
Quasi-Succinct Indices

Sebastiano Vigna
Dipartimento di Informatica, Università degli Studi di Milano, Italy

June 19, 2012

Abstract
Compressed inverted indices in use today are based on the idea
of gap compression: documents pointers are stored in increas-
ing order, and the gaps between successive document pointers
are stored using suitable codes which represent smaller gaps
using less bits. Additional data such as counts and positions
is stored using similar techniques. A large body of research
has been built in the last 30 years around gap compression, in-
cluding theoretical modeling of the gap distribution, special-
ized instantaneous codes suitable for gap encoding, and ad
hoc document reorderings which increase the efficiency of in-
stantaneous codes. This paper proposes to represent an index
using a different architecture based on quasi-succinct repre-
sentation of monotone sequences. We show that, besides be-
ing theoretically elegant and simple, the new index provides
expected constant-time operations and, in practice, significant
performance improvements on conjunctive, phrasal and prox-
imity queries.

1 Introduction
An inverted index over a collection of documents contains, for
each term of the collection, the set of documents in which the
term appears and additional information such as the number
of occurrences of the term within each document, and possi-
bly their positions. Inverted indices form the backbone of all
modern search engines, and the existence of large document
collections (typically, the web) has made the construction of
efficient inverted indices ever more important.

Compression of inverted indices saves disk space, but more
importantly also reduces disk and main memory accesses [8],
resulting in faster evaluation. We refer the reader to the book
by Manning, Raghavan and Schütze [19] and to the very com-
plete and recent survey by Zobel and Moffat [27] for a thor-
ough bibliography on the subject.

Two main complementary techniques are at the basis of
index compression: instantaneous codes provide storage for
integers that is proportional to the size of the integer (e.g.,
smaller numbers use less bits); gap encoding turns lists of in-
creasing integers (for instance, the monotonically increasing
list of numbers of documents in which a term appear) into lists
of small integers, the gaps between successive values (e.g., the
difference). The two techniques, combined, make it possible
to store inverted indices in highly compressed form. Instan-
taneous codes are also instrumental in storing in little space
information such as the number of documents in which each

term appears.
Since inverted indices are so important for search engines,

it is not surprising that a large amount of research has studied
how to maximize either the speed or the compression ratio of
gap-encoded indices. Depending on the application, compres-
sion or speed may be considered more important, and different
solutions propose different tradeoffs.

In this paper, we describe a new type of compressed in-
dex that does not use gaps. Rather, we carefully engineer
and tailor to the needs of a search engine a well-known quasi-
succinct representation for monotone sequences proposed by
Peter Elias [13].1 We explain how to code every part of the in-
dex by exploiting the bijection between sequence of integers
and their prefix sums, and we provide details about the physi-
cal storage of our format.

Our new index is theoretically attractive: it guarantees to
code the information in the index close to its information-
theoretical lower bound, and provides on average constant-
time access to any piece of information stored in the in-
dex, including searching for elements larger than a given
value (a fundamental operation for computing list intersec-
tions quickly). This happens by means of a very simple ad-
dressing mechanism based on a linear list of forward pointers.
Moreover, sequential scanning can be performed using a very
small number of logical operation per element. We believe
it is particularly attractive for in-memory or memory-mapped
indices, in which the cost of disk access is not dominant.

To corroborate our findings, in the last part of the paper,
we index the TREC GOV2 collection and a collection or 130
million page of the .uk web2 with different type of encodings,
such as ı and Golomb. We show that, while not able to beat
gaps coded with Golomb codes, our index compresses better
than 
 /ı codes or variable-length byte.

We then compare a prototype Java implementation of our
index against MG4J and Lucene, two publicly available Java
engine based, and Zettair, a C search engine. MG4J has
been set up to use 
 /ı codes, whereas Lucene and Zettair
use variable-length byte codes. We get a full confirmation
of the good theoretical properties of our index, with excellent
timings for conjunctive, phrasal and proximity queries. We
also provide some evidence that for pointers list our index is
competitive with the Kamikaze implementation of PForDelta
codes [28].

1Incidentally, Elias also invented some of the most efficient codes for gap
compression [14].

2We remark that TREC GOV2 is publicly available, and that the latter
collection is available from the author.

1



The quasi-succinct indices described in this paper are the
default indices used by MG4J from version 5.0.3

2 Related work

The basis of the current compression techniques for inverted
indices is gap encoding, developed at the start of the ’90s [4].
Gap encoding made it possible to store a positional inverted
index in space often smaller than the compressed document
collection. Gaps (differences between contiguous document
pointers in the posting list) have to be encoded using instan-
taneous codes that use shorter codewords for smaller integers,
and previous research in information theory provided 
 , ı [14]
and Golomb [15] codes, which achieve excellent compression.
Moreover, a wealth of alternative codes have been developed
in the last 30 years.4

When speed is important, however, such codes are rather
slow to decode: in practice, often implementation use the folk-
lore variable-length byte code (e.g., the open-source search
engine Lucene, as well as Zettair). Recent research has devel-
oped a number of word-aligned codes (e.g., [2]) that encode in
a single machine word several integers, providing high-speed
decoding and good compression. In [28], the author tailor
their PForDelta code to the behavior of modern super-scalar
CPUs and their caches.

More specialized techniques tackle specific problems,
studying in great detail the behaviour of each part of the in-
dex: for instance, [26] studies in great detail the compression
of positional information.

Another line of research studies the renumberings of the
documents that generate smaller gaps. This phenomenon is
known as clustering [20], and can be induced by choosing a
suitable numbering for the documents [5, 24, 6].

As indices became larger, a form of self-indexing [21] be-
came necessary to compute quickly the intersection of lists of
documents, an operation that is at the basis of the computation
of conjunctive Boolean queries, proximity queries and phrasal
queries.

The techniques used in this paper are based on a seminal pa-
per by Elias [13], which is a precursor of succinct data struc-
tures for indexed sets [22]. We do use some of the knowledge
developed by the algorithmic community working on succinct
data structures, albeit in practice the theoretical encodings de-
veloped there, which concentrate on attaining asymptotically
optimal speed using o.n/ additional bits, where n is the op-
timal size for the data structure, have presently too high con-
stant costs to be competitive in real applications with methods
using O.n/ additional bits.

We remark that the literature on the subject is actually im-
mense, and impossible to recap in this section. The references
above should be considered mostly as pointers. We refer the
reader again to [19, 27] for a complete historical overview.

3http://mg4j.di.unimi.it/
4Alternative approaches, such as interpolative coding [20], have been pro-

posed to code some part of an index, but they lack the direct-access and skip-
ping features that are necessary for fast query resolution.

3 Definitions
In this paper we discuss the indexing problem for a collection
of documents. We give definitions from scratch as we will
need to discuss formally the index content.

Each document is represented by a number, called docu-
ment pointer, starting from zero. Each document d has a
length `, and is formed by a sequence of terms t0, t1, : : : , t`�1.
For each document and each term, the count specifies how
many times a term appears in the sequence forming the doc-
ument. The frequency is the number of documents in which
a term appears (i.e., the number of documents for which the
count is not zero). The occurrency of a term is the number
of occurrences of the term in the whole collection, that is, the
sum of the counts of the term over all documents.

The posting list for a term is the (monotonically increasing)
list of documents where the term appears. With each docu-
ment we associate also the (nonzero) count of the term in the
document, and the (monotonically increasing) list of positions
(numbered from zero) at which the term appears in the given
document.

The unary code associates with the natural number n � 0

the codeword 0n1. The negated unary code associates with
the natural number n � 0 the codeword 1n0.

A bit array of length n is a sequence of bits b0, b1,
: : : , bn�1. We sometime view such an array as a stream: we
assume that there is an implicit pointer, and that I/O opera-
tions such as reading unary codes are performed by scanning
the array and updating the implicit pointer accordingly.

4 Quasi-Succinct Representation of
Monotone Sequences

In this section we give a detailed description of the high
bits/low bits representation of a monotone sequence proposed
by Elias [13]. We assume to have a monotonically increasing
sequence of n > 0 natural numbers

0 � x0 � x1 � � � � � xn�2 � xn�1 � u;

where u > 0 is any upper bound on the last value.5 The choice
u D xn�1 is of course possible (and optimal), but storing ex-
plicitly xn�1 might be costly, and a suitable value for u might
be known from external information, as we will see shortly.
We will represent such a sequence in two bit arrays as follows:

� the lower ` D maxf 0; blog.u=n/c g bits of each xi are
stored explicitly and contiguously in the lower-bits ar-
ray;6

� the upper bits are stored in the upper-bits array as a se-
quence of unary-coded gaps.

In Figure 1 we show an example. Note that we code the
gaps between the values of the upper bits, that is,

�
xi=2

`
˘
��

xi�1=2
`
˘

(with the convention x�1 D 0).

5If u D 0, the list is entirely made of zeroes, and its content is just defined
by n.

6Actually, Elias discusses just the case in which u C 1 and n C 1 are
powers of two, but extending his definitions is an easy exercise.

2



5 8 8 15 32

1 10 10 11 100001 00 00 11 00

01 00 00 11 00
1 2 2 3 8

01 01 1 01 000001

1 − 0 2 − 1 2 − 2 3 − 2 8 − 3

Figure 1: A simple example of the quasi-succinct encoding
from [13]. We consider the list 5, 8, 8, 15, 32 with upper
bound 36, so ` D blog.36=5/c D 2. On the right, the lower
` bits of all elements are concatenated to form the lower-bits
array. On the left, the gap of the values of the upper bits are
stored sequentially in unary code in the upper-bits array.

The interesting property of this representation is that it uses
at most 2 C dlog.u=n/e bits per element: this can be easily
seen from the fact that each unary code uses one stop bit, and
each other written bit increases the value of the upper bits by
2`: clearly, this cannot happen more than

�
xn�1=2

`
˘

times.
But �

xn�1

2`

�
�

�
u

2`

�
�
u

2`
D

u

2maxf0;blog.u=n/c g
� 2n: (1)

Thus, we write at most n ones and 2n zeroes, which implies
our statement as dlog.u=n/e D blog.u=n/c C 1 unless u=n is
a power of two, but in that case (1) actually ends with � n, so
the statement is still true.

Since the information-theoretical lower bound for a mono-
tone list of n elements in a universe of u element is&

log

 
uC n

n

!'
� n log

�
uC n

n

�
we see that the representation is close to succinct: indeed,
Elias proves in detail that this representation is very close to
the optimal representation (less than half a bit per element
away). Thus, while it does not strictly classify as a succinct
representation, it can be safely called a quasi-succinct repre-
sentation.7

To recover xi from the representation, we perform i unary-
code reads in the upper-bits array, getting to position p: the
value of the upper bits of xi is then exactly p � i ; the lower `
bits can be extracted with a random access, as they are located
at position i` in the lower-bits array.

We now observe that, assuming to have a fictitious element
x�1 D 0, we can equivalently see the list x0, x1, : : : , xn�1 as
a list of natural numbers by computing gaps:

a0 D x0 � x�1; a1 D x1 � x0; � � � ; an�1 D xn�1 � xn�2:

7Actually, the representation is one of the ingredients of sophisti-
cated, modern succinct data structures that attain the information-theoretical
bound [22].

Conversely, given a list a0, a1, : : : , an�1 of natural num-
bers we can consider the list of prefix sums sk D

Pk�1
iD0 ai

for 0 � k � n. The two operations give a bijective corre-
spondence between monotone sequences8 bounded by u and
lists of natural numbers of the same length whose sum is
bounded by u.9 Thus, we can represent using the high bits/low
bits presentation either monotonically increasing sequences,
or generic lists of integers.10

The quasi-succinct representation above has a number of
useful properties that make it quite advantageous over gap-
encoded sequences:

� The distribution of the document gaps is irrelevant: there
is no code to choose, because the lower bits are stored
explicitly in a fixed-width format, and the representation
of the upper bits, being made by n ones and at most 2n
zeroes, is a perfect candidate for the unary code.

� Compression is guaranteed irrespective of gaps being
well distributed (e.g., because of correlation between the
content of consecutive document) or not. In particular,
renumbering documents in a way that improves retrieval
speed (e.g., to ease early termination) will not affect the
index size.

� Scanning sequentially the list using a longword buffer re-
quires to perform just a unary read and using few shifts
for each element.

� In general, the high bits/low bits representation concen-
trates the difficulty of searching and skipping on a simple
bit array of unary codes containing n ones and at most
2n zeroes. We can devise extremely fast, practical ad
hoc techniques that exploit this information.

Actually, Elias’s original paper suggests the most obvious
solution for quick (on average, constant-time) reading of a se-
quence of unary codes: we store forward pointers to the po-
sitions (inside the upper-bits array) that one would reach after
kq unary-code reads, k � 0, where q is a fixed quantum (in
other words, we record the position immediately after the one
of index kq � 1 in the bit array).

Retrieving xi now can be done by simulating qbi=qc unary
reads using a forward pointer, and completing sequentially
with i mod q < q unary-code reads. On average, by (1), the
sequential part will read at most 3q bits.11 Smaller values of
q yield less reads and use more space.

8Note that sequences of prefix sums contain an additional element s0 D 0
that is not part of the bijection.

9The same bijection is used normally to code monotone sequences using
gaps, but we intend to to the opposite.

10Prefix sums have indeed several applications in compression, for instance
to the storage of XML documents [11].

11This problem is essentially (i.e., modulo an off-by-one) the selec-
tion problem for which much more sophisticated solutions, starting with
Clarke’s [9], have in the last years shown that constant-time access can be
obtained using o.n/ additional bits instead of the O.n/ bits proposed by
Elias, but such solutions, while asymptotically optimal, have very high con-
stant costs. Nonetheless, there is a large body of theoretical and practical
knowledge that has been accumulated in the last 20 years about selection, and
we will use some of the products of that research to read multiple unary codes
quickly in the upper-bits array.

3



Skipping. A more interesting property, for our purposes, is
that by storing skip pointers to positions reached after negated
unary-code reads of the upper bits it is possible to perform
skipping, that is, to find very quickly, given a bound b, the
smallest xi � b. This operation is fundamental in search en-
gines as it is the base for quick list intersection.12

To see why this is possible, note that by definition in the
upper-bits array the unary code corresponding to the small-
est xi � b must terminate after

�
b=2`

˘
zeroes. We could

thus perform
�
b=2`

˘
negated unary-code reads, getting to po-

sition p, and knowing that there are exactly p �
�
b=2`

˘
ones

and
�
b=2`

˘
zeroes to our left (i.e., we are in the middle of

the unary code for x
p�
�
b=2`

˘). From here, we complete the

search exhaustively, that is, we actually compute the values of
the elements of the list (by reading unary codes and retrieving
the suitable lower bits) and compare them with b, as clearly
the element we are searching for cannot be represented earlier
in the upper-bits array. An example is shown in Figure 2.

By setting up an array of skip pointers analogously to the
previous case (i.e., forward pointers), the reading of negated
unary-codes can be perform quickly. Note, however, that in
general without further assumptions it is not possible to bound
the number of bits read during the

�
b=2`

˘
mod q negated

unary-code reads that must be performed after following a skip
pointer, as there could be few zeroes (actually, even none) in
the bit array. Nonetheless, if a linear lower bound on the num-
ber of zeroes in the bit array is known, it can be used to show
that skipping is performed in constant time on average.

Strictly monotone sequences. In case the sequence x0, x1,
: : : , xn�1 to be represented is strictly monotone (or, equiva-
lently, the ai ’s are nonzero), it is possible to reduce the space
usage by storing the sequence xi � i using the upper bound
u � n. Retrieval happens in the same way—one just has to
adjust the retrieved value for the i -th element by adding i .
This mechanism was already noted by Elias [12] (more gen-
erally for k-spaced sequences, k > 0), but it is important to
remark that under this representation the algorithm for skip-
ping will no longer work. This happens because xi is actually
represented as xi � i , so skipping

�
b=2`

˘
negated unary codes

could move us arbitrarily after the element we would like to
reach.

5 Sequences as a Ranked Characteris-
tic Functions

In some cases, the quasi-succinct representation we described
is not very efficient in term of space: this happens, for in-
stance, for very dense sequences. There is however an alter-
nate representation for strictly monotone sequences with skip-
ping: we simply store a list of u bits in which bit k is set if k is
part of the list x0, x1, : : : , xn�1. This is equivalent to storing

12Elias describes a slightly different analogous operation, by which he finds
the largest xi � b; the operation involves moving backwards in the bit ar-
ray, something that we prefer to avoid for efficiency. Note that this is again
essentially equivalent to predecessor search, a basic problem in fast retrieval
on sets of integers for which very strong theoretical results are known in the
RAM model [1].

the list in gap-compressed form by writing in unary the gaps
xi � xi�1 � 1, and guarantees by definition that no more than
u bits will be used.

Skipping in such a representation is actually trivial: given
the bound b, we read a unary code starting at position b. The
new position xi is such that xi is the smallest element satisfy-
ing xi � b. The only problem is that at this point we will have
lost track of the index i .

To solve this problem, we take a dual approach to that of the
previous section and store a simple ranking structure: for each
position kq, where q is the quantum, we store the number
of ones to the left. After a skip, we simply rank the current
position xi by first reading the precomputed number of ones
before bxi=qc, and then then computing the number of ones
in the at most q remaining bits.

6 Representing an Inverted Index
We now discuss how the quasi-succinct representation pre-
sented in the previous section can be used to represent the
posting list of a term. We defer to the next section a detailed
discussion of the data-storage format.
Pointers. Document pointers form a strictly monotone in-
creasing sequence. We store them using the standard represen-
tation (i.e., not the specialized version for strictly monotone
sequences), so to be able to store skip pointers, as skipping is
a frequent and useful operation (e.g., during the resolution of
conjunctive Boolean queries or phrasal queries), whereas ran-
dom access to document pointers is not in general necessary.13

The upper bound is the number of documents N minus one,
and the number of elements of the list is f , the frequency.

We remark that the apparent loss of compression due to the
necessity of using the standard representation (to make skip-
ping possible) turns actually into an advantage: if the last
pointer in the list is equal to ˛N , with 0 � ˛ < 1, since
N � f , we can writeN D df Cr with d > 0 and 0 � r < f ,
and then we have�

˛N

2`

�
D

�
˛.df C r/

2blog..dfCr/=f /c

�
�

�
˛.df C r/

2blogdc

�
� f̨: (2)

In other words, the slight redundancy guarantees that there are
at least f̨ zeroes in the upper-bits array: if ˛ � 1, we can
thus guarantee that on average skipping can be performed in a
constant number of steps, as, on average, reading a one implies
reading at least a zero, too (and viceversa). Since we write
forward pointers only for lists with f � q, under realistic
assumptions on q in practice ˛ is close to 1.

Finally, even in pathological cases (i.e., a every uneven dis-
tribution of the zeroes in the list), one every 2` � N=f bits
must necessarily be zero, as the list is strictly monotone. Thus,
terms with dense posting lists must have frequent zeroes inde-
pendently of the considerations above.

Note that if

f C
�
N=2`

˘
C f ` > N

13Nothing prevents from storing both kind of pointers. The increase in size
of the index would be unnoticeable.

4



0 1 0 1 1 0 1 0 0 0 0 0 1 01 00 00 11 00
0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 2: An example of skipping based on the sequence shown in Figure 1. On the left we have the upper-bits array, and on
the right the lower-bits array. We want to skip to the first item larger than or equal to 22, so since ` D 2 we have to perform
b22=22c D 5 negated unary-code reads (the continuous arrows), getting to position 9, so we are positioned in the middle of
the unary code associated with the element of index 9� 5 D 4. Then we perform a unary-code read (the dashed arrow), which
returns 3, so we know that the upper bits of the current element (of index 4) are 3C 5 D 8. Since the block of lower bits of
index 4 is zero, we return 32. If we had at our disposal a skip pointer for q D 4 (the dotted arrow), we could have skipped the
first four negated unary-code reads. Note that in general more than one unary-code read might be necessary after reading the
negated unary codes.

then the representation above uses more than N bits (in prac-
tice, this happens when f & N=3). In this case, we switch to
a ranked characteristic function. Since there are at most two
zeroes for each one in the bitmap, it is easy to check that all
operations can still be performed in average constant time.
Counts. Counts are strictly positive numbers, and can
be stored using the representation for strictly monotone se-
quences to increase compression. In this case the upper bound
is the occurrency of the term, and the number of elements is
again the frequency.
Positions. The format for positions is the trickiest one. Con-
sider, for the i -th document pointer in the inverted list for term
t with count ci , the list of positions pi0, pi1, : : : , pici�1

. First,
we turn this list into a list of strictly positive smaller integers:

pi0 C 1; p
i
1 � p

i
0; p

i
2 � p

i
1; : : : ; p

i
ci�1
� pici�2

:

Consider the concatenation of all sequences above:

p00 C 1; p
0
1 � p

0
0 ; : : : ; p

0
c0�1
� p0c0�2

;

p10 C 1; p
1
1 � p

1
0 ; : : : ; p

1
c1�1
� p1c1�2

; : : : ;

p
f �1
0 C 1; p

f �1
1 � p

f �1
0 ; : : : ; p

f �1
cf �1�1

� p
f �1
cf �1�2

; (3)

and store them using the representation for strictly positive
numbers. In this case it is easy to check that the best upper
bound is

f C
X
0�i<f

pici�1
; (4)

and the number of elements is the occurrency g of the term.
We now show how to retrieve the positions of the i -th doc-

ument. Let s0, s1, : : : , sf be prefix sums of the counts (e.g.,
ci D siC1 � si ). We note that the list provides the starting and
ending point of the sequence of positions associated to a doc-
ument: the positions of document i occur in (3) at positions j
satisfying si � j < siC1. Let t0, t1, : : : , tg be the sequence
of prefix sums of the sequence (3). It is easy to check that the
positions of i -th document can be recovered as follows:

pij D tsiCjC1 � tsi � 1 0 � j < ci :

We remark that the nice interplay between prefix sums and
lists of natural numbers is essential in making this machinery
work: we need the counts ci (e.g., to compute a content-based
ranking function), but we need also their prefix sums to locate
positions.

7 A Quasi-Succinct BitStream
We now discuss in detail the bit stream used to store the quasi-
succinct representation described in Section 4—in particular,
the sizing of all data involved.

Metadata pertaining the whole representation, if present,
can be stored initially in a self-delimiting format. Then, the
remaining data is laid out as follows: pointers, lower bits, up-
per bits (see Figure 3). The rationale behind this layout is that
the upper-bits array is the only part whose length is in princi-
ple unknown: by positioning it at the end of the bitstream, we
do not have to store pointers to the various parts of the stream.
The lower-bits array will be located at position sw, where s is
the number of pointers and w their width, and the upper-bits
array at position pwCn` bits after the metadata. We can thus
compute without further information the starting point of each
part of the stream.

We assume that the number of elements n is known, possi-
bly from the metadata. The first issue is thus the size and the
number of pointers. If the upper bound u is known, we know
that the upper-bits array is n C

�
u=2`

˘
bits long at most, so

the width of the pointers is w D
˙

log.nC
�
u=2`

˘
C 1/

�
; oth-

erwise, information must be stored in the metadata part so to
be able to compute w.

If we are storing forward pointers for unary codes, the num-
ber of pointers will be exactly bn=qc; otherwise (i.e., if we are
storing forward pointers for negated unary codes), they will be
at most s D

��
n C

�
u=2`

˘�
=q
˘

.14 Again, if the bound u is
not known it is necessary to store information in the metadata
part so to be able to compute s.

Analogously, if u is not known we need to store metadata
that makes us able to compute ` D blog.u=n/c.

Finally, in the case of a ranked characteristic functions in-
stead of pointers we store bf=qc cumulative ranks of width
w D dlogN e, followed by the bitmap representation of the
characteristic function.

8 Laying Out the Index Structure
We now show how to store in a compact format all metadata
that are necessary to access the lists. For each index compo-

14We remark that if u > xn�1 some of the s pointers might actually be
unused. It is sufficient to set them to zero (no other pointer can be zero) and
consider them as skips to the end of the list.

5



metadata P0 P1 P2 · · · Ps−1 l0 l1 · · · ln−1 0 1 0 1 1 0 1 0 0 0 0 0 1 · · ·

Figure 3: The bit stream of a quasi-succinct encoding for a list of n items using s forward pointers. After a self-delimiting
metadata section, there are fixed-width forward pointers, the lower-bits array, and finally the upper-bits array. In this example,
Pi points at the location of the upper-bits array where one would get after iq unary-code reads, with q D 2. Pointer P0 is
never stored explicitly.

nent (document pointers, counts, positions) we write a sepa-
rate bit stream. We remark that for an index that provides nat-
urally constant-time access to each element, there is no point
in interleaving data, and this is another advantage of quasi-
succinct encoding, as unnecessary data (e.g., counts and posi-
tions for a Boolean query) need not be examined. As usual, for
each term we store three pointers locating the starting point of
the information related to that term in each stream.

The bit stream for document pointers contains as metadata
the frequency and the occurrency of the term. We write the oc-
currency in 
 code and, if the occurrency is greater than one,
the difference between occurrency and frequency, again in 

code (this ensures that hapaxes use exactly one bit). This in-
formation, together with the number of documents in the col-
lection, is sufficient to access the quasi-succinct representation
of document pointers (see Section 6).

The bit stream for counts contains no metadata. The occur-
rency and frequency can be obtained from the pointers stream,
and they are sufficient to access the representation.

The bit stream for positions requires to store in the meta-
data part the parameter ` and the skip-pointer size w, which
we write again in 
 code, as the upper bound (4) is not avail-
able. Note that if the occurrency is smaller than q, there is
no pointer, and in that case we omit the pointer size. Thus,
the overhead for terms with a small number of occurrences is
limited to the parameter `.15

9 Implementation Details
Implementation details are essential in a performance-critical
data structure such as an inverted index. In this section we
discuss the main ideas used in our implementation. While rel-
atively simple, these ideas are essential in obtaining, besides
good compression, a significant performance increase.

Longword addressing. We either load the index into mem-
ory, or access it as a memory-mapped region. Access happens
always by longword, and shifts are used to extract the relevant
data. The bit k of the index is represented in longword bk=64c
in position k mod 64. While direct access to every point of the
bitstream is possible, we keep track of the current position so
that sequential reads use the last longword read as a bit buffer.
Extraction of lower bits requires very few logical operations
in most cases when ` is small.

15Actually, it is easy to check that the overhead for hapaxes is exactly 2 bits
with respect to writing the only existing position in ı code.

Reading unary codes. Reading a unary code is equivalent to
the computation of the least significant bit. We use the beau-
tiful algorithm based on de Brujin’s sequences [18], which is
able to locate the least significant bit using a single multipli-
cation and a table lookup. The lack of any test makes it a very
good choice on superscalar processors, as it makes prediction
and out-of-order execution possible.16

Both when looking up an entry and when skipping, we
have, however, to perform a significant number of unary-code
reads (on average, � q=2). To this purpose, we resort to
a broadword (a.k.a. SWAR, i.e., “SIMD in A Register”) bit
search [25]. The idea is that of computing the number of ones
in the current bit buffer using the classical algorithm for side-
ways addition [17], which involves few logical operations and
a multiplication. If the number of reads we have to perform
exceeds the number of ones in the current buffer, we exam-
ine the next longword, and so on. Once we locate the right
longword, we can complete the search using the broadword
selection algorithm presented in [25].

Our experiments show that broadword bit search is ex-
tremely effective, unless the number of reads is very small,
as in that case computing iteratively the least significant bit
becomes competitive. Indeed, when skipping a very small
number of position (e.g., less then eight) we simply resort to
iterating through the list.

Cache the last prefix sum. When retrieving a count or the
first position of a position list, we have, in theory, to compute
two associated prefix sums. During sequential scans, however,
we can cache the last computed value and use it at the next
call. Thus, in practice, scanning sequentially counts or posi-
tions requires just one unary-code read and one fixed-width bit
extraction per item. Reading counts is however made slower
by the necessity to compute the difference between the current
and the previous prefix sum.

Trust the processor cache. The cost of accessing an in-
memory index is largely dominated by cache misses. It is thus
not surprising that using a direct access (i.e., by pointer) can
be slower than actually scanning linearly the upper-bits array
using a broadword bit search if our current position is close
to the position to get to. The threshold depend on architec-
tural issues and must be set experimentally. In our code we
use q D 256 and we do not use pointers if we can skip to the

16Actually, we first check whether we can compute the least significant bit
using an 8-bit precomputed table, as the guaranteed high density of the upper
bits makes this approach very efficient.

6



desired position in less that q reads.17 An analogous strategy
is used with ranked characteristic functions: if we have to skip
in the vicinity of the current position and the current index is
known we simply read the bitmap, using the sideways addition
algorithm to keep track of the current index.

10 Experiments
We have implemented the quasi-succinct index described in
the previous section in Java, and for the part related to docu-
ment pointers and count, in C++. All the code used for exper-
iments is available at the MG4J web site. In this section, we
report some experiments that compare its performance against
three competitors:

� Lucene, a very popular open-source Java search engine
(release 3.6.0);

� the classical high-performance indices from MG4J [7],
another open-source search engine (release 5.0);

� Zettair, a search engine written in C by the Search Engine
Group at RMIT University.

� The Kamikaze18 library, implementing the
PForDelta [28] sequence compression algorithm
(up-to-date repository version from GitHub);

� We compare also with recent optimized C code imple-
menting PForDelta compression document pointers and
count kindly provided by Ding Shuai [23].

Zettair has been suggested by the TREC organizers as one of
the baselines for the efficiency track. The comparison of a
Java engine with a C or C++ engine is somewhat unfair, but
we will see actually the Java engines turn out to be always
significantly faster.

We use several datasets summarized in Table 1: first, the
classical public TREC GOV2 dataset (about 25 million doc-
uments) and a crawl of around 130 million pages from the
.uk domain that is available from the author. Tokens were
defined by transition between alphanumerical to nonalphanu-
merical characters or by HTML flow-breaking tags, and they
were stemmed using the Porter2 stemmer19. Besides an index
considering the whole HTML document, we created some in-
dices for the title text only (e.g., the content of the HTML
TITLE element), as such indices have significantly different
statistics (e.g., documents are very short).

Additionally, we created a part-of-speech index used within
the Mı́mir semantic engine [10]; such indices have a very
small number of terms that represent synctactic elements
(nouns, verbs, etc.), very dense posting lists and a large num-
ber of positions per posting: they provide useful information
about the effectiveness of compression when the structure of
the index is not that of a typical web text index. For the same

17Remember, again, that we will actually simulate such reads using a
broadword bit search.

18http://sna-projects.com/kamikaze/
19Zettair, however, supports apparently only the original Porter stemmer.

Documents Terms Postings Occurrences
TREC GOV2

Text 25 M 35 M 5.5 G 23 G
Title 25 M 1:1M 135 M 150 M

Web .uk

Text 130 M 99 M 21 G 62 G
Title 130 M 3:2M 609M 691 M

Mı́mir index
Token 1 M 49 27M 1:2G

Tweets
Text 13 M 2:3M 147M 156M

Table 1: Basic statistics for the datasets used in our experi-
ments.

reason, we also index a collection of about a dozen millions
tweets from Twitter.

Small differences in indexing between different search en-
gines are hard to track: the details of segmentation, HTML
parsing, and so on, might introduce discrepancies. Thus, we
performed all our indexing starting from a pre-parsed stream
of UTF-8 text documents. We also checked that the frequency
of the terms we use in our queries is the same—a sanity check
showing that the indexing process is consistent across the en-
gines. Finally, we checked that the number of results of con-
junctive and phrasal queries was consistent across the differ-
ent engines, and that bpref scores were in line with those
reported by participants to the Terabyte Track.

Using MG4J, we have created indices that use 
 codes for
counts, and either ı or Golomb codes for pointers and posi-
tions20, endowed with a mild amount of skipping information
using around 1% of the index size: we chose this value be-
cause the same amount of space is used by our index to store
forward and skip pointers when q D 256. These indices (in
particular, the ones based on Golomb codes) are useful to com-
pare compression ratios: if speed is not a concern, they pro-
vide very good compression, and thus they provide a useful
reference points on the compression/speed curve.21

We remark that we have indexed every word of the collec-
tions. No stopword elimination has been applied. Commercial
search engines (e.g., Google) are effortlessly able to search for
the phrase “Romeo and Juliet”, so our engine should be able
to do the same.

Compression. Table 2 reports a comparison of the compres-
sion ratios. Our quasi-succinct index compresses always bet-
ter than 
 /ı, but worse than Golomb codes. In practice, our
index reduces the size of the 
 /ı index by � 10%, whereas
Golomb codes reach� 20%.

The compression of Lucene and Zettair on the text of web
pages is not very good (a � 15% increase w.r.t. our index).
This was partially to be expected, as both Lucene and Zettair

20The Golomb modulus has been chosen separately for each document.
The results we obtain seems to be within 5% of the best compression results
obtained in [26], which suggest a space usage of 21 MB/query on average for
an average of 20:72 millions positions per query. A more precise estimate
is impossible, as results in [26] are based on 1000 unknown queries, and no
results about the whole GOV2 collection are provided.

21We have also tried interpolative coding [20], but on our collections the
difference in compression with Golomb codes was really marginal.

7



QS MG4J 
 /ı Golomb Lucene Zettair
TREC GOV2 (text)

Pointers 7:42 8:47 6:94

Counts 2:98 2:56 —
Positions 10:17 11:11 8:65

Overall 36:9GB 40:3GB 31:9GB 42:1GB 40:7GB
TREC GOV2 (title)

Pointers 10:04 11:44 9:54

Counts 1:10 1:14 —
Positions 3:84 4:63 3:05

Overall 264MB 308MB 241MB 396 MB 395 MB
Web .uk (text)

Pointers 8:46 9:72 7:98

Counts 2:39 2:06 —
Positions 10:16 10:95 8:41

Overall 108GB 117GB 92GB 126GB
Web .uk (title)

Pointers 11:75 13:51 11:27

Counts 1:13 1:18 —
Positions 4:36 5:06 3:35

Overall 1:38GB 1:59GB 1:26GB 2:00GB 2:15GB
Mı́mir token index

Pointers 1:51 1:42 1:48

Counts 6:42 6:28 —
Positions 5:83 6:22 5:03

Overall 0:96GB 1:01GB 0:83GB 1:34GB 1:36GB
Tweets

Pointers 10:13 10:29 9:22

Counts 1:06 1:11 —
Positions 4:67 5:94 3:86

Overall 302MB 341MB 266MB 423MB 484MB

Table 2: A comparison of index sizes. We show the overall index size, which includes skipping structures, and, if available,
the number of bits per element of each component, excluding skipping structures.

8



use variable-length byte codes for efficiency, and while such
codes are easy to decode, they are ill-suited to compression.
When the distribution of terms and positions is different, how-
ever, compression is significantly worse: for titles we have
a 50% increase in size, and for the Mı́mir semantic index or
tweets a 40% increase. This is somewhat typical: variable-
length byte codes compress most positions in a single byte if
the distribution of words comes from a “natural” distribution
on documents of a few thousand words. Using shorter docu-
ments (e.g., titles and tweets) or a different distribution (e.g.,
a semantic index) yields very bad results. A 50% increase in
size, indeed, can make a difference.

While we are not aiming at the best possible compression,
but rather at high speed, it is anyway relieving to know that we
are improving (as we shall see shortly) both compression and
speed with respect to these engines.

Interestingly, counts are the only index component for
which we obtain sometimes worse results than 
 coding. This
is somewhat to be expected, as we are actually storing their
prefix sums. The impact of counts on the overall index, how-
ever, is quite minor, as shown by the small final index size.
Speed. Benchmarking a search engine brings up several com-
plex issues. In general, the final answer is bound to the archi-
tecture on which the tests were run, and on the type of queries.
A definite answer can be given only against a real workload.22

Our tests were performed on a recent workstation sporting a
3.4 GHz Intel i7-3770 CPU with 8 MiB of cache and 16 GiB
of RAM.

We aim at comparing speed of in-memory indices, as one
of the main reasons to obtain smaller indices is to make more
information fit into memory; moreover, the diffusion of solid-
state disks makes this approach reasonable. Thus, in our tests
we resolve each query three times before taking measure-
ments. In this way we guarantee that the relevant parts of
the index have been actually read and memory mapped (for
MG4J and Lucene, or at least cached by the file system, for
Zettair), and we also make sure that the Java virtual machine
is warmed up and has performed inlining and other runtime
optimizations. With this setup, our tests are highly repeatable
and indeed the relative standard deviation over several runs is
less than 3%.

We used the 150 TREC Terabyte track (2004�2006) title
queries in conjunctive, phrasal and proximity form (in the lat-
ter case, the terms in the query must appear in some order
within a window of 16 words). We also extracted the terms
appearing in the queries and used them as queries to mea-
sure pure scanning speed: all in all, we generated 860 queries.
MG4J and Lucene were set up to compute the query results
without applying any ranking function. Zettair was set to
Okapi BM25 ranking [16], which appeared to have the smaller
impact on the query resolution time (no “no-ranking” mode is
available).

All engines were set up to return a single result, so that
the logic needed to keep track of a large result size would not

22Note that in real-world search engines the queries that are actually solved
are very different by those input by the user, as they undergo a number of
rewritings. As a consequence, blindingly analzying queries from large query
logs in disjunctive or conjunctive mode cannot give a reliable estimate the
actual performance of an index.

interfere with the evaluation. The results are shown in Table 3.
The first column (QS) shows the results of query resolution on
a quasi-succinct index. The third column (MG4J) for a 
 /ı-
coded high-performance MG4J index. The fourth column for
Lucene, and the last column for Zettair.

The second column (QS*) needs some explanation. Both
Lucene and MG4J interleave document pointers and counts.
As a consequence, resolving a pure Boolean query has a
higher cost (as counts are read even if they are not necessary),
but ranked queries require less memory/disk access. To simu-
late a similar behaviour in our setting, we modified our code
so to force it to read the count of every returned document
pointer. This setting is of course artificial, but it provides a
good indication of the costs of iterating and applying a count-
based ranking function, and it will be the based of our compar-
ison. For phrasal and proximity queries there is no difference
between QS and QS* as counts have in any case to be read to
access positions.

First of all, we note that decoding a quasi-succinct index is
slightly (� 7%) faster than decoding a gap-compressed index
that uses variable-byte codes. It is nonetheless important to
notice that our timings for purely boolean resolution (QS) are
much lower, and this can be significant in a complex query
(e.g., a conjunction of disjunctively expanded terms). Zettair
is much slower.

More interestingly, we have a� 50% improvement for con-
junctive queries, a � 40% improvement for phrasal queries
and a � 60% improvement for proximity queries: being able
to address in average constant time every element of the in-
dex is a real advantage. We also remind the reader that we are
comparing a Java prototype with a mature implementation.

We expect the asymptotic advantage of quasi-succinct in-
dices to be more evident as the collection size grows. To test
this hypothesis, we performed further experiments using the
Web .uk collection and 1000 multi-term queries randomly se-
lected from a large search-engine query log. The results are
shown in Table 6: now conjunctive and proximity queries are
more thrice faster with respect to Lucene.

In Table 4 we show some data comparing in-memory quasi-
succinct indices with PForDelta code. The data we display is
constrained by some limitations: the Kamikaze library does
not provide count storage; and the optimized C code we are
using [23] does not provide positions. This is an important
detail, as quasi-succinct indices trade some additional efforts
in decoding counts (i.e., computing their prefix sums) in ex-
change for constant-time access to positions. Our main goal
is to speed up positional access—indeed, nothing prevents us-
ing PForDelta for document pointers and storing counts and
positions as described in this paper (or even using a separate
PForDelta index without positions as a first-pass index).

Kamikaze turns out to be slightly slower for scanning term
lists, and almost twice as slow when computing conjunc-
tive queries. To estimate the difference in compression, we
computed the space used by the document pointers of our
TREC collections using Kamikaze: the result is an increase
of � 55% in space usage. While not extremely relevant for
the index size (positions are responsible mostly for the size
of an index), it shows that we would gain no advantage from

9



QS QS* MG4J Lucene Zettair
Terms 4:51 7:82 10:33 8:26 19:17

And 1:29 1:79 4:90 3:90 20:92

Phrase 4:00 — 11:01 6:77 21:14

Proximity 4:76 — 12:15 12:05 —

Table 3: Timings in seconds for running the test queries from
the TREC Terabyte track on GOV2 without scoring. The col-
umn QS shows the timings for resolving a query on a quasi-
succinct indices, whereas the column QS* shows the timings
for a modified version in which counts are forced to be read for
each decoded document pointer. Measurements were taken af-
ter three executions of each query, with memory map and disk
caches already filled. Note that Zettair is actually reading from
disk and scoring the queries, whereas in the other cases point-
ers and counts are being read from a memory-mapped region
and no score is being computed.

QS QS* Lucene
Terms 70:9 132:1 130:6

And 27:5 36:7 108:8

Phrase 78:2 — 127:2

Proximity 106:5 — 347:6

Table 5: Timings in seconds for running 1000 randomly se-
lected queries from a search-engine query log on the Web .uk

collection. See also Table 3.

storing pointers using PForDelta in a Java engine.23

The comparison of C implementations, on the other hand,
is definitely in favour of PForDelta: apart from pointer enu-
meration our C implementation is slower, in particular when
enumerating terms and their counts.

There are some important caveats, however: the code we
have been provided for PForDelta testing [23] is a bare-bone,
heavily optimised C benchmarking implementation that is
able to handle only 32-bit document pointers and has a num-
ber of limitations such as hardwired constants (e.g., the code
needs to be recompiled if the number of document in the col-
lection changes). Our C++ code is a 64-bit fully usable im-
plementation derived from a line-by-line translation of our
Java prototype code that could be certainly improved by ap-
plying CPU-conscious optimizations. A more realistic com-
parison would require a real search engine using PForDelta to
solve queries requiring positional information, it happens in
Table 3.24

In Table 6 we report similar data for our Web .uk collec-
tion: also in this case, a larger collection improves our results
(in particular, conjunctive queries are only� 13% slower than
PForDelta, instead of� 21%).

23Note that storing positions with PForDelta codes is known to give a com-
pression rate close to that provided by variable-byte coding [26].

24Such an engine is not available, to the best of the authors’s knowledge.
The authors of [26] have refused to make their engine available.

QS(C) QS*(C) PFD(C) PFD*(C)
Terms 23:8 56:8 23:6 31:6

And 19:2 24:5 16:9 19:4

Table 6: Timings in seconds for running 1000 randomly se-
lected queries from a search-engine query log on the Web .uk

collection. See also Table 4.

11 Some anecdotal evidence
While running several queries in controlled conditions is a
standard practice, provides replicable results and gives a gen-
eral feeling of what is happening, we would like to discuss
the result of a few selected queries that highlight the strong
points of our quasi-succinct indices. We keep the same set-
tings as in the previous section (e.g., ranked queries repeated
several times to let the cache do its work). All timings are in
milliseconds.
Dense terms. We start by enumerating all documents in which
the term “and” appears (� 18 millions):

QS Kamikaze QS* MG4J Lucene Zettair
72:4 179:2 234:6 488:5 283:6 1246:5

In this case, our quasi-succinct index is a ranked characteristic
function. Reads are particularly fast (just a unary code read),
and combined with count reading faster than Lucene. Note
that we compress this list at � 1:38 bits per pointer, against
the � 2:38 bits of Kamikaze and the 8 bits of Lucene. The
slowness of Zettair is probably due to the fact that positional
information is interleaved with document pointers, so it is nec-
essary to to skip over it.

Another example (this time using an Elias–Fano represen-
tation) is the enumeration of all documents in which the term
“house” appears (� 2 millions):

QS Kamikaze QS* MG4J Lucene Zettair
17:2 19:4 31:9 42:2 33:2 69:1

An Elias–Fano list requires recovering also the lower bits, and
thus it is slightly slower: overall, if we read counts we are just
slightly faster than Lucene, as expected.
Conjunction of correlated terms. Consider the conjunction
of the terms “home” and “page”, which appears in about one
fifth of the documents in the GOV2 collection:

QS Kamikaze QS* MG4J Lucene Zettair
204 295 420 561 416 933

We can see that in this case quasi-succinct indices are already
better than Kamikaze at conjunction, but nonetheless the high
correlation makes our constant-time skipping not so useful.

On the other hand, consider the conjunction of the terms
“good”, “home” and “page”, which appears in about 1/30th of
the documents in the GOV2 collection:

QS Kamikaze QS* MG4J Lucene Zettair
73 153 164 471 294 709

The query is now more complex, but, more importantly, there
is a term that is significantly less frequent than the other two.
Quasi-succinct indices have now a significant advantage.

10



QS QS* Kamikaze QS(C) QS*(C) PFD(C) PFD*(C)
Terms 3:83 7:30 4:23 1:61 4:05 1:57 2:39

And 1:16 1:62 2:08 0:91 1:25 0:75 0:87

Table 4: Timings in seconds for running the term and conjunctive test queries from the TREC Terabyte track on GOV2 directly
from RAM. Timings for quasi-succinct indices are provided both for Java and C++ 64-bit implementations. PForDelta timings
have been computed both using the Kamikaze library and using optimized 32-bit C code provided by Ding Shuai [23]. Starred
versions include reading counts for all returned document pointers.

It is interesting to compare the above table with the timings
for the phrasal query “home page”:

QS MG4J Lucene Zettair
1282 1693 1228 977

Now the engines have essentially to read wholly all posting
lists. No skipping is possible (it would be actually detrimen-
tal). Most of the time is spent trying to figure out which of
the documents containing the three terms actually contains
the three terms in a row. The overhead of Java becomes here
visible—this is indeed our only example in which Zettair is
the fastest engine.

It is interesting to compare the above table with the timings
for the phrasal query “good home page”:

QS MG4J Lucene Zettair
540 1251 880 795

Conjunction of uncorrelated terms. The terms “foo” and
“bar” appear in about 650 000 documents, but they co-occur
just in about 5 000:

QS Kamikaze QS* MG4J Lucene Zettair
1:27 2:28 2:00 7:09 3:11 35:39

The smallness of the intersection gives to our skipping logic a
greater advantage than in the previous case.

The terms “fast” and “slow” appear in about 1,000 000 doc-
uments, but they co-occur just in about 50 000:

QS Kamikaze QS* MG4J Lucene Zettair
9:21 10:0 12:45 25:21 17:20 45:22

Complex selective queries. The query “foo bar fast slow” has
� 250 results:

QS Kamikaze QS* MG4J Lucene Zettair
1:25 2:20 1:32 7:21 7:48 68:26

The more the query becomes selective, the greater the advan-
tage of average constant-time positioning. Note, in particular,
that the timing for QS* decreases, as less counts have to be
retrieved (and they can be retrieved quickly).
Phrases with stopwords. As we remarked in the previous
section, we should be able to search for the exact phrase
“Romeo and Juliet”:

QS MG4J Lucene Zettair
2:53 15:12 6:36 1203:85

Zettair performs particularly badly in this case. Our ability to
address quickly any position of the index more than doubles
the speed of our answer with respect to Lucene. This can be
seen also from the timings for the conjunctive query contain-
ing “Romeo”, “and”, and “Juliet”:

QS Kamikaze QS* MG4J Lucene Zettair
0:51 2:47 0:92 6:64 3:41 1244:03

The number of results increases by� 15%.
Proximity. As Table 3 shows, quick access to positions im-
prove significantly another important aspect of a search en-
gine: proximity queries. Here we show a roundup of the
previous conjunctive queries resolved within a window of 16
words:

QS MG4J Lucene
home page 1625:30 2134:45 2079:52

good home page 754:25 1498:17 1203:64

foo bar 3:22 12:84 7:40

fast slow 23:33 50:68 39:11

foo bar fast slow 1:48 9:15 12:40

romeo and juliet 3:22 16:20 11:41

These results show, in particular, that quick access to positions
makes proximity computation always faster for more complex
queries.
C implementation. Finally, we show the timings for the
same set of queries using C implementations of PForDelta and
quasi-succinct indices:

QS(C) PFD(C) QS*(C) PFD*(C)
home page 159:08 134:14 316:91 162:40

good home page 63:06 67:71 121:36 84:18

foo bar 0:73 0:67 1:01 0:83

fast slow 6:34 4:42 8:36 5:04

foo bar fast slow 0:74 0:74 0:82 0:79

romeo and juliet 0:29 0:90 0:56 1:00

We already know from Table 4 that PForDelta optimised code
is significantly faster at retrieving counts (see columns QS*(C)
and PDF*(C)); the same comments apply. As expected, albeit
in general slower our quasi-succinct C++ implementation is
faster at solving queries with a mix of high-density and low-
density terms (“good home page” and “romeo and juliet”).

12 Conclusions
We have presented a new inverted index based on the quasi-
succinct encoding of monotone sequences introduced by Elias
and on ranked characteristic functions. The new index pro-
vides better compression than typical gap-encoded indices,
with the exception of extremely compression-oriented tech-
niques such as Golomb or interpolative coding. When com-
pared with indices based on gap compression using variable-
length byte encoding (Lucene) or 
 /ı codes (MG4J), not only

11



we provide better compression, but significant speed improve-
ment over conjunctive, phrasal and proximity queries. In gen-
eral, any search engine accessing positional information for
selecting or ranking documents out of a large collection would
benefit from quasi-succinct indices (an example being tagged
text stored in parallel indices).

Our comparison with a C implementation of PForDelta
compression for pointers and counts showed that PForDelta is
slightly faster than quasi-succinct indices in computing con-
junction, and significantly faster at retrieving counts, albeit
in queries mixing terms with high and low frequency quasi-
succinct indices can be extremely faster. Moreover, PForDelta
(more precisely, the Kamikaze library) use 55% more space
than a quasi-succinct index to compress pointers from the
GOV2 collection.

A drawback of quasi-succinct indices is that some ba-
sic statistics (in particular, frequency, occurrency and the
bound (4)) must be known before the index is built. This im-
plies that to create a quasi-succinct index from scratch it is
necessary to temporary cache in turn each posting list (e.g.,
using a traditional gap-compressed format) and convert it to
the actual encoding only when all postings have been gener-
ated. While it is easy to do such a caching offline, it could
slow down index construction.

On the other hand, this is not a serious problem: in prac-
tice, large indices are built by scanning incrementally (pos-
sibly in parallel) a collection, and merges are performed pe-
riodically over the resulting segments (also called barrels or
batches). Since during the construction of a segment it is triv-
ial to store the pieces of information that are needed to build
a quasi-succinct index, there is no need for an actual two-pass
construction: segments can be compressed using gap encod-
ing, whereas large indices can be built by merging in a quasi-
succinct format.

Note that if computing the least significant bit, selection-
in-a-word and sideways addition were available in hardware,
the decoding speed of a quasi-succinct index would signifi-
cantly increase, as about 30% decoding time is spent read-
ing unary codes. It is difficult to predict the impact of
such hardware instructions on skipping, but we would cer-
tainly expect major speedups. In Java virtual machines, this
would lead a to better intrinsification of methods such as
Long.numberOfTrailingZeros(), whereas the gcc com-
piler could provide faster versions of built-in functions such
as builtin_ctzll().

An interesting area of future research would be extending
the techniques described in this paper to impact-sorted in-
dices, in which documents are sorted following a retrieval-
based impact order [3], and only documents pointers with the
same impact are monotonically increasing. A technique simi-
lar to that used in this paper to store positions (i.e., a different
encoding for the start of each block) might provide new inter-
esting tradeoffs between compression and efficiency.

13 Acknowledgments
The author would like to thank Roi Blanco for an uncountable
number of useful suggestions and for moral support.

References
[1] Time-space trade-offs for predecessor search. In J. M.

Kleinberg, editor, Proceedings of the 38th Annual ACM
Symposium on Theory of Computing (STOC ’06), pages
232–240. ACM Press, 2006.

[2] V. N. Anh and A. Moffat. Inverted index compression
using word-aligned binary codes. Inf. Retr, 8(1):151–
166, 2005.

[3] V. N. Anh and A. Moffat. Pruned query evaluation using
pre-computed impacts. In E. N. Efthimiadis, S. T. Du-
mais, D. Hawking, and K. Järvelin, editors, SIGIR 2006:
Proceedings of the 29th Annual International ACM SI-
GIR Conference on Research and Development in Infor-
mation Retrieval, Seattle, Washington, USA, August 6-
11, 2006, pages 372–379. ACM, 2006.

[4] T. C. Bell, A. Moffat, C. Neville-Manning, I. H. Witten,
and J. Zobel. Data compression in full-text retrieval sys-
tems. Journal of the American Society for Information
Science, 44:508–531, 1993.

[5] R. Blanco and A. Barreiro. Tsp and cluster-based solu-
tions to the reassignment of document identifiers. Infor-
mation Retrieval, 9(4):499–517, 2006.

[6] D. K. Blandford and G. E. Blelloch. Index compression
through document reordering. In DCC, pages 342–351.
IEEE Computer Society, 2002.

[7] P. Boldi and S. Vigna. MG4J at TREC 2005. In E. M.
Voorhees and L. P. Buckland, editors, The Fourteenth
Text REtrieval Conference (TREC 2005) Proceedings,
number SP 500-266 in Special Publications. NIST, 2005.
http://mg4j.dsi.unimi.it/.

[8] S. Büttcher and C. L. A. Clarke. Index compression
is good, especially for random access. In M. J. Silva,
A. H. F. Laender, R. A. Baeza-Yates, D. L. McGuinness,
B. Olstad, Ø. H. Olsen, and A. O. Falcão, editors, Pro-
ceedings of the Sixteenth ACM Conference on Informa-
tion and Knowledge Management, CIKM 2007, Lisbon,
Portugal, November 6-10, 2007, pages 761–770. ACM,
2007.

[9] D. R. Clark. Compact Pat Trees. PhD thesis, University
of Waterloo, Waterloo, Ont., Canada, 1998.

[10] H. Cunningham, V. Tablan, I. Roberts, M. A. Green-
wood, and N. Aswani. Information Extraction and
Semantic Annotation for Multi-Paradigm Information
Management. In M. Lupu, K. Mayer, J. Tait, and A. J.
Trippe, editors, Current Challenges in Patent Informa-
tion Retrieval, volume 29 of The Information Retrieval
Series. Springer, 2011.

[11] O. Delpratt, N. Rahman, and R. Raman. Compressed
prefix sums. In J. van Leeuwen, G. F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, and F. Plasil, editors, Proc.
SOFSEM 2007: Theory and Practice of Computer Sci-
ence, 33rd Conference on Current Trends in Theory and

12



Practice of Computer Science, number 4362 in Lecture
Notes in Computer Science, pages 235–247. Springer–
Verlag, 2007.

[12] P. Elias. On binary representations of monotone se-
quences. In Proc. Sixth Princeton Conference on In-
formation Sciences and Systems, pages 54–57, Dep. of
Electrical Engineering, Princeton U., Princeton, N. J.,
1972.

[13] P. Elias. Efficient storage and retrieval by content and ad-
dress of static files. J. Assoc. Comput. Mach., 21(2):246–
260, 1974.

[14] P. Elias. Universal codeword sets and representations of
the integers. IEEE Transactions on Information Theory,
21:194–203, 1975.

[15] S. W. Golomb. Run-length encodings. IEEE Trans. In-
form. Theory, IT-12:399–401, 1966.

[16] K. S. Jones, S. Walker, and S. E. Robertson. A proba-
bilistic model of information retrieval: development and
comparative experiments — part 1. Inf. Process. Man-
age, 36(6):779–808, 2000.

[17] D. E. Knuth. The Art of Computer Programming. Pre-
Fascicle 1A. Draft of Section 7.1.3: Bitwise Tricks and
Techniques, 2007.

[18] C. E. Leiserson, H. Prokop, and K. H. Randall. Using de
Bruijn sequences to index a 1 in a computer word, 1998.
Unpublished manuscript.

[19] C. D. Manning, P. Raghavan, and H. Schütze. Intro-
duction to information retrieval. Cambridge University
Press, 2008. Available online.

[20] A. Moffat and L. Stuiver. Exploiting clustering in in-
verted file compression. In J. A. Storer and M. Cohn,
editors, Proceedings of the 6th Data Compression Con-
ference (DCC ’96), Snowbird, Utah, March 31 - April 3,
1996, pages 82–91. IEEE Computer Society, 1996.

[21] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Trans. Inf. Syst., 14(4):349–379,
1996.

[22] R. Raman, V. Raman, and S. S. Rao. Succinct indexable
dictionaries with applications to encoding k-ary trees,
prefix sums and multisets. ACM Transactions on Algo-
rithms (TALG), 3(4):43, 2007.

[23] D. Shuai. Personal communication.

[24] F. Silvestri, R. Perego, and S. Orlando. Assigning
document identifiers to enhance compressibility of web
search engines indexes. In H. Haddad, A. Omicini, R. L.
Wainwright, and L. M. Liebrock, editors, Proceedings of
the 2004 ACM Symposium on Applied Computing (SAC),
Nicosia, Cyprus, March 14-17, 2004, pages 600–605.
ACM, 2004.

[25] S. Vigna. Broadword implementation of rank/select
queries. In C. C. McGeoch, editor, Experimental Algo-
rithms. 7th International Workshop, WEA 2008, number
5038 in Lecture Notes in Computer Science, pages 154–
168. Springer–Verlag, 2008.

[26] H. Yan, S. Ding, and T. Suel. Compressing term posi-
tions in web indexes. In J. Allan, J. A. Aslam, M. Sander-
son, C. Zhai, and J. Zobel, editors, Proceedings of the
32nd Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SI-
GIR 2009, Boston, MA, USA, July 19-23, 2009, pages
147–154. ACM, 2009.

[27] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), 2006.

[28] M. Zukowski, S. Héman, N. Nes, and P. A. Boncz.
Super-scalar RAM-CPU cache compression. In L. Liu,
A. Reuter, K.-Y. Whang, and J. Zhang, editors, Proceed-
ings of the 22nd International Conference on Data Engi-
neering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA,
page 59. IEEE Computer Society, 2006.

13


