= Microsoft

Microsoft

Build 2017 1 111111 T
171111111110



m Microsoft P4099

Production Tracing with Event
Tracing for Windows (ETW)

Doug Cook
Software Engineer

/ /
#MSBuild /

[/ /



fracing — ge

=

ing Info from your program

- printf, Console. WriteLine
- Great for console tools or during development.
- Not great for GUI apps, web apps, services, drivers.
- Not great in production/retail environments.

- OQutputDebugString, DbgPrint, Debug.WriteLine

- Great during development.
- Don't use in production (performance impact, no filtering).

- Log files

- Great for low-volume information that must be kept long-term.
- Hard to manage for detailed (high-volume) or diagnostic data.



What is ETW?

- Event Tracing for Windows.

- Routes information from your program to an analysis tool.
- Sends data to log file, memory buffer, or real-time consumer.

- Works ftor drivers, services, and apps.

- Separation of concerns between event producer/consumer.

- Development, test, and production scenarios.
- Tracing is disabled by default
- Almost no performance impact when tracing disabled.
- Low impact (non-blocking) when tracing enabled.
- Powerful filtering (change filters without restarting app).




Demo: ETW Capture



E T W scenarios

- Debugging.
- Example: trace AddRef and Release in a COM object.

- Field diagnostics.
- Events can be temporarily enabled in production to diagnose issues.

- Flight recorder.

- Always collect app events into a process-private circular buffer.

- If an error occurs (e.qg. unexpected exception), flush buffer to disk and
save it for investigation (include in bug report).

- Log file.

- Always collect important app events into a process-private log file.



Demo: fraceLogging C




Demo: TracelLogging C++

- Use Windows 10 SDK.

- #include <TracelLoggingProvider.h>
- Read the comments in the header for more information.

- Requires Windows 8 by default; optionally compatible back to Vista.
#define _WIN32_WINNT _WIN32_WINNT_VISTA

» TRACELOGGING_DEFINE_PROVIDER

- Recommended: use EtwGuid tool to generate provider GUID.
nttps://blogs.msdn.microsoft.com/dcook/2015/09/08/etw-provider-

names-and-guids/

- raceLoggingRegister/IraceLoggingUnregister
- IraceLoggingWrite



https://blogs.msdn.microsoft.com/dcook/2015/09/08/etw-provider-names-and-guids/

Demo: lraceLogging .NET



Demo: lraceLogging .NE T
- Use NET 4.6 or later.

- For compatibility with earlier frameworks, use NuGet package
"EventSource Redist”.
- Define a global EventSource object.

- public static readonly EventSource MylLogger =
new EventSource("ProviderName");

- Call the Write method.

- MyLogger.Write(
"EventName”,
new { FieldNamel = Valuel, FieldName2 = Value? });




Getting started with ETW

Provider libraries: Consumer tools:

- C/C++: « GUI trace control:
TraceLoggingProvider.h traceview, perfview

. NET: - Traceview updated in Windows 10
' ' Creators Edition SDK.
EventSource

 GUI trace analysis:

- Windows Framework: traceview, perfview, WPA

LoggingChannel |
« Command-line trace control:

tracelog, xperf, WPR

« Command-line trace analysis:
tracefmt, tracerpt



FTW Frameworks



ETW framework

- Language for describing provider and event characteristics
(metadata).
- Provider name, event name, severity level, field names, field types, etc.

- Code generation.

- First layer of event filtering (provider, event level, event keywords).
- Packs event data.

- Process for getting metadata from you to the decoder.



Microsoft ETW frameworks

- MOF (obsolete)
- WPP

- Printf-style events authored in C/C++ source code (tracewpp
Oreprocessor).

- Decoding needs PDB (symbols) or TMF (extracted from PDB).

- Manifests

- Structured events authored in XML manifest (mc manifest compiler).
- Decoding needs manifest or binary manifest resources.

- IracelLogging
- Structured events authored in source code.
- Decoding always works (decoding information is inside the event).




Which framework is best?

- [t depends.
- Each framework is best in at least one scenario.

- That's why there are 3 frameworks!
WPP works best

ETW
Scenarios

Manifest
Works best

TracelLogging
works best



Recommendations

- [T your event needs to work with Event Log (i.e. it is of

interest to a system administrator), use manitest-based
ETW.

- IT log size is a serious concern (i.e. high-frequency events),
use manifest-based ETW (or consider WPP).

- IT you need to keep the metadata private, use manifest-
pased ETW (or consider WPP).

- [t you are happy with an existing framework, keep using it!

- For easy development and reliable decoding, use
TracelLogging.




E W is easy.

- Iry out ETW.

- C/C++: TraceLoggingProvider.h in Windows 10 SDK.
- .NET: System.Diagnostics.Tracing.EventSource in .NET 4.6.

- Windows Framework: Windows.Foundation.Diagnostics.LoggingChannel
in Windows 10.

- Updated SDK tools in Windows 10 Creators Update.

- Tracelog
- Tracefmt
- Traceview
- Xperf




Resources

- Blog: https://blogs.msdn.microsoft.com/dcook/
- ETW Overview

- TraceLogging Background

- Tracing tools: https://msdn.microsoft.com/en-
us/windows/hardware/drivers/devtest/tools-for-software-

tracing
- Re-visit Build session recordings on Channel 9.

- Continue your education at
Microsoft Virtual Academy online.

#MSBuild


https://blogs.msdn.microsoft.com/dcook/
https://msdn.microsoft.com/en-us/windows/hardware/drivers/devtest/tools-for-software-tracing
https://channel9.msdn.com/Events/Build/2017
http://microsoftvirtualacademy.com/

m Microsoft

© Copyright Microsoft Corporation. All rights reserved.



