

PyEmu: A multi-purpose scriptable IA-32 emulator

Cody Pierce

TippingPoint DVLabs
cpierce@tippingpoint.com

1 Introduction

Emulators have existed since the modern computer systems they emulate. In 1965 IBM
released the first computer system based entirely on integrated circuits[1]. With it they
packaged an emulator to aid in its adoption. In modern days, emulators appear in all sorts
of applications. These applications range from complete virtual machines to old arcade
systems. In this paper, we will look at how the world of emulation pertains to, and helps
the reverse engineering discipline.

When one looks at emulation in modern computer science, it can be broken down
into what is perceived as two main methods of operation system emulation and
instruction emulation.

1.1 System Emulation

System emulation is a very attractive method for doing complete replication of how a
normal system operates. This includes not only emulating a processor and memory, but
peripherals as well.

 The most outstanding piece that differentiates this from instruction emulation is
the peripheral emulation. Since the goal of system emulation is to provide a complete
environment for core software, such as an operating systems, to be installed the emulator
must handle requests to video cards, disk controllers, network devices, as well as
providing a BIOS.

 A good example of this type of emulation is the bochs[2] IA-32 emulator. It
provides the user with the ability to install guest operating systems on a virtual disk
managed by bochs. As stated previously, this type of full system emulation will act just
like a physical computer, providing keyboard/mouse input and output, as well as other
devices.

1.2 Instruction Emulation

The second form of emulation is what can be considered instruction emulation. In this
sense instruction emulators only handle the tasks of translating CPU behavior to their
equivalent logical and memory computations. This type of emulation is best suited for
specific use and will be the focus of this paper.

 Instruction emulation may seem limiting at first glance. However it is tailored to
serve in the role of a tool, as opposed to a system emulator that works as an application.
The benefit of this approach is openness and flexibility. While keeping the purpose
basic, it allows the user to define what it is emulating with greater control.

2 Emulation as it applies to reverse engineering

Since the focus of this paper is emulation as applied to reverse engineering, one must
look at the current state of affairs and applications of this technology. The state of
reverse engineering is only getting more complex. While application continue to evolve
and take on more features, the needed time to comprehend an application via reverse
engineering greatly increases. These complexities often lead to frustration and
hopelessness for someone trying to understand the assembly level actions of a program in
static disassembly.

2.1 Complex code paths

An often insurmountable task when reversing software is complex code paths. Any given
binary may contain thousands of difficult to understand and time consuming functions.
Whether this appears as one large function, or hundreds of branches, the problem persists.
Code path understanding is essential to the overall comprehension of a program’s logic.
Therefore, we may be able to utilize emulation to decipher cryptic nodes.

Take the following example of a complex code path as displayed in IDA[3]

 To statically reverse engineer this single function in the binary would take a large
amount of time. Instead, the function arguments can be identified and the behavior of the
code emulated. The results can then be used to determine the modifications and logic
taken based upon this information. While this may seem like an oversimplification of a
complex problem, it will be seen that PyEmu can easily achieve this through various
methods.

2.2 Ambiguous Code

Another example we will briefly touch upon that hinders the process of reverse
engineering is seemingly ambiguous code blocks. This is a very common side effect of
doing static analysis on a program and is not usually a problem for live analysis with a
debugger. However, in wanting to move to a purely static analysis method without
having to fall back on live debugging, these problems must be addressed.

An ambiguous code block example

 This code snippet of a basic block really does not mean much to the naked eye.
Even with the rest of the function in tact, this block has 7 branches, various local
variables, and what appears to be an object or structure of some kind. Currently, no tools
exist to aid a researcher in organizing and understanding this basic block. In this case a
scriptable emulator will help greatly, by making the reverse engineering process more
efficient.

2.3 Code Obfuscation

While not necessarily common in production services, code obfuscation is gaining
significant ground with companies trying to protect intellectual property. With the
emergence and proliferation of reverse engineering as a means to gain an advantage over
a competitor, often times a company may add road blocks to deter this and retain closely
guarded secrets.

 Code obfuscation techniques vary wildly from deceptive anti-disassembly
methods tricking disassemblers and debuggers, to hand implemented functions to deceive
a potential reverse engineer. As this becomes commonplace in software, one must have a
means of quickly reducing the complexity reveal the meaning of such things.

A simple example of obfuscation

 The above example demonstrates a potential attempt to thwart any onlookers as to
what really might be happening. It could also be an attempt to prevent the disassembler
from properly analyzing the target binary. In this instance one can use an emulator to run
all code paths leading to this function and observe any values modified during its run.
This can potentially speed up the process of determining how the values are being used,
or if they have any significance at all.

2.4 Time

Time is the single most valuable and exploitable resource related to reverse engineering.
Advancing the field must always include reducing the time it takes to fully examine
pieces of a binary and reach the mythical 100% code coverage goal. This will be
achieved with a combination of scripts and tools helping focus manual analysis.

 It is hard to quantify the time it may take to completely understand a given binary.
Many factors must be considered when determining how much time may be spent. Size,
complication, proficiency, and organize all play major roles in the time equation when
reverse engineering. The following example is a snapshot of a major piece of software
and its number of functions.

As can be seen this binary has 27754 functions. Take note of the length of the
sorted functions. In this example we see a functions of length 0x4A87 (19079) bytes!
Assuming a skilled reverse engineer would take 10 minutes per function, an ambitious
time frame, (this is ignoring the fact that 950 of the functions were well over 1024 bytes)
the time taken to reverse this software is

((27754 * 10) / 60) / 24 = 193 days

Assuming it would take 10 minutes per function is absurd, but even with
superman at the helm reversing it would take him 193 straight days to completely
understand 100% of this piece of software. As can plainly be seen, reducing the time to
understand functions is a major priority. Emulation is one technique that can greatly help
in this area.

2.5 Current Tools

The current list of available tools for reverse engineering, and Python based tools in
particular grows daily. With professionally developed tools like BinNavi[4], open
source community projects like PaiMei[5] and community contributed scripts and plugins
for IDA Pro, there is a no shortage of options to help in the previous problems. However
there currently exists only one emulator targeted at reverse engineering. The IDA Pro
plugin idax86emu[6], by Chris Eagle, allows a user to add values to a stack, change and
monitor registers, and even emulate library calls. While this is a very good plugin and its
obvious benefits, it does lack flexibility and extensibility. The plugin being written in C,

as all IDA plugins are, can be a blessing or a curse. It is hardly debatable whether you can
dynamically control, monitor, or modify values on the fly with the inherent quickness,
and ease of a scripting language. It just does not allow one to easily expand and truly
integrate it into their workflow.

3 PyEmu Architecture

Before going into architecture specifics related to PyEmu, we must first look at why
Python as a programming language was chosen. Obviously, it is not common practice to
emulate low level code in a high level language. Since low level assembly simply
operates on basic computational logic I felt it would be straightforward to mimic this in a
language such as Python. Also, another determining factor in the language choice was
current progress in other Python tools.

Many people enjoy using Python and thus have created tools around it to aid in
reverse engineering tasks. IDAPython[7] exists to allow script access to the IDA Pro
scripting language (IDC) and plugin SDK. This alone allows for immeasurable amounts
of options, one being the building of additional libraries on top of the language. One of
these libraries is PIDA[8]. An abstraction library for quickly accessing structural
information about the current binary disassembled in IDA.

 Besides IDA, other tools exist when doing live analysis, and binary processing.
Pydbg[9] is a python library that wraps the native win32 debugging API allowing a
researcher to implement flexible scripts for controlling a debugee including execution,
memory access, and context information such as registers. Pefile[10] is another library
for processing PE executable file formats in Python. This library allows the parsing of
important information pertaining to an executable for disassembling including imports,
code, and data sections as well as entry point addresses. Finally, there is pydasm[11]
which is a python interface to the disassembly library libdasm[12]. Pydasm can
arbitrarily handle the disassembly of instructions and allow an emulator to be even more
flexible in operation.

3.1 Overview

The PyEmu architecture works by providing the user with a flexible abstracted API in the
form of the PyEmu class. This class will handle execution of instructions, fetching of
memory, and any user requested information. The PyEmu architecture is separated into
three classes including PyCPU, PyMemory, and of course PyEmu. By separating these
aspects of an emulator, we can provide control over how each subsystem operates. This
power is the essence of PyEmu. As a user, the ability to control memory allocations,
instruction execution, and execution via clean methods is fantastically flexible.

 When PyEmu is tasked with executing, it instructs PyCPU to execute a single
instruction. PyCPU will request the memory for that instruction from PyEMU which will
then pass the request to PyMemory. The reverse happens when the request is returned.

This may seem non-intuitive, but because the user is allowed to control all aspects of this
process via PyEmu, it is required. The interaction is demonstrated below.

 This is the core modus operandi of the PyEmu package. In general, a user should
only interface with PyEmu classes, all useful information is exposed through public
methods when instantiating the PyEmu derived class. Nothing is to say one may not
want to create new classes and new layers of abstraction.

3.1 PyCPU

PyCPU is the heart of the PyEmu emulator, PyCPU handles all of the instruction logic,
execution and related processor tasks. The job of the CPU is to execute a given
instruction based strictly on the Intel reference specification[13]. As with every piece of
the PyEmu architecture, the CPU code tries to autonomously handle all of these needed
functions.

 The most basic action is to execute an instruction. To fetch this instruction we
access memory for the current instruction pointer address and hand it to pydasm. Pydasm
allows us to properly decode the wanted instruction into its opcode, and operands. This
simple operation is the essence of PyEmu. Allowing the emulator to arbitrarily decode
instructions helps serve various function in any environment we want, including live
analysis through Pydbg or statically via IDA Pro.

 def execute(self):
 # Save our old instruction pointer
 oldeip = self.EIP

 # Fetch raw instruction from memory
 rawinstruction = self.get_memory(self.EIP, 32)
 if not rawinstruction:
 print "[!] Problem fetching raw bytes from 0x%08x" %
(self.EIP)

 return False

 # Decode instruction from raw returning a pydasm.instruction
 instruction = pydasm.get_instruction(rawinstruction,
pydasm.MODE_32)
 if not instruction:
 print "[!] Problem decoding instruction"

 return False

 pyinstruction = PyInstruction(instruction)

 As can be seen once we have grabbed the next instruction we can
then call into our proper mnemonic handler.

 pyinstruction.mnemonic = pyinstruction.mnemonic.split()[0]

 if pyinstruction.mnemonic in self.supported_instructions:
 if not
self.supported_instructions[pyinstruction.mnemonic](pyinstruction):
 return False
 else:
 print "[!] Unsupported instruction %s" %
pyinstruction.mnemonic
 return False

 if self.EIP == oldeip:
 #print "[*] Updating eip from 0x%08x -> 0x%08x" %
(self.EIP, self.EIP + pyinstruction.length)
 self.EIP += pyinstruction.length

 return True

 PyEmu uses mnemonics so that it can cleanly handle groups of opcodes within a
mnemonic. Since mnemonics have multiple ways of operating this allows developers
extending PyCPU to easily add more if necessary and implement mnemonic and opcode
level hooking. Currently PyEmu supports 100+ Intel IA-32 instructions. While one
might note that the Intel specification contains over 400 mnemonics, its important to
understand that in most cases roughly 50 instructions are ever used in real world
applications.

Once PyCPU has the proper mnemonic, it calls into the function that handles that
particular instruction. PyEmu strives to be easy to extend, most of the mnemonic and
opcode handling has been pre-generated allowing for a uniform look and operation of all
instructions.

 def CMP(self, instruction):
 op1 = instruction.op1
 op2 = instruction.op2
 op3 = instruction.op3

 so = instruction.operand_so()
 ao = instruction.address_so()

 op1value = ""
 op2value = ""
 op3value = ""
 op1valuederef = None
 op2valuederef = None

 #38 /r CMP r/m8,r8 Compare r8 with r/m8
 if instruction.opcode == 0x38:

 size = 1

 if op1.type == pydasm.OPERAND_TYPE_REGISTER:
 op1value = self.get_register(op1.reg, size)
 op2value = self.get_register(op2.reg, size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value,
result, size)

 elif op1.type == pydasm.OPERAND_TYPE_MEMORY:
 op1value = self.get_memory_address(instruction,
1, size)
 op2value = self.get_register(op2.reg, size)

 # Do logic
 op1valuederef = self.get_memory(op1value, size)

 result = op1valuederef - op2value

 self.set_arithmetic_flags(op1valuederef,
op2value, result, size)

 #39 /r CMP r/m16,r16 Compare r16 with r/m16
 #39 /r CMP r/m32,r32 Compare r32 with r/m32
 elif instruction.opcode == 0x39:

 if so:
 size = 2
 else:
 size = 4

 if op1.type == pydasm.OPERAND_TYPE_REGISTER:
 op1value = self.get_register(op1.reg, size)
 op2value = self.get_register(op2.reg, size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value,
result, size)

 elif op1.type == pydasm.OPERAND_TYPE_MEMORY:
 op1value = self.get_memory_address(instruction,
1, size)
 op2value = self.get_register(op2.reg, size)

 # Do logic
 op1valuederef = self.get_memory(op1value, size)

 result = op1valuederef - op2value

 self.set_arithmetic_flags(op1valuederef,
op2value, result, size)

 #3B /r CMP r16,r/m16 Compare r/m16 with r16
 #3B /r CMP r32,r/m32 Compare r/m32 with r32
 elif instruction.opcode == 0x3b:

 if so:
 size = 2
 else:
 size = 4

 op1value = self.get_register(op1.reg, size)

 if op2.type == pydasm.OPERAND_TYPE_REGISTER:
 op2value = self.get_register(op2.reg, size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value,
result, size)

 elif op2.type == pydasm.OPERAND_TYPE_MEMORY:
 op2value = self.get_memory_address(instruction,
2, size)

 # Do logic
 op2valuederef = self.get_memory(op2value, size)

 result = op1value - op2valuederef

 self.set_arithmetic_flags(op1value,
op2valuederef, result, size)

 #3C ib CMP AL, imm8 Compare imm8 with AL
 elif instruction.opcode == 0x3c:

 size = 1

 op1value = self.get_register(0, size)
 op2value = op2.immediate & self.get_mask(size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value, result,
size)

 #3D id CMP EAX, imm32 Compare imm32 with EAX
 #3D iw CMP AX, imm16 Compare imm16 with AX
 elif instruction.opcode == 0x3d:

 if so:
 size = 2
 else:
 size = 4

 op1value = self.get_register(0, size)
 op2value = op2.immediate & self.get_mask(size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value, result,
size)

 #81 /7 id CMP r/m32,imm32 Compare imm32 with r/m32
 #81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16
 elif instruction.opcode == 0x81 and instruction.extindex
== 0x7:

 if so:
 size = 2
 else:
 size = 4

 if op1.type == pydasm.OPERAND_TYPE_REGISTER:
 op1value = self.get_register(op1.reg, size)
 op2value = op2.immediate & self.get_mask(size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value,
result, size)

 elif op1.type == pydasm.OPERAND_TYPE_MEMORY:
 op1value = self.get_memory_address(instruction,
1, size)
 op2value = op2.immediate & self.get_mask(size)

 # Do logic
 op1valuederef = self.get_memory(op1value, size)

 result = op1valuederef - op2value

 self.set_arithmetic_flags(op1valuederef,
op2value, result, size)

 #83 /7 ib CMP r/m16,imm8 Compare imm8 with r/m16
 #83 /7 ib CMP r/m32,imm8 Compare imm8 with r/m32
 elif instruction.opcode == 0x83 and instruction.extindex
== 0x7:

 if so:
 size = 2
 else:
 size = 4

 if op1.type == pydasm.OPERAND_TYPE_REGISTER:
 op1value = self.get_register(op1.reg, size)
 op2value = op2.immediate & self.get_mask(size)

 # Do logic
 result = op1value - op2value

 self.set_arithmetic_flags(op1value, op2value,
result, size)

 elif op1.type == pydasm.OPERAND_TYPE_MEMORY:
 op1value = self.get_memory_address(instruction,
1, size)
 op2value = op2.immediate & self.get_mask(size)

 # Do logic
 op1valuederef = self.get_memory(op1value, size)

 result = op1valuederef - op2value

 self.set_arithmetic_flags(op1valuederef,
op2value, result, size)

 else:
 return False

 return True

 This verbose listing of the CMP instruction should be very readable and
understandable. When PyCPU executes the mnemonic function, it then determines
which opcode is requested, and based on the Intel specification, then determines which
type of operand we are dealing with. This executes the logic of that opcode and sets the
appropriate registers, memory, and corresponding CPU flags if necessary.

 PyCPU relies on a myriad of helper functions for cleanly reading register values
and memory addresses. The following synopsis helps explain the most common of the
helper functions repeated throughout the source code. PyCPU relies heavily on the size

variable which determines how large the memory, or register will be. This size is then
handed to all of the helper functions in an attempt to make things more universal.

- get_register(register, size)

As can be inferred this will fetch the requested register by name or index and
properly return the masked value according to the size parameter. Using this
will also trigger a handler if it is defined for the register.

- set_register(register, value, size)

Similar to get_register this function will set the register to the provided value.

- get_memory_address(instruction, operand_index, size)

This function will calculate the address a operand is requesting. Based on the
instructions ModRM/SIB byte and opcode, it will return the address being
used in the operand.

- get_memory(address, size)

This will return the value address points to in memory. Memory access will
be covered in more detail later.

- set_memory(address, value, size)

Sets the requested address to value and size.

- set_arithmetic_flags(operand_1_value, operand_2_value, result, size)

A convenience function setting appropriate CPU flags for an arithmetic
operation. These flags include CF, OF, SF, PF, and ZF

- set_shift_flags(result, size)

Similar to set_arithmetic_flags except it updates only the flags used in a
bitwise shift operation. These flags include SF, PF, and ZF

 The CPU class should not be used directly. The emulator class will handle all
calls to execute and memory requests. If a user wants to extend the supported instructions
or behavior this would be the place to do it.

3.2 PyMemory

The second piece of the PyEmu puzzle is the memory handler. PyMemory is responsible
for handling any fetches or stores of memory locations including code. This class is very
basic in design as it relies heavily on user supplied functions that do the unknown
memory fetching. It operates by keeping a cache of already fetched memory pages
locally. If a page is not present in the cache, it will call the overloaded get_page()
method. Get_page() will handle the request how the user has defined it.

def get_memory(self, address, size):
 page = address & 0xfffff000
 offset = address & 0x00000fff

 # Check our cache if not fetch
 if page in self.pages:
 # Return from our cache
 rawbytes = ""
 for x in xrange(0, size):
 rawbytes += self.pages[page][offset+x]

 if size == 1:
 return struct.unpack("<B", rawbytes)[0]
 elif size == 2:
 return struct.unpack("<H", rawbytes)[0]
 elif size == 4:
 return struct.unpack("<L", rawbytes)[0]
 else:
 return rawbytes
 else:
 # We need to fetch this
 if not self.get_page(page):
 print "[!] Problem getting page"
 return False
 else:
 rawbytes = ""
 for x in xrange(0, size):
 rawbytes += self.pages[page][offset+x]

 if size == 1:
 return struct.unpack("<B", rawbytes)[0]
 elif size == 2:
 return struct.unpack("<H", rawbytes)[0]
 elif size == 4:
 return struct.unpack("<L", rawbytes)[0]
 else:
 return rawbytes

 return False

 When in live analysis via Pydbg the get_memory() method operates as displayed
below.

def get_page(self, page):
 try:

 mempage = self.dbg.read_process_memory(page,
self.PAGESIZE)
 except:
 print "[!] Couldnt read mem page @ 0x%08x" % page
 return False

 self.pages[page] = mempage

 return True

 This fetch and cache method allows PyMem to easily control where the data is
coming from and how it is stored. It keeps the local copy separated from the real
processes memory space. A good use for this would be for dumping all of the pages used
by the emulator or restoring the emulator memory back to the debugged process.

 Setting memory is very similar in operation.

def set_memory(self, address, value, size):
 page = address & 0xfffff000
 offset = address & 0x00000fff

 if isinstance(value, int) or isinstance(value, long):
 if size == 1:
 packedvalue = struct.pack("<B", int(value))
 elif size == 2:
 packedvalue = struct.pack("<H", int(value))
 elif size == 4:
 packedvalue = struct.pack("<L", int(value))
 else:
 print "[!] Couldnt pack new value of size %d" %
(size)

 return False
 elif isinstance(value, str):
 packedvalue = value[::-1]
 else:
 print "[!] Dont understand this value type %s" %
type(value)

 return False

 # Check our page if not fetch
 if page in self.pages:
 newpage = self.pages[page][:offset]
 for x in xrange(0, size):
 newpage += packedvalue[x]
 newpage += self.pages[page][offset + size:]

 self.pages[page] = newpage

 return True
 else:
 # We need to fetch this
 if not self.get_page(page):
 print "[!] Problem getting page"

 return False
 else:
 newpage = self.pages[page][:offset]
 for x in xrange(0, size):
 newpage += packedvalue[x]
 newpage += self.pages[page][offset + size:]

 self.pages[page] = newpage

 return True

 return False

 A powerful feature of PyMemory is the ability to implement your own memory
manager. For instance, if one is so inclined, filling memory requests with “A” can be
done in very few lines of code. To implement this simply overload the parent PyMemory
class and provide a get_memory method for PyMemory.

class MyMemory(PyMemory):
 def __init__(self, fillchar=”A”):
 self.fillchar = fillchar

 PyMemory.__init__(self)

 def get_page(self, page):
 try:
 mempage = self.fillchar * self.PAGESIZE
 except:
 print "[!] Couldnt read mem page @ 0x%08x" % page
 return False

 self.pages[page] = mempage

 return True

 PyMemory should not need any external modification unless implementing a
custom manager. PyMemory is extremely simple in that it gets and sets memory based
on the manager you use. This is also all handled for you by the emulator class you
instantiate.

3.3 PyEmu

PyEmu is the main interface between the underlying CPU and Memory classes and the
user. In most cases, a user will instantiate the relevant PyEmu class and work with the
provided methods in PyEmu. This layer of abstraction provides a hassle free method of
operation when writing a script using PyEmu.

 The exposed PyEmu methods are growing daily, and include functions to execute,
query, log, debug, dump and other various ways of accessing and controlling the
emulator CPU. The list below contains most of the important methods for use in PyEmu
scripts and will be detailed later.

 Execution:
- execute

 - set_breakpoint

 Modification:
 - set_register
 - set_stack_argument
 - get_stack_argument
 - get_stack_argument
 - get_stack_variable
 - set_stack_variable
 - get_memory
 - set_memory

 Handlers:
 - set_register_handler
 - set_library_handler
 - set_exception_handler
 - set_instruction_handler
 - set_opcode_handler
 - set_memory_handler
 - set_pc_handler
 - set_memory_write_handler
 - set_memory_read_handler
 - set_memory_access_handler
 - set_stack_write_handler
 - set_stack_read_handler
 - set_stack_access_handler
 - set_heap_write_handler
 - set_heap_read_handler
 - set_heap_access_handler

 Misc:
 - log
 - debug
 - dump_memory
 - restore_context

 This base class is intended to be inherited by a more specific emulator class. For
example when working in IDA Pro, a user will want to use the IDAPyEmu class as it
provides the additional support needed during setup. This is not always the case and the
user can of course create their own emulation class.

4 Using PyEmu

Using PyEmu should be natural and flexible. It tries to provide a logical layer to achieve
goals the user may need to solve via emulation. This section will cover in more detail
how it can be used. This includes creating the needed objects for emulation, setting up
variables, memory, execution, and logging.

4.1 Instantiation

Instantiating a PyEmu object is the first step in creating a PyEmu script. This will create
the necessary class object for everything else that is achieved in the emulator. When
instantiating objects the first step is identifying what your environment will be.

 There are currently three environments provided in the PyEmu package. These
are presented as an interface to IDA Pro, Pydbg, and a standalone PE file. The IDA Pro
interface allows a user to execute their script within IDA via IDAPython and setup
necessary values for variables, arguments, and memory. The Pydbg interface lets a user
writing a pydbg script use the emulator seamlessly, querying real memory and process
context information such as register values and flags. The PE file represents a standalone
method for utilizing an emulator without IDA, in a static analysis setting.

 These classes all inherit from the base PyEmu class and are descriptively named
after their environment. In the case of IDAPyEmu a user would create the object like so:

from PyEmu import IDAPyEmu

emu = IDAPyEmu()

 From here the user can then access all of the exposed methods for controlling the
emulator and its associated properties. The IDAPyEmu class can take many optional
arguments and is defined as:

class IDAPyEmu(PyEmu):
 def __init__(self, stack_base=0x0095f000, stack_size=0x1000,
heap_base=0x000a0000, heap_size=0x2000, frame_pointer=True):

 self.stack_base = stack_base
 self.stack_size = stack_size
 self.heap_base = heap_base
 self.heap_size = heap_size
 self.frame_pointer = frame_pointer

 PyEmu.__init__(self)

 self.setup_memory()

 def setup_memory(self):
 # Sets up memory of emulator
 self.memory = IDAMemory()

 # Do stack initialization
 self.memory.get_page(self.stack_base)
 self.cpu.set_register32("EBP", self.stack_base -
self.stack_size / 2)
 self.cpu.set_register32("ESP",
self.cpu.get_register32("EBP") - 4)

 return True

4.2 Setup

Setup is necessary for populating and organizing the associated properties the emulator
will need to execute as expected. This includes loading the code section and data section
into memory.

 For our IDAPyEmu example we would do the following using IDAPython’s
access to IDC.

textstart = SegByName(".text")
textend = SegEnd(textstart)

print "[*] Loading text section bytes into memory"

currenttext = textstart
while currenttext <= textend:
 emu.set_memory(currenttext, GetOriginalByte(currenttext),
size=1)
 currenttext += 1

print "[*] Text section loaded into memory"

datastart = SegByName(".data")
dataend = SegEnd(datastart)

print "[*] Loading data section bytes into memory"

currentdata = datastart
while currentdata <= dataend:
 emu.set_memory(currentdata, GetOriginalByte(currentdata),
size=1)
 currentdata += 1

print "[*] Data section loaded into memory"

emu.set_register("EIP", ScreenEA())

 This will populate the code and data section at the proper base addres in the
IDAMemory class, and set the PyCPU register EIP to the current address selected in IDA
Pro. A few familiar methods are used to achieve this.

 emu.set_register(register, value, name="")

 Set register will set the indicated register to the value supplied. Differing from
the PyCPU class, it can only specify the register by name. A size is not needed as it will
automatically be determined based on the register name (i.e EAX, AX, AH, AL). The
keyword argument is useful to set a name to the register that may make more sense to the
user. For instance, the following:

 emu.set_register(“EAX”, 2, name=”counter”)

 Will set the ECX register to 2 and set up a name “counter” for it. This register
can then be simply queried by name using get_register(“counter”). Hopefully this will
allow a reverse engineer easily organize their information.

 emu.set_memory(address, value, size=1)

 Set memory will set the value in the memory manager’s cache to the provided
value. An optional size argument is used because in most cases PyEmu will
automatically calculate the size of the value argument. This is useful for tastslike setting
string values of arbitrary length in memory.

 emu.set_memory(0x41414141, “ABCDEFGHIJKLMNOP”)

 This example would set the memory address of 0x41414141 to the string
provided, automatically calculating its length. This will also work with values of type
‘long’ and ‘int’ in which they are determined to be of 4 byte lengths. The set_memory
function will then call the memory managers set_memory function.

def set_memory(self, address, value, size=0):
 <…>

 if not self.memory.set_memory(address, value, size):
 return False

 return True

 This example using IDAPyEmu may seem complex at first glance. However, all
we are trying to accomplish is initializing the memory and cpu for use as it would if it
were to be executing on the system. Also we are telling PyCPU we want to execute from
the currently selected address in our disassembly window.

4.3 Handlers

Handlers are one of the biggest benefits of using PyEmu. A handler lets a user set up
certain points that need to call back into their custom code. This method of giving
control to a user’s script allows the user to solve some of the problems mentioned
previously. PyEmu provides numerous handlers out of the box, while being designed
with expansion in mind.

 All of the handlers operate using function pointers. To catch the call back a user
must define a function, and pass the functions name to the handler creation routine for
callback when that particular situation is met. For instance

def my_handler(emu):
 print "[*] Hit my handler @ %x" % emu.get_register("EIP")

 return True

One current drawback to the handlers is that arguments are dependent on which

handler you are defining. In the future this may change and be easier via a defined
handler event structure passed to the user defined callback. One note is the fact all the
handlers will be given an instance of the PyEmu class. This lets the script have direct
access to the CPU for modification, querying, or any other tasks that need to be
completed.

The following handlers are included with the PyEmu package and their associated
methods are listed below.

4.3.1 Register handlers

 Register handlers are as you would expect them. If the indicated register

is modified, the script will receive the opportunity to act on, such as for logging the
value, or modifying it.

emu.set_register_handler("eax", my_register_handler)

The register parameter mimics the set_register() method and can be used

by name (i.e. EAX, AX, AL, AH) or “name” (i.e. “counter”). Register handlers
are powerful when tracking modifications of a known, or important register you
may want to keep an eye on.

def my_register_handler(emu, register, value, type)

The handler definition will receive an emulator object, the value of the

register, and the type. Type is a string indicating a “read” or “write” of the
register indicatied.

4.3.2 Library handlers

 Library handlers allow a user to catch any execution of a library call

before it takes place. In PyEmu, many standard library calls are emulated to provide
seamless execution when calling imports. A handler can be used to change that behavior
‘on the fly’ for things such as controlling the location a malloc() may return.

emu.set_library_handler("malloc", my_library_handler)

The library name is the exported symbol name of the import. This is case
insensitive and allows the user to tailor execution even further.

def my_library_handler(emu, library, address)

The handler definition will receive an emulator object, the name of the

import being called and the address of the associated import.

 4.3.3 Exception handlers

 Exception handlers act as one would expect. Any time an exception is
raised this function will be called. An obvious example would be catching any general
protection faults due to invalid memory access.

emu.set_exception_handler("GP", my_exception_handler)

As before the first argument is the Intel fault code of the exception being

thrown by the CPU.

def my_library_handler(emu, exception, address)

The handler definition will receive an emulator object, the exception

thrown, and the address of the violation.

 4.3.4 Instruction handlers

 Instruction handlers are present to allow catching of specific mnemonics
after they have been completed. Often, when reverse engineering an application certain
instructions may be significant to the task. A good example of this is the “cmp”
instruction used in branch decisions. If one wanted to log each “cmp” and what was
being compared this would be simple using an instruction handler.

emu.set_instruction_handler("cmp", my_instruction_handler)

The handler needs only the mnemonic to be trapped on and the associated

function pointer.

def my_cmp_handler(emu, mnemonic, op1, op2, op3)

The handler function will receive the emulator object, the mnemonic, and

values of all the possible operands as dword integers.

4.3.5 Opcode handlers

 The opcode handler is a subset of the instruction handler. This allows for
more granular control over what is being accessed. If you only want to be notified when
a “cmp” mnemonic is executed, but only in cases when comparing against memory as is
the case with opcode 0x39.

emu.set_opcode_handler(0x39, my_opcode_handler)

Again the handler setup is simple in that it only expects the opcode you

are requesting and a handler function. In the case of multi-byte opcodes simply
indicate it as a int of that length (i.e. 0x0f9c)

def my_39_handler(emu, opcode, op1, op2, op3)

The handler function will receive the emulator object, the opcode, and

values of all the possible operands as dword integers.

 4.3.6 Memory handlers

 A memory handler is provided to allow a means for catching all access to
a specific address of memory. This can be either a read or write and will greatly inform
the user tracking down specific memory access attempts on a known address.

emu.set_memory_handler(0x41424344, my_memory_handler)

And again we provide the dword size address of the memory we are

interested in.

def my_memory_handler(emu, address, value, size, type)

The handler function will receive the emulator object, the address of the

access, value being read, or written to the address, and size of the request. The
type argument is a string of value “read” or “write”

 4.3.6 Program counter handler

 The program counter handler is used to trigger a callback when execution
reaches a specified address, allowing a user to set up points in a binary allowing control
to transfer back to their script.

emu.set_pc_handler(0x45464748, my_pc_handler)

Set up is the same as the rest.

def my_memory_handler(emu, address)

The handler function will receive as usual the emulator object as well as
the value of the program counter register (i.e. EIP)

4.3.7 High level memory handlers

 The high level memory handlers allow only one handler per action. This

is provided as a simple interface to monitor memory access. These handlers monitor
read, write, and access callbacks for any memory, any stack, or any heap requests from
PyCPU.

emu.set_memory_write_handler(my_memory_write_handler)
emu.set_memory_read_handler(my_memory_read_handler)
emu.set_memory_access_handler(my_memory_access_handler)

emu.set_stack_write_handler(my_stack_write_handler)
emu.set_stack_read_handler(my_stack_read_handler)
emu.set_stack_access_handler(my_stack_access_handler)

emu.set_heap_write_handler(my_heap_write_handler)
emu.set_heap_read_handler(my_heap_read_handler)
emu.set_heap_access_handler(my_heap_access_handler)

There is no option to specify the address of the handler. That would be

better suited for the set_memory_handler() method. Again these are convenience
functions mostly for logging purposes.

def my_memory_write_handler(emu, address)
def my_memory_read_handler(emu, address)
def my_memory_access_handler(emu, address, type)

Sticking with the theme these handler functions receive an emulator object

and in the case of a write or read handler the address being accessed. In the case
of a memory access the type is returned containing a string of “read” or “write”.

 The handlers are simple to use and extremely powerful in practice. Hopefully
they convey their purpose clearly and help aid in any task done with PyEmu.

4.4 Execution

Execution is the means in which the whole process of emulating code under PyEmu is
driven. The basic idea is simple, we want our emulator to go from point a, to point b.
This is achieved in several different ways. The execute() method is the only way of
advancing the CPU and is defined as

 execute(self, steps=1, start=0x0, end=0x0)

 All of the arguments are optional. Used alone, it will advance based on the
current program counter of PyCPU. In the case of IDAPyEmu this is the current cursor
location in the disassembly. All of the optional arguments can be used in any
combination and act as expected. The “steps” keyword argument defines how many
instructions to be executed. Keeping an internal counter emulation ends when the steps
count has been reached. Start can be specified to establish a different location for
emulation than is currently present. “ end” allows us to set a termination point. Note that
“end” can seem misleading in a complex function as often times the address may
accidentally be impossible to reach in cases where a branch or call does not return.

 Execution is, and should be, simple. Giving steps, start, and ending functionality
provides us 99% of the cases we may need. Again adding more is no problem.

4.5 Modification

The ability to modify and initialize data in an emulator is crucial. PyEmu tries to provide
the user with the ability to specify data in various places, and organize that data so it is
meaningful during reverse engineering. For most cases, data as the user sees it can be
divided into 4 categories: registers, stack variables, stack arguments, and other memory.
When looking at a function, these four are the biggest concern. These four categories
have supporting methods for setting, and getting their values.

 emu.set_register("eax", 0x1234567, name="counter")
 emu.get_register(“eax”)
 emu.get_register(“counter”)

 The register category has been addressed before. In the case of setting a register,
you must provide the name of the register being set, the value to set, and an option name
for the register. Finally we see how you can access that value by name in the future.
Letting us easily label information in a human readable form.

 emu.set_stack_variable(0x80, 0x12345678, name="var_80")

emu.get_stack_variable(0x80)
emu.get_stack_variable("var_80")

This may seem confusing at first giving an innocuous value as the fist argument.

This is simply the offset from the stack pointer or frame pointer in cases where we have a
frame pointer. This is easily identified in IDA as the label of the interesting local
variable. In live analysis this can be gleaned by getting an offset for the address from the
pertinent stack register. The “name” optional argument allows us to organize
information.

 emu.set_stack_argument(0x8, 0xaabbccdd, name="arg_0")
 emu.get_stack_argument(0x8)

emu.get_stack_argument("arg_0")

Similar in almost every way to the stack_variable category of methods, the stack
arguments operate in the same manner, except they are the addresses of the arguments
pushed on the stack before the current function frame.

emu.set_memory(0x12345678, "ABCDEFGHIJKLMNOP")
emu.set_memory(0x12345678, 0x12345678, size=2)
emu.get_memory(0x12345678, size=4)

Setting and getting other pieces of memory is straightforward. Providing an

address and value, the memory address will be set to that value. Size, again, can in most
cases be automatically determined, but for setting a value of differing sizes it can be
provided. Get memory works as expected given an address it will dereference it and
return the value. Note that if you request a string of size >4 the data will automatically be
returned as a string.

5 The Real world

Now that we have a firm grasp on how everything flows and can be used, we should
investigate some real world examples of using PyEmu. Various tasks have been chosen
to demonstrate some obvious uses for a scriptable emulator. This should also give the
reader a starting point into how they can apply PyEmu to their particular situation to
maximize efficiency.

5.1 IDA Pro

We have already discussed using PyEmu in some detail. The main method currently
implemented utilizes IDAPython to execute the user’s script. In our script we first map
the code section and data section into memory. After that has completed we can then
execute the emulator and operate as intended. The following excerpt will print each
instruction executing under the emulator.

emu = IDAPyEmu()

Load .text and .data sections into memory
<…>

emu.set_register("EIP", ScreenEA())
emu.debug(2)

emu.execute(steps=5)

 And when ran

5.2 Pydbg

Pydbg can also be a vehicle for emulation tasks. This live analysis option can provide
powerful flexibility in determining code paths and application behavior. The addition of
the emulator should seamless. In this example, a script will set up the pydbg instance and
attach to a running process of the users choosing. Once attached, a break point is set
indicating the address we want to start emulation. When the address is hit, we start a loop
using the emulator as a console to inspect register values. A snippet of the script looks
like this.

Our pydbg initial break point handler
def handler_breakpoint(dbg):
 # Initial module bp we need to process entries
 if dbg.first_breakpoint:
 print "[*] First bp hit setting emu address @ 0%08x" %
dbg.emuaddress

 # Set up a custom break point handler for the emulator
 dbg.bp_set(dbg.emuaddress,
handler=handler_emu_breakpoint, restore=False)

 return DBG_CONTINUE

 print "[!] Unknown bp caught @ 0%08x" % dbg.exception_address

 return DBG_CONTINUE

Do the emulation once the requested bp has been reached
def handler_emu_breakpoint(dbg):
 if dbg.exception_address != dbg.emuaddress:
 print "[!] Emulator handler caught unknown bp @ 0x%08x" %
(dbg.exception_address)

 return DBG_CONTINUE

 # Create a new emulator object passing a pydbg instance
 emu = PyDbgPyEmu(dbg)

 c = None
 while c != "x":
 emu.execute()
 emu.dump_regs()

 c = raw_input("emulator> ")

 return DBG_CONTINUE

procname = sys.argv[1]
emuaddress = sys.argv[2]

dbg.set_callback(EXCEPTION_BREAKPOINT, handler_breakpoint)

if not attach_target_proc(dbg, procname):
 print "[!] Couldnt load/attach to %s" % procname

 sys.exit(-1)

dbg.debug_event_loop()

 Once executed, the output can be seen as:

C:\Code\Python\PyEmu\examples>pydbgpyemu.py calc.exe 0x001001AF3

[*] Trying to attach to existing calc.exe
[*] Attaching to calc.exe (2516)
[*] First bp hit setting emu address @ 001001af3

[*] Executing [0x1001af3][6a] push byte 0xc
EAX: 0x0000002e
ECX: 0x00000000
EDX: 0x00000005
EBX: 0x010012a0
EBP: 0x0007f99c
ESP: 0x0007f90c
ESI: 0x00000001
EDI: 0x0007f95c
EFLAGS: 0x244 [ZF PF IF]
EIP: 0x01001af5
emulator> t

[*] Executing [0x1001af5][58] pop eax
EAX: 0x0000000c
ECX: 0x00000000
EDX: 0x00000005
EBX: 0x010012a0
EBP: 0x0007f99c
ESP: 0x0007f910
ESI: 0x00000001
EDI: 0x0007f95c

EFLAGS: 0x244 [ZF PF IF]
EIP: 0x01001af6
emulator> t

[*] Executing [0x1001af6][33] xor edi,edi
EAX: 0x0000000c
ECX: 0x00000000
EDX: 0x00000005
EBX: 0x010012a0
EBP: 0x0007f99c
ESP: 0x0007f910
ESI: 0x00000001
EDI: 0x00000000
EFLAGS: 0x240 [ZF IF]
EIP: 0x01001af8
emulator> t

[*] Executing [0x1001af8][57] push edi
EAX: 0x0000000c
ECX: 0x00000000
EDX: 0x00000005
EBX: 0x010012a0
EBP: 0x0007f99c
ESP: 0x0007f90c
ESI: 0x00000001
EDI: 0x00000000
EFLAGS: 0x240 [ZF IF]
EIP: 0x01001af9
emulator> x

[*]Exiting the emulator.

C:\Code\Python\PyEmu>

 This snippet of code is very simple and straightforward. With an enhanced
emulator console, the bridge between live execution and emulated execution could be
realized.

5.3 PE
The PE file format contains all the necessary information for running an application.
This includes the various sections of code, data, and their associated relative addresses
from the image base. Since we have access to this information and the pefile python
library, a quick implementation of a PEPyEmu class is complete. This class allows you
to write scripts without the need for IDA’s disassembly. The script to use this is simple.
It takes an executable name and address, emulating for 10 steps.

#!/usr/bin/env python

import os, sys, pefile

from PyEmu import PEPyEmu

exename = sys.argv[1]
address = int(sys.argv[2], 16)

emu = PEPyEmu(exename)
emu.debug(2)

emu.set_register("EIP", address)

emu.execute(steps=10)

 And the output from the script

C:\Code\Python\PyEmu>pepyemu.py "examples\calc.exe" 0x010022F9

[*] Image Base Addr: 0x01000000
[*] Code Base Addr: 0x01001000
[*] Data Base Addr: 0x01014000
[*] Entry Point Addr: 0x01012475

[*] Loading text section bytes into memory
[*] Text section loaded into memory
[*] Loading data section bytes into memory
[*] Data section loaded into memory

[*] Executing [0x10022f9][55] push ebp
[*] Executing [0x10022fa][8b] mov ebp,esp
[*] Executing [0x10022fc][81] sub esp,0x108
[*] Executing [0x1002302][53] push ebx
[*] Executing [0x1002303][56] push esi
[*] Executing [0x1002304][8b] mov esi,[ebp+0xc]
[*] Executing [0x1002307][8b] mov eax,[esi+0x10]
[*] Executing [0x100230a][57] push edi
[*] Executing [0x100230b][33] xor edi,edi
[*] Executing [0x100230d][89] mov [esi+eax*2+0x14],di

C:\Code\Python\PyEmu>

 This example demonstrates the flexibility of PyEmu. Since the only requirement
is raw bytes of instructions, the possibilities for application are numerous. This can be
achieved because PyEmu strives to be as autonomous as possible when dealing with
implemented PyEmu classes. By doing this, we allow the user to have full control over
what they are trying to achieve. It would even be possible to create a NetPyEmu if so
desired.

5.4 Tracking memory access

Determining when memory is being read and written to is crucial in understanding how
an application is working. An often asked question when determining this is “When and
where is memory being accessed”. To solve this with PyEmu, we can set up some higher
level memory access handlers. These handlers will return control when something
modifies process memory. The following example is used in IDA Pro.

from PyEmu import IDAPyEmu

def my_memory_access_handler(emu, address, value, size, type):

 print "[*] Hit my_memory_access_handler %x: %s (%x, %x, %x,
%s)" % (emu.get_register("EIP"), emu.get_disasm(), address,
value, size, type)

 return True

Our usual IDA setup mapping relevant sections
<…>

Start the program counter at the current location in the
disassembly window
emu.set_register("EIP", ScreenEA())

Set up our memory access handler
emu.set_memory_access_handler(my_memory_access_handler)

emu.execute(start=0x00427E6B, end=0x00427E8D)

print "[*] Done"

 And the output is below

 Solving a problem and answering questions like this aid the reverse engineer in
accelerating up the understanding of a function, or group of functions. We also see the
use of executing from start and end method for quickly defining a bounds in the emulator.

5.5 Path enumeration

Previously we demonstrated an extremely complex function. The function included
hundreds of code path decisions and appears as a spider web of branches and loops. To
alleviate this, one can use PyEmu to track those branches, their conditions and the values
used in the decision. In this case, hooking each call to the mnemonic “cmp” provides us
a simple view of the comparisons happening before each branch is taken. While this can
be done in other ways we might also want to provide specific values to change the code
path. In IDAPyEmu we would simply set up a mnemonic handler for “cmp” and log its
values.

from PyEmu import IDAPyEmu

def my_cmp_handler(emu, address, op1, op2, op3):
 print "[*] Hit my_cmp_handler %x: %s (%x, %x)" %
(emu.get_register("EIP"), emu.get_disasm(), op1, op2)

 return True

Start the program counter at the current location in the
disassembly window
emu.set_register("EIP", ScreenEA())

This demonstrates setting local variables used in our
comparisons
emu.set_stack_variable(0x2c, 0x00000000, name="var_2C")
emu.set_stack_variable(0x1d, 0x00000001, name="var_1D")
emu.set_stack_variable(0x1e, 0x00000002, name="var_1E")

Set up our memory access handler
emu.set_mnemonic_handler("cmp", my_cmp_handler)

emu.execute(start=0x00427E46, end=0x00427E6B)

print "[*] Done"

 This script would result in the following

5.6 Function return value statistics

Functions are often used for simple purposes. One might have a function calculating
values based on input. This can be easily gathered via emulation. The concept is to set
up a list of inputs, and retrieve the return value once sent through a function. This can be
done as many times as needed to determine what might be the result of a function.

 The simple example we will write, set up funcition arguments, and hook ret so
that when the function ends we can log the result and start again.

from PyEmu import IDAPyEmu

def reset_stack(emu, value1, value2, value3):
 emu.set_stack_argument(0x8, value1, name="arg_0")
 emu.set_stack_argument(0xc, value2, name="arg_4")
 emu.set_stack_argument(0x10, value3, name="arg_8")

 return True

 This function will reset our stack variables to their intended values.

def my_ret_handler(emu, address):
 global count

 value1 = emu.get_stack_argument("arg_0")
 value2 = emu.get_stack_argument("arg_4")
 value3 = emu.get_stack_argument("arg_8")

 print "[*] Returning %x: %x, %x, %x = %x" % (address, value1,
value2, value3, emu.get_register("EAX"))

 reset_stack(emu, value1 + 1, value2 + 2, value3 + 3)
 emu.set_register("EIP", ScreenEA())

 count += 1

 return True

 Our “ret” mnemonic handler will be called upon return. When hit, we will get the
value of stack arguments and the return value of the function for logging purposes. After
we have logged the requested information, we increment the values, reset the program
counter and do it again.

 # Typical ida loading
 <…>

This sets our stack values for the function
reset_stack(emu, 0x00000000, 0x00000001, 0x00000002)

Set up our memory access handler
emu.set_mnemonic_handler("ret", my_ret_handler)

count = 0
while count <= 10:
 if not emu.execute():
 break

print "[*] Done"

 After 10 iterations of the function have been completed the emulator will exit.
And here is the output.

 Like all of our examples, this can prove useful in situations when functions may
return important values that are unknown. We are aiming for reduction of time
investment in each function while reverse engineering.

 We have seen a few real world implementations and uses for PyEmu. There are
numerous possibilities when reverse engineering and hopefully this has demonstrated
some basic ones while working to create more complex solutions for your own specific
needs.

6 Limitations and future work

Obviously, there are several limitations in the current toolset of reverse engineering and
PyEmu. There is still a lot of manual interaction and setup when using PyEmu. Setting
memory values, updating stack variables and the basic need to have some understanding
of the emulated code is a draw back to any modern emulator. As the tool matures, these
issues will hopefully be addressed. Whether this is done through pre-analysis, statistics,
or artificial intelligence is unknown. Regardless, in order to reach the goal of reducing
our time investment in reverse engineering these advancements must be made.

 The lack of peripheral device emulation may also have negative side effects in
PyEmu. Often times deep complex code paths may make an attempt to access a
peripheral. In this case the emulator will be forced to ignore any access and continue on
as if nothing happened. In the future, these cases may be rectified by having more
intelligent responses to unsupported actions, such as emulating an input device.

 The single biggest drawback to the current PyEmu emulator is the lack of a
complete set of emulated libraries and system calls. All programs will import several
external libraries for use during execution. For a library call, this may not be a large
concern. In future releases, PyEmu will load the requested library into memory and
provide access to its exports as is normally done when executing. However, system calls
are fairly hard to emulate at this level. Although PyEmu does a decent job of attempting
to provide a python usable equivalent to a socket, for instance, many other actions will go
ignored. Hopefully, a decent solution for this will materialize very soon.

 In the future, PyEmu will be much more automated, or at least have automation
added to the base for use. Also, better library and system call support will raise the
emulator to a new level. With this in mind, it still functions well and is a valid solution to
most of today’s reverse engineering tasks.

7 Conclusion

Emulation has played a key role in advancing computer science since the mid 1960s. As
we move towards advancing reverse engineering, I believe it is beneficial to also allow
emulators to demonstrate their usefulness in the field. With increasingly complex

applications, obfuscation, and never ending time constraints we must work faster and
more efficiently.

PyEmu was designed with all of this in mind and most importantly to be usable,
flexible, and easily extended. PyEmu strives to work fluently and as expected so that it
may be integrated with the ever growing tool box of reverse engineers. Hopefully it
accomplishes all of that and then some.

References

1. The History of Emulation
 http://www.zophar.net/articles/art_14-2.html

2. bochs: The Open Source IA-32 Emulation Project
 http://bochs.sourceforge.net/

3. IDA Pro Disassembler
 http://datarescue.com/idabase/index.htm

4. SABRE Security BinNavi
 http://www.sabre-security.com/products/binnavi.htm

5. PaiMei Reverse Engineering Framework
 http://paimei.openrce.org/

6. The x86 Emulator plugin for IDAPro
 http://ida-x86emu.sourceforge.net/

7. IDAPython
 http://d-dome.net/idapython/

8. PIDA
 http://paimei.openrce.org/

9. Pydbg
 http://paimei.openrce.org/

10. pefile
 http://dkbza.org/pefile.htm

11. pydasm
 http://dkbza.org/pydasm.html

12. libdasm
 http://www.nologin.org/main.pl?action=codeView&codeId=49&

13.Intel 64 and IA-32 Architectures Software Developer’s Manual
 http://www.intel.com/design/processor/manuals/253666.pdf

http://www.zophar.net/articles/art_14-2.html
http://bochs.sourceforge.net/
http://datarescue.com/idabase/index.htm
http://www.sabre-security.com/products/binnavi.htm
http://paimei.openrce.org/
http://ida-x86emu.sourceforge.net/
http://d-dome.net/idapython/
http://paimei.openrce.org/
http://paimei.openrce.org/
http://dkbza.org/pefile.htm
http://dkbza.org/pydasm.html
http://www.nologin.org/main.pl?action=codeView&codeId=49&
http://www.intel.com/design/processor/manuals/253666.pdf

