

Comparative analysis between
QuickThread and Intel® Threading Building Blocks (T BB)

Copyright © 2009
QuickThread Programming, LLC
www.quickthreadprogramming.com

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

QuickThread (Registration Pending) is a trademark of QuickThread Programming, LLC.
Threading Building Blocks is available at http://www.threadingbuildingblocks.org/ or available
from Intel.

This document is a comparative analysis of QuickThread, referred to as QT and Intel Threading
Building Blocks, referred to at TBB. The format of this document is to follow the TBB tutorial
document and make comparisons amongst Single Threaded (serial) programming TBB
programming of the same task, and QT programming of the same task. By doing so, you will see
the impact (burden), and benefits of each threading tool.

Intel is a registered trademark of Intel Corporation
QuickThread is a pending registered trademark of James G. Dempsey (QuickThread
Programming, LLC)

Benefits
• Both QT and TBB are task model threading tools
• Both QT and TBB are targeted towards performance
• Both QT and TBB are compatible with other threading packages
• Both QT and TBB emphasize scalable, data parallel, programming
• TBB relies on generic programming, QT generic programming is by preference
• QT has less programming effort to integrate into your applications
• QT has higher performance under heavy workloads.

Package Contents

Intel TBB includes dynamic shared library, C++ header files and C++ code examples for
Windows and Linux.

QuickThread includes a static library, C++ and Fortran header files and C++ and Fortran code
examples for Windows.

An additional benefit of QuickThread is the ability to incorporate it into your Fortran applications.
This document will not cover Fortran integration as it is a comparative analysis of the C++
implementations of threading tools.

Debug and Versus Release Libraries

Intel TBB comes with debug and release versions of the dynamic shared runtime library.

QuickThread static library contains the thread scheduler and a few support functions in Debug
and Release configurations (both x32 and x64 architectures). All language extensions interfacing
to the scheduler and support routines are provided in source. User can compile these in Release
or Debug as required.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Scalable Memory Allocator

Intel TBB has a scalable memory allocator.
QuickThread has a NUMA optimized scalable memory allocator.

Additional scalable memory allocators are available from various locations such as
sourceforge.net or threadingbuildingblocks.org.

Installation Windows

Intel TBB (follow instructions)

QuickThread – Extract to folder of choice (e.g. C:\QuickThread or C:\Program
Files\QuickThread)
Set environment variables if (as) desired (INCLUDE, LIB, etc…)

Initializing the Terminating the Library

Intel TBB

#include "tbb/task_scheduler_init.h"
using namespace tbb;
int main()
{
 task_scheduler_init init;
 ...
 return 0;
}

Intel TBB may have one or more task_scheduler_init objects

QuickThread

#include "QuickThread.h"
using namespace qt;
int main()
{
 qtInit init(-1,-1); // use defaults
 ... // Your parallel code here
 return 0;
}

Or
#include "QuickThread.h"
using namespace qt;
int main()
{
 qtInit init(4,2); // 4 compute and 2 I/O threads
 ... // Your parallel code here
 return 0;

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

}
Or

#include "QuickThread.h"
using namespace qt;
int main()
{
 qtInit init; // delay initialization of thread pool
 // Optional configuration of init object
 // ...
 if (init.StartQT()) ReportError();
 ... // Your parallel code here
 if (init.EndQT()) ReportError();
 return 0;
}

Or

#include "QuickThread.h"
using namespace qt;
int main()
{
 ... // (Some of) your serial code here
 for(int i=0; i<count; ++i)
 {
 qtInit init(-1,-1); // use defaults
 ... // Your parallel code here
 }
 ... // Your serial code here
 return 0;
}

QuickThread uses one qtInit object to specify and configure its thread pools.

In TBB the initialization object creates one class of thread pool (compute class).

In QuickThread a single qtInit object can declare two classes of thread pools:

Computation class
I/O class

The defaults for the numbers of threads are: the number of computational threads equals the
number of cores (or hardware threads in the case of HT) available, and the default number of I/O
class threads is 1. You can specify your preference to the numbers of threads per class in the
ctor or together with additional optional preferences between the instantiation of the object qtInit
(without arguments) and the function call to start the QuickThread thread pool.

Under normal programming requirements the number of threads created for the computation
class of threads would never need to exceed the number of available cores (hardware threads).
However, during transition from pre-QuickThread to QuickThread you may have a need to create
additional computational threads. An example would be if some of your older pieces of code
perform small amounts of I/O or WaitForSingleEvent-like messaging. Although you can specify
more computational threads than you have hardware threads we recommend that you allocate
additional I/O class threads for this purpose. The computational class threads are (usually) affinity
pinned, while the I/O class threads are not and can roam from core to core.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

parallel_for

Both QuickThread and TBB have a parallel_for template. Both support C++0x Lambda functions
(which are not used in this analysis of parallel_for).

QuickThread has optional arguments:

qtPlacement permitting the programmer to select the preferred affinities of the thread team used
for the parallel for and/or other characteristics of the task enqueue (to Compute or I/O class of
thread, FIFO or quazi-LIFO).

qtControl permitting non-blocking parallel_for and/or completion task specification.

Serial code

void SerialApplyFoo(float a[], size_t n)
{
 for (size_t i=0; i<n; ++i)
 Foo(a[i]);
}

Intel TBB

parallel_for with grain size
...
#include "tbb/blocked_range.h"
// TBB requires you to create a class containing op erator()
class ApplyFoo
{
 float * const my_a;
 public :
 void operator ()(const blocked_range<size_t>& r) const
 {
 float *a = my_a;
 for (size_t i=r.begin(); i!=r.end(); ++i)
 Foo(a[i]);
 }
 ApplyFoo(float a[]) :
 my_a(a)
 {}
};
...
#include "tbb/parallel_for.h"
void ParallelApplyFoo(float a[], size_t n)
{
 // TBB uses blocked_range object
 parallel_for(
 blocked_range<size_t>(0,n,IdealGrainSize),

ApplyFoo(a));
}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

QuickThread

parallel_for with grain size

. . .
// QuickThread requires half open iteration space o n for task
void ParallelApplyFoo(size_t iBegin, size_t iEnd, float a[])
{
 // Call existing serial code
 SerialApplyFoo(&a[iBegin], iEnd-iBegin);
}
. . .

parallel_for(IdealGrainSize, ParallelApplyFoo, 0, n, a);

parallel_for without grain size

parallel_for(ParallelApplyFoo, 0, n, a);

QuickThread tasks are standard functions returning void, some contain required arguments and
may contain a reasonable number of arbitrary user arguments (currently 9 arguments is upper
limit). Control parameters, e.g IdealGrainSize, precede the functor in the argument list.

The task template for parallel_for has two required arguments: those of the half open range of the
iteration space (iBegin and iEnd). In this example the optional user argument is the base of the
array. For different functions this could be an STL vector.

The principal advantages of using QuickThread in this example are:

• Re-use of existing serial code
• Eliminates the requirement of creating an additional class and class functions for running

the task.

QuickThread has advanced thread scheduling capabilities. You can specify a subset of all thread
such as only the threads sharing a cache level (L1, L2, L3, M0) of that of the thread issuing the
parallel_for. Or other cache related characteristics. Examples:

parallel_for bound to L2 cache of calling thread

parallel_for(L2$, ParallelApplyFoo, 0, n, a);

Specifies a parallel_for using the current thread plus any threads sharing the current thread’s L2
cache.

On a typical current generation processor this would schedule two threads: the current thread and
the one other thread sharing the L2 cache. If the processor has HT this might involve scheduling
to four threads. Additional HT threads can be excluded from the thread pool at initialization time
by use of an option.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

parallel_for opportunistic scheduling

parallel_for(Waiting_L2$, ParallelApplyFoo, 0, n, a);

Specifies a parallel_for using the current thread plus any threads sharing the current thread’s L2
cache provided the other threads are available for work.

In scheduling for all threads sharing L2 cache the programmer is not taking into consideration the
availability of those threads to perform the work. While at an outer layer of the application you
may be reasonably assured that all the other threads sharing your thread’s L2 cache are idle, as
you traverse deeper into the application (nested thread levels) those additional threads sharing
your thread’s L2 cache may be busy performing other tasks. In this situation it would be counter
productive to split the loop up into multiple pieces for those thread that are not available.

parallel_for current socket scheduling

parallel_for(L3$, ParallelApplyFoo, 0, n, a);
or

parallel_for(M0$, ParallelApplyFoo, 0, n, a);

parallel_for different socket scheduling

parallel_for(L3$+ExcluedMyCacheLevel$,ParallelApply Foo,0,n,a);
or

parallel_for(M0$+ExcluedMyCacheLevel$,ParallelApply Foo,0,n,a);

Including ExcluedMyCacheLevel$ you can select the socket with the most available threads.

parallel_for one thread per cache level scheduling

parallel_for(OneEach_L2$,ParallelApplyFoo, 0, n, a) ;

QuickThread provides for task distribution in other ways. The above performs a parallel_for but to
restrict the scheduling to one thread per each L2 cache.

You may ask: Why would you want to do this?

A good example of OneEach_L2$ distribution would be in dividing a matrix operation into tiles.
The rows of the matrix can be distributed to each L2 and the columns as referenced by those
rows, using parallel_for(L2$, …) would be performed by those threads sharing the L2 with each of
the respective rows threads. In this manner you have control over locality of data and can
improve cache utilization.

parallel_for non-blocking

By specifying a qtControl object in the argument list the parallel_for will not block. i.e. code
execution of the main thread passes through the parallel_for while the other threads are working
on the task(s) of the parallel_for.

double * A = new double [nSize];

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

 double * B = new double [nSize];
 double * AB = new double [nSize]; // AB = A + B

double * C = new double [nSize];
 double * D = new double [nSize];
 double * CD = new double [nSize]; // CD = C + D
 double * ABCD = new double [nSize]; // ABCD = AB + CD

. . .
{
 qtControl qtControl; // task team control object
 // enqueue first parallel_for without blockin g

parallel_for(&qtControl, &DoSum 0, nSize, A, B, AB) ;
 // enqueue second parallel_for without blocki ng

parallel_for(&qtControl, &DoSum 0, nSize, C, D, CD) ;
// do other work while both parallel for loops run
DoOtherWork(); // runs concurrent with AB and CD
// now wait for completion of both parallel for loo ps
qtControl.WaitTillDone(); // or parallel_wait(&qtControl);
// begin next parallel for (note use of qtControl)
parallel_for(&qtControl, &DoSum, 0, nSize, AB, CD, ABCD);
// something else to do while performing parallel_f or

} // qtControl dtor performs implicit qtControl.WaitT illDone();

In the above example, the DoSum of AB is scheduled by the current thread. The current thread is
a potential team member for the AB parallel loop but does not begin processing a portion of the
AB sum. Instead, the thread continues and performs the enqueuing of the second parallel_for for
the CD parallel loop but does not begin processing a portion of the CD sum. Instead, the thread
continues and performs DoWork(). Upon return from DoWork() the current thread issues the
qtControl.WaitTillDone(); it will now be able to partake in the parallel_for loops
requested for AB and CD. However, should any of the other threads performing the AB DoSum
finish prior to the current thread issuing the qtControl.WaitTillDone(); then that thread
will process the current threads portion of the AB loop. And a similar situation with the CD loop.

Now consider the situation where you wish to control data locality and take advantage of cache
placement. Assume in the above example that arrays A, B, AB are preferred to be run in the L2
cache of the main thread and that C, D, CD are preferred to run in a different L2 cache from the
main thread, and ABCD has no preference to cache locality.

{
 qtControl ABqtControl;
 // non-blocking parallel_for (CD = C + D)
 // *** perform this in an L2 cache other than mine

parallel_for(
L2$+ExcluedMyCacheLevel$,
&ABqtControl,
&DoSum 0, nSize, C, D, CD);

 // blocking parallel_for (AB = A + B)
 // restrict to threads sharing my L2 cache

parallel_for(
 L2$,

&DoSum 0, nSize, A, B, AB);
 // now wait for (CD = C + D)

ABqtControl.WaitTillDone();
 // blocking parallel_for (ABCD = AB + CD)
 // using all threads

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

parallel_for(&DoSum, 0, nSize, AB, CD, ABCD);
// something else to do while performing parallel_f or

}

Distribution by thread affinity, thread availability, and flow-thru is not possible using TBB.

There are other ways to perform the scheduling which can be used to enhance the performance
of your application. These techniques are covered in greater detail in the programmer’s manual.

Grainsize

Both TBB and QuickThread have optional IdealGrainSize argument to their respective parallel_for
statements. The TBB grain size is a cutoff point (below which parallelization does not occur). The
QuickThread grain size is similar to the OpenMP Chunk size (and specifies a chunking factor).

Lambda functions

Both TBB and QuickThread (with C++0x compilers) support Lambda functions in parallel_for.

Bandwidth

Intel TBB , in some instances where the applied function Foo is relatively simple TBB may
experience some bandwidth problems.

QuickThread , in a sub-set of these bandwidth problems uses of QuickThread’s affinity
scheduling may extract additional performance from the system.

Auto_partitioner

Intel TBB provides an auto_partitioner for use with blocked ranges.

QuickThread does not use an auto_partitioner to determine optimal grain sizes.

In place of auto_partitioner, QuickThread programmers can choose…

Dynamic partitioning

An example of dynamic partitioning is the ability to distribute a parallel_for across current thread
plus any idle threads:

 parallel_for(Waiting$, ParallelApplyFoo, 0, n, a);

Or to a subset such as sharing L3 cache (same socket)

 parallel_for(Waiting_L3$, ParallelApplyFoo, 0, n, a);

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

The Waiting$ flag reduces the number of partitions (tasks) of the iteration space to that of number
of waiting threads (in subset if specified) plus current thread (assuming no
ExcludeMyCacheLevel$).

Additionally, the QuickThread parallel_for_each , parallel_reduce and parallel_list statements
perform partitioning based upon the availability of idle threads (as well as optional placement
capabilities).

 parallel_for_each(n, ParallelApplyFooEach, 0, a);

At start, the range 0:n-1 is partitioned into 1+ number of idle threads. Then as execution
progresses the executing threads will monitor for additional waiting threads becoming available.
When a thread becomes available, another partitioning occurs (i.e. dynamically).

The use of auto_partitioner in QuickThread may be of questionable value considering the
enhanced scheduling capabilities, and in particular dynamic partitioning of QuickThread.

parallel_reduce

Serial summation function

float SerialSumFoo(float a[], size_t n)
{
 float sum = 0;
 for (size_t i=0; i!=n; ++i)
 sum += Foo(a[i]);
 return sum;
}

Intel TBB parallel_reduce

// TBB requires you to create class to hold operato r()
class SumFoo
{
 float * my_a;
 public :
 float sum;
 void operator ()(const blocked_range<size_t>& r)
 {
 float *a = my_a;
 for (size_t i=r.begin(); i!=r.end(); ++i)
 sum += Foo(a[i]);
 }
 SumFoo(SumFoo& x, split) : my_a(x.my_a), sum(0) {}
 void join(const SumFoo& y) {sum+=y.sum;}
 SumFoo(float a[]) :
 my_a(a), sum(0)
 {}
};

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

float ParallelSumFoo(const float a[], size_t n)
{
 SumFoo sf(a);
 parallel_reduce(

blocked_range<size_t>(0,n,IdealGrainSize),
sf);

 return sf.sum;
}

QuickThread parallel_reduce

parallel_reduce(fn, iBegin, iEnd, reduction [, opt ional args]);

This statement is similar to parallel_for in syntax excepting that it has one additional required
argument following the iteration space variables. (optional qtPlacement and qtControl objects
may preceed the arguments when applicable).

Unlike TBB where the reduction code is bound to the application data object as member function,
QuickThread uses reduction objects that are not bound to the application data object. This
permits higher reusibility of code.

The QuickThread reduction object can be simple or complex. The simple reduction objects can
get reused.

For an example, consider a reduction object to produce a summation. The functionality of a
reduction object is intuitively simple, it must:

a) initialize to required state (usually 0)
b) accept a next item
c) perform the reduction with other reduction object

An example of a simple reduction object would be for summation of an scalar type. The template
function is relatively simple:

// Value reduction object
template <typename T>
struct ReduceSum
{
 T value;
 inline ReduceSum<T>() { value = 0; }
 inline void Reduce(T x) { value += x; }
 inline void Reduce(ReduceSum& o) { value += o.value; }
};
. . .
template <typename T>
void ParallelSum(
 long iBegin, long iEnd, // Half open range required first
 ReduceSum<T>& ret, // reduction object next
 const T a[]) // optional arguments last
{
 for (long i=iBegin; i<iEnd; ++i)
 ret.Reduce(a[i]); // use reduction by values
}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

. . .
ReduceSum<float > reduceSum;
parallel_reduce(

ParallelSum< float >, 0, NumberOfFloats, reduceSum, Array);

With TBB the Array would have to be an encapsulation object containing Array or
pointer/reference to Array. With QuickThread there is no encapslulation thus no requirement to
alter code related to Array.

Also note that the reduction operators are performed without an AtomicAdd. The reason we can
do this is the final reduction is performed after all threads have completed and the thread issuing
the parallel_reduce performs the reduction on its return to the thread issueing parallel_reduce.
This eliminates the relatively expensive _Interlocked… instruction used to complete the reduction.

Although QuickThread has a parallel_reduce , many reduction operations can be performed
using thread safe programming practices with traditional functions (run as parallel tasks).

// your existing serial function to produce sum
float SerialSumFoo(float a[], size_t n)
{
 float sum = 0;
 for (size_t i=0; i!=n; ++i)
 sum += Foo(a[i]);
 return sum;
}

// add parallel slice function
// to re-use serial function to produce sum
void ParallelSumFoo(
 long iBegin, long iEnd, // Half open range required first
 const float a[],
 float * out)
{
 float sum = SerialSumFoo(&a[iBegin], iEnd- iBegin);
 AtomicAdd(out, sum); // thread safe atomic add of floats
 // in QuickThread.h
}
. . .
float mySum = 0.0f;
parallel_for(

ParallelSumFoo, 0, NumberOfFloats, Array, &mySum);

Again, QuickThread provides for more re-usability of existing code.

In cases such as summation into float or double it would be more effective to pass the pointer to
the eventual sum variable and perform the AtomicAdd function (supplied with QuickThread). Or if
you prefer you could use a TBB atomic<float> object or use #pragma omp atomic statement.

Advanced Example
In this example the reduction object is compound. It contains a value and an index. The code is to
find the index of the minimum value within an array.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Serial
long SerialMinIndexFoo(
 const float a[], long n)
{
 float value_of_min = FLT_MAX; // FLT_MAX from <float.h>
 long index_of_min = -1;
 for (long i=0; i<n; ++i)
 {
 float value = Foo(a[i]);
 if (value<value_of_min)
 {
 value_of_min = value;
 index_of_min = i;
 }
 }
 return index_of_min;
}

Intel TBB

class MinIndexFoo
{
 const float * const my_a;
public :
 float value_of_min;
 long index_of_min;
 void operator ()(const blocked_range<size_t>& r)
 {
 const float *a = my_a;
 for (size_t i=r.begin(); i!=r.end(); ++i)
 {
 float value = Foo(a[i]);
 if (value<value_of_min)
 {
 value_of_min = value;
 index_of_min = i;
 }
 }
 }
 MinIndexFoo(MinIndexFoo& x, split) :
 my_a(x.my_a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1)
 {}
 void join(const SumFoo& y)
 {
 if (y.value_of_min<x.value_of_min)
 {
 value_of_min = y.value_of_min;
 index_of_min = y.index_of_min;
 }
 }
 MinIndexFoo(const float a[]) :

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

 my_a(a),
 value_of_min(FLT_MAX), // FLT_MAX from <climits>
 index_of_min(-1),
 {}
};

long ParallelMinIndexFoo(float a[], size_t n)
{
 MinIndexFoo mif(a);
 parallel_reduce(blocked_range<size_t>(0,n,IdealGra inSize), mif);
 return mif.index_of_min;
}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

QuickThread

// Reduction object
struct ReduceMinIndexFoo
{
 float value_of_min; // your data here
 long index_of_min;
 ReduceMinIndexFoo()
 { // default initialization
 value_of_min = FLT_MAX; // FLT_MAX from <float.h>
 index_of_min = -1;
 }
 void Reduce(float value, long index)
 { // Reduction by values
 if (value<value_of_min)
 {
 value_of_min = value;
 index_of_min = index;
 }
 }
 void Reduce(ReduceMinIndexFoo& o)
 { // Reduction by reference
 if (o.value_of_min<value_of_min)
 {
 value_of_min = o.value_of_min;
 index_of_min = o.index_of_min;
 }
 }
};
. . .
void fnParallelMinIndexFoo(// Task function
 long iBegin, long iEnd, // Half open range required first
 ReduceMinIndexFoo& ret, // reduction object next
 const float a[]) // optional arguments last
{
 for (long i=iBegin; i<iEnd; ++i)
 ret.Reduce(Foo(a[i]), i); // use reduction by values
}
. . .

long ParallelMinIndexFoo(
 const float a[], size_t n)
{
 ReduceMinIndexFoo reduce;
 parallel_reduce(fnParallelMinIndexFoo, 0, n, reduc e, a);
 return reduce.value;
}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Advanced Topic: Other Kinds of Iteration Spaces

Intel TBB permits you to produce and use custom written iteration objects (iterators) for use in
your program.

QuickThread permits you to produce and use custom written iteration objects (iterators) for use
in your program as well. However, due to the enhanced capability of QuickThread to permit you
to specify placement and availability as well as dynamic partitioning you may find few uses for an
interator object. Running a linked list might be one of the few cases where an iterator object might
be advised. However, there are easier programming techniques for parallel processing of linked
lists.

parallel_while

Serial

void SerialApplyFooToList(Item*root)
{
 for (Item* ptr=root; ptr!=NULL; ptr=ptr->next)
 Foo(ptr->data);
}

Intel TBB parallel_while

class ItemStream
{
 Item* my_ptr;
 public :
 bool pop_if_present(Item*& item)
 {
 if (my_ptr)
 {
 item = my_ptr;
 my_ptr = my_ptr->next;
 return true ;
 }
 else
 {
 return false ;
 }
 };
 ItemStream(Item* root) : my_ptr(root) {}
};

void ParallelApplyFooToList(Item*root)
{
 parallel_while<ApplyFoo> w;
 ItemStream stream;
 ApplyFoo body;
 w.run(stream, body);
}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

QuickThread parallel_list

QuickThread uses the template name parallel_list to process linked lists.

Process a null terminated list using all threads:

void ParallelApplyFooToList(Item* root)
{
 parallel_list(Foo, root);
}

Or simply make call inline in your code

parallel_list(Foo, root);

The internal workings of parallel_list are (subject to optional qtPlacement) distribute the list to the
current thread plus current number of idle threads. Then as each thread processes nodes,
monitor for additional threads to become idle (subject to optional qtPlacement) and add them to
the team of threads working on the list. The linked list is dynamically partitioned to available
threads.

parallel_pipeline

Both TBB and QuickThread have parallel_pipeline
QuickThread has two classes of threads, TBB does not. QuickThread can take advantage of the
two classes of threads in the parallel_pipeline by designating pipes as I/O class or compute class.
Typically, the input end and output end of a pipeline are I/O. The dual class capability of
QuickThread gives it a distinct advantage over TBB pipeline.

The following is a simple example of up casing the first letter of each word in a file.

Serial

// Buffer that holds block of characters
// and last character of previous buffer.
class MyBuffer
{
 static const long buffer_size = 10000;
 char * my_end;
 // storage[0] holds the last character of the previ ous buffer.
 char storage[1+buffer_size];
public :
 // Pointer to first character in the buffer
 char * begin() { return storage+1;}
 const char * begin() const { return storage+1;}
 // Pointer to one past last character in the buffer
 char * end() const { return my_end;}
 // Set end of buffer.
 void set_end(char * new_ptr) {my_end=new_ptr;}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

 // Number of bytes a buffer can hold
 long max_size() const { return buffer_size;}
 // Number of bytes in buffer.
 long size() const { return (long)(my_end-begin());}
};

class MyIoContext
{
public :
 FILE* input_file;
 FILE* output_file;
 char last_char_of_previous_buffer;
 MyIoContext()
 {
 input_file = NULL;
 output_file = NULL;
 }
 bool openInput(const char * fileName)
 {
 last_char_of_previous_buffer = ' ' ;
 input_file = fopen(fileName, "rt");
 if (input_file) return true ;
 return false ;
 }
 bool closeInput()
 {
 if (input_file)
 {
 if (fclose(input_file))
 {
 input_file = NULL;
 return false ;
 }
 input_file = NULL;
 }
 return true ;
 }
 bool openOutput(const char * fileName)
 {
 output_file = fopen(fileName, "wt");
 if (output_file) return true ;
 return false ;
 }
 bool closeOutput()
 {
 if (output_file)
 {
 if (fclose(output_file))
 {
 output_file = NULL;
 return false ;
 }
 output_file = NULL;
 }
 return true ;

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

 }
};

MyBuffer b;
MyIoContext io;
const int NumberOfLines = 100000;

void BuildFile()
{
 io.openOutput("QuickBrownFox.txt");
 int ret;
 for (int i=0; i<NumberOfLines; ++i)
 {
 ret = fprintf(io.output_file,
"the quick brown fox jumped over the lazy grey dog' s back. %d\n" , i);
 if (ret == EOF)
 break ;
 }
 io.closeOutput();
}

void ReadyFiles()
{
 io.openInput("QuickBrownFox.txt");
 io.openOutput("QuickBrownFoxUpcase.txt");
}

void CloseFiles()
{
 io.closeInput();
 io.closeOutput();
}

void UpcaseWords()
{
 // files already open
 char last_char_of_previous_buffer = ' ' ;
 for (;;)
 {
 size_t n = fread(

b.begin(), 1, b.max_size(), io.input_file);
 if (!n)
 break ; // end of file

 // insert last char of previous buffer
 b.begin()[-1] = last_char_of_previous_buffer;
 // remember for next time
 last_char_of_previous_buffer = b.begin()[n-1];
 // count read may be shorter than buffer
 b.set_end(b.begin()+n);

 // preamble to loop
 bool prev_char_is_space = (isspace(b.begin()[-1])!=0);
 // word upcase loop
 for (char * s=b.begin(); s!=b.end(); ++s)

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

 {
 if (prev_char_is_space && islower(*s))
 *s = toupper(*s);
 prev_char_is_space = (isspace(*s)!=0);
 }

 // output to file
 fwrite(b.begin(), 1, b.size(), io.output_file);
 }
}

void SerialRunUpcaseWordsTest()
{
 BuildFile();
 ReadyFiles();
 UpcaseWords();
 CloseFiles();
}

TBB parallel_pipeline

// Filter that writes each buffer to a file.
class MyOutputFilter: public tbb::filter
{
 FILE* my_output_file;
 public :
 MyOutputFilter(FILE* output_file);
 /*override*/ void * operator ()(void * item);
};

MyOutputFilter::MyOutputFilter(FILE* output_file) :
tbb::filter(/*is_serial=*/ true),
my_output_file(output_file)
{
}

void * MyOutputFilter:: operator ()(void * item)
{
 MyBuffer& b = * static_cast <MyBuffer*>(item);
 fwrite(b.begin(), 1, b.size(), my_output_file);
 return NULL;
}

// Filter that changes the first letter of each wor d
// from lower case to upper case.
class MyTransformFilter: public tbb::filter
{
public :
 MyTransformFilter();
 /*override*/ void * operator ()(void * item);
};

MyTransformFilter::MyTransformFilter() :

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

tbb::filter(/*serial=*/ false)
{}

/*override*/ void * MyTransformFilter:: operator ()(void * item)
{
 MyBuffer& b = * static_cast <MyBuffer*>(item);
 bool prev_char_is_space = b.begin()[-1]== ' ' ;
 for (char * s=b.begin(); s!=b.end(); ++s)
 {
 if (prev_char_is_space && islower(*s))
 *s = toupper(*s);
 prev_char_is_space = isspace(*s);
 }
 return &b;
}

class MyInputFilter: public tbb::filter
{
public :
 static const size_t n_buffer = 4;
 MyInputFilter(FILE* input_file_);
 private :
 FILE* input_file;
 size_t next_buffer;
 char last_char_of_previous_buffer;
 MyBuffer buffer[n_buffer];
 /*override*/ void * operator ()(void *);
};

MyInputFilter::MyInputFilter(FILE* input_file_) :
filter(/*is_serial=*/ true),
next_buffer(0),
input_file(input_file_),
last_char_of_previous_buffer(' ')
{
}

void * MyInputFilter:: operator ()(void *)
{
 MyBuffer& b = buffer[next_buffer];
 next_buffer = (next_buffer+1) % n_buffer;
 size_t n = fread(b.begin(), 1, b.max_size(), inpu t_file);
 if (!n)
 {
 // end of file
 return NULL;
 }
 else
 {
 b.begin()[-1] = last_char_of_previous_buffer;
 last_char_of_previous_buffer = b.begin()[n-1];
 b.set_end(b.begin()+n);
 return &b;
 }
}

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

// Create the pipeline
tbb::pipeline pipeline;

// Create file-reading writing stage
MyInputFilter input_filter(input_file);
// and add it to the pipeline
pipeline.add_filter(input_filter);

// Create capitalization stage
MyTransformFilter transform_filter;
// and add it to the pipeline
pipeline.add_filter(transform_filter);

// Create file-writing stage
MyOutputFilter output_filter(output_file);
// and add it to the pipeline
pipeline.add_filter(output_filter);

// Run the pipeline
pipeline.run(MyInputFilter::n_buffer);

// Remove filters from pipeline before they are imp licitly destroyed.
pipeline.clear();

QuickThread parallel_pipeline

QuickThread provides multiple types of pipelines. The programmer can select from:

a) Closed ends self running ring buffer (as used by this up-case example)
b) Open ends (input end waits for data, output end consumes buffer)
c) Half open end (one end open, one end closed)

The QuickThread pipeline also has the capability of flow control (covered in the programmer’s
guide).

Similar to TBB, the QuickThread pipeline pipes are passed a token consisting of a buffer (a buffer
class of your design) together with a QuickThread pipeline header. To create your pipeline buffer
token you may append your serial buffer to the QuickThread header.

class MyPipelineBuffer : public PipelineBuffer, public MyBuffer
{
};

There are two classes of pipes in the QuickThread pipeline: Compute and I/O. The compute class
of pipe receives the buffer token (in this case your MyPipelineBuffer token). The I/O class of
pipe is passed an I/O context of your design together with QuickThread header information. To
create your pipeline I/O context you may append your serial I/O context to the QuickThread I/O
context header.

class MyPipelineIoContext

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

: public PipelineIoContext, public MyIoContext
{
};

The input side of a QuickThread pipeline is typically an I/O class of pipe receiving the I/O context
(after successful file open), plus a buffer token. With the exception of how to report the end of file
(or read error), the task for reading into the buffer is ostensibly the same as your serial function.
The principal difference being inserting the failure notification into the QuickThread header pre-
pended to your buffer object.

// task for reading buffer
void PipelineReadBuffer(MyPipelineIoContext* io, MyPipe lineBuffer* b)
{
 // read buffer
 size_t n = fread(b->begin(), 1, b->max_size(), io ->input_file);
 if (n)
 {
 // have some data
 // Inform buff at to the sequence number
 // advance sequence number for next time
 // insert last char of previous buffer
 b->begin()[-1] = io->last_char_of_previous_buffer ;
 // remember last char of this buffer for next time
 io->last_char_of_previous_buffer = b->begin()[n-1];
 // count read may be shorter than buffer
 b->set_end(b->begin()+n);
 }
 else
 {
 // EOF or read error
 // Set exit status to Fail$
 // Fail$ does not shutdown pipeline
 b->Status = Fail$;
 }
}

The compute class of QuickThread pipeline pipe receives just the buffer token. Typically compute
class of pipes do not error out. If they do report an error, use b->Status = Fail$; to report
the error. (There are additional status values available.)

// task to process buffer
void PipelineProcessBuffer(MyPipelineBuffer* b)
{
 bool prev_char_is_space = (isspace(b->begin()[-1])!=0);
 for (char * s=b->begin(); s!=b->end(); ++s)
 {
 if (prev_char_is_space && islower(*s))
 *s = toupper(*s);
 prev_char_is_space = (isspace(*s)!=0);
 }
}

The back end of the pipeline is typically an I/O class of pipe. The pipe task will receive the I/O
context plus the buffer.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

// task to write buffer
void PipeLineWriteBuffer(MyPipelineIoContext* io, MyPip elineBuffer* b)
{
 if (b->size() == 0) return ; // ? nothing to write
 size_t itemsWritten = fwrite(

b->begin(), 1, b->size(), io->output_file);
 if (itemsWritten != b->size())
 b->Status = ExitFail$; // ExitFail$ - shutdown pipeline
}

Note the difference in error value on write being ExitFail$ as opposed to the read pipe error
Fail$. The distinction being that Fail$ does not shut down the pipeline, it simply removes the
buffer token from the pipeline. Whereas ExitFail$ is considered terminal and it shuts down the
pipeline.

Now that we have all the pieces of the pipeline we can put them together

void ParallelRunUpcaseWordsTest()
{
 MyPipelineIoContext pio;
 pio.openInput("QuickBrownFox.txt");
 pio.openOutput("QuickBrownFoxUpcaseParallel.txt");

 qtPipeline<MyPipelineIoContext, MyPipelineBuffer> pipeline;
 pipeline.addPipe(PipelineReadBuffer);
 pipeline.addPipe(PipelineProcessBuffer);
 pipeline.addPipe(PipeLineWriteBuffer);
 pipeline.run(&pio);
 // (run other code here if desired prior to waiting)
 pipeline.WaitTillDone();

 pio.closeInput();
 pio.closeOutput();
}

Note, the code to open and close the input and output files could have called your serial functions
with the slight modification of passing in the pio object The above pipeline is the default ring
buffer. The pipeline.run(&pio); is supplied the I/O context and will allocate a default number of
buffers (tokens) based on the numbers of compute and I/O class thread counts. You can override
the default number of buffers using:

 pipeline.initBuffers(numberOfBuffers);

When the pipeline terminates you can examine the completion status of the pipeline to determine
if an error occurred.

For QuickThread, when the first pipe is an I/O class of pipe it is assumed that I/O is sequential.
That task will run only one instance of that task during the processing of the token (e.g. file read
into buffer token). These buffer tokens will receive a sequence number. The output side of the
pipeline, when an I/O class of pipe, will collate the buffers such that they are written in sequence.
All interior pipes will run in parallel regardless as to if they are compute class or i/o class of pipe.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Throughput of pipeline

The same issues exist for both QT and TBB relating to throughput.

However, QuickThread has an advantage over TBB because QuickThread has two classes of
threads Compute Class and I/O class. I/O typically stalls a thread (while waiting for read or write
to complete). On TBB this will cause a loss of computational thread for duration of stall. With
QuickThread, all computational threads in the pipeline never stall.

The following is a chart of QuickThread running a parallel_pipeline to up case words run on a
dual processor Dell R710. Each processor was a 4-core with HT Xeon 5570 2.93GHz (total of 8
cores and 16 hardware threads available). Disk controller was a RAID10. File was approximately
659 MB in size. The bandwidth below was the sum of the read and write MB/sec.

I/O Bandwidth
parallel_pipeline (upcase words)

Dell R710 w/ 2 Xeon 5570 2.93Ghz and RAID10

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Threads

M
B

/s
ec parallel

serial

Non-Linear Pipelines

TBB does not support non-linear pipelines.

QuickThread supports non-linear pipelines.

QuickThread pipelines have flow control capability. Pipes declared with return type of
qtPipelineReturn have the capability of affecting flow through the pipeline in other manners than
as what is available to the pipes returning void using a pipeline status of Fail$ or ExitFail$. Using

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

a pipe that returns a status value together with branch control statement you can construct non-
linear pipelines.

enum qtPipelineReturn
{
 ExitSuccess$ = 2,
 True$ = 1,
 Success$ = True$,
 Continue$ = 0,
 False$ = -1,
 Fail$ = False$,
 ExitFail$ = -2,
};

For pipes with return of qtPipelineReturn the return code, when not ExitSuccess$ or
ExitFail$, can be used to qualify the next pipe in the pipeline.

QuickThread pipelines have conditional execution of pipe as well as
branch control

enum qtPipelineBranch
{
 IfTrue$,
 IfFalse$,
 Goto$,
 ReturnSuccess$,
 ReturnFail$,
};

. . .

 pipeline.addPipe(PipelineProcessBuffer);
 pipeline.addPipe(IfFalse$, PipelineProcessFailed);
 pipeline.addPipe(PipelineMoreProcessBuffer);

Or with flow control

 const qtPipelineTag FoundIt$ = 999; // your arbitrary number
 const qtPipelineTag MergeIt$ = 1234; // your arbitrary number

 ...
 pipeline.addPipe(PipelineReadBuffer);
 pipeline.addPipe(PipelineProcessBuffer);
 pipeline.addPipe(IfTrue$, FoundIt$);
 pipeline.addPipe(PipelineMoreProcessBuffer);
 pipeline.addPipe(PipelineMoreTooProcessBuffer) ;
 pipeline.addPipe(Goto$, MergeIt$);

 pipeline.addPipe(FoundIt$, PipelineFoundItProcess Buffer);
 pipeline.addPipe(PipelineMoreFoundItProcessBuff er);
 pipeline.addPipe(MergeIt$, PipelineMergeProcessBu ffer);

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

 ...

The QuickThread pipelines are simplified state machines. When you choose to create a pipeline
tag you may choose any arbitrary number as long as it has not been used (similar to tag number
Fortran).

Additionally a pipeline pipe can acquire an additional buffer(s) for splitting or consume buffers for
joining.

Summary of Loops

The high-level loop templates of TBB requires the creation of new class objects and offers
minimal flexibility when running on larger systems.

QuickThread high-level templates make it easy to reuse much of your serial code as parallel
tasks without requiring you to write new class objects. QuickThread provides for complete control
over task scheduling (affinity or cache associated scheduling) as well as opportunistic scheduling
(scheduling dependent upon the availability of threads).

QuickThread also has the capability of programming the loops in a non-blocking manner as well
as the ability to program the loops with completion routines. That is: for non-blocking loops you
have an option to specify that upon completion of the loop a particular task or series of tasks are
to be scheduled.

Containers

QuickThread does not include concurrent containers. If you require concurrent containers we
recommend that you use concurrent containers that are available as Open Source and are readily
available on the internet. However, QuickThread has available concurrent_proxy_vector (see
below).

concurrent_hash_map

QuickThread does not include concurrent_hash_map. We recommend that you use concurrent
containers that are available as Open Source and are readily available on the internet.

concurrent_vector

QuickThread does not include concurrent_vector. We recommend that you use concurrent
containers that are available as OpenSource and are readily available on the internet. However,
QuickThread has available concurrent_proxy_vector (see below).

concurrent_proxy_vector

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

QuickThread provides a variation on the concurrent_vector called the concurrent_proxy_vector.
(This name may change)

The concurrent_proxy_vector provides the same functionality as concurrent_vector (plus some
additional functionality) however the internal workings of the concurrent_proxy_vector are quite
different resulting in less use of locks. Meaning faster access, less interference, and no possibility
of incomplete data.

The concurrent_proxy_vector is similar to a vector of pointers (proxies) to objects as opposed to a
vector of the objects. The principal advantages are the pointer (proxy) is completely contained
within a cache line and can be manipulated using Interlocked… instructions.

An article on the Intel software developer’s blogs site:

http://software.intel.com/en-us/blogs/2009/04/09/delusion-of-tbbconcurrent_vectors-size-or-3-
ways-to-traverse-in-parallel-correctly/

Describes the problems associated with the TBB concurrent_vector whereby the programmer
must take into consideration the possibility of incomplete vectors. The TBB concurrent_vector can
be incomplete, have holes in it and/or may have addressable areas in the process of being
allocated.

The QuickThread concurrent_proxy_vector does not suffer these problems. Objects are allocated
and constructed before an insertion attempt is made to the concurrent_proxy_vector. The
concurrent_proxy_vector never contains objects under construction. The container for the proxies
is contiguous, however, when a larger container is required, the current container can continue to
be used by stale pointers. Thus there is no locking when enlarging the container. When the prior
container(s) is(are) known to not have references then they are returned for recycling.

Clearing is Not Concurrency Safe

TBB has the requirement of never using clear() on concurrent_vector while operations might
be in flight.

QuickThread (will) provide capability for using clear() while operations are in flight.

concurrent_queue

QuickThread does not provide concurrent_queue. We recommend that you use concurrent
queues that are available as OpenSource and are readily available on the internet.

When Not to Use Queues

Same as for TBB

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Mutual Exclusion

Lock_FIFO and LockLock

One of the locks provided with QuickThread is implemented with a Lock_FIFO object and scoped
lock object LockLock . The QuickThread Lock_FIFO object is a fair lock. Meaning locks will be
granted in the order in which they are attempted (First In First Out).

Lock_FIFO resourceLock;
...
{
 LockLock lock(resourceLock); // Block until lock granted
 . . .
} // dtor of lock releases lock.

qt_pointerLock

void * qt_pointerLock(void ** p);

The qt_pointerLock is a low overhead but unfair locking mechanism . Meaning threads
contending for the pointer remain compute bound (in _mm_pause() loop) waiting to obtain the
pointer. The first thread to re-attempt a lock following the unlock of the pointer will be the next
thread to obtain the lock. This lock is performed by exchanging the contents of the pointer with 1
(and returning the prior value of the pointer). When, internal to qt_pointerLock, the return value is
1 the function issues an _mm_pause() then re-attempts the lock. This loop continues until lock is
attained. And in which case the prior value of the pointer is returned (including NULL when prior
value is NULL). The return value can be saved and/or use however you want. The user code,
which is not using the qt_pointerLock must be aware of pointer indicating locked condition
(containing 1). The unlock is performed by replacing the pointer with either the old pointer, new
pointer or NULL. The qt_pointerLock is templated for arbitrary types

 YourType* p = qt_pointerLock(&YourNodePointer);
 if(p)
 {
 // your protected code here
 }
 YourNodePointer = p;

Atomic Operations

TBB offers an atomic class QuickThread does not we suggest you use the TBB atomic class or
use other Open Source atomic class templates.

Because QuickThread is compatible with OpenMP you can also elect to use #pragma omp
atomic, or use the _Interlocked… series of intrinsic functions or use the QuickThread Atomic
functions such as:

float AtomicAdd(float * pf, float v);

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

double AtomicAdd(double * pd, double d);

Newer versions of C++ have atomic class therefore it was not deemed necessary to provide this
capability with QuickThread.

Timing

QuickThread does not provide timing routines since these are generally available. Also, most
programmers are now using

 unsigned __int64 __rdtsc(void);

(or you can use the OpenMP omp_get_wtime() function).

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Memory Allocation

TBB has two allocators tbb_allocator<T> and cache_aligned_allocator<T>
QuickThread has one allocator qt_allocator<T>

The single QuickThread allocator can be declared to perform allocations without alignment
considerations or cache aligned allocations.

qt_allocator<Foo> FooAllocator; // non-aligned allocator of Foo objects
qt_allocator<Foo> FooAlignedAllocator(64); // cache aligned allocator of Foo objects

The QuickThread allocator uses a pool of pools concept with pool item granularity of
sizeof(void*). The QuickThread allocator is NUMA enhanced for improved performance of
memory access to object after allocation. The pool of pools is hierarchical and fast. Allocation is
attempted in the following order

a) Thread’s local pool of like sized prior allocations
b) Thread’s NUMA node pool of pool of like sized prior allocations
c) Thread’s NUMA node overflow list of pools of pools of like sized prior allocations
d) Thread’s NUMA node overflow list of pools of like sized prior allocations
e) Thread’s adjacent NUMA node(s) of b) c) d)
f) Thread’s next hop NUMA node(s) of b) c) d)

Excepting for low memory conditions, when the thread that allocates an object is the same thread
that deallocates the object the object will stay in the same NUMA pool of pools of like sized prior
allocations. This is true too when the deallocating thread is pinned within the same NUMA node.

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

The following chart is produced from the average times through a comprehensive memory
allocation/deallocation test suite mem_shootout written by Dmitriy V’jukov (you can find him on
the Intel software forums and blogs site). There are a series of 4 tests with permutations resulting
in 20 tests for each allocation system. The tests were run on a Core i7-920 independent of the
TBB and QT thread schedulers. Allocations vary in strategy, size and order (small data set, large
data set, similar sized, dissimilar sized, FIFO, LIFO, in order, out of order, random order, etc…).

mem_shootout - Intel Core i7 920 (2.66Ghz 4-Core w/HT)

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

1 2 3 4 5 6 7 8

Threads

A
ll

o
ca

ti
o

n
s/

s

QT

TBB

malloc

Which Dynamic Libraries to Use

QuickThread is a relatively small collection of object files (library) that is linked statically into your
application.

The Task Scheduler

Both QuickThread and TBB are task base threading systems.

Task-Based Programming

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

While both QuickThread and TBB are task-base threading systems the internal workings and
programmer interface between the two task-based systems are quite different.

A QuickThread a task is any arbitrary function returning void. This function can be your original
serial code function or a slightly modified version of your serial function (including thread safe
programming practices and/or range of array as opposed to all of array).

TBB requires the use of adding a class object and using this as a wrapper to manage the tasks.

QuickThread offers a large degree of functionality on how to best schedule your tasks based on
locality of data (in cache, in which cache) or lack there of, as well as availability of threads to
perform work (opportunistic scheduling). QuickThread is NUMA aware and you can schedule
based on NUMA placement.

While TBB claims benefit in scheduling where data is “hot in cache” TBB has no provisioning for
which cache the data is “hot in”. On a single processor, dual core with shared L2 cache this may
be satisfactory but on multi-processor or many-core system with multiple caches the TBB
scheduler becomes more of a “hit or miss” situation with respect to the date being “hot in cache”.

With QuickThread you can specifically direct your task to a selected cache, cache level, or
memory sub-system.

QuickThread also provides for the capability of synchronous tasks as well as completion tasks.

When Task-Based Programming is Inappropriate

TBB recommends that if your application has threads (code) that blocks frequently that you
consider writing these tasks using separate threading system (e.g. separate Windows thread or
pthread).

QuickThread has no Inappropriate Task-Based Programming
With QuickThread, the programmer has available two separate classes of threads: Compute
Class and I/O class. Both classes of threads use the same QuickThread programming techniques
and have the same functionality. The only distinction is you simply add the QuickThread
placement directive IO$ or IOOnDone$ on the task function.

 parallel_task(IO$, fn, arg1, arg2);

or

 parallel_for(IO$, fn, iBegin, iEnd, arg1, arg2);

Upon initialization you may want to specify additional I/O class threads

 qtInit init(-1, 2); // all hw threads for compute, +2 I/O threads

 V1.0.1
 Copyright © 2009
 QuickThread Programming, LLC
 www.quickthreadprogramming.com

Conclusions

The choice of threading model will greatly depend on the demands of the application and the
amount of programming effort the programmer (or management) is willing to take to reach the
level of performance desired. QuickThread is the only tool that provides forward-looking affinity
based and NUMA capabilities into its threading syntax and does so in a highly efficient manner.
With QuickThread you can write optimal multi-threaded applications for use on systems that span
the full spectrum of IA and IA compatible platforms. Ranging from a single Atom processor with
HT up through a multi-socket NUMA class system.

QuickThread Programming, LLC
85 Cove Lane
Oshkosh, WI 54902
USA
www.quickthreadprogramming.com

