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Before we begin… 
• 153 slides 

• 45 minutes 

•  = 17.64 seconds per slide 

• First real “public” presentation about PyParallel 

• Compressed as much info as possible about the work into this 
one presentation (on the basis that the slides and video will 
be perpetually available online) 

• It’s going to be fast 

• It’s going to be technical 

• It’s going to be controversial 

• … 

• 50/50 chance of it being coherent 

 



About Me 
• Core Python Committer 

• Subversion Committer 

• Founder of Snakebite 
 



http://www.snakebite.net 



About Me 
• Core Python Committer 

• Subversion Committer 

• Founder of Snakebite 
o One big amorphous mass of heterogeneous UNIX gear 

o AIX RS/6000 

o SGI IRIX/MIPS 

o Alpha/Tru64 

o Solaris/SPARC 

o HP-UX/IA64 

o FreeBSD, NetBSD, OpenBSD, DragonFlyBSD 

• Background is 100% UNIX, love it.  Romantically. 

• But I made my peace with Windows when XP came out 

 
 



Survey Says... 
• How many people use Windows... 

o at work, on the desktop? 

o at work, on the server? 

o at home? 

• How many people use Linux... 
o at work, on the desktop? 

o at work, on the server? 

o at home? 

• How many people use OS X... 
o at work, on the desktop? 

o at work, on the server? 

o at home? 



Survey Says... 
• Other UNIX at work on the server? 

o AIX 

o Solaris 

o HP-UX 

o Other? 

• New work project; Python 2 or 3? 
o Python 2 

o Python 3 

• Knowledge check: 
o Good understanding of Linux I/O primitives? (epoll etc) 

o Good understanding of asynchronous I/O on Windows via IOCP, overlapped I/O 

and threads? 



Controversial Survey Says... 
• Pro-Linux; how many people think... 

o Linux kernel is technically superior to Windows? 

o Linux I/O facilities (epoll etc) are technically superior to Windows? 

 

• Pro-Windows; how many people think... 
o Windows kernel/executive is technically superior to Linux? 

o Windows asynchronous I/O facilities (IOCP, overlapped I/O) are technically 

superior to Linux? 

 

• Apples and oranges; both are good 



Thanks! 

 

Moving on… 



TL;DR What is PyParallel? 
• Set of modifications to CPython interpreter 

• Allows multiple interpreter threads to run concurrently 

• ….without incurring any additional performance penalties 

• Intrinsically paired with Windows asynchronous I/O 
primitives 

• Catalyst was python-ideas async discussion (Sep 2012) 

• Working prototype/proof-of-concept after 3 months: 
o Performant HTTP server, written in Python, automatically exploits all cores 

o pyparallel.exe -m async.http.server 

• Source code: 
• https://bitbucket.org/tpn/pyparallel 

o Coming soon: `conda install pyparallel`! 

https://bitbucket.org/tpn/pyparallel
https://bitbucket.org/tpn/pyparallel


What’s it look like? 



Minimalistic PyParallel 
async server 



Protocol-driven… 
(protocols are just classes) 



You implement completion-
oriented methods 



Hollywood Principle: 
Don’t call us, we’ll call you 



async.server() = transport 

async.register() = fuses protocol + transport 



Part 1 
The Catalyst 

asyncore: included batteries don’t fit 

https://mail.python.org/pipermail/python-ideas/2012-October/016311.html 

 

https://mail.python.org/pipermail/python-ideas/2012-October/016311.html
https://mail.python.org/pipermail/python-ideas/2012-October/016311.html
https://mail.python.org/pipermail/python-ideas/2012-October/016311.html
https://mail.python.org/pipermail/python-ideas/2012-October/016311.html
https://mail.python.org/pipermail/python-ideas/2012-October/016311.html
https://mail.python.org/pipermail/python-ideas/2012-October/016311.html


A seemingly innocuous e-mail... 
• Late September 2012: “asyncore: batteries not included” 

discussion on python-ideas 

• Whirlwind of discussion relating to new async APIs over 

October 

• Outcome: 

o PEP-3156: Asynchronous I/O Support Rebooted 

o Tulip/asyncio 

• Adopted some of Twisted’s (better) paradigms 



Things I’ve Always Liked 
About Twisted 

• Separation of protocol from transport 

• Completion-oriented protocol classes: 

 



PEP-3156 & Protocols 



Understanding the catalyst… 
• Completion-oriented protocols, great! 

• But I didn’t like the implementation details 

• Why? 

• Things we need to cover in order to answer that 

question: 
o Socket servers: readiness-oriented versus completion-oriented 

o Event loops and I/O multiplexing techniques on UNIX 

o What everyone calls asynchronous I/O but is actually just synchronous non-

blocking I/O (UNIX) 

o Actual asynchronous I/O (Windows) 

o I/O Completion Ports 

• Goal in 50+ slides: “ahhh, that’s why you did it like that!” 



Socket Servers: 

Completion versus Readiness 



Socket Servers: 

Completion versus Readiness 
• Protocols are completion-oriented 

• ….but UNIX is inherently readiness-oriented 

• read() and write(): 
o No data available for reading?  Block! 

o No buffer space left for writing?  Block! 

• Not suitable when serving more than one client 
o (A blocked process is only unblocked when data is available for reading or buffer 

space is available for writing) 

• So how do you serve multiple clients? 

 



Socket Servers Over the Years 

(Linux/UNIX/POSIX) 

• One process per connection:  

 accept() -> fork() 

• One thread per connection 

• Single-thread + non-blocking I/O + 

event multiplexing 

 



accept()->fork() 
• Single server process sits in an 

accept() loop 

• fork() child process to handle new 

connections 

• One process per connection, doesn’t 

scale well 
 



One thread per connection... 
• Popular with Java, late 90s, early 00s 

• Simplified programming logic 

• Client classes could issue blocking reads/writes 

• Only the blocking thread would be suspended 

• Still has scaling issues (but better than accept()-

>fork()) 

o Thousands of clients = thousands of threads 



Non-blocking I/O + event multiplexing 

• Sockets set to non-blocking: 
o read()/write() calls that would block return 

EAGAIN/EWOULDBLOCK instead 

• Event multiplexing method 

oQuery readiness of multiple sockets at once 

• “Readiness-oriented”; can I do something? 
o Is this socket ready for reading? 

o Is this socket ready for writing? 

• (As opposed to “completion-oriented”: that thing you 

asked me to do has been done.) 



I/O Multiplexing Over the Years 

(Linux/UNIX/POSIX) 

• select() 

• poll() 

• /dev/poll 

• epoll 

• kqueue 
 



I/O Multiplexing Over the Years 

select() and poll() 

• select() 
o BSD 4.2 (1984) 

o Pass in a set of file descriptors you’re interested in 

(reading/writing/exceptional conditions) 

o Set of file descriptors = bit fields in array of integers 

o Fine for small sets of descriptors, didn’t scale well 

• poll() 
o AT&T System V (1983) 

o Pass in an array of “pollfds”: file descriptor + interested events 

o Scales a bit better than select() 

 

 



I/O Multiplexing Over the Years 

select() and poll() 

• Both methods had O(n)* kernel (and user) overhead 

• Entire set of fds you’re interested in passed to kernel on 

each invocation 

• Kernel has to enumerate all fds – also O(n) 

• ….and you have to enumerate all results – also O(n) 

• Expensive when you’re monitoring tens of thousands of 

sockets, and only a few are “ready”; you still need to 

enumerate your entire set to find the ready ones 

 

 
[*] select() kernel overhead O(n 3̂) 

 

 



Late 90s 
• Internet explosion 

• Web servers having to handle thousands of 

simultaneous clients 

• select()/poll() becoming bottlenecks 

• C10K problem (Kegel) 

• Lots of seminal papers started coming out 

• Notable: 

o Banga et al: 

• “A Scalable and Explicit Event Delivery Mechanism for UNIX” 

• June 1999 USENIX, Monterey, California 

 

 

 



Early 00s 
• Banga inspired some new multiplexing techniques: 

o FreeBSD: kqueue 

o Linux: epoll 

o Solaris: /dev/poll 

• Separate declaration of interest from inquiry about 
readiness 
o Register the set of file descriptors you’re interested in ahead of time 

o Kernel gives you back an identifier for that set 

o You pass in that identifier when querying readiness 

• Benefits: 
o Kernel work when checking readiness is now O(1) 

• epoll and kqueue quickly became the preferred methods 
for I/O multiplexing 

 
 



Back to the python-ideas 
async discussions 

• Completion-oriented protocols were adopted (great!) 

 

 

 

 

 

 

 

• But how do you drive completion-oriented Python 

classes when your OS is readiness based? 

 

 



The Event Loop 
• Twisted, Tornado, Tulip, libevent, libuv, ZeroMQ, node.js 

• All single-threaded, all use non-blocking sockets 

• Event loop ties everything together 



The Event Loop (cont.) 
• It’s literally an endless loop that runs until 

program termination 

• Calls an I/O multiplexing method upon each 

“run” of the loop 

• Enumerate results and determine what needs to 

be done 
o Data ready for reading without blocking?  Great! 

• read() it, then invoke the relevant protocol.data_received() 

o Data can be written without blocking?  Great!  Write it! 

o Nothing to do?  Fine, skip to the next file descriptor. 

 



Recap: Asynchronous I/O 
(PEP-3156/Tulip) 

• Exposed to the user: 

o Completion-oriented protocol classes 

• Implementation details: 
Single-threaded* server + 

Non-blocking sockets    + 

Event loop              + 

I/O multiplexing method = asynchronous I/O! 

 

([*] Not entirely true; separate threads are used, but only to 

encapsulate blocking calls that can’t be done in a non-

blocking fashion.  They’re still subject to the GIL.) 
 

 

 

 



The thing that bothers me about all 

the “async I/O” libraries out there... 
• ....is that the implementation 

o Single-threaded 

o Non-blocking sockets 

o Event loop 

o I/O multiplex via kqueue/epoll 

• ....is well suited to Linux, BSD, OS X, UNIX 

• But: 
o There’s nothing asynchronous about it! 

o It’s technically synchronous, non-blocking I/O 

o It’s inherently single-threaded. 

• (It’s 2013 and my servers have 64 cores and 256GB RAM!) 

• And it’s just awful on Windows... 



Ah, Windows 
• The bane of open source 

• Everyone loves to hate it 

• “It’s terrible at networking, it only has select()!” 

• “If you want high-performance you should be using 

Linux!” 

• … 

• “Windows 8 sucks” 

• “Start screen can suck it!” 

 

 

 



 

 

(If you’re not a fan of 

Windows, try keep an open 

mind for the next 20-30 slides) 



Windows NT: 1993+ 
• Dave Cutler: DEC OS engineer (VMS et al) 

• Despised all things UNIX 

o Quipped on Unix process I/O model: 

• "getta byte, getta byte, getta byte byte byte“ 

• Got a call from Bill Gates in the late 80s 

o “Wanna’ build a new OS?” 

• Led development of Windows NT 

• Vastly different approach to threading, kernel objects, 
synchronization primitives and I/O mechanisms 

• What works well on UNIX isn’t performant on Windows 

• What works well on Windows isn’t possible on UNIX 

 



I/O on Contemporary 
Windows Kernels (Vista+) 

• Fantastic support for asynchronous I/O 

• Threads have been first class citizens since day 1 (not 

bolted on as an afterthought) 

• Designed to be programmed in a completion-oriented, 

multi-threaded fashion 

• Overlapped I/O + IOCP + threads + kernel 

synchronization primitives = excellent combo for 

achieving high performance 



I/O on Windows 
If there were a list of things not to do… 

• Penultimate place: 
o One thread per connection, blocking I/O calls 

• Tied for last place: 
o accept() -> fork() 

• no real equivalent on Windows anyway 

o Single-thread, non-blocking sockets, event loop, I/O multiplex 

system call 

 



So for the implementation of 

PEP-3156/Tulip… 

 

(or any “asynchronous I/O” library that was 

developed on UNIX then ported to Windows…) 



….let’s do the 
worst one! 

• The best option on UNIX is the absolute worst option 

on Windows 

o Windows doesn’t have a kqueue/epoll equivalent* 

(nor should it) 

o So you’re stuck with select()… 

 

 
• [*] (Calling GetQueuedCompletionStatus() in a single-threaded event loop 

doesn’t count; you’re using IOCP wrong) 



….but select() is terrible on Windows! 
• And we’re using it in a single-thread, with non-blocking 

sockets, via an event loop, in an entirely readiness-

oriented fashion… 

• All in an attempt to simulate asynchronous I/O… 

• So we can drive completion-oriented protocols… 

 

• …instead of using the native Windows facilities? 

• Which allow actual asynchronous I/O 

• And are all completion-oriented? 

 



?!? 



Let’s dig into the details of 

asynchronous I/O on Windows 



I/O Completion Ports 
(It’s like AIO, done right.) 



IOCP: Introduction 
• The best way to grok IOCP is to 

understand the problem it was designed to 

solve: 

o Facilitate writing high-performance 

network/file servers (http, database, file 

server) 

o Extract maximum performance from multi-

processor/multi-core hardware 

o (Which necessitates optimal resource usage) 



IOCP: Goals 
• Extract maximum performance through 

parallelism 
o Thread running on every core servicing a client request 

o Upon finishing a client request, immediately processes the 

next request if one is waiting 

o Never block 

o (And if you do block, handle it as optimally as possible) 

• Optimal resource usage 
o One active thread per core 

o Anything else introduces unnecessary context switches 

 



On not blocking... 
• UNIX approach: 

o Set file descriptor to non-blocking 

o Try read or write data 

o Get EAGAIN instead of blocking 

o Try again later 

• Windows approach  
o Create an overlapped I/O structure 

o Issue a read or write, passing the overlapped structure and completion port info 

o Call returns immediately 

o Read/write done asynchronously by I/O manager 

o Optional completion packet queued to the completion port a) on error, b) on 

completion. 

o Thread waiting on completion port de-queues completion packet and processes 

request 



On not blocking... 
• UNIX approach: 

o Is this ready to write yet yet? 

o No?  How about now? 

o Still no? 

o Now? 

o Yes!?  Really?  Ok, write it! 

o Hi!  Me again.  Anything to read? 

o No? 

o How about now? 

• Windows approach: 
o Here, do this.  Let me know when it’s done. 

 

Readiness-oriented 

Completion-oriented 

(reactor pattern) 

(proactor pattern) 



On not blocking... 
• Windows provides an asynchronous/overlapped way to 

do just about everything 

• Basically, if it *could* block, there’s a way to do it 

asynchronously in Windows 

• WSASend and WSARecv 

• AcceptEx() vs accept() 

• ConnectEx() vs connect() 

• DisconnectEx() vs close() 

• GetAddrinfoEx() vs getaddrinfo() (Windows 8+) 

• (And that’s just for sockets; all device I/O can be done 

asynchronously) 



The key to understanding what 

makes asynchronous I/O in 

Windows special is… 



 

Thread-specific I/O  

versus  

Thread-agnostic I/O 

The act of getting the data out of nonpaged 

kernel memory into user memory 



Thread-specific I/O 

• Thread allocates buffer: 
o char *buf = malloc(8192) 

• Thread issues a WSARecv(buf) 

• I/O manager creates an I/O request packet, 

dispatches to NIC via device driver 

• Data arrives, NIC copies 8192 bytes of data into 

nonpaged kernel memory 

• NIC passes completed IRP back to I/O manager 
o (Typically involves DMA, then DIRQL -> ISR -> DPC) 

• I/O manager needs to copy that data back to 

thread’s buffer 



Getting data back to the caller 
• Can only be done when caller’s address space is active 

• The only time a caller’s address space is active is when 

the calling thread is running 

• Easy for synchronous I/O: address space is already 

active, data can be copied directly, WSARecv() returns 
o This is exactly how UNIX does synchronous I/O too 

o Data becomes available; last step before read() returns is for the kernel 

to transfer data back into the user’s buffer 

• Getting the data back to the caller when you’re doing 

asynchronous I/O is much more involved... 



Getting data back to the 
caller asynchronously  

(when doing thread-specific I/O) 

• I/O manager has to delay IRP completion until thread’s 

address space is active 

• Does this by queuing a kernel APC (asynchronous procedure 

call) to thread 
o (which has already entered an altertable wait state via SleepEx, 

WaitFor(Single|MultipleObjects) etc) 

• This awakes the thread from its alertable wait state 

• APC executes, copies data from kernel to user buffer 

• Execution passes back to the thread 

• Detects WSARecv() completed and continues processing 

 



Disadvantages of thread-
specific I/O 

• IRPs need to be queued to the thread that initiated the 

I/O request via kernel APCs 

• Kernel APCs wake threads in an alertable wait state 

o This requires access to the highly-contented, 

extremely critical global dispatcher lock 

• The number of events a thread can wait for when 

entering an alertable wait state is limited to 64 

• Alertable waits were never intended to be used for I/O 

    (At least not high-performance I/O) 



Thread-agnostic I/O 
• Thread-specific I/O: IRP must be completed by calling 

thread 
• (IRP completion = copying data from nonpaged kernel memory to user memory) 

• (nonpaged = can’t be swapped out; imperative when you’ve potentially got a 

device DMA’ing directly to the memory location) 

• Thread-agnostic I/O: IRP does not have to be completed 

by calling thread 



Thread-agnostic I/O 
Two Options: 

• I/O completion ports 
o IRP can be completed by any thread that has access to the completion port 

• Registered I/O (Windows 8+) 
o User allocates large contiguous buffers at startup. 

o Buffer locked during IRP processing (nonpaged; can’t be swapped out) 

o Mapped into the kernel address space 

o NIC DMAs data into kernel address space as usual 

o ....which just happens to also be the user’s buffer 

o No need for the I/O manager to perform a copy back into user address space 

o (Similar role to SetFileIoOverlappedRange effect when doing overlapped file I/O) 

 



Thread-agnostic I/O with IOCP 
• Secret sauce behind asynchronous I/O on Windows 

• IOCPs allow IRP completion (copying data from 

nonpaged kernel memory back to user’s buffer) to be 

deferred to a thread-agnostic queue 

• Any thread can wait on this queue (completion port) via 

GetQueuedCompletionStatus() 

• IRP completion done just before that call returns 

• Allows I/O manager to rapidly queue IRP completions 

• ....and waiting threads to instantly dequeue and process 
 



• IOCPs can be thought of as FIFO queues 

• I/O manager pushes completion packets asynchronously 

• Threads pop completions off and process results: 
  

 

IOCP and Concurrency 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

GQCS = GetQueuedCompletionStatus() 

Completion Packet 

  IOCP 

I/O Manager NIC 
IRP 



IOCP and Concurrency 
• Remember IOCP design goals: 

o Maximise performance 

o Optimize resource usage 

• Optimal number of active threads running per core: 1 

• Optimal number of total threads running: 1 * ncpu 

• Windows can’t control how many threads you create and 

then have waiting against the completion port 

• But it can control when and how many threads get awoken 

• ….via the IOCP’s maximum concurrency value 

• (Specified when you create the IOCP) 



IOCP and Concurrency 
• Set I/O completion port’s concurrency to ncpu 

• Create ncpu * 2 threads 

 

 

 

 

 

• An active thread does something that blocks (i.e. file I/O) 

 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

IOCP                concurrency=2 



IOCP and Concurrency 
• Set I/O completion port’s concurrency to ncpu 

• Create ncpu * 2 threads 

 

 

 

 

 

• An active thread does something that blocks (i.e. file I/O) 

• Windows can detect that the active thread count (1) has dropped 

below max concurrency (2) and that there are still outstanding 

packets in the completion queue 

 

 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

IOCP                concurrency=2 



IOCP and Concurrency 
• Set I/O completion port’s concurrency to ncpu 

• Create ncpu * 2 threads 

 

 

 

 

 

• An active thread does something that blocks (i.e. file I/O) 

• Windows can detect that the active thread count (1) has dropped 

below max concurrency (2) and that there are still outstanding 

packets in the completion queue 

• ....and schedules another thread to run 

 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

do { 
  s = GQCS(i); 

  process(s); 
} while (1); 

 

IOCP                concurrency=2 



IOCP and Concurrency 
• ....although just because you can block, doesn’t mean 

you should! 

• On Windows, everything can be done asynchronously 

• ....so there’s no excuse for blocking! 

• (Except for a low-latency corner case I’ll discuss later) 



More cool IOCP stuff: 
thread affinity 

• HTTP Server 

o Short-lived requests 

o Stateless 

• Let’s say you have 64 cores (thus, 64 active threads), 

and infinite incoming load 

• No thread is going to be better than the other at serving 

a given request 

• Thus, one I/O completion port is sufficient 



More cool IOCP stuff: 
thread affinity 

• What about P2P protocols? 

• One I/O completion port 
o Tick 1: thread A processes client X, thread B processes client Y 

o Tick 2: thread A processes client Y, thread B processes client X 

• Thread A has the benefit of memory/cache locality when 
processing back-to-back requests from client X 

• For protocols where low-latency/high-throughput is 
paramount, threads should always serve the same clients 

• Solution: 
o Create one I/O completion port per core (concurrency = 1) 

o Create 2 threads per completion port 

o Bind threads to core via thread affinity 

• Very important in minimizing cache-coherency traffic between 
CPU cores 

 



Cheating with PyParallel 
• Vista introduced new thread pool APIs 

• Tightly integrated into IOCP/overlapped ecosystem 

• Greatly reduces the amount of scaffolding code I needed to 
write to prototype the concept 

void PxSocketClient_Callback(); 
CreateThreadpoolIo(.., &PxSocketClient_Callback) 
.. 
StartThreadpoolIo(..) 
AcceptEx(..)/WSASend(..)/WSARecv(..) 

• That’s it.  When the async I/O op completes, your callback 
gets invoked 

• Windows manages everything: optimal thread pool size, 
NUMA-cognizant dispatching 

• Didn’t need to create a single thread, no mutexes, none of the 
normal headaches that come with multithreading 

 



Tying it altogether 
and leveraging backwards synergy overflow 

   -Liz Lemon, 2009 



Thread waits on completion port 

…invokes our callback (process(s)) 
 

 

 

do { 
  s = GetQueuedCompletionStatus(); 
  process(s); 
} while (1); 
 



We do some prep, then call the 

money maker: PxSocket_IOLoop 
 

 

 

do { 

  s = GetQueuedCompletionStatus(); 
  process(s); 

} while (1); 
 

void 
NTAPI 
PxSocketClient_Callback( 
    PTP_CALLBACK_INSTANCE instance, 
    void *context, 
    void *overlapped, 
    ULONG io_result, 
    ULONG_PTR nbytes, 
    TP_IO *tp_io 
) 
{ 
    Context *c = (Context *)context; 
    PxSocket *s = (PxSocket *)c->io_obj; 
 
    EnterCriticalSection(&(s->cs)); 
 
    ENTERED_IO_CALLBACK(); 
 
    PxSocket_IOLoop(s); 
 
    LeaveCriticalSection(&(s->cs)); 
} 



Our thread I/O loop figures out what to do based on a) 

the protocol we provided, and b) what just happened 

 

 

 

do { 

  s = GetQueuedCompletionStatus(); 
  process(s); 

} while (1); 
 

void 
NTAPI 
PxSocketClient_Callback( 
    PTP_CALLBACK_INSTANCE instance, 
    void *context, 
    void *overlapped, 
    ULONG io_result, 
    ULONG_PTR nbytes, 
    TP_IO *tp_io 
) 
{ 
    Context *c = (Context *)context; 
    PxSocket *s = (PxSocket *)c->io_obj; 
 
    EnterCriticalSection(&(s->cs)); 
 
    ENTERED_IO_CALLBACK(); 
 
    PxSocket_IOLoop(s); 
 
    LeaveCriticalSection(&(s->cs)); 
} 

PxSocket_IOLoop() 
{ 
    ... 
    send_initial_bytes = ( 
        is_new_connection and 
        hasattr( 
  protocol, 
  ‘initial_bytes_to_send’, 
  ) 
    ) 
} 



And then calls into our protocol 

(via PyObject_CallObject) 

 

 

 

do { 

  s = GetQueuedCompletionStatus(); 
  process(s); 

} while (1); 
 

void 
NTAPI 
PxSocketClient_Callback( 
    PTP_CALLBACK_INSTANCE instance, 
    void *context, 
    void *overlapped, 
    ULONG io_result, 
    ULONG_PTR nbytes, 
    TP_IO *tp_io 
) 
{ 
    Context *c = (Context *)context; 
    PxSocket *s = (PxSocket *)c->io_obj; 
 
    EnterCriticalSection(&(s->cs)); 
 
    ENTERED_IO_CALLBACK(); 
 
    PxSocket_IOLoop(s); 
 
    LeaveCriticalSection(&(s->cs)); 
} 

PxSocket_IOLoop() 
{ 
    ... 
    send_initial_bytes = ( 
        is_new_connection and 
        hasattr( 
  protocol, 
  ‘initial_bytes_to_send’, 
  ) 
    ) 
    do_data_received = (…) 
} 



Now times that by ncpu… 

 

 

 



….and it should start to become obvious… 

 

 

 



….why it’s a better solution… 

 

 

 



….than the defacto way of doing 

async I/O in the past… 



....via single-threaded, non-
blocking, synchronous I/O 

“Ahh, so that’s why you did it like that!” 



But the CPython interpreter 

isn’t thread safe! 

The GIL!  The GIL! 



Part 2 



Removing the GIL 
(Without needing to remove the GIL.) 



So how does it work? 
 

 
• First, how it doesn’t work: 

o No GIL removal 

• This was previously tried and rejected 

• Required fine-grained locking throughout the interpreter 

• Mutexes are expensive 

• Single-threaded execution significantly slower 

o Not using PyPy’s approach via Software Transactional Memory (STM) 

• Huge overhead 

• 64 threads trying to write to something, 1 wins, continues 

• 63 keep trying 

• 63 bottles of beer on the wall… 

• Doesn’t support “free threading” 
o Existing code using threading.Thread won’t magically run on all cores 

o You need to use the new async APIs 



PyParallel Key Concepts 
• Main-thread 

o Main-thread objects 

o Main-thread execution 

o In comparison to existing Python: the thing that runs when the GIL is held 

o Only runs when parallel contexts aren’t executing 

• Parallel contexts 
o Created in the main-thread 

o Only run when the main-thread isn’t running 

o Read-only visibility to the global namespace established in the main-thread 

• Common phrases: 
• “Is this a main thread object?” 

• “Are we running in a parallel context?” 

• “Was this object created from a parallel context?” 

 

I’ll explain the purple text later. 



Simple Example 
• async.submit_work() 

o Creates a new parallel context for 
the `work` callback 

• async.run() 
o Main-thread suspends 

o Parallel contexts allowed to run 

o Automatically executed across all 
cores (when sufficient work permits) 

o When all parallel contexts complete, 
main thread resumes, async.run() 
returns 

• ‘a’ = main thread object 

• ‘b = a * 2’ 
o Executed from a parallel context 

o ‘b’ = parallel context object 

 

import async 

a = 1 

def work(): 

 b = a * 2 

async.submit_work(work) 

async.run() 

  



Parallel Contexts 
• Parallel contexts are executed by separate threads 

• Multiple parallel contexts can run concurrently on 

separate cores 

• Windows takes care of all the thread stuff for us 

o Thread pool creation 

o Dynamically adjust number of threads based on load and 

physical cores 

o Cache/NUMA-friendly thread scheduling/dispatching 

• Parallel threads execute the same interpreter, same 

ceval loop, same view of memory as the main thread etc 

• (No IPC overhead as with multiprocessing) 
 



But the CPython interpreter 
isn’t thread safe! 

• Global statics used frequently (free lists) 

• Reference counting isn’t atomic 

• Objects aren’t protected by locks 

• Garbage collection definitely isn’t thread safe 
o You can’t have one thread performing a GC run, deallocating 

objects, whilst another thread attempts to access said objects 
concurrently 

• Creation of interned strings isn’t thread safe 

• Bucket memory allocator isn’t thread safe 

• Arena memory allocator isn’t thread safe 
 



Concurrent Interpreter 
Threads 

• Basically, every part of the CPython interpreter assumes 

it’s the only thread running (if it has the GIL held) 

• The only possible way of allowing multiple threads to run 

the same interpreter concurrently would be to add fine-

grained locking to all of the above 

• This is what Greg Stein did ~13 years ago 

o Introduced fine-grained locks in lieu of a Global 

Interpreter Lock 

o Locking/unlocking introduced huge overhead 

o Single-threaded code 40% slower 



PyParallel’s Approach 
• Don’t touch the GIL 

o It’s great, serves a very useful purpose 

• Instead, intercept all thread-sensitive calls: 
o Reference counting 

• Py_INCREF/DECREF/CLEAR 

o Memory management 

• PyMem_Malloc/Free 

• PyObject_INIT/NEW 

o Free lists 

o Static C globals 

o Interned strings 

• If we’re the main thread, do what we normally do 

• However, if we’re a parallel thread, do a thread-safe 
alternative 



Main thread or Parallel 
Thread? 

• “If we’re a parallel thread, do X, if not, do Y” 
o X = thread-safe alternative 

o Y = what we normally do 

• “If we’re a parallel thread” 
o Thread-sensitive calls are ubiquitous 

o But we want to have a negligible performance impact 

o So the challenge is how quickly can we detect if we’re a parallel thread 

o The quicker we can detect it, the less overhead incurred 



The Py_PXCTX macro 
“Are we running in a parallel context?” 

 

#define Py_PXCTX (Py_MainThreadId != _Py_get_current_thread_id()) 

 

• What’s so special about _Py_get_current_thread_id()? 

o On Windows, you could use GetCurrentThreadId() 

o On POSIX, pthread_self() 

• Unnecessary overhead (this macro will be everywhere) 

• Is there a quicker way? 

• Can we determine if we’re running in a parallel context without 

needing a function call? 



Windows Solution: 
Interrogate the TEB 

#ifdef WITH_INTRINSICS 

#   ifdef MS_WINDOWS 

#       include <intrin.h> 

#       if defined(MS_WIN64) 

#           pragma intrinsic(__readgsdword) 

#           define _Py_get_current_process_id() (__readgsdword(0x40)) 

#           define _Py_get_current_thread_id()  (__readgsdword(0x48)) 

#       elif defined(MS_WIN32) 

#           pragma intrinsic(__readfsdword) 

#           define _Py_get_current_process_id() __readfsdword(0x20) 

#           define _Py_get_current_thread_id()  __readfsdword(0x24) 



Py_PXCTX Example 
-#define _Py_ForgetReference(op) _Py_INC_TPFREES(op) 
+#define _Py_ForgetReference(op)                     \ 
+    do {                                            \ 
+        if (Py_PXCTX)                               \ 
+            _Px_ForgetReference(op);                \ 
+        else                                        \ 
+            _Py_INC_TPFREES(op);                    \ 
+    } while (0) 
+ 
+#endif /* WITH_PARALLEL */ 

 

• Py_PXCTX == (Py_MainThreadId == __readfsdword(0x48)) 
• Overhead reduced to a couple more instructions and an extra branch 

(cost of which can be eliminated by branch prediction) 

• That’s basically free compared to STM or fine-grained locking 



PyParallel Advantages 
• Initial profiling results: 0.01% overhead incurred by 

Py_PXCTX for normal single-threaded code 
o GIL removal: 40% overhead 
o PyPy’s STM: “200-500% slower” 

• Only touches a relatively small amount of code 
o No need for intrusive surgery like re-writing a thread-safe bucket 

memory allocator or garbage collector 

• Keeps GIL semantics 
o Important for legacy code 

o 3rd party libraries, C extension code 

• Code executing in parallel context has full visibility to “main 
thread objects” (in a read-only capacity, thus no need for 
locks) 

• Parallel contexts are intended to be shared-nothing 
o Full isolation from other contexts 

o No need for locking/mutexes 

 



“If we’re a parallel thread, do X” 

X = thread-safe alternatives 
• First step was attacking memory allocation 

o Parallel contexts have localized heaps 

o PyMem_MALLOC, PyObject_NEW etc all get returned memory backed by this 
heap 

o Simple block allocator 

• Blocks of page-sized memory allocated at a time (4k or 2MB) 

• Request for 52 bytes?  Current pointer address returned, then advanced 52 
bytes 

• Cognizant of alignment requirements 

• What about memory deallocation? 
o Didn’t want to write a thread-safe garbage collector 

o Or thread-safe reference counting mechanisms 

o And our heap allocator just advances a pointer along in blocks of 4096 bytes 

o Great for fast allocation 

o Pretty useless when you need to deallocate 

 



Memory Deallocation within 
Parallel Contexts 

• The allocations of page-sized blocks are done from a 

single heap 
o Allocated via HeapAlloc() 

• These parallel contexts aren’t intended to be long-

running bits of code/algorithm 

• Let’s not free() anything… 

• ….and just blow away the entire heap via HeapFree() 

with one call, once the context has finished 



Deferred Memory 
Deallocation 

• Pros: 
o Simple (even more simple than the allocator) 

o Good fit for the intent of parallel context callbacks 

• Execution of stateless Python code 

• No mutation of shared state 

• The lifetime of objects created during the parallel context is limited 

to the duration of that context 

• Cons: 
o You technically couldn’t do this: 

def work(): 

for x in xrange(0, 1000000000): 

… 

o (Why would you!) 



Reference Counting 
• Why do we reference count in the first place? 

• Because the memory for objects is released when the 

object’s reference count goes to 0 

• But we release all parallel context memory in one fell 

swoop once it’s completed 

• And objects allocated within a parallel context can’t 

“escape” out to the main-thread 
o i.e. appending a string from a parallel context to a list allocated from the main 

thread 

• So… there’s no point referencing counting objects 

allocated within parallel contexts! 



Reference Counting (cont.) 
• What about reference counting main thread objects we 

may interact with? 

• Well all main thread objects are read-only 

• So we can’t mutate them in any way 

• And the main thread doesn’t run whilst parallel threads 

run 

• So we don’t need to be worried about main thread 

objects being garbage collected when we’re referencing 

them 

• So… no need for reference counting of main thread 

objects when accessed within a parallel context! 

 



Garbage Collection 
• If we deallocate everything at the end of the parallel 

context’s life 

• And we don’t do any reference counting anyway 

• Then there’s no possibility for circular references 

• Which means there’s no need for garbage collection!  

• ….things just got a whole lot easier! 



Python code executing in 
parallel contexts… 

• Memory allocation is incredibly simple 
o Bump a pointer 

o (Occasionally grab another page-sized block when we run out) 

• Simple = fast 

• Memory deallocation is done via one call: HeapFree() 

• No reference counting necessary 

• No garbage collection necessary 

• Negligible overhead from the Py_PXCTX macro 

• End result: Python code actually executes faster within 

parallel contexts than main-thread code 

• ….and can run concurrently across all cores, too!  



Asynchronous Socket I/O 
• The main catalyst for this work was allow the callbacks for 

completion-oriented protocols to execute concurrently 
import async 
class Disconnect: pass 
server = async.server(‘localhost’, 8080) 
async.register(transport=server, protocol=Disconnect) 
async.run() 

• Let’s review some actual protocol examples 
o Keep in mind that all callbacks are executed in parallel contexts 

o If you have 8 cores and sufficient load, all 8 cores will be saturated 

• We use AcceptEx to pre-allocate sockets ahead of time 
o Reduces initial connection latency  

o Allows use of IOCP and thread pool callbacks to service new connections 

o Not subject to serialization limits of accept() on POSIX 

• And WSAAsyncSelect(FD_ACCEPT) to notify us when we 
need to pre-allocate more sockets 



Completion-oriented Protocols 

Examples of common TCP/IP services in PyParallel 



Completion-oriented Protocols 

Examples of common TCP/IP services in PyParallel 



Short-lived Protocols 
• Previous examples all disconnect shortly after the client 

connects 

• Perfect for our parallel contexts 

o All memory is deallocated when the client disconnects 

• What about long-lived protocols? 



Long-lived Protocols 



Long-lived Protocols 



Long-lived Protocols 



Long-lived Protocols 
• Clients could stay connected indefinitely 

• Each time a callback is run, memory is allocated 

• Memory is only freed when the context is finished 

• Contexts are considered finished when the client 

disconnects 

• ….that’s not a great combo 



Tweaking the memory allocator 
• The simple block allocator had served us so well until 

this point! 

• Long-running contexts looked to unravel everything 

• The solution: heap snapshots 



Heap Snapshots 
• Before PyParallel invokes the callback 

o (Via PyObject_CallObject) 

• It takes a “heap snapshot” 

• Each snapshot is paired with a corresponding “heap 

rollback” 

• Can be nested (up to 64 times): 
snapshot1 = heap_snapshot() 

snapshot2 = heap_snapshot() 

# do work 

heap_rollback(snapshot2) 

heap_rollback(snapshot1) 



Heap Snapshots 
• Tightly integrated with PyParallel’s async I/O socket 

machinery 

• A rollback simply rolls the pointers back in the heap to 

where they were before the callback was invoked 

• Side effect: very cache and TLB friendly 
o Two invocations of data_received(), back to back, essentially get 

identical memory addresses 

o All memory addresses will already be in the cache 

o And if not, they’ll at least be in the TLB (a TLB miss can be just as 

expensive as a cache miss) 



Latency vs Concurrency vs 
Throughput 

• Different applications have different performance 
requirements/preferences: 
o Low latency preferred 

o High concurrency preferred 

o High throughput preferred 

• What control do we have over latency, concurrency and 
throughput? 

• Asynchronous versus synchronous: 
o An async call has higher overhead compared to a synchronous call 

• IOCP involved 

• Thread dispatching upon completion 

o If you can perform a synchronous send/recv at the time, without blocking, that 
will be faster 

• How do you decide when to do sync versus async? 

 



Dynamically switching 

between synchronous and 

asynchronous I/O 
Chargen: a case study 



Chargen: the I/O hog 
• Sends a line as soon as a 

connection is made 

• Sends a line as soon as 

that line has sent 

• ….sends a line as soon 

as that next line has sent 

• ….and so on 

• Always wants to send 

something 

• PyParallel term for this: 

I/O hog 

 



PyParallel’s Dynamic I/O Loop 
• Initially, separate methods were implemented for 

PxSocket_Send, PxSocket_Recv 

• Chargen forced a rethink 

• If we have four cores, but only one client connected, there’s 
no need to do async sends 
o A synchronous send is more efficient 

o Affords lower latency, higher throughput 

• But chargen always wants to do another send when the last 
send completed 

• If we’re doing a synchronous send from within 
PxSocket_Send… doing another send will result in a 
recursive call to PxSocket_Send again 

• Won’t take long before we exhaust our stack 



PxSocket_IOLoop 
• Similar idea to the ceval loop 

• A single method that has all possible socket functionality 

inlined 

• Single function = single stack = no stack exhaustion 

• Allows us to dynamically choose optimal I/O method 

(sync vs async) at runtime 

 



PxSocket_IOLoop 
• If active client count < available CPU cores-1: try sync 

first, fallback to async after X sync EWOULDBLOCKs 
o Reduced latency 

o Higher throughput 

o Reduced concurrency 

• If active client count >= available CPU cores-1: 
immediately do async 
o Increased latency 

o Lower throughput 

o Better concurrency 

 
• (I’m using “better concurrency” here to mean “more able to 

provide a balanced level of service to a greater number of 
clients simultaneously”) 



PxSocket_IOLoop 
• We also detect how many active I/O hogs there are 

(globally), and whether this protocol is an I/O hog, and 

factor that into the decision 

• Protocols can also provide a hint: 

class HttpServer: 

    concurrency = True 

class FtpServer: 

    throughput = True 

 



A note on sending… 
• Note the absence of an 

explicit send/write, i.e. 
o No transport.write(data) like with 

Tulip/Twisted 

• You “send” by returning a 
“sendable” Python object 
from the callback 
o PyBytesObject 

o PyByteArray 

o PyUnicode 

• Supporting only these types 
allow for a cheeky 
optimisation: 
o The WSABUF’s len and buf members 

are pointed to the relevant fields of the 
above types; no copying into a 
separate buffer needs to take place 

 

 



No explicit 
transport.send(data)? 

• Forces you to construct all your data at once (not a bad 

thing), not trickle it out through multiple write()/flush() 

calls 

• Forces you to leverage send_complete() if you want to 

send data back-to-back (like chargen) 

• send_complete() clarification: 

o What it doesn’t mean: other side got it 

o What it does mean: send buffer is empty (became bytes on a 

wire) 

o What it implies: you’re free to send more data if you’ve got it, it 

won’t block 

 



Nice side-effects of no 
explicit transport.send() 

• No need to buffer anything internally 

• No need for producer/consumer relationships like in 

Twisted/Tulip 
o pause_producing()/stop_consuming() 

• No need to deal with buffer overflows when you’re trying 

to send lots of data to a slow client – the protocol 

essentially buffers itself automatically 

• Keeps a tight rein on memory use 

• Will automatically trickle bytes over a link, to completely 

saturating it 

 



PyParallel In Action 
• Things to note with the chargen demo coming up: 

o One python_d.exe process 

o Constant memory use 

o CPU use proportional to concurrent client count (1 client = 25% CPU use) 

o Every 10,000 sends, a status message is printed 

• Depicts dynamically switching from synchronous sends to async sends 

• Illustrates awareness of active I/O hogs 

• Environment: 
o Macbook Pro, 8 core i7 2.2GHz, 8GB RAM 

o 1-5 netcat instances on OS X 

o Windows 7 instance running in Parallels, 4 cores, 3GB 



1 Chargen (99/25%/67%) 
 Num. Processes      CPU%            Mem% 



2 Chargen (99/54%/67%) 



3 Chargen (99/77%/67%) 



4 Chargen (99/99%/68%) 



5 Chargen?! (99/99%/67%) 



Why chargen turned out to be so 

instrumental in shaping PyParallel… 
• You’re only sending 73 bytes at a time 

• The CPU time required to generate those 73 bytes is not 
negligible (compared to the cost of sending 73 bytes) 
o Good simulator of real world conditions, where the CPU time to process a client 

request would dwarf the IO overhead communicating the result back to the client 

• With a default send socket buffer size of 8192 bytes and a 
local netcat client, you’re never going to block during send() 

• Thus, processing a single request will immediately throw you 
into a tight back-to-back send/callback loop, with no 
opportunity to service other clients (when doing synchronous 
sends) 

• Highlighted all sorts of problems I needed to solve before 
moving on to something more useful: the async HTTP server 

 



PyParallel’s async HTTP Server 
• async.http.server.HttpServer version of stdlib’s 

SimpleHttpServer. 
http://hg.python.org/sandbox/trent/file/0e70a0caa1c0/Lib/async/http/server.py 

• Final piece of the async “proof-of-concept” 

• PxSocket_IOLoop modified to optimally support 

TransmitFile 
o Windows equivalent to POSIX sendfile() 

o Serves file content directly from file system cache, very efficient 

o Tight integration with existing IOCP/threadpool support 

http://hg.python.org/sandbox/trent/file/0e70a0caa1c0/Lib/async/http/server.py
http://hg.python.org/sandbox/trent/file/0e70a0caa1c0/Lib/async/http/server.py


So we’ve now got an async HTTP server, in Python, 

that scales to however many cores you have 

 

 

 



(On Windows.  Heh.) 



Thread-local interned strings and 

heap snapshots 
• Async HTTP server work highlighted a flaw in the thread-

local redirection of interned strings and heap 
snapshot/rollback logic 

• I had already ensured the static global string intern stuff 
was being intercepted and redirected to a thread-local 
equivalent when in a parallel context 

• However, string interning involves memory allocation, 
which was being fulfilled from the heap associated with 
the active parallel context 

• Interned strings persist for the life of the thread, though, 
parallel context heap allocations got blown away when 
the client disconnected 

 

 



Thread-local Heap Overrides 
• Luckily, I was able to re-use previously implemented-then-

abandoned support for a thread-local heap: 
PyAPI_FUNC(int)  _PyParallel_IsTLSHeapActive(void); 

PyAPI_FUNC(int)  _PyParallel_GetTLSHeapDepth(void); 

PyAPI_FUNC(void) _PyParallel_EnableTLSHeap(void); 

PyAPI_FUNC(void) _PyParallel_DisableTLSHeap(void); 

• Prior to interning a string, we check to see if we’re a parallel 
context, if we are, we enable the TLS heap, proceed with 
string interning, then disable it. 

• The parallel context _PyHeap_Malloc() method would divert 
to a thread-local equivalent if the TLS heap was active 

• Ensured that interned strings were always backed by memory 
that wasn’t going to get blown away when a context 
disappears 

 

 



A few notes on non-socket I/O 

related aspects of PyParallel 



Memory Protection 
• How do you handle this: 

foo = [] 

def work(): 

    timestamp = async.rdtsc() 

    foo.append(timestamp) 

async.submit_work(work) 

async.run() 

• That is, how do you handle either: 
o Mutating a main-thread object from a parallel context 

o Persisting a parallel context object outside the life of the context 

• That was a big showstopper for the entire three months 

• Came up with numerous solutions that all eventually 

turned out to have flaws 

 

 

 

 

 

 

 
 

 

 



Memory Protection 
• Prior to the current solution, I had all sorts of things in 

place all over the code base to try and detect/intercept 
the previous two occurrences 

• Had an epiphany shortly after PyCon 2013 (when this 
work was first presented) 

• The solution is deceptively simple: 
o Suspend the main thread before any parallel threads run. 

o Just prior to suspension, write-protect all main thread pages 

o After all the parallel contexts have finished, return the protection to normal, then 
resume the main thread 

• Seems so obvious in retrospect! 

• All the previous purple code refers to this work – it’s not 
present in the earlier builds 

 



Memory Protection 
• If a parallel context attempts to mutate (write) to a main-

thread allocated object, a general protection fault will be 

issued 

• We can trap that via Structured Exception Handlers 
o (Equivalent to a SIGSEV trap on POSIX) 

• By placing the SEH trap’s __try/__except around the 

main ceval loop, we can instantly convert the trap into a 

Python exception, and continue normal execution 
o Normal execution in this case being propagation of the exception back up 

through the parallel context’s stack frames, like any other exception 

• Instant protection against all main-thread mutations 

without needing to instrument *any* of the existing code 



Enabling Memory Protection 
• Required a few tweaks in obmalloc.c (which essentially 

calls malloc() for everything) 

• For VirtualProtect() calls to work efficiently, we’d need to 
know the base address ranges of main thread memory 
allocations 
o This doesn’t fit well with using malloc() for everything 

o Every pointer + size would have to be separately tracked and then fed into 
VirtualProtect() every time we wanted to protect pages 

• Memory protection is a non-trivial expense 
o For each address passed in (base + range), OS has to walk all affected page 

tables and alter protection bits 

• I employed two strategies to mitigate overhead: 
o Separate memory allocation into two phases: reservation and commit. 

o Use large pages. 

 



Reserve, then Commit 
• Windows allows you to reserve memory separate to 

committing it 
o (As does UNIX) 

• Reserved memory is free; no actual memory is used until you 
subsequently commit a range (from within the reserved range) 

• This allows you to reserve, say, 1GB, which gives you a single 
base address pointer that covers the entire 1GB range 

• ….and only commit a fraction of that initially, say, 256KB 

• This allows you to toggle write-protection on all main thread 
pages via a single call to VirtualProtect() via the base address 
call 

• Added benefit: easily test origin of an object by masking its 
address against known base addresses 



Large Pages 
• 2MB for amd64, 4MB for x86 (standard page size for 

both is 4KB) 

• Large pages provide significant performance benefits by 

minimizing the number of TLB entries required for a 

process’s virtual address space 

• Fewer TLB entries per address range = TLB can cover 

greater address range = better TLB hit ratios = direct 

impact on performace (TLB misses are very costly) 

• Large pages also means the OS has to walk significantly 

fewer page table entries in response to our 

VirtualProtect() call 



Memory Protection 
Summary 

• Very last change I made to PyParallel just before getting 

hired by Continuum after PyCon earlier this year 
o I haven’t had time to hack on PyParallel since then 

• Was made in a proof-of-concept fashion 
o Read: “I butchered the crap out of everything to test it out” 

• Lots of potential for future expansion in this area 
o Read: “Like unbutchering everything” 



Part 3 
The Future 

Various ideas for PyParallel going forward 



The Future… 
• PyParallel for parallel task decomposition 

o Limitations of the current memory model 

o Ideas for new set of interlocked data types 

• Continued work on memory management enhancements 
o Use context managers to switch memory allocation protocols within parallel 

contexts 

o Rust does something similar in this area 

• Integration with Numba 
o Parallel callbacks passed off to Numba asynchronously 

o Numba uses LLVM to generate optimized version 

o PyParallel atomically switches the CPython version with the Numba version 

when ready 



The Future… 
• Dynamic PxSocket_IOLoop endpoints 

o Socket source, file destination 

o One socket source, multiple socket destinations (1:m) 

o Provide similar ZeroMQ bridge/fan-out/router functionality 

• This would provide a nice short-term option for 

leveraging PyParallel for computation/parallel task 

decomposition 
o Bridge different protocols together 

o Each protocol represents a stage in a parallel pipeline 

o Use pipes instead of socket I/O to ensure zero copy where possible 

o No need for synchronization primitives 

o This is how ZeroMQ does “parallel computation” 

 

 



The Future 
• ….lends itself quite nicely to pipeline composition: 

 

 

 

 

 

 

 

• Think of all the ways you could compose things based 

on your problem domain 



The Future… 
• PyParallel for UI apps 

o Providing a way for parallel callbacks to efficiently queue UI actions (performed 

by a single UI thread) 

• NUMA-aware memory allocators 

• CPU/core-aware thread affinity 

• Integrating Windows 8’s registered I/O support 

• Multiplatform support: 
o MegaPipe for Linux looks promising 

o GCD on OS X/FreeBSD 

o IOCP on AIX 

o Event ports for Solaris 



The Future… 
• Ideally we’d like to see PyParallel merged back into the 

CPython tree 
o Although started as a proof-of-concept, I believe it is Python’s best option for 

exploiting multiple cores 

o So it’ll probably live as pyparallel.exe for a while (like Stackless) 

• I’m going to cry if Python 4.x rolls out in 5 years and I’m 

still stuck in single-threaded, non-blocking, synchronous 

I/O land 

• David Beazley: “the GIL is something all Python 

committers should be concerned about” 



Survey Says… 
• If there were a kickstarter to fund PyParallel 

o Including performant options for parallel compute, not just async socket I/O 

o And equal platform support between Linux, OS X and Windows 

• (Even if we have to hire kernel developers to implement thread-agnostic I/O 

support and something completion-port-esque) 

• Would you: 
A. Not care. 

B. Throw your own money at it. 

C. Get your company to throw money at it. 

D. Throw your own money, throw your company’s money, throw your kids’ 

college fund, sell your grandmother and generally do everything you 

can to get it funded because damnit it’s 2018 and my servers have 
1024 cores and 4TB of RAM and I want to be able to easily exploit that 

in Python! 



Slides are available online 
(except for this one, which just has a placeholder right now so I could take this screenshot) 

• http://speakerdeck.com/trent/ 

 

 

Short, old Long, new Longest, newest 

(this presentation) 

http://speakerdeck.com/trent/


Thanks! 

 
Follow us on Twitter for more PyParallel announcements! 

@ContinuumIO 

@trentnelson 

http://continuum.io/ 


