f IEEE 6= 0 then the double represents “NaN” (Not a Number).

The exponent eIEEE = 0 is reserved for denormals and zero.
Denormals do not have a hidden bit. Their value can be computed
as follows: f IEEE×21−bias.

Throughout this paper we will assume that positive and nega-
tive infinity, positive and negative zero, as well as NaN have al-
ready been handled. Developers should be careful when testing
for negative zero, though. Following the IEEE 754 specification
−0.0 = +0.0 and −0.0 6< +0.0. One should thus use the sign-bit

to efficiently determine a number’s sign. In the remainder of this
paper a “floating-point number” will designate only a non-special
number or a strictly positive denormal. It does not include zero,
NaN or infinities.
Note. Any value representable by doubles (except for NaNs) has a
unique representation.
Note. For any non-special strictly positive IEEE double v with
f IEEE 6= 0 the upper and lower boundaries m+ and m− are at dis-
tance 2ve−1. When f IEEE = 0 then m+ is still at distance 2ve−1 but
the lower boundary only satisfies v− m− ≤ 2ve−2.2

3. Handmade Floating-Point

1: typedef struct diy fp {
2: uint64 t f;
3: int e;
4: } diy fp;

Figure 1: The diy fp type.

Grisu and its variants only require fixed-size integers, but these
integers are used to emulate floating-point numbers. In general
reimplementing a floating-point number type is a non-trivial task,
but in our context only few operations with severe limitations
are needed. In this section we will present our implementation,
diy fp, of such a floating-point number type. As can be seen
in Figure 1 it consists of a limited precision integer (of higher
precision than the input floating-point number), and one integer
exponent. For the sake of simplicity we will use the 64 bit long
uint64 t in the accompanying code samples. The text itself is,
however, size-agnostic and uses q for the significand’s precision.

Definition 3.1 (diy fp). A diy fp x is composed of an unsigned
q-bit integer f x (the significand) and a signed integer ex (the ex-
ponent) of unlimited range. The value of x can be computed as
x = f x×2ex .

The “unlimited” range of diy fp’s exponent simplifies proofs.
In practice the exponent type must only have a slightly greater
range than the input exponent. Input numbers are systematically
normalized, and a denormal will therefore require more bits than
the original data-type. We furthermore need some extra space to
avoid overflows. For IEEE doubles which reserves 11 bits for the
exponent, a 32-bit signed integer is by far big enough.

3.1 Operations
Grisu extracts the significand of its diy fps in an early stage and
diy fps are only used for two operations: subtraction and multi-
plication. The implementation of the diy fp type is furthermore
simplified by restricting the input and by relaxing the output. For
instance, both operations are not required to return normalized re-
sults (even if the operands were normalized). Figure 2 shows the C
implementation of the two operations.

The operands of the subtraction must have the same exponent
and the result of subtracting both significands must fit into the
significand-type. Under these conditions the operation clearly does
not introduce any imprecision. The result might not be normalized.

The multiplication returns a diy fp r̃ containing the rounded
result of multiplying the two given diy fps x and y. The result
might not be normalized. In order to distinguish this imprecise from
the precise multiplication we will use the “rounded” symbol for this
operation: r̃ := x⊗y.

2 The inequality is only needed for eIEEE = 1 where the predecessor is a
denormal.

1: diy fp minus(diy fp x, diy fp y) {
2: assert(x.e == y.e && x.f >= y.f);
3: diy fp r = {.f = x.f - y.f, .e = x.e};
4: return r;
5: }

(a) Subtraction

1: diy fp multiply(diy fp x, diy fp y) {
2: uint64 t a,b,c,d,ac,bc,ad,bd,tmp;
3: diy fp r; uint64 t M32 = 0xFFFFFFFF;
4: a = x.f >> 32; b = x.f & M32;
5: c = y.f >> 32; d = y.f & M32;
6: ac = a*c; bc = b*c; ad = a*d; bd = b*d;
7: tmp = (bd>>32) + (ad&M32) + (bc&M32);
8: tmp += 1U << 31; // Round
9: r.f = ac + (ad>>32) + (bc>>32) + (tmp>>32);
10: r.e = x.e + y.e + 64;
11: return r;
12: }

(b) Multiplication

Figure 2: diy fp operations

Definition 3.2. Let x and y be two diy fps. Then

x⊗y :=

[
f x×f y

2q

]↑
×2ex+ey+q

The C implementation emulates in a portable way a partial 64-
bit multiplication. Since the 64 least significant bits of the multi-
plication f x×f y are only used for rounding the procedure does not
compute the complete 128-bit result. Note that the rounding can be
implemented using a simple addition (line 8).

Since the result is rounded to 64 bits a diy fp multiplication
introduces some error.

Lemma 3.3. Let x and y be two diy fps. Then the error of x⊗y
is less than or equal to .5 ulp:

|x×y− x⊗y| ≤ .5 ulp

Proof. We can write x×y as
f x×f y
2q ×2ex+ey+q. Furthermore, by

definition x⊗y =
[

f x×f y
2q

]↑
×2ex+ey+q and the rounding only in-

troduces an error of .5:
∣∣∣∣ f x×f y

2q −
[

f x×f y
2q

]↑∣∣∣∣ ≤ .5. Since, for x⊗y,

1 ulp = 2q+ex+ey we can conclude that the error is bounded by
|x×y− x⊗y| ≤ .5 ulp = .5×2q+ex+ey .

Lemma 3.4. Let x and ỹ be two diy fps, and y a real such that
|y− ỹ| ≤ uy ulp. In other words ỹ is the approximated diy fp of
y and has a maximal error of uy ulp. Then the errors add up and
the result is bounded by (.5 + uy) ulp.

∀y, |y− ỹ| ≤ uy ulp =⇒ |x×y− x⊗ỹ| < (uy + .5) ulp

Proof. By Lemma 3.3 we have |x×ỹ− x⊗ỹ| ≤ 0.5×2q+ex+ey and
by hypothesis |y− ỹ| ≤ uy ulp = uy×2ey .
Clearly |x×y− x×ỹ| ≤ x×(uy×2ey) < uy×2q+ex+ey and thus, by
summing the inequalities |x×y− x⊗ỹ| < (.5 + uy)2

q+ex+ey .

Lemma 3.5. Let x be a normalized diy fp, ỹ be a diy fp,
and y a real such that |y− ỹ| ≤ uy ulp. If x = 2q−1 (the minimal
significand) then x⊗ỹ undershoots by at most uy

2
ulp compared to

x×y.

|y− ỹ| ≤ uy ulp ∧ fx = 2q−1 =⇒ x×y− x⊗ỹ ≤ uy

2
ulp

Proof. By definition x⊗y =
[

f y
2

]↑
×2ex+ey+q. Since

f y
2

is either ex-

act or a half-way case we have
[

f y
2

]↑
×2ex+ey+q ≥ f y×2ex+ey+q−1

and hence x⊗ỹ ≥ x×ỹ. Also |x×y− x×ỹ| ≤ uy×2q+ex+ey−1 and
thus x×y− x⊗ỹ ≤ uy

2
ulp.

4. Cached Powers
Similar to White’s approach (see the introduction) Grisu needs a
cache of precomputed powers-of-ten. The cache must be precom-
puted using high-precision integer arithmetic. It consists of normal-
ized diy fp values c̃k := [ck]

?
q where ck := 10k. Note that, since

all ck are normalized ∀i, 3 ≤ ec̃i − e ˜ci-1 ≤ 4.
The size of the cache (k’s range) depends on the used algorithm

as well as the input’s and diy fp’s precision. We will see in Sec-
tion 5 how to compute the needed range. For IEEE doubles and
64 bit diy fps a typical cache must hold roughly 635 precom-
puted values. Without further optimizations the cache thus takes
about 8KB of memory. In [Coonen(1984)] Coonen discusses effi-
cient ways to reduce the size of this cache.

The corresponding C procedure has the following signature:

diy fp cached power(int k);

4.1 k Computation
Grisu (and its evolutions) need to find an integer k such that its
cached power c̃k = f ck

×2eck =
[
10k]?

q
satisfies α ≤ eck + e ≤ γ

for a given e, α and γ. We impose γ ≥ α+ 3, since otherwise a
solution is not always possible. We now show how to compute the
sought k.

All cached powers are normalized and any f ck
thus satisfies

2q−1 ≤ f ck
< 2q. Hence, 2eck +q−1 ≤ c̃k < 2eck +q.

Suppose that all cached powers are exact (i.e. have no rounding
errors). Then k (and its associated c̃k) can be found by computing
the smallest power of ten 10k that verifies 10k ≥ 2α−e+q−1.

k :=
⌈
log102α−e+q−1⌉ =

⌈
(α− e + q− 1)× 1

log210

⌉

1: #define D 1 LOG2 10 0.30102999566398114 // 1/lg(10)
2: int k comp(int e, int alpha, int gamma) {
3: return ceil((alpha-e+63) * D 1 LOG2 10);
4: }

Figure 3: k computation C procedure

Figure 3 presents a C implementation (specialized for q = 64)
of this computation. In theory the result of the procedure could be
wrong since c̃k is rounded, and the computation itself is approxi-
mated (using IEEE floating-point operations). In practice, however,
this simple function is sufficient. We have exhaustively tested all
exponents in the range -10000 to 10000 and the procedure returns
the correct result for all values.

5. Grisu
In this section we will discuss Grisu, a fast intuitive printing algo-
rithm. We will first present its idea, followed by a formal descrip-
tion of the algorithm. We then prove its correctness, and finally
show a C implementation.

Grisu is very similar to Coonen’s algorithm (presented in
[Coonen(1980)]). By replacing the extended types (floating-point
numbers with higher precision) of the latter algorithm with diy fp
types, Coonen’s algorithm becomes a special case of Grisu.

5.1 Idea
Printing a floating-point number is difficult because its significant
and exponent cannot be processed independently. Dragon4 and its
variants therefore combine the two components and work with
high-precision rationals instead. We will now show how one can
print floating-point numbers without bignums.

Assume, without loss of generality, that a floating-point number
v has a negative exponent. Then v can be expressed as f v

2−ev . The
decimal digits of v can be computed by finding a decimal exponent
t such that 1 ≤ f v×10t

2−ev < 10.
The first digit is the integer result of this fraction. Subsequent

digits are generated by repeatedly taking the remainder of the
fraction, multiplying the numerator by 10 and by computing the
integer result of the newly obtained fraction.

The idea behind Grisu is to cache approximated values of 10t

2et .
The expensive bignum operations disappear and are replaced by
operations on fixed-size integer types.

A cache for all possible values of t and et would be expensive
and Grisu therefore simplifies its cache requirement by only storing
normalized floating-point approximations of all relevant powers of
ten: c̃k :=

[
10k]?

q
(where q is the precision of the cached numbers).

By construction the digit generation process uses a power of ten
with an exponent ec̃t close to ev. Even though ec̃t and ev do not can-
cel each other out anymore, the difference between the two expo-
nents will be small and can be easily integrated in the computation
of v’s digits.

In fact, Grisu does not use the power of ten c̃k that yields the
smallest remaining power of two, but selects the power-of-ten so
that the difference lies in a certain range. We will later see that
different ranges yield different digit-generation routines and that
the smallest difference is not always the most efficient choice.

5.2 Algorithm
In this section we present a formalized version of Grisu. As ex-
plained in the previous section, Grisu uses a precomputed cache
of powers-of-ten to avoid bignum operations. The cached numbers
cancel out most of v’s exponent so that only a small exponent re-
mains. We have also hinted that Grisu chooses its power-of-ten de-
pending on the sought remaining exponent. In the following algo-
rithm we parametrize the remaining exponent by the variables α
and γ. We impose γ ≥ α+ 3 and later show interesting choices
for these parameters. For the initial discussion we assume α := 0
and γ := 3.

Algorithm Grisu
Input: positive floating-point number v of precision p
Preconditions: diy fp’s precision q satisfies q ≥ p + 2, and

the powers-of-ten cache contains precomputed normalized rounded
diy fp values c̃k =

[
10k]?

q
. We will determine k’s necessary range

shortly.
Output: a string representation in base 10 of V such that

[V]�p = v. That is, V would round to v when read again.
Procedure:

1. Conversion: determine the normalized diy fp w such that
w = v.

2. Cached power: find the normalized c̃-k = f c×2ec such that
α ≤ ec + ew + q ≤ γ

3. Product: let D̃ = f D×2eD := w⊗c̃-k.

4. Output: define V := D̃×10k. Produce the decimal presentation
of D̃ followed by the string “e” and the decimal representation
of k.

Since the significand of the diy fp is bigger than the one
of the input number the conversion of step 1 produces an exact
result. By definition diy fps have an infinite exponent range and
w’s exponent is hence big enough for normalization. Note that
the exponent ew satisfies ew ≤ ev − (q− p). With the exception of
denormals we actually have ew = ev − (q− p).

The sought c̃-k of step 2 must exist. It is easy to show that
∀i, 0 < ẽci − ˜eci-1 ≤ 4 and since the cache is unbounded the re-
quired c̃-k has to be in the cache. This is the reason for the initial
requirement γ ≥ α+ 3.

An infinite cache is of course not necessary. k’s range depends
only on the input floating-point number type (its exponent range),
the diy fp’s precision q and the pair α, γ. By way of example
we will now show how to compute kmin and kmax for IEEE doubles,
q = 64, and α = 0, γ = 3.

Once IEEE doubles have been normalized (which requires them
to be stored in a different data-type) the exponent is in range
−1126 to +971 (this range includes denormals but not 0). Stored
as diy fps the double’s exponent decreases by the difference in
precision (accounting for the normalization), thus yielding a range
of −1137 to +960. Invoking k comp from Section 4.1 with these
values yields:

• kmin := k comp(960 + 64) = −289, and
• kmax := k comp(−1137 + 64) = 342.

In step 3 w is multiplied with c̃-k. The goal of this operation is to
obtain a diy fp D̃ that has an exponent eD such that α ≤ eD ≤ γ.
Some configurations make the next step (output) easy. Suppose,
for instance, that eD becomes zero. Then D̃ = f D and the decimal
digits of D̃ can be computed by printing the significand f D (a q-bit
integer). With an exponent eD 6= 0 the digit-generation becomes
slightly more difficult, but since eD’s value is bounded by γ the
computation is still straightforward.

Grisu’s result is a string containing D̃’s decimal representation
followed by the character “e” and k’s digit. As such it represents
the number V := D̃×10k. We claim that V yields v when rounded
to floating-point number of precision p.

Theorem 5.1. Grisu’s result V satisfies the internal identity re-
quirement: [V]�p = v.

Proof. In the best case V = v and the proof is trivial. Now,
suppose V > v. This can only happen if c̃-k > c-k. We will ig-
nore V’s parity and simply show the stronger strict inequality
V < m+. Since c-k is positive we can reformulate our requirement
as (V − v)×c-k <

(
m+ − v

)
×c-k.

Using the equalities v = w, V = w⊗c̃-k×10k, 10k×c-k = 1,
and m+ − v = 2ev−1 this expands to w⊗c̃-k − w×c-k < 2ev−1×c-k.
Since, by hypothesis, ev ≥ ew + 2 it is hence sufficient to show that
w⊗c̃-k − w×c-k < 2ew+1×c-k.

We have two cases:

• f c > 2q−1. By hypothesis c̃-k’s error is bounded by .5 ulp and
thus c-k ≥ 2(q−1)+ec . It suffices to show that w⊗c̃-k − w×c-k is
strictly less than 2ew+q+ec which is guaranteed by Lemma 3.4.

• f c = 2q−1. Since the next lower diy fp is only at distance
2ec−1 and c-k is rounded to nearest, c-k’s error is bounded by
1
4
ulp. Clearly c-k ≥

(
2q−1 − 1

4

)
×2ec ≥ 7

8
×2(q−1)+ec for any

q ≥ 2. The inequality w⊗c̃-k − w×c-k <
7
8
×2(ew+1)+(q−1)+ec

is (due to the smaller error of c̃-k) guaranteed by Lemma 3.4.

We have proved the theorem for V ≥ v. The remaining case
V < v can only happen when c̃-k < c-k. Now suppose:

• f v > 2p−1 and therefore v− m− = 2ev−1. The proof for this
case is similar to the previous cases.

• f v = 2p−1 and therefore v− m− = 2ev−2. Since f v is even we
only need to show m− ≤ V . Using similar steps as before it
suffices to show that 2ew+(q−1)+ec ≤ w⊗c̃-k − w×c-k which is
guaranteed by Lemma 3.5.

5.3 C Implementation
We can now present a C implementation of Grisu. This implemen-
tation uses 64 bit integers, but a proof of concept version, using
only 55 bits, can be found on the author’s homepage.

1: #define TEN7 10000000
2: void cut(diy fp D, uint32 t parts[3]) {
3: parts[2] = (D.f % (TEN7 >> D.e)) << D.e;
4: uint64 t tmp = D.f / (TEN7 >> D.e);
5: parts[1] = tmp % TEN7;
6: parts[0] = tmp / TEN7;
7: }
8: void grisu(double v, char* buffer) {
9: diy fp w; uint32 t ps[3];
10: int q = 64, alpha = 0, gamma = 3;
11: w = normalize diy fp(double2diy fp(v));
12: int mk = k comp(w.e + q, alpha, gamma);
13: diy fp c mk = cached power(mk);
14: diy fp D = multiply(w, c mk);
15: cut(D, ps);
16: sprintf(buffer, "%u%07u%07ue%d",
17: ps[0], ps[1], ps[2], -mk);
18: }

Figure 4: C implementation of Grisu with α,γ = 0,3.

In Figure 4, line 8 we show the core grisu procedure special-
ized for α := 0 and γ := 3. It accepts a non-special positive dou-
ble and fills the given buffer with its decimal representation. Up to
line 15 the code is a direct translation from the pseudo-algorithm to
C. In this line starts step 4 (output).

By construction D.e is in the range 0 - 3. With a sufficiently big
data-type one could simply shift D.f, the significand, and dump its
decimal digits into the given buffer. Lacking such a type (we as-
sume that uint64 t is the biggest native type), Grisu cuts D into
three smaller parts (stored in the array ps) such that the concatena-
tion of their decimal digits gives D’s decimal digits (line 15).

Note that 267 = 147573952589676412928 has 21 digit. Three
7-digit integers will therefore always be sufficient to hold all deci-
mal digits of D.

In line 16 ps’ digits and the decimal exponent are dumped
into the buffer. For simplicity we have used the stdlib’s sprintf
procedure. A specialized procedure would be significantly faster,
but would unnecessarily complicate the code.

Another benefit of cutting D’s significand into smaller pieces is
that the used data-type (uint32 t) can be processed much more
efficiently. In our specialized printing procedure (replacing the call
to sprintf) we have noticed tremendous speed improvements
due to this choice. Indeed, current processors are much faster when
dividing uint32 ts than uint64 ts. Furthermore the digits for
each part can be computed independently which removes pipeline
stalls.

5.4 Interesting target exponents
We will now discuss some interesting choices for α and γ. The
most obvious choice α,γ := 0,3 has already been presented in the
previous section. Its digit-generation technique (cutting D into three
parts of 7 digits each) can be easily extended to work for target
exponents in the range α := 0 to γ := 9. One simply has to cut D
into three uint32 ts of 9 decimal digits each. As a consequence
D̃’s decimal representation might need up to 27 digits.

On the one hand the bigger γ increases the output size (without
increasing its precision), but on the other hand the extended range
provides more room to find a suitable cached power-of-ten. The
increased clearance can, for instance, be used to reduce the number
of cached powers-of-ten. It is possible to remove two thirds of
the cache while still being able to find the required c̃-k of step 2.
Indeed, two cached powers-of-ten c̃i and ˜ci+3 will always satisfy
e ˜ci+3 − ec̃i ≤ 10.

Another technique uses the increased liberty to choose the
“best” cached power-of-ten among all that satisfy the requirement.
For example, a heuristic could prefer exact cached numbers over in-
exact ones. Without additional changes to the core algorithm there
is however little benefit in using such a heuristic.

Despite the added optimization opportunities the basic digit-
generation technique still stays the same, though. We therefore
move on to the next interesting exponent range: α,γ := −63,−60.

1: int digit gen no div(diy fp D, char* buffer) {
2: int i = 0, q = 64; diy fp one;
3: one.f = ((uint64 t) 1) << -D.e; one.e = D.e;
4: buffer[i++] = ’0’ + (D.f >> -one.e); //division
5: uint64 t f = D.f & (one.f - 1); // modulo
6: buffer[i++] = ’.’;
7: while (-one.e > q - 5) {
8: uint64 t tmp = (f << 2) & (one.f - 1);
9: int d = f >> (-one.e - 3);
10: d &= 6; f = f + tmp; d += f >> (-one.e - 1);
11: buffer[i++] = ’0’ + d;
12: one.e++; one.f >>= 1;
13: f &= one.f - 1;
14: }
15: while (i < 19) {
16: f *= 10;
17: buffer[i++] = ’0’ + (f >> -one.e);
18: f &= one.f - 1;
19: }
20: return i;
21: }

Figure 5: Digit generation for α = −63 and γ = −60.

The beauty of this exponent range lies in the fact that the
normalized diy fp one, representing the number 1, is composed
of f one = 263 and eone = −63. Usually expensive operations, such
as division and modulo, can be implemented very efficiently for
this significand. The C implementation in Figure 5 dispenses of
division and modulo operators entirely and uses only inexpensive
operations such as shifts and additions. With the exception of the
exponent (which has at most 3 digits) Grisu manages to produce
a decimal representation of an input IEEE floating-point number
without any division at all. The price for this feat is the complicated
code of Figure 5. Its complexity is necessary to avoid overflows.
For simplicity we will start by describing the algorithm without
caring for data-type sizes.

Algorithm digit-gen-no-div
Input: a diy fp D with exponent −63 ≤ eD ≤ −60.
Output: a decimal representation of D.
Procedure:

1. One: determine the diy fp one with f one = 2−eD and eone = eD.

2. Digit0: compute d0 :=
⌊

D
one

⌋
and D1 := D mod one

2b. Ten: If d0 ≥ 10 emit the digit ”1” followed by the character
representing d0 − 10. Otherwise emit the character represent-
ing the digit d0.

3. Comma: emit ”.”, the decimal separator.

4. Digits: generate and emit digits di as follows

• di :=
⌊
10×Di

one

⌋

• emit the character representing the digit di

• Di+1 := 10×Di mod one

5. Stop: stop at the smallest positive integer n such that Dn = 0.

We will now show that the algorithm computes a decimal rep-
resentation of D. Let Ri be the number that is obtained by reading
the emitted characters up to and including di.

In step 2b d0 is printed. Since d0 consists of at most 4 binary
digits it cannot exceed 15, and therefore (after this step) R0 evalu-
ates to d0. We declare the following invariant for the loop of step 4:
D = Ri + Di+1

10-i . Clearly the invariant holds for i = 0, and the invari-
ant is still valid after the execution of the loop-body. We can hence
conclude that D = Rn-1.

The C implementation of this algorithm is more involved as it
has to deal with overflows. When multiplying Di by ten (step 4) the
result might not fit into a uint64 t. The code has therefore been
split into two parts, one that deals with potential overflows, and an-
other where the product safely fits in the data-type. The test in line 7
checks if the result fits into a uint64 t. Indeed, Di < one for
any 1 ≤ i ≤ n and with 4 additional bits the multiplication will not
overflow. The easy, fast case is then handled in line 15. This loop
corresponds to the loop of step 4. Note that digit gen no div
produces at most 18 digits. We will discuss this choice shortly.

Should 10×Di not fit into a uint64 t the more complicated
loop of line 7 is used. As to avoid overflows the code combines
the multiplication by ten with the division/modulo by one. By
construction eD = eone and f one = 2−eone . The division by one can
thus be written as Di×10

one =
f Di
×10

f one
=

4×f Di
+f Di

2−eone−1 . From this equation
it is then only a small step to the implementation in Figure 5.

In order to escape from this slow case digit gen no div
introduces an implicit common denominator. In line 12 one is
divided by this denominator. This way one’s exponent decreases at
each iteration and after at most 5 iterations the procedure switches
to the lightweight loop.

Our implementation takes some shortcuts compared to the de-
scribed algorithm: it skips step 2b and prints at most 18 digits. The
first shortcut is only possible when Grisu uses the smallest cached
power-of-ten that satisfies the range-requirement, since in that case
d0 < 10. The 18 digit shortcut relies on the high precision (64 bits)
used in the implementation. An implementation featuring only two
extra-bits (55 bits for IEEE doubles) is forced to continue iterating
until Di = 0. Since each iteration clears only one bit one could end
up with 55 decimal digits.

1: int digit gen mix(diy fp D, char* buffer) {
2: diy fp one;
3: one.f = ((uint64 t)1)<<-D.e; one.e = D.e;
4: uint32 t part1 = D.f >> -one.e;
5: uint64 t f = D.f & (one.f - 1);
6: int i = sprintf(buffer, "%u", part1);
7: buffer[i++] = ’.’;
8: while (i < 19) {
9: f *= 10;
10: buffer[i++] = ’0’ + (f >> -one.e);
11: f &= one.f - 1;
12: }
13: return i;
14: }

Figure 6: Digit generation for α = −59 and γ = −32.

Finally one can mix both digit-generation techniques. The pro-
cedure in Figure 6 can be used for α,γ := −59,−32. It combines
the advantages of the previous approaches. It cuts the input num-
ber D into two parts: one that fits into a 32 bit integer and one part
that can be processed without divisions. By construction it does
not need to worry about overflows and therefore features relatively

straightforward code. Among the presented digit-generation proce-
dures it also accepts the greatest range of exponents. Compared to
the configuration α,γ = 0,3 this version needs only a ninth of the
cached powers. For completeness sake we now present its pseudo-
algorithm:

Algorithm digit-gen-mix
Input: a diy fp D with exponent −59 ≤ eD ≤ −32.
Output: a decimal representation of D.
Procedure:

1. One: determine the diy fp one with f one = 2−eD and eone = eD.

2. Parts: compute part1 :=
⌊

D
one

⌋
and part2 := D mod one

3. Integral: print the digits of part1.

4. Comma: emit ”.”, the decimal comma separator.

5. Fractional: let D0 := part2. Generate and emit digits di (for
i ≥ 0) as follows

• di :=
⌊
10×Di

one

⌋
• emit the character representing the digit di

• Di+1 := 10×Di mod one

6. Stop: stop at the smallest positive integer n such that Dn = 0.

The C implementation takes the same shortcut as for the no-
division technique: it stops after 18 digits. The reason is the same
as before.

Note that the mixed approach can be easily extended to accept
exponents in the range α,γ := −59,0 by cutting the input number
into four (instead of two) parts. This last version would require 64
bit divisions and would therefore execute slower than the shown
one. However it would require the least amount of cached powers-
of-ten.

We will base future evolutions of Grisu on digit-get-mix
withα,γ = −59,−32. This configuration contains the core ideas of
all presented techniques without the obfuscating overflow-handling
operations. All improvements could be easily adapted to other
ranges.

6. Evolutions
In this section we will present evolutions of Grisu: Grisu2 and
Grisu3. Both algorithms are designed to produce shorter outputs.
Grisu may be fast, but its output is clearly suboptimal. For example,
the number 1.0 is printed as 10000000000000000000e-19.
The optimal solution (printed by Grisu2 and Grisu3) avoids the
trailing ‘0’ digits.

Grisu2 and Grisu3 use the extra capacity of the used integer
type to shorten the produced output. That is, if the diy fp integer
type has more than two extra bits, then these bits can be used to
create shorter results. The more bits are available the more often
the produced result will be optimal. For 64-bit integers and IEEE
doubles (with a 53-bit significand) more than 99% of all input-
numbers can be converted to their shortest decimal representation.

Grisu2 and Grisu3 differ in the way they handle the non-optimal
solutions. Grisu2 simply generates the best solution that is possible
with the given integer type, whereas Grisu3 rejects numbers for
which it cannot prove that the computed solution is optimal.

For demonstration purposes we include rounding as an optimal-
ity requirement for Grisu3. It is simple to adapt Grisu2 so it rounds
its outputs, too.

Finally we render Grisu2 and Grisu3 more flexible compared
to Grisu. There are different ways to format a floating-point num-
ber. For instance the number 1.23 could be formatted as 1.23,
123e-2, or 0.123e1. For genericity it is best to leave the for-
matting to a specialized procedure. Contrary to Grisu, Grisu2 and

Grisu3 do not produce a complete decimal representation but sim-
ply produce its digits (“123”) and the corresponding exponent (-2).
The formatting procedure then needs to combine this data to pro-
duce a representation in the required format.

6.1 Idea
We will first present the general idea of Grisu2 and Grisu3, and then
discuss each algorithm separately. Both algorithms try to produce
optimal output (with respect to shortness) for a given input-number
v.

The optimal output of input v represents a number V with
the smallest leading length that still satisfies the internal identity
requirement for v.3 The “leading length” of V is its digit length
once it has been stripped of any unnecessary leading and trailing
‘0’ digits.

Definition 6.1. Let v be a positive real number and n, l and s be
integers, such that l ≥ 1, 10l−1 ≤ s < 10l, v = s×10n−l and l as
small as possible. Then the l decimal digits of s are v’s leading
digits and l is v’s leading length.

In the following we demonstrate how the optimal V can be com-
puted. Let v be a floating-point number with precision p and let m−,
m+ be its boundaries (as described in Section 2.2). Assume, with-
out loss of generality, that its significand f v is even. The optimal
output consist of a number V such that m− ≤ V ≤ m+ and such
that V’s significant length is minimal.

The current state of art [Burger and Dybvig(1996)] computes
V by generating the input number v’s digits from left to right
and by stopping once the produced decimal representation would
evaluate to v when read again. Basically the algorithm tests for two
termination conditions tc1 and tc2 after each generated digit di:

• tc1 is true when the produced number (consisting of digits
d0. . .di) is greater than m−, and

• tc2 is true when the rounded up number (consisting of digits
d0. . .(di + 1)) is less than m+.

In the first case a rounded down number (of v) would be re-
turned, whereas in the second case the result would be rounded up.

Since these two tests are slow and cumbersome to write we
have developed another technique that needs only one. The basic
approach is similar: one produces the decimal digits from left
to right, but instead of using v to compute the digits the faster
approach generates the digits of m+. By construction any rounded
up number of the generated digits will be greater than m+ and thus
not satisfy the internal identity requirement anymore. Therefore
the second termination condition will always fail and can hence
be discarded.

We can show that this technique generates the shortest possible
number.

Theorem 6.2. Let x and y two real numbers, such that x ≤ y.
Let k be the greatest integer, such that y mod 10k ≤ y− x. Then
V :=

⌊ y
10k

⌋
×10k satisfies x ≤ V ≤ y. Furthermore V’s leading

length l is the the smallest of all possible numbers in this interval:
any number V’ such that x ≤ V’ ≤ y has a leading length l’ ≥ l.

Proof. We start by showing x ≤ V ≤ y: since y = V + y mod 10k

we know that V ≤ y. Also y mod 10k ≤ y− x and therefore
V ≥ x.

For the sake of contradiction assume that there exists a V’ with
leading length l’, such that x ≤ V’ ≤ y and l’ < l.

3 The shortest output may not be unique. There are many numbers that
verify the internal identity requirement for a given floating-point number,
and several of them might have the same leading length.

The number V’ has a leading length of l’ and by definition
there exists hence an s’, and n’ such that 10l’−1 ≤ s’ < 10l’ and
V’ = s’×10n’−l’.

There are three cases to consider:

1. s’ >
⌊ y
10n’

⌋
: impossible since this implies V > y.

2. s’ =
⌊ y
10n’

⌋
: contradiction, since this implies V = V’.

3. s’ <
⌊ y
10n’

⌋
: we first prove the case for n’ > k.

By hypothesis k is maximal and hence y mod 10n’ > y− x.
Given that y mod 10n’ = y−

⌊ y
10n’

⌋
×10n’ we can conclude

that y− s×10n’ > y− x and thus V’ < x. Contradiction.
Suppose now that n’ ≤ k. By definition of “leading length” we
know that V ≥ 10l−1×10k and V’ < 10l’×10n’. Since l’ < l we
have V’ < 10l−1+k ≤ V . Also x ≤ V’ and V ≤ y and therefore
x < 10l−1+k ≤ y. Clearly y− 10l−1+k < y− x and thus, using
the same equality as before, y mod 10l−1+k ≤ y− x which
contradicts the minimality property of k.

6.2 Grisu2
In this section we will present Grisu2. As described above it will
use extra bits to produce shorter outputs. As an evolution of Grisu,
Grisu2 will not work with exact numbers (requiring bignum rep-
resentations) either, but compute approximations of m− and m+,
instead. In order to avoid wrong results (outputs that do not satisfy
the internal identity requirement) we add a safety margin around
the approximated boundaries. As a consequence Grisu2 sometimes
fails to return the shortest optimal representation which could lie
outside the conservative approximation. Also this safety-margin re-
quires us to change the precondition. Indeed, using only 2 extra bits,
the computation is so imprecise that Grisu2 could end up with an
empty interval. In that case Grisu2 could simply fall back to Grisu,
but this would unnecessarily complicate the following algorithm.
We thus opted to give Grisu2 an extra bit: q ≥ p + 3.

Algorithm Grisu2
Input: same as for Grisu.
Preconditions: diy fp’s precision q satisfies q ≥ p + 3, and

the powers-of-ten cache contains precomputed normalized rounded
diy fp values c̃k =

[
10k]?

q
.

Output: decimal digits di for i ≤ 0 ≤ n and an integer K such
that the real V := d0. . .dn×10K verifies [V]�p = v.

Procedure:

1. Boundaries: compute v’s boundaries m− and m+.

2. Conversion: determine the normalized diy fp w+ such that
w+ = m+. Determine the diy fp w− such that w− = m− and
that e−w = e+w .

3. Cached Power: find the normalized c̃-k = f c×2ec such that
α ≤ ec + e+w + q ≤ γ (with α and γ as discussed for Grisu).

4. Product: compute M̃− := w−⊗c̃-k, M̃+ := w+⊗c̃-k, and let
M−↑ := M̃− + 1 ulp, M+

↓ := M̃+ − 1 ulp, δ := M+
↓ −M−↑ .

5. Digit Length: find the greatest κ such that M+
↓ mod 10κ ≤ δ

and define P :=

⌊
M+
↓

10κ

⌋
.

6. Output: define V := P×10k+κ. The decimal digits di and n
are obtained by producing the decimal representation of P (an
integer). Set K := k + κ, and return it with the n digits di.

We will show efficient implementations combining step 5 and 6
later, but first, we prove Grisu2 correct. As a preparation we start
by showing that M−↑ ≤ M+

↓ .

Lemma 6.3. The variables M−↑ and M+
↓ as described in step 4

verify M−↑ ≤ M+
↓ .

Proof. By definition

M−↑ = M̃− + 1 ulp
= w−⊗c̃-k + 1 ulp

=

([
f w−×f c

2q

]↑
+ 1

)
×2ew+ec+q

≤
(

f w−×f c
2q + 1.5

)
×2ew+ec+q

and similarly M+
↓ =

(
f w+×f c

2q − 1.5
)
×2ew+ec+q.

Since f w+ ≥ f w− + 2q−p−1 + 2q−p−2 it suffices to show

f w−×f c
2q + 1.5 ≤ (f w−+2q−p−1+2q−p−2)×f c

2q − 1.5 or

3 ≤ f c×(2q−p−1+2q−p−2)
2q

Using the inequalities f c ≥ 2q−1 and q− p ≥ 3 it is sufficient to

show 3 ≤ 2q−1×(22+21)
2q .

Theorem 6.4. Grisu2’s result V = d0. . .dn×10K satisfies the inter-
nal identity requirement: [V]�p = v.

Proof. We will show that m− < M−↑ ×10k ≤ V ≤ M+
↓ ×10k < m+

(with m− and m+ v’s boundaries).
The inner inequality, M−↑ ×10k ≤ V ≤ M+

↓ ×10k, is a conse-
quence of Theorem 6.2. Remains to show that m− < M−↑ ×10k and
M+
↓ ×10k < m+.

By Lemma 3.4 M̃− and M̃+ have an error of strictly less than
1 ulp, and therefore m− < M−↑ ×10k and M+

↓ ×10k < m+. As a
consequence m− < V < m+.

Grisu2 does not give any guarantees on the shortness of its
result. Its result is the shortest possible number in the interval
M−↑ ×10k to M+

↓ ×10k (boundaries included), where M−↑ and M+
↓

are dependent on diy fp’s precision q. The higher q, the closer
M−↑ and M+

↓ are to the actual boundaries m− and m+. For q = 64
and p = 53 (as in our code samples) Grisu2 produces the shortest
number for approximately 99.9% of its input.

The C implementation of Grisu2 is again cut into two parts: a
core routine, independent of the chosen α/γ, and a digit-generation
procedure that needs to be tuned for the chosen target exponents.
The core procedure is straightforward and we will therefore omit
its C implementation.

In Figure 7 we present a version of the digit-generation routine
tuned for α,γ = −59,−32. The input variables Mp, and delta
correspond to M+

↓ and δ respectively. The len and K are used as
return values (with obvious meanings). We assume that K has been
initialized with k. We hence only need to add the missing κ.

The proposed implementation combines step 5 and 6. While
trying all possible κs (starting from the “top”) it generates the

digits of
⌊

M+
↓

10κ

⌋
. There are two digit-generation loops. One for the

most-significant digits
⌊

Mp
one

⌋
, stored in p1, and one for the least-

significant digits Mp mod one, stored in p2. Let R be the number
that is obtained by reading the generated digits (R := 0 if no digit
has been generated yet). Then the following invariants holds for
both loops (line 9 and line 17): R =

⌊
Mp

10kappa

⌋
. For the first loop we

can show that p1×one + p2 = Mp mod 10kappa. The equation in
line 13 thus tests if M+

↓ mod 10κ ≤ δ.
The following invariant holds for the second loop (line 17):

p2 = Mp
10kappa

mod one.

1: #define TEN9 1000000000
2: void digit gen(diy fp Mp, diy fp delta,
3: char* buffer, int* len, int* K) {
4: uint32 t div; int d,kappa; diy fp one;
5: one.f = ((uint64 t) 1) << -Mp.e; one.e = Mp.e;
6: uint32 t p1 = Mp.f >> -one.e;
7: uint64 t p2 = Mp.f & (one.f - 1);
8: *len = 0; kappa = 10; div = TEN9;
9: while (kappa > 0) {

10: d = p1 / div;
11: if (d || *len) buffer[(*len)++] = ’0’ + d;
12: p1 %= div; kappa--; div /= 10;
13: if ((((uint64 t)p1)<<-one.e)+p2 <= delta.f) {
14: *K += kappa; return;
15: }
16: }
17: do {
18: p2 *= 10;
19: d = p2 >> -one.e;
20: if (d || *len) buffer[(*len)++] = ’0’ + d;
21: p2 &= one.f - 1; kappa--; delta.f *= 10;
22: } while (p2 > delta.f);
23: *K += kappa;
24: }

Figure 7: Grisu2’s digit generation routine (for α,γ = −59,−32).

6.3 Grisu3
Given enough extra precision, Grisu2 computes the best result (still
with respect to shortness) for a significant percentage of its input.
However there are some numbers where the optimal result lies
outside the conservative approximated boundaries. In this section
we present Grisu3, an alternative to Grisu2. It will not be able
to produce optimal results for these numbers either, but it reports
failure when it detects that a shorter number lies in the uncertain
region. We denote with “uncertain region” the interval around the
approximated boundaries that might, or might not be inside the
boundaries. That is, it represents the error introduced by Grisu3’s
imprecision.

Until now, optimality was defined with respect to the leading
length (and of course accuracy) of the generated number V . For
Grisu3 we add “closeness” as additional desired property: when-
ever there are several different numbers that are optimal with re-
spect to shortness, Grisu3 should chose the one that is closest to
v.

Instead of generating a valid number and then verifying if it
is the shortest possible, Grisu3 will produce the shortest number
inside the enlarged interval and verify if it is valid. Whereas Grisu2
used a conservative approximation of m− and m+, Grisu3 uses a
liberal approximation and then, at the end, verifies if its result lies
in the conservative interval, too.

Algorithm Grisu3
Input and preconditions: same as for Grisu2.
Output: failure, or decimal digits di for i ≤ 0 ≤ n and

an integer K such that the integer V := d0. . .dn×10K verifies
[V]�p = v. V has the shortest leading length of all numbers verify-
ing this property. If more than one number has the shortest leading
length, then V is the closest to v.

Procedure:

1-2. same as for Grisu2.

2b. Conversion: determine the normalized diy fp w such that
w = v.

3-4. same as for Grisu2.

4b. Product2: let M−↓ := M̃− − 1 ulp, M+
↑ := M̃+ + 1 ulp, and

∆ := M+
↑ −M−↓ .

5. Digit Length: find the greatest κ such that M+
↑ mod 10κ < ∆.

6. Round: compute W̃ := w⊗c̃-k, and let W↓ := W̃ − 1 ulp, and

W↑ := W̃ + 1 ulp. Set Pi :=

⌊
M+
↑

10κ

⌋
− i for i ≥ 0. Let m be

the greatest integer that verifies Pm×10κ > M−↓ .

Let u, 0 ≤ u ≤ m the smallest integer such that |Pu×10κ −W↑|
is minimal. Similarly let d, 0 ≤ d ≤ m the largest integer such
that |Pd×10κ −W↓| is minimal.
If u 6= d return failure, else set P := Pu.

7. Weed: if not M−↑ ≤ P×10κ ≤ M+
↓ return failure.

8. Output: define V := P×10k+κ. The decimal digits di and n
are obtained by producing the decimal representation of P (an
integer). Set K := k + κ, and return it with the n digits di.

Grisu3 uses the liberal boundary approximations (M−↓ and M+
↑)

instead of the conservative ones (M−↑ and M+
↓). These values are

guaranteed to lie outside the actual interval m− to m+. The test
in step 5 therefore features a strict inequality. This way M−↓ is
excluded from consideration. There is however no mechanism to
exclude M+

↑ . In the rare event when M+
↑ mod 10κ = 0 then Grisu3

will, at this point of the algorithm, wrongly assume that M+
↑ is

a potentially valid representation of v. Since M+
↑ lies outside the

conservative region Grisu3 would the return failure in step 7. This
case is rare and counter-measures are expensive, so we decided to
accept this flaw.

Rounding is performed in step 6. Grisu3 simply tries all possible
numbers with the same leading length and picks the one that is
closest to v. At this stage Grisu3 works with approximated values
and W̃, the approximation of v, may have an error of up to 1 ulp.
The closest representation P×10κ must not only be the closest to
W̃ but to all possible values in W̃’s margin of error. Grisu3 first
finds the closest Pu to the upper boundary, and Pd for the lower
boundary. If they are not the same, then the precision is not enough
to determine the optimal rounding and Grisu3 aborts.

Finally, just before outputting the computed representation,
Grisu3 verifies if the best pick is within the conservative bound-
aries. If it is not, then the optimal solution lies in the uncertain
region and Grisu3 returns failure.

1: bool round weed(char* buffer, int len,
2: uint64 t wp W, uint64 t Delta,
3: uint64 t rest, uint64 t ten kappa,
4: uint64 t ulp) {
5: uint64 t wp Wup = wp W - ulp;
6: uint64 t wp Wdown = wp W + ulp;
7: while (rest < wp Wup &&
8: Delta - rest >= ten kappa &&
9: (rest + ten kappa < wp Wup ||
10: wp Wup-rest >= rest+ten kappa - wp Wup))
11: {
12: buffer[len-1]--; rest += ten kappa;
13: }
14: if (rest < wp Wdown &&
15: Delta - rest >= ten kappa &&
16: (rest + ten kappa < wp Wdown ||
17: wp Wdown-rest > rest+ten kappa - wp Wdown))
18: return false;
19: return 2*ulp <= rest && rest <= Delta - 4*ulp;
20: }

Figure 8: Grisu3’s round-and-weed procedure.

The digit-generation routine of Grisu2 has to be modified to take
the larger liberal boundary interval into account, but these changes
are minor and obvious. The interesting difference can be summa-
rized in the round weed procedure shown in Figure 8 which com-

bines step 6 and 7. The function is invoked with the parameters set
to the following values: buffer := d0. . .dlen-1 where d0. . .dlen-1

are the decimal digits of
⌊

W+
↑

10κ

⌋
, wp W := W̃+ − W̃, Delta := ∆,

rest := W+
↑ mod 10κ, ten kappa := 10κ, and ulp the value

of 1 ulp relative to all passed diy fps.
Let T := d0. . .dlen-1×10κ. By construction T lies within the

unsafe interval: W−↓ < T ≤ W+
↑ . Furthermore, among all possible

values in this interval, it has the shortest leading length len. If
there are other possible values with the same leading length and in
the same interval, then they are smaller than T .

The loop in line 7 iteratively tests all possible alternatives to find
the closest to W↑. The first test, rest < wp W - ulp, ensures
that T is not already less than W↑ (in which case the current T
must be the closest). Then follows a verification that the next lower
number with the same leading length is still in the interval W−↓
to W+

↑ . In line 9 the procedure tests if the alternative would be
closer to W↑. If all tests succeed, then the number d0. . .dlen-1×10κ

is guaranteed to lie inside the interval W−↓ to W+
↑ and is furthermore

closer to W↑ than the current T . The body of the loop thus replaces
T (physically modifying the buffer) with its smaller alternative.

The if in line 14 then verifies the chosen T is also closest to
W−↓ . If this check fails then there are at least two candidates that
could be the closest to W̃ and Grisu3 returns failure.

Now that the buffer has been correctly rounded a final weeding
test in line 19 verifies that W−↑ ≤ T ≤ W+

↓ . That is, that the chosen
T is inside the safe conservative interval.

7. Benchmarks

Algorithm R R/PP S S/PP
sprintf %c 2.60 - - -
sprintf %g 22.83 - 24.17 -
sprintf %.17e 36.03 - 36.17 -
burger/dybvig 61.53 61.49 28.73 28.66
grisu Fig4 9.17 - 9.98 -
grisu 0,3 2.85 - 3.26 -
grisu -63,-59 3.36 - 3.77 -
grisu -35,-32 2.66 - 3.04 -
grisu -59,-56 2.50 - 2.96 -
grisu2 -59,-56 3.80 4.88 3.07 4.04
grisu2b -59,-56 5.38 6.42 4.40 5.48
grisu3 -59,-56 4.47 5.61 3.49 4.55

Figure 9: Speed of sprintf, Burger/Dybvig and Grisu.

Algorithm optimal shortest
grisu2 -59,-56 0 99.92
grisu2b -59,-56 99.85 99.92
grisu3 -59,-56 99.49 99.49

Figure 10: Optimality of Grisu2 and Grisu3.

In this section we present some experimental results. In Fig-
ure 9 we compare different variants of Grisu against sprintf
and Burger/Dybvig’s algorithm (the code has been taken from their
website). In order to measure the parsing-overhead of sprintf
we added one sprintf benchmark where the double is converted
to a char, and then printed (first row). Also we included the un-
optimized algorithm of Figure 4. Grisu2b (“grisu2b -35,-32”) is a
variant of Grisu2 where the result is rounded.

Input numbers are random IEEE doubles. Speed is measured
in “seconds per thousand numbers”. All benchmarks have been
executed on a Intel(R) Xeon(R) CPU 5120 @ 1.86GHz quad-core
system, Linux 2.6.31, glibc 2.11.

The first column (R) gives the speed of processing random
doubles. The next column shows the time for the same numbers,
but with a pretty-printing pass for the algorithms that only returned
the digits and the exponent K.

Column S measures the processing speed for short doubles.
That is, doubles that have at most 6 leading digits. Algorithms that
stop once the leading digits have been found are clearly faster for
these numbers. The next column (S/PP) adds again a pretty-printing
pass.

In Figure 10 we show the percentage of numbers that are op-
timal (shortest and rounded) or just shortest. We have excluded
sprintf (0 in both columns), Burger/Dybvig (100 in both
columns) and Grisu (0 in both columns). 99.92% of Grisu2’s pre-
sentations are the shortest, and once a rounding-phase has been
added (Grisu2b) 99.87% of the numbers are optimal. Grisu3 pro-
duces optimal results for 99.49% of its input and rejects the rest.

8. Related Work
In 1980 Coonen was the first to publish a binary-decimal conver-
sion algorithm [Coonen(1980)]. A more detailed discussion of con-
version algorithms appeared in his thesis [Coonen(1984)] in 1984.
Coonen proposes two algorithms: one using high-precision integers
(bignums) and one using extended types (a floating-point number
type specified in IEEE 754 [P754(1985)]). By replacing the ex-
tended types with diy fp’s the latter algorithm can be transformed
into a special case of Grisu.

In his thesis Coonen furthermore describes space efficient al-
gorithms to store the powers-of-ten, and presents a very fast
logarithm-estimator for the k-estimation (closely related to the k-
computation of Section 4.1).

In 1990 Steele and White published their printing-algorithm,
Dragon, [Steele Jr. and White(1990)]. A draft of this paper had ex-
isted for many years and had already been cited in ”Knuth, Volume
II” [Knuth(1981)] (1981). Dragon4 is an exact algorithm and re-
quires bignums. Dragon4 generates its digits from left to right and
stops once the result lies within a certain precision. This approach
differs from Coonen’s bignum algorithm where all relevant digits
are produced before the result is rounded. The rounding process
might lead to changing a trailing sequence of 9s to 0s thus shorten-
ing the generated sequence.

Conceptually the simplest form of Grisu2 and Grisu3 (presented
in Section 6) can be seen as a combination of Coonen’s floating-
point algorithm and Dragon.

In the same year (1990) Gay improved Dragon, by proposing a
faster k-estimator and by indicating some shortcuts [Gay(1990)].

Burger and Dybvig published their improvements in 1996
[Burger and Dybvig(1996)]. This paper features a new output for-
mat where insignificant digits are replaced by # marks. They had
also rediscovered the fast logarithm-estimator that had been pub-
lished in Coonen’s thesis.

9. Conclusion
We have presented three new algorithms to print floating-point
numbers: Grisu, Grisu2 and Grisu3. Given an integer type with at
least two more bits than the input’s significand, then Grisu prints
its input correctly. Grisu2 and Grisu3 are designed to benefit from
integer types that have more than just two extra bits.

Grisu2 may be used where an optimal decimal representation
is desired but not required. Given a 64 bit unsigned integer Grisu2
computes the optimal decimal representation 99.8% of the times
for IEEE doubles.

Grisu3 should be used when the optimal representation is re-
quired. In this case Grisu3 will efficiently produce the optimal re-
sult for 99.5% of its input (with doubles and 64-bit integers), and
reject the remaining numbers. The rejected numbers must then be
printed by a more accurate (but slower) algorithm. Since Grisu3 is
about 4 times faster than these alternative algorithms the average
speed-up is still significant.

Grisu (and its evolutions) are furthermore straightforward to im-
plement and do not feature many special cases. This is in stark
contrast to efficient printing-algorithms that are based on bignums.
Indeed, the major contributions to Dragon4 (one of the first pub-
lished bignum-algorithms) have been the identification of special
cases that could be handled more efficiently. We hope that Grisu3
renders this special cases uneconomic, thus simplifying the com-
plete development of floating-point printing algorithms.

References
[Burger and Dybvig(1996)] R. G. Burger and R. K. Dybvig. Printing

Floating-Point Numbers Quickly and Accurately. In Proceedings
of the ACM SIGPLAN 1996 Conference on Programming Language
Design and Implementation, PLDI 1996, pages 108–116, New York,
NY, USA, June 1996. ACM. doi: 10.1145/249069.231397.

[Coonen(1980)] J. T. Coonen. An implementation guide to a proposed
standard for floating-point arithmetic. Computer, 13(1):68–79, 1980.
ISSN 0018-9162. doi: 10.1109/MC.1980.1653344.

[Coonen(1984)] J. T. Coonen. Contributions to a Proposed Standard for
Binary Floating-Point Arithmetic. PhD thesis, University of California,
Berkeley, June 1984.

[Gay(1990)] D. M. Gay. Correctly rounded binary-decimal and decimal-
binary conversions. Technical Report 90-10, AT&T Bell Laboraties,
Murray Hill, NJ, USA, Nov. 1990.

[Goldberg(1991)] D. Goldberg. What every computer scientist should
know about floating-point arithmetic. ACM Computing Surveys, 23(1):
5–48, 1991. ISSN 0360-0300. doi: 10.1145/103162.103163.

[Knuth(1981)] D. E. Knuth. The Art of Computer Programming, Volume
II: Seminumerical Algorithms, 2nd Edition. Addison-Wesley, 1981.
ISBN 0-201-03822-6.

[P754(1985)] I. T. P754. ANSI/IEEE 754-1985, Standard for Binary
Floating-Point Arithmetic. IEEE, New York, Aug. 12 1985.

[Steele Jr. and White(1990)] G. L. Steele Jr. and J. L. White. How to
print floating-point numbers accurately. In Proceedings of the ACM
SIGPLAN 1994 Conference on Programming Language Design and
Implementation, PLDI 1994, pages 112–126, New York, NY, USA,
1990. ACM. ISBN 0-89791-364-7. doi: 10.1145/93542.93559.

[Steele Jr. and White(2004)] G. L. Steele Jr. and J. L. White. How to print
floating-point numbers accurately (retrospective). In 20 Years of the
ACM SIGPLAN Conference on Programming Language Design and
Implementation 1979-1999, A Selection, pages 372–374. ACM, 2004.
ISBN 1-58113-623-4. doi: 10.1145/989393.989431.

	Introduction
	Floating-Point Numbers
	Rounding and Errors
	Neighbors and Boundaries
	Examples
	IEEE 754 Double-Precision

	Handmade Floating-Point
	Operations

	Cached Powers
	k Computation

	Grisu
	Idea
	Algorithm
	C Implementation
	Interesting target exponents

	Evolutions
	Idea
	Grisu2
	Grisu3

	Benchmarks
	Related Work
	Conclusion

