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Introduction 
 
This document is a composition of a 5 part article presented on the Parallel Programming 
Community of the Intel Software Network (http://software.intel.com/en-us/parallel/). 
 
Some minor edits to this article have been made in this composition to aid in readability, in 
particular: a table of contends was added, the segment bylines have been removed, and an 
appendix was added to include code samples. 
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Part 1 
 
The subject matter of this article is: How to optimally tune a well known algorithm. We will take 
this well known (small) algorithm, a common approach to parallelizing this algorithm, a better 
approach to parallelizing this algorithm, and then produce a fully cache sensitized approach to 
parallelizing this algorithm. The intention of this article is to teach you a methodology of how to 
interpret the statistics gathered during test runs and then use those interpretations at improving 
your parallel code. 
 
This is a multi-part article, where the author believes the process in reaching a goal (learning how 
to assess results and improve upon your parallel programming technique) is as important as the 
goal (finished application). For without the process you will not know how to attain goal to the 
extent possible. 
 
To titillate you into reading the complete set of articles, you will experience how to attain up to 80x 
parallel programming performance increase on a single processor (4 core with HT) system over a 
simple serial method on the same system. (don’t zoom the charts) 
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Let us begin… 
 
One of the posters on the Intel Software Network forums provided a link to an MSDN article titled 
“How to: Write a parallel_for Loop” (http://msdn.microsoft.com/en-us/library/dd728073.aspx). 
This article illustrates how to use the Visual Studio 2010 Concurrency::parallel_for to compute 
the product of two matrices. The example illustrates how to use the parallel_for in a nested loop. 
 
The typical C++ serial method to compute the matrix multiplication of a square matrix might look 
as follows: 
 
// Computes the product of two square matrices. 
void  matrix_multiply( 

double ** m1, double ** m2, double ** result, size_t size) 
{ 
   for  (size_t i = 0; i < size; i++)  
   { 
      for  (size_t j = 0; j < size; j++) 
      { 
         double  temp = 0; 
         for  ( int  k = 0; k < size; k++) 
         { 
            temp += m1[i][k] * m2[k][j]; 
         } 
         result[i][j] = temp; 
      } 
   } 
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} 
 
Using the VS concurrency collection parallel_for the code looks like this: 
 
// Compute the product of two square matrices in pa rallel. 
void  parallel_matrix_multiply( 

double ** m1, double ** m2, double ** result, size_t size) 
{ 
   parallel_for (size_t(0), size, [&](size_t i) 
   { 
      for  (size_t j = 0; j < size; j++) 
      { 
         double  temp = 0; 
         for  (int k = 0; k < size; k++) 
         { 
            temp += m1[i][k] * m2[k][j]; 
         } 
         result[i][j] = temp; 
      } 
   }); 
} 
 
This makes use of the C++0x Lambda functions and the Concurrency template for the 
parallel_for. This conversion on the surface appears to be elegant (unusually effective and 
simple) by essentially rewriting two lines of code: The first for statement and closing brace of that 
for statement. 
 
The MSDN reported performance boost on a 4 processor system for 750 x 750 matrix 
multiplication as: 
 

Serial: 3853 (ticks) 
Parallel: 1311 (ticks) 

 
Approximately a 2.94x speed-up. 
 
This is not an ideal scaling situation in that it does not produce a 4x speed-up using 4 processors. 
But considering that there must be some setup overhead, 2.94x is not too bad on this small of 
matrix. And you might be inclined to think that there is only 25% room remaining for improvement.  
 
The article did not chart the scaling as a function of N (one dimension of a square matrix) so it is 
difficult to tell the shape of the performance gain trend line as a function of N. 
 
Although this article was written to illustrate the use of the parallel_for in the MS Concurrency, a 
parallel programmer might be miss-lead into assuming that this example illustrates how to write a 
parallel matrix multiplication function. After all, this article describes a parallel method for matrix 
multiplication and was written in an MSDN article – an authoritative source. 
 
Let’s see how we can do better at parallelization of the Matrix Multiplication. 
 
First off, I do not have Visual Studio 2010, so I cannot use the sample program as-is. 
I do have QuickThread (I am the author of this parallel programming toolkit 
www.quickthreadprogramming.com ). Therefore, I adapted the code to use QuickThread.  
 
Adaptation is relatively easy. Change the include files and minor differences in syntax. 
 
// Computes the product of two square matrices in p arallel. 
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void  parallel_matrix_multiply( 
double ** m1, double ** m2, double ** result, size_t size) 

{ 
    parallel_for( 
        0, size, 
        [&](intptr_t iBegin, intptr_t iEnd) 
        { 
            for (intptr_t i = iBegin; i < iEnd; ++i) 
            { 
                for  (intptr_t j = 0; j < size; j++) 
                { 
                    double  temp = 0; 
                    for  (intptr_t k = 0; k < size; k++) 
                    { 
                        temp += m1[i][k] * m2[k][j] ; 
                    } 
                    result[i][j] = temp; 
                } 
            } 
        } 
    ); 
} 
 
In the QuickThread dialect, the parallel_for passes the half open range as arguments to the 
function, as opposed to the parallel_for of the VS 2010 concurrency collection passing the single 
index into the body of the function. QuickThread chose to pass the half open range, as opposed 
to a single index, because knowing the range, the programmer and/or compiler can better 
optimize the code within the loop. N.B. this loop could have as easily been written using OpenMP 
or Cilk++, or TBB. The choice parallel tool language/dialect is not important at this point of the 
article. 
 
Using the QuickThread modified code, and run on Windows XP x64 and using an Intel Q6600 4 
Core processor without Hyper Threading we find the scaling as: 
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Fig 1 – Parallel Scaling 
 
For an average scaling ratio of 3.77x at N values between 128 and 1024. And considering four 
threads are involved the above chart shows the parallel version of the serial code yielding a 
scaling factor of 0.94 (scale / number of cores). This is a reasonably good scaling factor. 
 
The processor model was not listed for the Visual Studio test so it is hard to tell the reason why 
QuickThread yields 3.77x improvement on 4 cores, while VS yields 2.94x improvement on 4 
processors (cores?). Setting aside the issue of which threading toolkit is better, let’s concentrate 
on the parallelization of the matrix multiplication.  
 
First thing to do is get an additional (different) set of sample data. Let’s see what the performance 
is on a processor supporting L3 cache plus Hyper Threading (HT). 
 
When running the program on an Intel Core i7 920, 4 cores with HT (8 hardware threads – but 
only 4 floating point instruction paths) we find a completely different trend line: 
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Fig 2 

Why the dip when N ranges from 350 to 570? 
When the performance recovers, why do we see 4x improvement instead of 8x improvement? 
Why the jagged line (noise) towards lower N? 
 
The dip is due to cache evictions caused by one thread adversely interacting with other threads. 
We get just over 4x performance because the Core i7 920 is a 4 core processor capable of 4 
execution streams for floating point (although it has 8 hardware threads for integer execution 
streams). On the higher N values it would appear that we are maxing out the capabilities of 
processor, 4 cores == 4 x performance boost.  
 
The trend line is jagged due to only one sample run being taken, and due to the short run times 
when N is low. Also, the variable overhead in starting the thread team (now 8 threads) is more 
noticeable on the left hand side of the curve. An average of a larger number of runs would 
smooth out this line, but this consumes unnecessary time from the developer. Additionally the 
large spike at about 250 indicates that the Serial version took a large tick count hit at that point 
due to out of application control circumstances (expansion of page file or other activity on the 
system). You do not need a precise chart for program analysis purposes. 
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Is there anything we can we do to improve this performance and/or correct for the dip in 
performance for N between 350 and 570? 
 
The main computational section of code for both Serial and Parallel are the same: 
 

for  (intptr_t j = 0; j < size; j++) 
{ 

double  temp = 0; 
for  (intptr_t k = 0; k < size; k++) 
{ 

temp += m1[i][k] * m2[k][j]; 
} 
result[i][j] = temp; 

} 
 
Notice that the product accumulation statement 
 

temp += m1[i][k] * m2[k][j]; 
 
uses k to index the column of array m1 and the row of array m2. This access pattern has two 
problems: First, it is not cache friendly, and second, it is not amenable to vectorization by the 
compiler. Let’s look at fixing these problems. 
 
In the Cilk++ sample programs, which is (or will be) available with the Intel Parallel Studio, we find 
a sample program showing a cache friendly implementation of matrix multiply: 
 
// Multiply double precision square n x n matrices.  A = B * C 
// Matrices are stored in row major order. 
void  matrix_multiply( double * A, double * B, double * C, unsigned  int  n) 
{ 
    if  (n < 1) { 
        return ; 
    } 
 
    cilk_for( unsigned  int  i = 0; i < n; ++i) { 
// This is the only Cilk++ keyword used in this pro gram 
// Note the order of the loops and the code motion of the i*n and k*n 
// computation. This gives a 5-10 performance impro vement over 
// exchanging the j and k loops. 
 int  itn = i * n; 
       for  ( unsigned  int  k = 0; k < n; ++k) { 
            for  ( unsigned  int  j = 0; j < n; ++j) { 
             int  ktn = k * n; 
                // Compute A[i,j] in the inner loop. 
                A[itn + j] += B[itn + k] * C[ktn + j]; 
            } 
        } 
    } 
    return ; 
} 
 
The itn  (i times n) and ktn  (k  times n) variables take large steps through the arrays. The array 
pointers point to single dimensioned arrays that are row packed. This is to say each row is 
appended to the prior row into one large single dimension array. Which is then indexed by way of 
i*n  and/or k*n.  
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Serial and Parallel function signatures: 
 

void  matrix_multiply( 
double ** m1, double ** m2, double ** result, size_t size); 

void  parallel_matrix_multiply( 
double ** m1, double ** m2, double ** result, size_t size); 

 
Note double ** on the 2D array pointers. 
 
Cilk++ function signature: 
 

void  matrix_multiply( double * A, double * B, double * C, unsigned  int  n); 
 
Note double *  on the 2D array pointers. 
 
Row packing principally does one beneficial thing to your program. Row packing eliminates a 
memory fetch of a pointer to the row (as done with array of row pointers). This uses fewer Virtual 
Memory Translation Look Aside Buffers. And this improves cache utilization. 
 

temp += m1[i][k] * m2[k][j]; // serial/parallel 
 

Uses: 1 TLB for code + 1 TLB for stack (could be 0) + 1TLB for m1 row table + 1 TLB for m1 data 
+ 1 TLB for m2 row table + 1 TLB for m2 data = 6 (or 5) TLB’s. 
 
Whereas the row packing method employed by the Cilk++ sample program: 
 
                A[itn + j] += B[itn + k] * C[ktn + j]; 
 
Uses: 1 TLB for code + 1 TLB for stack (could be 0) + 1 TLB for m1 data + 1 TLB for m2 data = 4 
(or 3) TLB’s. 
 
The reduction in the numbers of TLB’s required should produce an advantage. 
 
And the corrisponding charts: 
 



 

                              Superscalar programming 101 (Matrix Multiply) 

 Page 10 

Intel Q6600 (4 core)
N x N Matrix Multiply

0

5

10

15

20

25

30

1 100 199 298 397 496 595 694 793 892 991

N

S
ca

le
 t

o
 S

er
ia

l

S/P

S/Cilk++

 
Fig 3 (above) 

Wow!, the Cilk++ technique on the Q6600 has a nice peak between 400 and 700 where it attains 
close to 25x performance over Serial but dropps off to about 14x at the higher range. This 
represents a 3x to 6x improvement over the parallel version of the standard matrix multiply code. 
The elimination of the array of row pointers made a significant difference. 
 

 
Now looking at the Core i7 920 processor we find: 

Intel Core i7 920 (4 core w/HT)
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Fig 4 

 

I should state that the technique used by the Cilk++ demo program is referred to as “Cilk++” 
on the charts and in the body of this text. The technique used can be used by other parallel 
programming dialects. Keep this in mind as you read this series of articles. 
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The Cilk++ method on the Core i7 920 attains almost 50x performance gain over serial method at 
about N=800 (12x over parallel), but appears as if it will be dropping off after 1024 (as it did 
earlier at 700 on the Q6600). Additional data points should be collected. 
 
What this teaches us is: constructing 2D arrays as an array of pointers to 1D arrays looks good 
but can cost you dearly. Clearly the more efficient route is to use row packing to reduce the 
number of TLBs and corrisponding entries in the cache. But this means changing 
 
   double** A; // referenced as A[iRow][iCol] 
 
into some class 
 
   Array2D<double>  A; 
 
And then changing the allocations and references (or fancy template operators). 
 
If you look at this from a different perspective the array class object(s) are effectively array 
descriptors. Array descriptors are a well used technique by FORTRAN.  
 
WIth an improvement of 12x over a parallel version of the serial implimentation this shows that 
paying attention to cache issues realy pays off. And that you may have to dispense with the 
familiar C/C++ programming practice of referencing a multi-dimensioned array as an array of 
pointers. A little extra programming effort pays off with significant returns in performance. 
 
You would have to ask yourself: is this the best you can do? 
And, is it worth your while to attempt at better performance? 
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Part 2 
 
In the previous sectiion we had: 
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The above charts, impressive as they are, are an “apples and oranges” type of comparison. The 
chart is comparing a non-cache sensitive serial technique against a cache sensitive parallel 
technique. Good for promotional literature, certainly a good incentive to learn how to program in 
parallel, but this falls short for analysis purposes by the seasoned parallel programmer. 
 
The first thing any parallel programmer should know is: improve the serial algorithm first, and then 
address the problem through parallelization (save intrinsic small vector functions for last). 
 
If you look at the inner most loop of the Serial function we find: 
 
         for  ( int  k = 0; k < size; k++) 
         { 
            temp += m1[i][k] * m2[k][j]; 
         } 
 
We addressed the issue of the traditional C/C++ programming practice of using an array of 
pointers to rows, and saw that by dispensing with this practice that a 6x to 12x improvement in 
performance. What else can be done? 
 
Set aside the issue of the TLBs and row table for a moment. In examining  the principal 
computational statement we find that while the k  index in m1[i][k]  sequentially accesses 
memory, the k  index in m2[k][j]  does not. What this means is the compiler is unable to vector 
this loop. And potentially worse, stepping down the rows at certain distance intervals are known 
to cause cache evictions (the dip in curve observed on Core i7 920). Using vectors on doubles 
might attain a 2x improvement – well worth going after. So let’s improve the vector-ability of the 
Serial version of this program. (and Parallel variant of the Serial version too) 
 
Note, while we could use the approach done in the Cilk++ implementation (eliminate row table of 
pointers), I will choose an alternate means that will become useful later. First address the simple 
Serial and Simple Parallel to see what happens. 
 
In order to assist the compiler in vectorizing the matrix multiplication (and minimize cache 
evictions) you can transpose the matrix m2 (to m2t ), and then you can transpose the indexes in 
the inner loop. At first this may sound absurd. To transpose the matrix m2 you will have to add 
overhead to: 
 

Perform an allocation (actually size+1 allocations with 1 for the row pointers) 
run transposition loops 
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reading and re-writing one of the arrays (array m2 to m2t ) 
 

You might assume that this must be slower than the simple matrix multiplication. 
Well you would be wrong to assume this. Each cell in m2 is used N times, each cell in m1 is used 
N times. We have the potential of trading off the cache misses on 2N**2 reads plus N*N writes 
against N reads + N/2 writes + (2N**2)/2 reads + N/2 writes .The /2 is due to the inner loop now 
becomes a DOT function that operates on two sequential arrays and is an ideal candidate for 
vectorization by the compiler. The rewritten Serial loop (and inner loop transformed into an inline 
function) looks like: 
 
// compute DOT product of two vectors, return resul t as double 
inline  double  DOT( double * v1, double * v2, size_t size) 
{ 
    double  temp = 0.0; 
    for (size_t i = 0; i < size; i++) 
    { 
       temp += v1[i] * v2[i]; 
    } 
    return  temp; 
} 
 
The matrix multiply function, with transposition now looks like: 
 
void  matrix_multiplyTranspose( 

double ** m1, double ** m2, double ** result, size_t size) 
{ 
    // create a matrix to hold the transposition of m2 
    double ** m2t = create_matrix(size); 
    // perform transposition m2 into m2t 
    for  (size_t i = 0; i < size; i++) 
    { 
        for  (size_t j = 0; j < size; j++) 
        { 
            m2t[j][i] = m2[i][j]; 
   } 
    } 
    // Now matrix multiply with the transposed matr ix m2t 
    for  (size_t i = 0; i < size; i++) 
    { 
        for  (size_t j = 0; j < size; j++) 
        { 
            result[i][j] = DOT(m1[i], m2t[j], size) ; 
        } 
    } 
    // remove the matrix that holds the transposition o f m2 
    destroy_matrix(m2t, size); 
} 
 
Note, in a real implementation you might want to consider preserving the buffers allocate on the 
first call. Then on subsequent calls you check to see if the prior allocation was sufficient for the 
current call. If so, then bypass the allocation. If not then delete the buffers, and allocate new 
buffers. This is a further optimization detail left to the readers.  
 
We will include the allocation/deallocation overhead in our charts. Also note, if the m2 matrix is 
going to be used many times (e.g. in a filter system), then you can perform the transposition 
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once, and then reused the transposed matrix many times. These are implementation strategies to 
keep in mind when taking these suggestions into your own code. 
 
Let’s see how the serial with transposition technique (ST) stacks up against the serial without 
transposition (S) and the parallel code (P) using the non-transposed matrix method: 
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Fig 5 (above) 

Intel Core i7 920 (4 core w/HT)
N x N Matrix Multiply

0

10

20

30

40

50

60

70

1 59 117 175 233 291 349 407 465 523 581 639 697 755 813 871 929 987

N

S
ca

le
 t

o
 S

er
ia

l

S/P

S/Cilk++

S/ST

S/PT

 
Fig 6 

 
The revised technique, which still uses a row table is a significant improvement over the Serial 
and Parallel methods. The revised technique does not approach that of the row table elimination 
method of the Cilk++ demo program. Is there anything to learn from this? 
 
The revised serial code, using one thread, overwhelms the parallel code using 4 or 8 threads on 
the two different processor at higher N values. 
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Although 4x better parallel performance than before, it is still less than the Cilk++ method, is this 
information useful in helping produce a better algorithm? 
 
Why the “turbo charged” boost at 513 for the Serial Transpose method? 
Although Parallel Transpose (PT) is 4x faster than Parallel (P) it is actually less than the 
performance of the Serial Transpose method! Why!?!? 
 
The answer to this is the chart lines are relative to the original (non-transposed) Serial 
performance. Let’s see the actual run time for the (non-transposed) Serial method to see if 
something shows up: 

Intel Q6600 (4 core)
N x N Matrix Multiply

0

2000000000

4000000000

6000000000

8000000000

10000000000

12000000000

14000000000

16000000000

18000000000

20000000000

1 88 175 262 349 436 523 610 697 784 871 958

N

T
im

e 
(t

ic
ks

)

S

P

 
 

Intel Core i7 - 4 Core w/ HT (8 threads total)
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Fig 7 

And there it is. At N =  513 we find the serial time experiencing a drastic change in slope. (Q6600 
shows earlier slope change at about 350). 
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What is significant about N = 513 on Core i7 920?. We principally have access to two arrays of 
doubles dimension at 513 x 513. The number of bytes is 2 x 513 x 513 x 8 = 4,210,704. Hmm…. 
 
The Core i7 920 from specifications gleaned from the internet indicate that this processor has 
 
L1 cache 32KB instruction + 32KB data (one for each core) 
L2 cache 256KB  (one for each core) 
L3 cache 8MB (shared) 
 
So why the performance drop at ~4MB instead of ~8MB? To be honest, I haven’t performed an 
thorough analysis of this, my postulation is this is a TLB issue, so I will simply state that it appears 
that the cache system is being over taxed at this point. What is important, is the steep rise in the 
curve at this point accounts for the superscalar performance gain of a better serial technique over 
a non-optimal serial technique.  
 
The important piece of information learned is the Serial Transpose method trashes the 
performance of the parallel technique using the non-transformed technique. (Although the Cilk++ 
technique is still 3.nnx faster that either) 
 
Now when the Cilk++ row table elimination method is compared to Serial Transpose method we 
have: 
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Fig 8 



 

                              Superscalar programming 101 (Matrix Multiply) 

 Page 17 

Intel Core i7 920
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Fig 9 

The Cilk++ technique shows approximately 3.25x performance over Serial Transpose method. 
More noteworthy, the Parallel Transpose is not faster than the Serial Transpose method. Why? 
And more importantly, does it matter why? 
 
As a general rule, when you observe your parallel code not performing better than your serial 
code, this is a good indication that you have reached a memory bandwidth problem. The Cilk++ 
code performance clearly indicates the memory bandwidth problem is due to poor cache 
utilization by the Parallel Transpose technique. 
 
Is the Cilk++ method the best we can expect to do? 
 
The answer to this is: No. 
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Part 3 
In the previous section we have seen that by reorganizing the loops and with use of temporary 
array we can observe a performance gain with SSE small vector optimizations (compiler does 
this) but a larger gain came from better cache utilization due to the layout change and array 
access order. The improvements pushed us into a memory bandwidth limitation whereby the 
Serial method now outperforms the Parallel method (of the Serial method). 
 
The memory bandwidth limitation is an important factor to consider and warrants a change in 
programming strategy: In order to attain additional performance gains we are going to attack the 
problem from the perspective of trying to keep the data access patterns to the closest cache 
level.  
 
But how are we going to do this? 
 
On a system with Hyper Threading, such as the Core i7 920, the Hyper Threads within a single 
core share the 256KB L2 cache and, depending in internal architecture, share the 32KB L1 data 
cache. While all cores within the socket share the 8MB L3 cache (6MB or 12MB on other 
processor models). 
 
The Cilk++ method uses the common practice of “divide and concur” to partition (or tile) the 
matrix into smaller working sets that nicely fit into the cache available to a thread. This is a good 
starting point. What we need to look at next is how to coordinate the activity between caches 
within the processor(s) of the system. 
 
While you can tile using nested loops, consider this: As you reduce the tile size, you also increase 
the number of interactions with the thread scheduler (entering and exiting the inner most loop). 
Thread scheduling is not cheap. In the first chart, the overhead break even occurred at 50 x 50 
tile size. Is there a different way to program such that you can use 2x2 or 2x1 or 1x2 tiles and 
attain superior performance? 
 
The answer to this is: Yes 
 
Targeting tasks to specific threads, or grouping of threads is difficult to do effectively using most 
threading tool kits (e.g. MS Parallel Collections, OpenMP, or Cilk++). Cache level task grouping is 
a built-in design feature of QuickThread. Example: 
 
// divide the iteration space across each multi-cor e processor 
// L3$ specifies by L3 cache 
//  .OR. 
// within processor (Socket) for processors without  L3 cache 
parallel_for( OneEach_L3$, intptr_t(0), size, 
    [&](intptr_t iBeginL3, intptr_t iEndL3) 
    { 
        // divide our L3 iteration space by L2 within this threads L3 
        parallel_for( OneEach_Within_L3$ + L2$, iBe ginL3, iEndL3, 
            [&](intptr_t iBeginL2, intptr_t iEndL2)  
            { 
                // Here we are running as the Master thread of a 
                // 2 team member team (or 1 in the event of older 
                // processor) 
                //  
                // Now bring in our other team member(s) 
                // form team of threads sharing thi s threads L2 cache 
                parallel_distribute( L2$, 
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                    [&](intptr_t iTMinL2, intptr_t nTMinL2) 
                    { 
                        // ... (Do Work) 
                    } // [&](intptr_t iTMinL2, intptr_t nTMinL2) 
                ); // parallel_distribute( L2$, 
            } // [&](intptr_t iBeginL2, intptr_t iEndL2) 
        ); // parallel_for( OneEach_Within_L3$ + L2$, iBeginL3 , iEndL3, 
    } // [&](intptr_t iBeginL3, intptr_t iEndL3) 
); // parallel_for( OneEach_L3$, intptr_t(0), size, 
 
The outer loop is a per socket division, the next deeper loop is a per L2 cache, and the inner layer 
is a n-Way split by the threads sharing L2 (2 threads on Core i7 920, 2 threads on Q6600) 
 
The technique is to use the parallel_distribute as the inner most division, then use the loop 
partitioning of the outer loops within a state machine loop placed inside the parallel_distribute 
level. Say what? 
 
The parallel_for in QuickThread performs the task to thread set selection and partitioning of the 
iteration space, but specifically does not drive the iteration. Due to this feature of QuickThread, 
the iteration domain can be passed deeper into the loop nest levels. The second loop does the 
same thing (pass iteration space to inner most parallel_distribute. Now as to why this is important. 
 
This alternate technique creates the environment for an intelligent swarm of threads performing a 
coordinated attack of the problem. These threads know which threads share the nearest cache, 
which threads share each of the largest cache(s), and which threads are not sharing caches with 
the current thread. This identification is implicit by the sub range of the outer two loops and by the 
team member number (iTMinL2 ) within the parallel_distribute. 
 
Adding an additional outer layer loop per NUMA node could easily be handled using: 
 
    parallel_for( OneEach_M0$, intptr_t(0), size, 
 ... 
 
However, for this matrix multiplication, this would not provide any additional benefit unless your 
system has an L4 cache external to the processor and which is also shared amongst processors 
sharing the same NUMA node. NUMA aware issues are best handled in the memory allocation 
routines which can be placed within the L3 cache distribution layer of the above loop structure. 
 
The interior state machine loop will partition (tile) the output array: 
 
 Socket (L3 cache) 
 Core Pair/HT Siblings (L2 cache/L1 cache) 
 Amongst Core Pair/HT Siblings (L2 cache/L1 cache) 
 
 
To accomplish this, we segment the matrix into 2x2 tiles with each 2x2 tile being serviced by a 2 
thread team. The 2 thread team I will call a “Tag Team” (as in Tag Team Wrestlers). On the Core 
i7 we will have 4 tag teams, one for each core, and the two threads for each team being Hyper 
Thread siblings within the same core. On Q6600 the tag team becomes the two threads sharing 
the same L2 (Q6600 has 2 L2 caches, each shared by 2 cores). 
 
If you ever watch TV wrestling, there is a type of wrestling format where each team consists of 
two team members. Each team is supposed to have one member in the wrestling ring (square) at 
any one time, and they must tag their team mate when they wish to let them have a go at their 
opponent. I say supposed to in italics since more often than not, the tag exchange usually ends 
up with the team doing the tag cheating by having two wrestlers in the ring at one time. And in 



 

                              Superscalar programming 101 (Matrix Multiply) 

 Page 20 

these situations they completely overwhelm their opponent. I am going to show you how to do the 
equivalent of this using cache directed thread scheduling as available with QuickThread. 
 
The output matrix is divided into 2x2 tiles. The thread teams are derived from the thread pool into 
2 thread teams, each thread sharing the closest cache level possible. On Core i7 920 these are 
Hyper Thread siblings within each core, on Intel Q6600 these are two cores sharing same L2 
cache, on AMD Opteron 270 these are two cores within same processor on same NUMA node, 
etc… An optimization strategy will be employed whereby we will concurrently perform the 
transposition and DOT products of some of the cells. Then perform the DOT products on the 
remaining cells. 
 
The Hyper Thread siblings within one core have two integer execution paths, but only one floating 
point execution path. We code to take advantage of this by having one thread of the tag team, 
called the Master thread, perform the transpositions using the integer execution path while the 
other Hyper Thread sibling, called the Slave thread, is performing the DOT product of the lower 
1x2 portion of the 2x2 tile concurrently with the transposition (shortly following the transposition of 
each cache line).  Upon completion of the transposition, the Master thread will then begin the 
DOT product of the upper left cell of 2x2 tile, and is joined shortly thereafter by the Slave thread 
performing the DOT product on the upper right cell. For the cells handled in this manner (those 
performing the transposition), cost of the DOT product of half these cells is essentially free, since 
it occurs during memory latency of the transposition. For the DOT product of the other half of this 
2x2 cell, the row and transposed column of one of these output cells is fully cached (potentially all 
in L1 cache) with the other output cell having the transposed column residing in L1 cache and 
leaving the row of this output un-cached. 
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Fig 10 

 
Figure 10 shows the initial Per Socket tile work assignment distribution (color backgrounds, an 
iterative per processor thread team (heavy outline), and 2x2 cell tile lightest outline.  
 
The 2x2 tiles that lie on the diagonal require additional work for the transposition of the m2 array 
into m2t array. The master thread (even number of 2 member team) performs the transposition 
(memory access intensive) using the integer execution unit of the HT core, while the other team 
member performs the DOT product of 3 of the cells in the 2x2 tile using the floating point 
execution unit of the HT core. These DOT products are performed concurrent with the 
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transposition by means of snooping on the progress of the transposition made by the master 
thread of the tag team. The master thread of the 2 member team then performs the final DOT 
product. Some experimentation yet needs to be done to see if the Slave thread of the 2 member 
team ought to perform all 4 DOT products concurrent with the transposition. See below for the 
{transpose, 1x2},{1x1, 1x1} method: 
 

 
 
The first two member thread team works on the upper left most 2x2 tile (and transposition) of its 
designated zone (shown above). Concurrent with this, the second team works on the upper left 
most tile (and transposition) of its designated zone: 

 
 
And so on to the last socket, last team working on the upper left most 2x2 tile (and transposition) 
of its designated zone: 
 

 
 
The completion of these diagonal tiles are not signified by the end of a parallel construct. Instead, 
the completion is signified by writing a completion status into a mailbox. This completion will be 
asynchronous with the activities occurring by the other threads. And have the “overhead” induced 
by a non-Interlocked write to a shared memory mailbox. 
 
Once the upper left most tile of the diagonal is completed, the two member team consults a flag 
indicating if there is a work starved thread (early-on this flag will indicate no work starved threads. 
When there are no work starved threads, the two member team works on the 2x2 tiles in the 
column in same column of the diagonal tile just completed: 

 
Signified by the green column above. However, each thread computes a 1x2 double DOT within 
the 2x2 tile. When that 2x2 tile is complete, the two member team consults a flag indicating if 
there is a work starved thread, if no work starved thread, the team continues down the column, if 
work starved, it progresses down the diagonal. 
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The goal of working down the column, just after transposition is the two columns just transposed 
are most likely to be residing hot in cache (L1, L2 or L3). 
 
When a 2 member thread team completes its diagonal, and the column cells above/below its 
diagonals (within its two member team zone), The thread team then consults the transposition 
completed status of the other thread teams within its L3 cache (by way of mailbox) 
 

 
 
The light green column, is processed by the first team (0/1 in socket 0), after its work has 
complete, and after second team (2/3) has completed the upper left most diagonal. Which 
statistically will be done by the time the mailbox is consulted (after 4 transpose with DOTs, plus 
12 double DOTs time delay). 
 
Each thread team does the same. As the thread team progresses over/under the columns of the 
diagonals of the teams sharing its L3 cache, if it finds an uncompleted designated column within 
its L3, it posts a “work starved” thread notification such that its L3 cache sharing teams can 
interrupt column processing and advance to next diagonal processing prior to completing its 
current column. 
 
Each team, with exception for work starved thread indication, works independent of the other 
thread teams within its socket. 
 
This iterative process continues until a thread team completes all the designated work within its 
socket tile: 
 

 
 
At this point, it now consults the diagonal completion status mailboxes for the diagonals of the 
other sockets. Being that this is a state machine instead of nested inner loops, the diagonal 
completion of the other sockets can occur in any order, but will tend to occur on diagonal 2x2 tiles 
in ascending order within each 2 member team, in each additional socket. As indicate by 
separated green bar, to right of Socket 0 team 0/1 zone in Socket 1 zone above completed 
diagonal for second team in red zone (socket 1) below. 
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As an additional optimization, on systems with NUMA capability, the rows of each array (m1, 
transpose m2 and output array) are segregated with NUMA considerations. In the 2 socket 
system, the upper half of the rows (turquoise/green) are in socket 0 locality, and the lower half 
(red) are socket 1 locality. 
 
Now let’s produce the charts and check the results data: 
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The average scale factors (compared to Serial Transpose) for N = 128 : 1024 are: 
 
Q6600  4.96x for Parallel Transpose Tag Team and 3.06x for Cilk++ 
Core i7 920   4.69x for Parallel Transpose Tag Team and 3.20x for Cilk++ 
 
The peak values for selected section, ~880 of Q6600 shows ~ 7.5x for Parallel Tag Team vs 3x 
for Cilk++ method. 
 
The Parallel Tag Team definitely has the advantage over the Cilk++ method (at least in this N 
range). 
 
To inflate the figures, let’s compare back to original Serial method without Transpose 
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Core i7 920
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We can now observe that at selected points in the chart we have attained a 38x improvement 
over Serial on Q6600 and near 80x improvement in scaling over the Serial on Core i7 920. 
 
The complete description of Parallel Transposition Tag Team can be found in the sample code for 
MatrixMultiply.cpp included in the QuickThread demo kit. www.quickthreadprogramming.com 
 
Can this be improved upon… 
 
I will have to say, yes it can. 
 
Early on in this blog post I mentioned: ”save intrinsic small vector functions for last”. 
 
Internal to the MatrixMultiply, the inner most loop performs a DOT product. All the programming 
variations are using an inline function to perform the DOT product. The QuickThread Parallel Tag 
Team method (PTT) uses an additional variation on this DOT function to produce two DOT 
products at the same time.  Each thread of the 2 thread team working on a 2x2 tile, produce 
results for half of this tile (1x2). Performing the two DOT products concurrently within each thread 
improves cache hit probability on the larger matrix sizes. 
 
Below are the two DOT functions, the two functions modified to use xmm intrinsics (I am not very 
good at using xmm intrinsics, you may be able to do better), and two selector functions that call 
the appropriate DOT within the test program. 
 
// compute DOT product of two vectors, returns resu lt as double 
// used in QuickThread variations 
double  DOT( double  v1[], double  v2[], intptr_t size) 
{ 
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    double  temp = 0.0; 
    for (intptr_t i = 0; i < size; i++) 
    { 
       temp += v1[i] * v2[i]; 
    } 
 return  temp; 
} 
 
double  xmmDOT(double  v1[], double  v2[], intptr_t size) 
{ 
 // __declspec(align(16)) not working reliably for m e 
 double  temp[4]; 
 intptr_t alignedTemp = (((intptr_t)&temp[0]) & 8) >> 3; 
 
 __m128d _temp = _mm_set_pd(0.0, 0.0); 
 __m128d *_v1 = ( __m128d *)v1; 
 __m128d *_v2 = ( __m128d *)v2; 
 
 intptr_t halfSize = size / 2; 
 
 for (intptr_t i = 0; i < halfSize; i++) 
 { 
    _temp = _mm_add_pd(_temp, _mm_mul_pd(_v1[i], _v 2[i])); 
 } 
 // fix code to remove temp[4] array 
 _mm_store_pd( &temp[alignedTemp], _temp); 
 if (size & 1) 
  temp[alignedTemp] += v1[size-1] * v2[size-1]; 
 
 return  temp[alignedTemp] + temp[alignedTemp+1]; 
} 
 
// compute two DOT products at once 
// effectively 
// r[0] = DOT(v1, v2, size); 
// r[1] = DOT(v1, v3, size); 
// except running both results at the same time 
void  DOTDOT(double  v1[], double  v2[], double  v3[], double  r[2],  
intptr_t size) 
{ 
 double  temp[2]; 
 temp[0] = 0.0; 
 temp[1] = 0.0; 
 for ( int  i=0; i < size; ++i) 
 { 
  temp[0] += v1[i] * v2[i]; 
  temp[1] += v1[i] * v3[i]; 
 } // for(int i=0; i < size; ++i) 
 r[0] = temp[0]; 
 r[1] = temp[1]; 
} 
 
// compute two DOT products at once 
// effectively 
// r[0] = DOT(v1, v2, size); 
// r[1] = DOT(v1, v3, size); 
// except running both results at the same time 
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void  xmmDOTDOT(double  v1[], double  v2[], double  v3[], double  r[2],  
intptr_t size) 
{ 
 // __declspec(align(16)) not working reliably for m e 
 double  temp[6]; 
 intptr_t alignedTemp = (((intptr_t)&temp[0]) & 8) >> 3; 
 __m128d _temp0 = _mm_set_pd(0.0, 0.0); 
 __m128d _temp1 = _mm_set_pd(0.0, 0.0); 
 __m128d *_v1 = ( __m128d *)v1; 
 __m128d *_v2 = ( __m128d *)v2; 
 __m128d *_v3 = ( __m128d *)v3; 
 
 intptr_t halfSize = size / 2; 
 
 for (intptr_t i = 0; i < halfSize; i++) 
 { 
    _temp0 = _mm_add_pd(_temp0, _mm_mul_pd(_v1[i], _v2[i])); 
    _temp1 = _mm_add_pd(_temp1, _mm_mul_pd(_v1[i], _v3[i])); 
 } 
 _mm_store_pd( &temp[alignedTemp], _temp0); 
 _mm_store_pd( &temp[alignedTemp+2], _temp1); 
 if (size & 1) 
 { 
  temp[alignedTemp] += v1[size-1] * v2[size-1]; 
  temp[alignedTemp+2] += v1[size-1] * v3[size-1]; 
 } 
 
 r[0] =  temp[alignedTemp] + temp[alignedTemp+1]; 
 r[1] =  temp[alignedTemp+2] + temp[alignedTemp+3];  
} 
 
bool  UseXMM = false ; 
 
double  doDOT( double  v1[], double  v2[], intptr_t size) 
{ 
 if (UseXMM) 
  return  xmmDOT(v1, v2, size); 
 return  DOT(v1, v2, size); 
} 
 
void  doDOTDOT(double  v1[], double  v2[], double  v3[], double  r[2],  
intptr_t size) 
{ 
 if (UseXMM) 
  xmmDOTDOT(v1, v2, v3, r, size); 
 else 
  DOTDOT(v1, v2, v3, r, size); 
} 
 
As stated in the comments, I’ve experience an alignment issue with the compiler directive and 
had to resolve this with a little tweak of the code as a work around. The incorporation of the xmm 
intrinsic functions into these two routines were relatively easy (for an inexperienced xmm 
programmer like myself). Let’s look at the results: 
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Intel Q6600
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On the Q6600 (4 core no HT) the S/PTTx with the xmm intrinsic functions clearly exhibited a 
benefit, approximately 30% improvement. The QuickThread Parallel Tag Team “x” method 
preponderantly uses the xmmDOTDOT (double DOT function). However, the S/STx, using the 
xmmDOT (single DOT) function performs slightly worse than the C++ code without the intrinsic 
functions. This would indicate the compiler optimizations were better than the hand optimizations 
of an inexperienced intrinsic programmer (not unusual). 
 
Looking at the Core i7 920 we see a different picture: 
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This processor, with HT, experienced a detriment in performance (-12%) in using the hand written 
xmm helper functions. Note, the executable was the same for both systems. 
 
For you as a vendor of a program for use on various systems, this is an important piece of 
information. Knowing the platform specific behavior means you can query the system at program 
startup and then change the selection of which variant of the code to use. Typically you would 
involve selecting a functor (function pointer) in the code as opposed to using a selection function.  
 
An alternate approach for unknown behavior is to use a heuristics approach. The application 
would select each variant of your code on the first few calls and measure the time of execution for 
each method, then after enough samples are taken, select the best performing variation of the 
functions and insert the appropriate functor into the dispatch pointer. 
 
Can this be improved upon… 
 
I will have to say, yes it can. 
 
Note the chart lines are rather “noisy”. Additional tuning can improve the harmony and thus move 
the trend line upwards. This amounts to an estimated additional 15% over the current Parallel 
Transpose Tag Team method. (xmmDOTDOT on non-HT systems, DOTDOT on HT systems) 
 
15% is usually not worth going after, however, note that both Parallel Tag Team method and the 
Cilk++ method appear to be dropping off at 1024. Additional tests should be run with larger 
matrixes, and more importantly on multi-socket systems. When I have an opportunity to collect 
such data, I will be in the position to publish updated information regarding this performance test. 
 
Is there a superior technique that can improve upon this? 
History shows, the answer to this is yes. 
 
In Part-4 we will examine issues relating to multi-socket systems. 
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Part 4 
 
In the last installment we saw the effects of the QuickThread Parallel Tag Team method of Matrix 
Multiplication performed on two single processor systems: 
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Where the Intel Q6600 (4 core – no HT) with two cores (two threads) sharing L1 and L2 caches 
attained a 40x to 50x improvement over serial method, and in Intel Core i7 920 (4 core – with HT) 
and with four cores (eight threads) sharing one L3 cache and one core (two threads) sharing L1 
and L2 caches attained 70x to 80x improvement. Let’s see how this performs using two 
processors, each similar to Core i7 920. 
 
When run on a Dual Xeon 5570 systems with 2 sockets and two L3 caches, each shared by four 
cores (8 threads). and each processor with four L2 and four L1 caches each shared by one core 
and 2 threads, we find: 

 
Fig 17 
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for a scale to serial of 140x to 150x in the N = 700 to 1344 range. The performance is almost 
twice that of the Core i7 920. This was somewhat expected. 
 
There are some interesting observations to be made about this performance profile. While the 2x 
speed-up was expected, the Parallel Transpose method performed as well as the Parallel Tag 
Team method with N = 700 to 1024, then drops off precipitously. This is about half of the 
performance peak range of the Parallel Tag Team method (700 to 1344).  
 
Why are the plateaus the same height? 
What is the interpretation of the reason for the drop-off difference? 
 
The plateaus are the same height for the same reason we saw in Fig 5 and Fig 6 where the Serial 
Transpose and the Parallel Transpose performance were essentially the same (yellow and red 
lines in Fig 17 above). The reason being: a resource bandwidth limitation. In Fig 5 and Fig 6 the 
limiting resource appeared to be memory bandwidth (due to Parallel Tag Team method having 
ample room to out perform Parallel Transpose). Due to the relative equalities of the plateaus (in N 
= 700 to 1024) some other resource than memory band width appears to be the limiting factor. 
This leaves cache access overhead or SSE Floating Point bottleneck. 
 
Both of these bottlenecks will tend to clip the height of the performance curve but not the width. 
You can observe in the chart above that the two Parallel Tag Team methods managed to double 
the breadth of the peak performance curve thus permitting larger matrices to be handled 
effectively by the program. The reason for the increase in the breadth (larger matrixes handled) is 
principally due to more effective reuse of cached data due to the solution path through the 
problem (sequence in which computations are made). 
 
The insight learned from Fig 17 is: When your problem working data set exceeds that of the 
cache system, you may find some paths to the solution more efficient than a simple nested loop. 
 
In the 5th article we will explore how we can extend the performance curve to handle larger 
matrixes. Will this involve more cores/CPUs and/or different solution path?  
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Part 5 
 
In the part 4 we saw the effects of the QuickThread Parallel Tag Team Transpose method of 
Matrix Multiplication performed on a Dual Xeon 5570 systems with 2 sockets and two L3 caches, 
each shared by four cores (8 threads). and each processor with four L2 and four L1 caches each 
shared by one core and 2 threads, we find: 

 
Fig 18 (17 on part-4) 

 
The Intel Many Core Testing Laboratory was kind enough to provide me some time using their 
systems. http://software.intel.com/en-us/articles/intel-many-core-testing-lab/  
 
Running the same method (sans Cilk++) on a 4 processor Intel Xeon 7560, each processor with 8 
cores plus Hyper Threading (total of 32 cores, 64 threads) we observe: 
 



 

                              Superscalar programming 101 (Matrix Multiply) 

 Page 35 

 
Fig. 19 

 
In this chart we do not see a plateau in the scaling. This is due to the problem size at N=2048 
being fully contained within the system cache. Caution - keep in mind that the above chart 
represents the scaling to the cache insensitive Serial method. 
 
When comparing this to the cache sensitive Serial Transpose method we find a different set of 
results: 
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Fig 20 

 
The sharp change in slope at N=1500-1700 is mainly due to the drop in performance of the 
reference data of the Serial Transpose method, rather than due to improvement in PTTx. 
  
Looking at scaling factors (parallel performance / number of hardware threads) is often used as a 
decision factor in making a purchase. Let’s look at the scaling factor charts: 
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Fig 21 

 
We find that as the problem size increases we observe a nice positive slope on the scaling factor. 
This looks exceptionally good. Too good to be believed. It is important to remember that the 
Serial method is not cache sensitive and is not a valid base line for comparison.  
 
When we produce the scaling factor as compared to the cache friendly Serial Transpose method 
we find a completely different picture: 
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Fig 22 

 
This chart will really deflate your programmer’s ego. After all this hard work, we find that the 
scaling factor to a cache sensitive Serial Transpose method does not pay off (factor crosses 1) 
until N = 1824. 
 
Comparing the factors of the 2x Intel Xeon 5570, as factored against the Serial Transpose we 
find: 

 
Fig 23 
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As expected, both systems can attain super scaling at different problem sizes. This is due to the 
different amount of cache memory on each system. 
 
Although scaling factor provides a good perspective as to return on investment with respect to 
purchase of more processors, the scaling factor of one processor architecture is not meaningful 
when compared to a different processor architecture. A company ought to be interested in total 
return on investment, and this includes a time element.  
 
When looking at the time element, we get a completely different picture. When comparing the 
fastest method (QuickThread Parallel Tag Team Transpose with SSE intrinsic functions) we find: 
 

 
Fig 24 

 
When including time, as a determination for cost benefit, we find that there is a rather drastic 
transition in the cost benefit ratio as you cross a particular threshold in the problem size 
(N=1400). The point being made here is to use appropriately sized test cases when making 
evaluations for purchase decisions. The cost/benefit and performance curves will not always be 
suitable for extrapolation. 
 
When we run the fastest method (QuickThread Parallel Tag Team Transpose with SSE intrinsic 
functions) to larger matrix sizes we find 
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Fig 25 

 
Matrixes up to N = 3000 to 4096 can be handled with 4 processors (32 cores / 64 threads), larger 
matrixes may require additional processors and/or a revised method.  
 
Conclusions up to this point: 
 
The fastest method: Parallel Tag Team Transpose with SSE intrinsic functions, relies on the 
QuickThread ability to schedule affinity pinned threads by cache level proximity. The ability to 
coordinate work using cache sensitivity can pay off big in your optimization strategies. 
 
Larger matrix sizes could be handled in an improved manner with the same number of 
processors (4x 8 core with HT) when combined with an additional tiling strategy which will include 
additional overhead. This is typically called the divide and concur method, often used by parallel 
programmers. 
 
Taking the matrix at N = 5200, and splitting it in two (both axis) yields a tile of N = 2600 and four 
such tiles. This requires 4 x 2 = 8 iterations using the smaller tiles. The matrix at N = 2600 took 
approximately 0.33 seconds to compute, therefore estimated computation time would be at 0.33 x 
8 = 2.64. An estimated 10x improvement over the un-tiled method, but which may not be fast 
enough for your purposes. 
 
Would divide and concur be the best strategy to use? 
 
This depends on the interpretation of best. 
 
In terms of relative performance return for effort in programming, this may be so. However, in 
looking at Fig 18 (17 on part-4), and comparing the Cilk++ to QuickThread Parallel Tag Team 
XMM method, we have demonstrated that by paying particular attention to cache locality, 
specifically, what’s in L1, L2 and L3 caches, and when it is in those caches, that you can attain an 
additional 1.4x to 2.5x performance boost in performance. 
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I will attempt to lay out the strategy which I believe will make effective use of the system caches. 
While the sketch below won’t show the specific method, it will demonstrate the general plan of 
attack.  
 
The current Parallel Tag Team (transpose) method divides the work by L3, then subsequently L2 
regions and then takes an L1 friendly path in producing the results. This strategy works 
exceptionally well up until the size of the matrix reaches a point where the execution path begins 
to evict data from the L3 cache. It is my postulation that by employing a method where you follow 
the same path of the Parallel Tag Team (transpose) method, but impose a clipping technique on 
the distance from the diagonal, that you can minimize L3 cache evictions. The chart below 
illustrates a clipped L2 path through the current L3 workspace. 
 

 
 

Fig 26 
 
In the above chart, the general execution path follows the arrow. The colored (red) cells indicate 
the output cells who’s results have been computed. The white cells indicate those output cells 
that have yet to be computed. 
 
In the current Parallel Tag Team (transpose) method all of the above cells would have been 
colored, in the proposed method for large matrixes, a clipping technique limits the distance from 
the diagonal of the output cells to be computed while processing the diagonal. N.B. The above is 
a simplification of a 1P system. 
 
In processing of a large matrix, had the computations included the empty cells, the computation 
would first suffer L2 cache evictions to L3, then at some size, eviction of L3. This is (postulation) 
possibly confirmed by Fig 25. 
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Fig 27 

 
In above Fig 27 (Fig 25 with arrows added), the red arrow depicts L2 evictions and the blue arrow 
depicts L3 evictions. 

 
 
Back to Fig 26. Upon completion of output cells in the Fig 26 we will find: 
 

 
Fig 28 

 
 
Where the X’s mark the cells in the output L2 zone who’s results have been completed. The blue 
cells represent columns (stored as rows) in the m2t array that are still residing in L2 cache, and 
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the red cells represent row cells in the m1 array that are in the L2 cache. Additionally, (not 
depicted by colorization) some portion of the bottom row(s) and right most column(s) are still 
residing in the L1 cache. The remaining un-X’d white may, or may not, be residing in the L3 
cache. 
 
The next computation sequence (subject to verification) ought to follow the sequence as depicted 
by the arrows in Fig 29: 
 

 
Fig 29 

 
 
The red and blue ends of the output matrix should be processed in an alternating sequence as 
you progress along the arrows towards the first diagonal. 
 
In the earlier mentioned divide and concur method (tiling), you would process 4 smaller tiles twice 
each or 8x the time of a smaller tile, presumably of a size found optimal for L2 cache size. The 
tiling method might benefit from L2 residual data resulting in a 6x to 8x run time of the smaller 
matrix as opposed to 8x the run time. 
 
In the proposed method (call it cross diagonal), and for the size range depicted above in Figs 28 
and 29, and based upon my prior experience with the Parallel Tag Team Transpose technique, it 
is estimated that it may be possible to produce the result in 1.5x to 2x the time of the smaller 
matrix. Potentially besting the divide and concur method (tiling) by a factor of 4x. It should be 
stressed that the actual differences may vary from this estimate. Extrapolation, as mentioned 
earlier, often does not follow the curve established by present data. 
 
I hope you have found my series of articles insightful. This article cannot convey the detail of the 
QuickThread Parallel Tag Team Transpose XMM method whereas the code can convey this 
detail. For those interested in obtaining a copy of the code and a demo license for QuickThread 
feel free to contact me at my email address below. QuickThread runs on Windows and Linux 
systems. Both x32 and x64 for Windows but only x64 for Linux (Ubuntu and Red Hat). 
 
Jim Dempsey 
jim@quickthreadprogramming.com 
www.quickthreadprogramming.com 



 

Appendix (program) 
 
The following is the source code use as the test program. Portions of this source code requires 
the QuickThread parallel programming toolkit. Formatting edits were perform for the purpose of 
this document (shorter tab spacing, long comments broken to multiple comment lines and long 
statements were reformatted with appropriate line breaks).  
 
/* 
 * MatrixMultiply.cpp 
 * 
 *  Created on: Jun 11, 2010 
 *      Author: jim 
 */ 
// derived from: http://msdn.microsoft.com/en-us/li brary/dd728073.aspx 
 
#if  defined (__linux) 
// Linux dependent headers 
// numa.h used by the 
#include  "numa.h" 
#else 
// compile with: /EHsc 
#include  <windows.h> 
#endif 
 
// #define USE_matrix_compare 
#include  <emmintrin.h> 
 
// Headers for QuickThread 
#include  <QuickThread.h> 
#include  <parallel_task.h> 
#include  <parallel_for.h> 
#include  <parallel_distribute.h> 
using  namespace  qt; // QuickThread uses namespace qt 
 
#include  <iostream> 
using  namespace  std; 
 
#if  defined (__linux) 
#define  USE_random 
#endif 
 
#if  defined (USE_random) 
#include  <random> 
#else 
#include  <boost\random.hpp> 
using  namespace  boost; 
#endif 
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long  PageSize = 0;   // Virtual Memory page size in bytes 
int_Native nThreadsPerL2 = 0; // set at init time 
 
double ** m1 = NULL; 
double ** m2 = NULL; 
double ** resultSerial = NULL; 
double ** resultSerialt = NULL; 
double ** resultSerialtXMM = NULL; 
double ** resultParallel = NULL; 
double ** resultParallelt = NULL; 
double ** resultParalleltXMM = NULL; 
double ** resultParalleltt = NULL; 
double ** resultParallelttXMM = NULL; 
 
qt_allocator< double > cacheAligned_doubles(64); 
 
// On initializaton set to L1 cache line size 64, 1 28, 256, ... 
int_Native CacheLineSize_L1 = 0;  // (bytes) 
 
// may be CacheLineSize_L1 or 2*CacheLineSize_L1 
int_Native CacheFlushLineSize = 0; // (bytes) 
 
// Size of L1 cache (determined at init time) 
int_Native CacheSize_L1 = 0;  // (bytes) 
 
// Size of L2 or L3 cache, whichever larger/present  
int_Native CacheSize_Larger = 0; // (bytes) 
 
// qtControl object used to access internal functio ns 
qtControl qtCtrl; 
 
// Calls the provided work function 
// and returns the number of milliseconds 
// that it takes to call that function. 
template  < class  Function> 
uint64_t time_call(Function&& f) 
{ 
 uint64_t begin = __rdtsc();; 
   f(); 
   uint64_t end = __rdtsc();; 
   return  end - begin; 
} 
 
// Creates a square matrix with the given number of  rows and columns. 
double ** create_matrix(intptr_t size); 
 
// Frees the memory that was allocated for the give n square matrix. 
void  destroy_matrix( double ** m, intptr_t size); 
 
// Initializes the given square matrix with values that are generated 
// by the given generator function. 
template  < class  Generator> 
double ** initialize_matrix( double ** m, intptr_t size, Generator& gen); 
 
// Computes the product of two square matrices. 
// this the a text book standard matrix multiplicat ion of square matrix 
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void  matrix_multiply( double ** m1, double ** m2, double ** result, 
intptr_t size) 
{ 
   for  (intptr_t i = 0; i < size; i++) 
   { 
      for  (intptr_t j = 0; j < size; j++) 
      { 
         double  temp = 0; 
         for  ( int  k = 0; k < size; k++) 
         { 
            temp += m1[i][k] * m2[k][j]; 
         } 
         result[i][j] = temp; 
      } 
   } 
} 
 
// compute DOT product of two vectors, returns resu lt as double 
// used in QuickThread variations 
 
double  DOT( double  v1[], double  v2[], intptr_t size) 
{ 
    double  temp = 0.0; 
    for (intptr_t i = 0; i < size; i++) 
    { 
       temp += v1[i] * v2[i]; 
    } 
 return  temp; 
} 
 
double  xmmDOT(double  v1[], double  v2[], intptr_t size) 
{ 
 double  temp[4]; 
 intptr_t alignedTemp = (((intptr_t)&temp[0]) & 8) >> 3; 
 
 __m128d _temp = _mm_set_pd(0.0, 0.0); 
 __m128d *_v1 = ( __m128d *)v1; 
 __m128d *_v2 = ( __m128d *)v2; 
 
 intptr_t halfSize = size / 2; 
 
 for (intptr_t i = 0; i < halfSize; i++) 
 { 
    _temp = _mm_add_pd(_temp, _mm_mul_pd(_v1[i], _v 2[i])); 
 } 
 _mm_store_pd( &temp[alignedTemp], _temp); 
 if (size & 1) 
  temp[alignedTemp] += v1[size-1] * v2[size-1]; 
 
 return  temp[alignedTemp] + temp[alignedTemp+1]; 
} 
 
 
// compute two DOT products at once 
// effectively 
// r[0] = DOT(v1, v2, size); 
// r[1] = DOT(v1, v3, size); 
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// except running both results at the same time 
void  DOTDOT(double  v1[], double  v2[], double  v3[], double  r[2],  
intptr_t size) 
{ 
 double  temp[2]; 
 temp[0] = 0.0; 
 temp[1] = 0.0; 
 for (intptr_t i=0; i < size; ++i) 
 { 
  temp[0] += v1[i] * v2[i]; 
  temp[1] += v1[i] * v3[i]; 
 } // for(intptr_t i=0; i < size; ++i) 
 r[0] = temp[0]; 
 r[1] = temp[1]; 
} 
 
// compute two DOT products at once 
// effectively 
// r[0] = DOT(v1, v2, size); 
// r[1] = DOT(v1, v3, size); 
// except running both results at the same time 
void  xmmDOTDOT(double  v1[], double  v2[], double  v3[], double  r[2],  
intptr_t size) 
{ 
 double  temp[6]; 
 intptr_t alignedTemp = (((intptr_t)&temp[0]) & 8) >> 3; 
 __m128d _temp0 = _mm_set_pd(0.0, 0.0); 
 __m128d _temp1 = _mm_set_pd(0.0, 0.0); 
 __m128d *_v1 = ( __m128d *)v1; 
 __m128d *_v2 = ( __m128d *)v2; 
 __m128d *_v3 = ( __m128d *)v3; 
 
 intptr_t halfSize = size / 2; 
 
 for (intptr_t i = 0; i < halfSize; i++) 
 { 
    _temp0 = _mm_add_pd(_temp0, _mm_mul_pd(_v1[i], _v2[i])); 
    _temp1 = _mm_add_pd(_temp1, _mm_mul_pd(_v1[i], _v3[i])); 
 } 
 _mm_store_pd( &temp[alignedTemp], _temp0); 
 _mm_store_pd( &temp[alignedTemp+2], _temp1); 
 if (size & 1) 
 { 
  temp[alignedTemp] += v1[size-1] * v2[size-1]; 
  temp[alignedTemp+2] += v1[size-1] * v3[size-1]; 
 } 
 
 r[0] =  temp[alignedTemp] + temp[alignedTemp+1]; 
 r[1] =  temp[alignedTemp+2] + temp[alignedTemp+3];  
} 
 
bool  UseXMM = false ; 
 
double  doDOT( double  v1[], double  v2[], intptr_t size) 
{ 
 if (UseXMM) 
  return  xmmDOT(v1, v2, size); 
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 return  DOT(v1, v2, size); 
} 
 
void  doDOTDOT(double  v1[], double  v2[], double  v3[], double  r[2],  
intptr_t size) 
{ 
 if (UseXMM) 
  xmmDOTDOT(v1, v2, v3, r, size); 
 else 
  DOTDOT(v1, v2, v3, r, size); 
} 
 
 
// Computes the product of two square matrices. 
void  matrix_multiplyTranspose( double ** m1, double ** m2, double ** 
result, intptr_t size) 
{ 
 // create a matrix to hold the transposition of m2 
 // N.B. 
 // When m2 will be used multiple times it would be more efficient 

// to move the transposition outside the multiplica tion function 
// and perform the transposition once. 

 // Also, when matrix_multiplyTranspose is called mu ltiple times 
 // the empty array m2t could be saved across calls,  thus saving 
 // reallocation. However, this would also prohibit recursive 

// calls of this function. 
 double ** m2t = create_matrix(size); 
 
 for  (intptr_t i = 0; i < size; i++) 
 { 
   for  (intptr_t j = 0; j < size; j++) 
   { 
   m2t[j][i] = m2[i][j]; 
   } 
 } 
 
 for  (intptr_t i = 0; i < size; i++) 
 { 
   for  (intptr_t j = 0; j < size; j++) 
   { 
   result[i][j] = doDOT(m1[i], m2t[j], size); 
   } 
 } 
 destroy_matrix(m2t, size); 
} 
 
#if  defined (USE_matrix_compare) 
void  matrix_compare( double ** m1, double ** m2,intptr_t size) 
{ 
   for  (intptr_t i = 0; i < size; i++) 
   { 
      for  (intptr_t j = 0; j < size; j++) 
      { 
    double  delta = abs(m1[i][j] - m2[i][j]); 
    double  epsilon = max(abs(m1[i][j]), abs(m2[i][j])) 

/ pow(10.0,12); 
       if (delta > epsilon) 
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       { 
        wcout << L "m1["  << i << L "]["  << j << L "] != m2[" 

<< i << L "]["  << j << L "]"  << endl; 
       } 
      } 
   } 
} 
#endif 
 
// Computes the product of two square matrices in p arallel. 
void  parallel_matrix_multiply( 

double ** m1, double ** m2, double ** result, intptr_t size) 
{ 
 parallel_for( 
   intptr_t(0), size, 
   [&](intptr_t iBegin, intptr_t iEnd) 
   { 
    for (intptr_t i = iBegin; i < iEnd; ++i) 
    { 
      for  (intptr_t j = 0; j < size; j++) 
      { 
      double  temp = 0; 
      for  (intptr_t k = 0; k < size; k++) 
      { 
      temp += m1[i][k] * m2[k][j]; 
      } 
      result[i][j] = temp; 
      } 
    } 
   }); 
} 
 
// Computes the product of two square matrices in p arallel. 
// using transposition of matrix prior to multiplic ation 
void  parallel_matrix_multiplyTranspose( double ** m1, double ** m2, 
double ** result, intptr_t size) 
{ 
 // create a matrix to hold the transposition of m2 
 // N.B. 
 // When m2 will be used multiple times 
 // it would be more efficient to move the transposi tion 
 // outside the multiplication function and perform the 

// transposition once. 
 // Also, when matrix_multiplyTranspose is called mu ltiple times 
 // the empty array m2t could be saved across calls,  thus saving 
 // reallocation. However, this would also prohibit recursive 

// calls of this function. 
 double ** m2t = create_matrix(size); 
 // QuickThread 
 parallel_for( 
   AllThreads$, 
   intptr_t(0), size, 
   [&](intptr_t iBegin, intptr_t iEnd) 
   { 
    for (intptr_t i = iBegin; i < iEnd; ++i) 
    { 
      for  (intptr_t j = 0; j < size; j++) 
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      { 
      m2t[j][i] = m2[i][j]; 
      } 
    } 
     }); 
 parallel_for( 
  AllThreads$, 
  intptr_t(0), size, 
  [&](intptr_t iBegin, intptr_t iEnd) 
  { 
   for (intptr_t i = iBegin; i < iEnd; ++i) 
   { 
     for  (intptr_t j = 0; j < size; j++) 
     { 
     result[i][j] = doDOT(m1[i], m2t[j], size); 
     } 
   } 
  }); 
 destroy_matrix(m2t, size); 
} 
 
 
struct  TagTeamsSystem 
{ 
 // ctor captured args 
 double ** m1; 
 double ** m2; 
 double ** result; 
 intptr_t size; 
 
 volatile  bool  TreadWaitingForTransposition; 
 // allocated transposition array for m2 
 double ** m2t; 
 
 // create array indicateing number of cells in colu mn pair 

// transposed 
 // 0 = no data transposed, size = all data transpos ed 
 // Transposition performed 2 columns to 2 rows at a  time 
 // (potential for last transposition being 1 column  to one row) 
 // m2t_transposed holds transpostion counts for the  pair of rows 
 volatile  intptr_t* m2t_transposed; 
 
 // *** m2t_transposed currently has junk 
 
 bool  HaveAllocationError; 
 
 bool  allocationError() { return  HaveAllocationError; } 
 TagTeamsSystem( 

    double ** _m1, double ** _m2, double ** _result, intptr_t _size) 
 { 
  m1 = _m1; 
  m2 = _m2; 
  result = _result; 
  size = _size; 
  TreadWaitingForTransposition = false ; 
  m2t = new double *[size]; 
  m2t_transposed = new intptr_t[(size + 1) / 2]; 
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  if (!m2t || !m2t_transposed) 
  { 
   HaveAllocationError = true ; 
   return ; 
  } 
  // *** m2t currently has junk for row pointers 
  // *** m2t_transposed currently has junk for counte rs 
 
  // tentatively indicate valid allocation 
  // other threads can refute this assertion 
  HaveAllocationError = false ; 
 } 
 ~TagTeamsSystem() 
 { 
  if (m2t_transposed) 
   delete  [] m2t_transposed; 
  if (m2t) 
   delete  [] m2t; 
 } 
}; 
 
struct  TagTeamsProcessor 
{ 
 TagTeamsSystem* tts; 
 intptr_t iBeginL3; 
 intptr_t iEndL3; 
 bool  HaveAllocationError; 
 double ** m1; 
 double ** m2; 
 double ** m2t; 
 double ** result; 
 intptr_t size; 
 volatile  intptr_t* m2t_transposed; 
 
 bool  allocationError() { return  HaveAllocationError; } 
 TagTeamsProcessor( 

TagTeamsSystem* _tts, intptr_t _iBeginL3, intptr_t _iEndL3) 
 { 
  tts = _tts; 
  iBeginL3 = _iBeginL3; 
  iEndL3 = _iEndL3; 
  HaveAllocationError = false ; 
  // make local copies of often used variables 
  m1 = tts->m1; 
  m2 = tts->m2; 
  m2t = tts->m2t; 
  result = tts->result; 
  size = tts->size; 
  m2t_transposed = tts->m2t_transposed; 
 
  // first null out the entire slice of our rows in m 2t 
  // (in the event other thread has allocation error)  
  for (intptr_t iRow = iBeginL3; iRow < iEndL3; ++iRow) 
   m2t[iRow] = NULL; 
  // clear counts held in m2t_transposed 
  for (intptr_t i = iBeginL3; i<iEndL3; i += 2) 
   m2t_transposed[i / 2] = 0; 
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  // now allocate 
  for (intptr_t iRow = iBeginL3; iRow < iEndL3; ++iRow) 
  { 
   // NUMA aware allocation 
   m2t[iRow] = cacheAligned_doubles.allocate(size);  
   if (m2t[iRow] == NULL) 
   { 
    // indicate allocation error 
    HaveAllocationError = true ; 
    return ; // let dtor clean up 
   } 
  } // for(intptr_t iRow = iBeginL3; iRow < iEndL3; ++i Row) 
 } 
 ~TagTeamsProcessor() 
 { 
  // deallocate our rows of m2t 
  for (intptr_t iRow = iBeginL3; iRow < iEndL3; ++iRow) 
  { 
   if (m2t[iRow] == NULL) 
    break ; 
 
   // NUMA aware deallocation 
   cacheAligned_doubles.deallocate( m2t[iRow], size ); 
  } 
 } 
 
}; 
 
struct  TagTeamSameCache 
{ 
 TagTeamsProcessor* ttp; 
 intptr_t iBeginL2; 
 intptr_t iEndL2; 
 intptr_t iBeginL3; 
 intptr_t iEndL3; 
 bool  HaveAllocationError; 
 
 // Row and Col of a 2 x 2 window 
 // *** may exceed bounds of array *** 
 volatile  intptr_t iRow2x2; 
 volatile  intptr_t iCol2x2; 
 volatile  intptr_t MasterTileSequenceNumber; 
 volatile  intptr_t SlaveTileSequenceNumber; 
 intptr_t nTeamMembersInL2; 
 double ** m1; 
 double ** m2; 
 double ** m2t; 
 double ** result; 
 intptr_t size; 
 volatile  intptr_t* m2t_transposed; 
 
 
 // DoDiagonalsState table 

// 0 = no processing 
 // 1 = transposition started or ended for our diago nal 
 // 2 = column process started or ended for our diag onal (L2) 
 // 3 = column process started or ended for our proc essor (L3) 
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 // 4 = column process started or ended for any proc essor 
 char *  DoDiagonalsState; // = new char[(size + 1) / 2]; 
 intptr_t iDoDiagonalL2index; // iBeginL2 : iEndL2 
        // (use DoDiagonals[iDoDiagonalL2index/2]) 
 
 intptr_t iDoDiagonalL3index; // iBeginL3 : iEndL3 

// (use DoDiagonals[iDoDiagonalL3index/2]) 
 

 intptr_t iDoDiagonalSystem; // 0 : size 
// (use DoDiagonals[iDoDiagonalSystem/2]) 

 
 intptr_t iDoColumnIndex; // iBeginL2 : iEndL2 
 intptr_t iDoColumnColumn; // iBeginL2 : iEndL2 
 intptr_t iLastDiagonalDone; 
 inline  bool  IsOnDiagonal() 
 { 
  return  (iRow2x2 == iCol2x2); 
 } 
 inline  bool  Is2x2() 
 { 
  return ((iRow2x2 + 2 <= size) && (iCol2x2 + 2 <= size)); 
 } 
 inline  bool  Is2x1() 
 { 
  return ((iRow2x2 + 2 <= size) && (iCol2x2 + 1 == size)); 
 } 
 inline  bool  Is1x2() 
 { 
  return ((iRow2x2 + 1 == size) && (iCol2x2 + 2 <= size)); 
 } 
 inline  bool  Is1x1() 
 { 
  return ((iRow2x2 + 1 == size) && (iCol2x2 + 1 == size)); 
 } 
 
 bool  allocationError() { return  HaveAllocationError; } 
 TagTeamSameCache( 

TagTeamsProcessor* _ttp, 
intptr_t _iBeginL2, intptr_t _iEndL2) 

 { 
  ttp = _ttp; 
  iBeginL2 = _iBeginL2; 
  iEndL2 = _iEndL2; 
  iBeginL3 = ttp->iBeginL3; 
  iEndL3 = ttp->iEndL3; 
 
  HaveAllocationError = false ; 
  m1 = ttp->m1; 
  m2 = ttp->m2; 
  m2t = ttp->m2t; 
  result = ttp->result; 
  size = ttp->size; 
  m2t_transposed = ttp->m2t_transposed; 
  MasterTileSequenceNumber = -1; 
  SlaveTileSequenceNumber = -1; 
  DoDiagonalsState = new char [(size + 1) / 2]; 
  memset(DoDiagonalsState, 0, (size + 1) / 2); 
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  iLastDiagonalDone = size; // initialize out of bounds 
 } 
 ~TagTeamSameCache() 
 { 
  if (DoDiagonalsState) 
   delete  [] DoDiagonalsState; 
 } 
 inline  bool  TileSeenBySlave() { return  ( 
   (MasterTileSequenceNumber == SlaveTileSequenceNu mber) 
   || ((iEndL2 - iBeginL2) == size) 
   || (nTeamMembersInL2 == 1)); } 
 inline  bool  TileAdvancedByMaster() { return  ( 
   (MasterTileSequenceNumber > SlaveTileSequenceNum ber) 
   || (nTeamMembersInL2 == 1)); } 
 
 
 inline  bool  PickNextDiagonal() 
 { 
  // any remaining tiles on our diagonal 
  if (iDoDiagonalL2index >= iEndL2) 
   return  false ;  // no 
 
  // set tile focus to next tile on diagonal 
  iRow2x2 = iDoDiagonalL2index; 
  iCol2x2 = iRow2x2; 
 
  // Notify Slave thread that tile selection is ready  
  ++MasterTileSequenceNumber; 
 
  // record last diagonal done (likely in L1/L2 cache ) 
  iLastDiagonalDone = iRow2x2; 
 
  // indicate begun transposition 
  DoDiagonalsState[iLastDiagonalDone / 2] = 1; 
 
  // and bump iDoDiagonalL2index of 2x2 tile for next  time 
  iDoDiagonalL2index += 2; 
 
  // indicate valid tile chosen 
  return  true ; 
 } 
 
 inline  bool  PickingFirstTile() 
 { 
  // see if first time call 
  if (MasterTileSequenceNumber >= 0) 
   return  false ;  // no 
 
  // yes, initialize state machine 
  iDoDiagonalL2index = iBeginL2; // iBeginL2 : iEndL2 
        // (use DoDiagonals[iDoDiagonalL2index/2]) 
 
  iDoDiagonalL3index = iBeginL3; // iBeginL3 : iEndL3 
        // (use DoDiagonals[iDoDiagonalL3index/2]) 
  iDoDiagonalSystem = 0;   // 0 : size 
        // (use DoDiagonals[iDoDiagonalSystem/2]) 
  iDoColumnIndex = iEndL2;  // iBeginL2 : iEndL2 
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  iDoColumnColumn = iEndL2;  // iBeginL2 : iEndL2 
  // return next (first) tile on our diagonal 
  return  PickNextDiagonal(); 
 } 
 
 // while we are traversing down a column of the las t 
 // diagonal picked by our thread, and near the end 
 // of completing the matrix multiplication, some ot her 
 // thread may have finished up all its diagonals, a nd 
 // columns on diagonal, and has found no additional  
 // work to do. When this occures .AND. when this th read 
 // has additional diagonals to perform, then we wan t to 
 // process or next diagonal prior to following down  the 
 // column of the last tile we picked. 
 inline  bool  PickingForDiagonalTileForStarvedThread() 
 { 
  if (ttp->tts->TreadWaitingForTransposition) 
  { 
   // attempt to pick our next diagonal 
   if (PickNextDiagonal()) 
   { 
    // got tile, clear starvation flag 
    ttp->tts->TreadWaitingForTransposition = false ; 
    return  true ; 
   } 
  } // if(ttp->tts->TreadWaitingForTransposition) 
  return  false ; 
 } 
 
 inline  bool  PickingTileDownColumnOfOurDiagonal() 
 { 
  // skip over our diagonal if/when reached 
  if (iDoColumnIndex == iDoColumnColumn) 
   iDoColumnIndex += 2; 
 
  // are we done with this column? 
  if (iDoColumnIndex >= iEndL2) 
   return  false ; // yes, indicate pick fail 
 
  // the row becomes the iDoColumnIndex 
  iRow2x2 = iDoColumnIndex; 
  iCol2x2 = iDoColumnColumn; 
  ++MasterTileSequenceNumber; // Notify Slave thread 
  // and bump iDoColumnIndex for next pick 
  iDoColumnIndex += 2; 
  return  true ; 
 } 
 
 inline  bool  PickingFirstTileDownColumnOfOurLastDiagonal() 
 { 
  // assure not at end of matrix 
  if (iLastDiagonalDone >= size) 
   return  false ; 
 
  if (DoDiagonalsState[iLastDiagonalDone / 2] == 1) 
   DoDiagonalsState[iLastDiagonalDone / 2] = 2; 
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  iDoColumnColumn = iLastDiagonalDone; 
  iDoColumnIndex = iBeginL2; 
  iLastDiagonalDone = size; // invalidate for test above 
  // the following may fail on very small matrix 
  // do not assume it will always succeed 
  // now walk down this column 
  return  PickingTileDownColumnOfOurDiagonal(); 
 } 
 
 inline  bool  PickingFirstTileOfColumnOfOurL3() 
 { 
  for ( iLastDiagonalDone = iDoDiagonalL3index; 

iLastDiagonalDone < iEndL3; 
iLastDiagonalDone += 2) 

  { 
   // convert to 2x2 index number 
   intptr_t i = iLastDiagonalDone / 2; 
   // see if we have not already processed this column  
   // we have not performed the diagonal transposition  

// for tiles of other cores of this processor. 
// Therefore: 

   // DoDiagonalsState[i] == 0 for unprocessed tiles 
//          (by our thread) 

   // DoDiagonalsState[i] == 1 we did diagonal 
//      (but not entire column of that diagonal) 

   // DoDiagonalsState[i] == 2 we did diagonal 
//       (and entire column of that diagonal) 

   // DoDiagonalsState[i] == 3 other thread in our L3 
// did diagonal and we did column of that diagonal 

   // find ((DoDiagonalsState[i] == 0) 
//  && (m2t_transposed[i] == size)) 

   if (DoDiagonalsState[i] == 0) 
   { 
    // we haven't done this column pair 
    // see if other thread has completed transposion 
    if (m2t_transposed[i] == size) 
    { 
     // transposition complete 
     // indicate we selected this column 
     DoDiagonalsState[i] = 3; 
     // see if we can advance index for next time 
     if (iLastDiagonalDone == iDoDiagonalL3index) 
      iDoDiagonalL3index += 2; 
      if (PickingFirstTileDownColumnOfOurLastDiagonal()) 
       return  true ; 
    } // if(m2t_transposed[i] == size) 
   } // if(DoDiagonals[i]) 
   else 
   { 
    if (iLastDiagonalDone == iDoDiagonalL3index) 
     iDoDiagonalL3index += 2; 
   } 
  } // for(iLastDiagonalDone = iDoDiagonalL3index; 

// iLastDiagonalDone < iEndL3; 
// iLastDiagonalDone += 2) 

  return  false ; 
 } 
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 bool  PickingFirstTileOfColumnOfAnyProcessor() 
 { 
  for ( iLastDiagonalDone = iDoDiagonalSystem; 

iLastDiagonalDone < size; 
iLastDiagonalDone += 2) 

  { 
   // convert to 2x2 index number 
   intptr_t i = iLastDiagonalDone / 2; 
   // see if we have not already processed this column  
   if (DoDiagonalsState[i] <= 1) 
   { 
    // we haven't done this column pair 
    // see if other thread has completed 

// transposion 
    if (m2t_transposed[i] == size) 
    { 
     // transposition complete 
     // indicate we selected this diagonal 
     DoDiagonalsState[i] = 4; 
     // see if we can advance index for next time 
     if (iLastDiagonalDone == iDoDiagonalSystem) 
      iDoDiagonalSystem += 2; 
     if (PickingFirstTileDownColumnOfOurLastDiagonal()) 
      return  true ; 
    } // if(m2t_transposed[i] == size) 
   } // if(DoDiagonalsState[i]) 
   else 
   { 
    if (iLastDiagonalDone == iDoDiagonalSystem) 
     iDoDiagonalSystem += 2; 
   } 
  } // for( iLastDiagonalDone = iDoDiagonalSystem; 

//   iLastDiagonalDone < size; 
//   iLastDiagonalDone += 2) 

  ttp->tts->TreadWaitingForTransposition = true ; 
  return  false ; 
 } 
 
 inline  bool  MoreTilesToPick() 
 { 
  return  ((iDoDiagonalSystem < size) 

|| (iDoDiagonalL3index < iEndL3) 
|| (iDoDiagonalL2index < iEndL2)); 

 } 
 
 // select a tile, return true if found, false when done 
 // only master thread of team calls this function 
 // Also, this function selects the next tile along the diagonal 
 bool  SelectTile() 
 { 
  // wait until slave thread has observed prior 

// tile selection (passes on 1st time call) 
  while (!TileSeenBySlave()) 
   _mm_pause(); 
 
  // quick test for first time call 
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  if (PickingFirstTile()) 
  { 
   return  true ; 
  } 
 
  // test for thread starvation 
  if (PickingForDiagonalTileForStarvedThread()) 
  { 
   return  true ; 
  } 
 
  if (PickingTileDownColumnOfOurDiagonal()) 
  { 
   return  true ; 
  } 
 
  if (PickingFirstTileDownColumnOfOurLastDiagonal()) 
  { 
   return  true ; 
  } 
 
  if (PickingFirstTileOfColumnOfOurL3()) 
  { 
   return  true ; 
  } 
 
  if (PickNextDiagonal()) 
  { 
   return  true ; 
  } 
 
  if (PickingFirstTileOfColumnOfAnyProcessor()) 
  { 
   return  true ; 
  } 
 
  while (MoreTilesToPick()) 
  { 
   if (PickingFirstTileOfColumnOfOurL3()) 
  { 
   return  true ; 
  } 
   if (PickingFirstTileOfColumnOfAnyProcessor()) 
  { 
   return  true ; 
  } 
   _mm_pause(); // or qtYield() 
  } 
  // set focus out of range such that 
  // Slave thread knows of termination condition 
  iRow2x2 = size; 
  iCol2x2 = size; 
  // notify slave of termination condition 
  ++MasterTileSequenceNumber; 
  return  false ; 
 } // bool SelectTile() 
}; 
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struct  TagTeamMember 
{ 
 TagTeamSameCache* ttc; 
 intptr_t iTeamMemberInL2; 
 intptr_t nTeamMembersInL2; 
 bool  HaveAllocationError; 
 double ** m1; 
 double ** m2; 
 double ** m2t; 
 double ** result; 
 intptr_t size; 
 volatile  intptr_t* m2t_transposed; 
 
 intptr_t iRow2x2; 
 intptr_t iCol2x2; 
 
 size_t sizeMinus1; // = size_local - 1; 
 size_t sizeTrunc; // = size_local & ~1; 
        // (even number of size) 
 // Redefine pointers as int64_t 
 int64_t** m2_as_int64; // = (int64_t**)m2; 
 int64_t** m2t_as_int64; // = (int64_t**)m2t; 
 
 bool  allocationError() { return  HaveAllocationError; } 
 TagTeamMember( TagTeamSameCache* _ttc, 

intptr_t _iTeamMemberInL2, 
intptr_t _nTeamMembersInL2) 

 { 
  ttc = _ttc; 
  iTeamMemberInL2 = _iTeamMemberInL2; 
  nTeamMembersInL2 = _nTeamMembersInL2; 
  ttc->nTeamMembersInL2 = nTeamMembersInL2; 
  HaveAllocationError = false ; 
  m1 = ttc->m1; 
  m2 = ttc->m2; 
  m2t = ttc->m2t; 
  result = ttc->result; 
  size = ttc->size; 
  sizeMinus1 = size - 1; // often used evaluation 
  sizeTrunc = size & ~1; // even number of size 
  m2t_transposed = ttc->m2t_transposed; 
  // Redefine pointers as int64_t 
  m2_as_int64 = (int64_t**)m2; 
  m2t_as_int64 = (int64_t**)m2t; 
 } 
 ~TagTeamMember() 
 { 
  if ((size == 1) && (iTeamMemberInL2 > 0)) 
  { 
   // advance SlaveTileSequenceNumber 
   ++ttc->SlaveTileSequenceNumber; 
  } 
 } 
 
 bool  SelectTile() 
 { 
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  if (IsMaster()) 
  { 
   ttc->SelectTile(); 
   // copy to local values (may be invalid) 
   iRow2x2 = ttc->iRow2x2; 
   iCol2x2 = ttc->iCol2x2; 
   // return true if we have valid tile 
   return  (iRow2x2 < size); 
  } 
 
  // Slave thread 
  // loop until master advances tile 
  while (!ttc->TileAdvancedByMaster()) 
   _mm_pause(); 
 
  // ** save prior to advancing SlaveTileSequenceNumb er 
  iRow2x2 = ttc->iRow2x2; 
  iCol2x2 = ttc->iCol2x2; 
  // advance SlaveTileSequenceNumber 
  ++ttc->SlaveTileSequenceNumber; 
  // return true if not void (have work to do) 
  return  (iRow2x2 < size); 
 } // bool SelectTile() 
 
 inline  bool  IsMaster() { return  (iTeamMemberInL2 == 0); } 
 inline  bool  IsSlave() { return  (iTeamMemberInL2 != 0); } 
 inline  bool  IsOnlyThread() { return  (nTeamMembersInL2 == 1); } 
 inline  bool  IsOnDiagonal() 
 { 
  return  (iRow2x2 == iCol2x2); 
 } 
 inline  bool  Is2x2() 
 { 
  return ((iRow2x2 + 2 <= size) && (iCol2x2 + 2 <= size)); 
 } 
 inline  bool  Is2x1() 
 { 
  return ((iRow2x2 + 2 <= size) && (iCol2x2 + 1 == size)); 
 } 
 inline  bool  Is1x2() 
 { 
  return ((iRow2x2 + 1 == size) && (iCol2x2 + 2 <= size)); 
 } 
 inline  bool  Is1x1() 
 { 
  return ((iRow2x2 + 1 == size) && (iCol2x2 + 1 == size)); 
 } 
 
 void  DoDiagonalAsOnlyThread() 
 { 
  // must be on processor with diminished capacity 
  // only 1 thread in this tag team 
  // Equivilent to DoDiagonalAsMasterThread() without  

// notification 
  // And performing double DOT on what would have bee n done 

// by Slave 
  intptr_t iRow = iRow2x2; // same coord as 2x2 
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// (when master thread) 
  intptr_t iCol = iCol2x2; // same coord as 2x2 

// (when master thread) 
  if (iCol == sizeMinus1) 
  { 
   // last column is single column 
   for (intptr_t i=0; i < sizeTrunc; i += 2) 
   { 
    int64_t temp[2]; // compiler should SSE register temp 
    // collect 2x2 tile from next row pair 

// in tile column pair 
    temp[0] =  m2_as_int64[i][iCol]; 
    temp[1] =  m2_as_int64[i+1][iCol]; 
    // store the transposed 1x2 tile into the m2t array  
    m2t_as_int64[iCol][i] = temp[0]; 
    m2t_as_int64[iCol][i+1] = temp[1]; 
   } 
   // check for odd size 
   if (size & 1) 
   { 
    m2t_as_int64[iCol][sizeMinus1] 

= m2_as_int64[sizeMinus1][iCol]; 
   } 
  } 
  else 
  { 
   // not last column is single column 
 
   // N.B. keep sizeTrunc as local variable instead of  

// outer scope reference 
   // the following for loop will run faster 
   // walk down the column pair of m2 transposing to 

// row pair in m2t 
   for (intptr_t i=0; i < sizeTrunc; i += 2) 
   { 
    int64_t temp[4]; // compiler should SSE register temp 
    // collect 2x2 tile from next row pair 

// in tile column pair 
    temp[0] =  m2_as_int64[i][iCol]; 
    temp[2] =  m2_as_int64[i][iCol+1]; 
    temp[1] =  m2_as_int64[i+1][iCol]; 
    temp[3] =  m2_as_int64[i+1][iCol+1]; 
    // store the transposed 2x2 tile into the m2t array  
    m2t_as_int64[iCol][i] = temp[0]; 
    m2t_as_int64[iCol][i+1] = temp[1]; 
    m2t_as_int64[iCol+1][i] = temp[2]; 
    m2t_as_int64[iCol+1][i+1] = temp[3]; 
   } 
   // check for odd size 
   if (size & 1) 
   { 
    m2t_as_int64[iCol][sizeMinus1] 

= m2_as_int64[sizeMinus1][iCol]; 
    m2t_as_int64[iCol+1][sizeMinus1] 

= m2_as_int64[sizeMinus1][iCol+1]; 
   } 
  } 
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  // indicate to other threads that we completed tran sposition 
  m2t_transposed[iCol / 2] = size; 
  if (Is2x2()) 
  { 
   // master thread finishes up with double DOT 

// for upper row of 2x2 
   doDOTDOT( m1[iRow], 

m2t[iCol], 
m2t[iCol+1], 
&result[iRow][iCol], size); 

   // then double DOT for lower row of 2x2 
   doDOTDOT( m1[iRow+1], 

m2t[iCol], 
m2t[iCol+1], 
&result[iRow+1][iCol], size); 

  } 
  else 
  { 
   // 1x1 
   result[iRow][iCol] = doDOT(m1[iRow], m2t[iCol], size); 
  } 
 } // void DoDiagonalAsOnlyThread() 
 
 void  DoDiagonalAsMasterThread() 
 { 
  // Master thread 
  intptr_t iRow = iRow2x2; // same coord as 2x2 

// (when master thread) 
  intptr_t iCol = iCol2x2; // same coord as 2x2 

// (when master thread) 
 
  // master of tag team performs transposition 
  // and DOT of its row in the tag team tile 
  // Notify the other thread(s) of of my team 
  // after the cache line(s) is(are) flushed 
  intptr_t notificationInterval 

 = CacheFlushLineSize / sizeof ( double ); 
  if (iCol == sizeMinus1) 
  { 
   // last column is single column 
   for (intptr_t i=0; i < sizeTrunc; i += 2) 
   { 
    int64_t temp[2]; // compiler should SSE register temp 
    // collect 2x2 tile from next row pair in tile colu mn pair 
    temp[0] =  m2_as_int64[i][iCol]; 
    temp[1] =  m2_as_int64[i+1][iCol]; 
    // store the transposed 1x2 tile into the m2t array  
    m2t_as_int64[iCol][i] = temp[0]; 
    m2t_as_int64[iCol][i+1] = temp[1]; 
    // see if we wrote the last pair in cache flush lin e 
    if (((i+2)%notificationInterval) == 0) 
    { 
     // inform other thread(s) of this team that 

// transposition has occured up through and includi ng 
// this column 

     m2t_transposed[iCol / 2] = i+2; 
    } 
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   } 
   // check for odd size 
   if (size & 1) 
   { 
    m2t_as_int64[iCol][sizeMinus1] 

= m2_as_int64[sizeMinus1][iCol]; 
    // TileColTransposed updated below 
   } 
  } 
  else 
  { 
   // not last column is single column 
 
   // N.B. keep sizeTrunc as local variable instead of  

// outer scope reference, the following for loop wi ll run 
// faster 

   // Walk down the column pair of m2 transposing to 
// row pair in m2t 

   for (intptr_t i=0; i < sizeTrunc; i += 2) 
   { 
    int64_t temp[4]; // compiler should SSE register temp 
    // collect 2x2 tile from next row pair in tile colu mn pair 
    temp[0] =  m2_as_int64[i][iCol]; 
    temp[2] =  m2_as_int64[i][iCol+1]; 
    temp[1] =  m2_as_int64[i+1][iCol]; 
    temp[3] =  m2_as_int64[i+1][iCol+1]; 
    // store the transposed 2x2 tile into the m2t array  
    m2t_as_int64[iCol][i] = temp[0]; 
    m2t_as_int64[iCol][i+1] = temp[1]; 
    m2t_as_int64[iCol+1][i] = temp[2]; 
    m2t_as_int64[iCol+1][i+1] = temp[3]; 
    // see if we wrote the last pair in cache flush lin e 
    if (((i+2)%notificationInterval) == 0) 
    { 
     // inform other thread(s) of this team that 

// transposition has occured up through and includi ng 
// this column 

     m2t_transposed[iCol / 2] = i+2; 
    } 
   } 
   // check for odd size 
   if (size & 1) 
   { 
    m2t_as_int64[iCol][sizeMinus1] 

= m2_as_int64[sizeMinus1][iCol]; 
    m2t_as_int64[iCol+1][sizeMinus1] 

= m2_as_int64[sizeMinus1][iCol+1]; 
   } 
  } 
  // Inform other teams that transposition of this co lumn 

// is complete 
  m2t_transposed[iCol / 2] = size; 
  if (Is2x2()) 
  { 
   // master thread finishes up with DOT on 

// upper left corner of 2x2 tile 
   result[iRow][iCol] 
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= doDOT(m1[iRow], m2t[iCol], size); 
  } 
  else 
  { 
   // Slave thread did this for us 
  } 
 } // void DoDiagonalAsMasterThread() 
 
 void  DoDiagonalAsSlave() 
 { 
 
  intptr_t iRow = iRow2x2; // same coord as 2x2 

// (when master thread) 
  intptr_t iCol = iCol2x2; // same coord as 2x2 

// (when master thread) 
 
  if (Is1x1()) 
  { 
   // special case for 1x1 tile 
   // slave produces the one and DOT 
   double  temp = 0.0; 
   double * v1 = m1[iRow]; 
   double * v2 = m2t[iRow]; 
 
   for (intptr_t i = 0; i < size; i++) 
   { 
    // The slave thread(s) tail along after the master thread. 
    // Wait until master completes transposition of cac he line. 
    while (i >= m2t_transposed[iRow / 2]) 
    { 
     _mm_pause(); 
#if  defined (USE_mm_pause_count) 
     // when gathering tuning statistics 
     ++_mm_pause_count_2; 
#endif 
    } 
      temp += v1[i] * v2[i]; 
   } 
   result[iRow][iRow] = temp; 
 
   return ; 
  } // if(Is1x1()) 
  // 2x2 tile 
  // produce a double DOT trailing along the master t hread 

// performing transposition 
  double  temp0 = 0.0; 
  double  temp1 = 0.0; 
  double * v1 = m1[iRow+1]; 
  double * v2 = m2t[iCol]; 
  double * v3 = m2t[iCol+1]; 
  // see how the compiler optimizaton vectorizes the following 
  for (intptr_t i=0; i < size; ++i) 
  { 
   // The slave thread(s) tail along after the master thread. 
   // Wait until master completes transposition of cac he line. 
   while (i >= m2t_transposed[iCol / 2]) 
   { 
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    _mm_pause(); 
#if  defined (USE_mm_pause_count) 
    // when gathering tuning statistics 
    ++_mm_pause_count_3; 
#endif 
   } 
   temp0 += v1[i] * v2[i]; 
   temp1 += v1[i] * v3[i]; 
  } // for(intptr_t i=0; i < sizeTrunc; ++i) 
 
  result[iRow+1][iCol] = temp0; 
  result[iRow+1][iCol+1] = temp1; 
 
  v1 = m1[iRow]; 
  // perform DOT on (0,1) of 2x2 cell 
  result[iRow][iCol+1] = doDOT(v1, v3, size); 
 } // void DoDiagonalAsSlave() 
 
 void  DoDiagonal() 
 { 
  if (IsMaster()) 
  { 
   if (IsOnlyThread()) 
    DoDiagonalAsOnlyThread(); 
   else 
    DoDiagonalAsMasterThread(); 
  } 
  else 
  { 
   DoDiagonalAsSlave(); 
  } 
 } // void DoDiagonal() 
 
 void  DoOffDiagonal() 
 { 
  intptr_t iRow = iRow2x2; 
  intptr_t iCol = iCol2x2; 
  if (Is2x2()) 
  { 
   // get our threads row of 1x2 part of 2x2 
   iRow += iTeamMemberInL2; 
   // perform double DOT 
   doDOTDOT( m1[iRow], 

m2t[iCol], 
m2t[iCol+1], 
&result[iRow][iCol], size); 

   if (IsOnlyThread()) 
   { 
    iRow += 1; 
    // perform double DOT 
    doDOTDOT( m1[iRow], 

m2t[iCol], 
m2t[iCol+1], 
&result[iRow][iCol], size); 

   } 
   return ; 
  } 
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  // not 2x2 
  if (IsOnlyThread()) 
  { 
   if (Is2x1()) 
   { 
    result[iRow][iCol] = doDOT(m1[iRow], m2t[iCol],  size); 
    iRow += 1; 
    result[iRow][iCol] = doDOT(m1[iRow], m2t[iCol],  size); 
    return ; 
   } 
   if (Is1x2()) 
   { 
    doDOTDOT( m1[iRow], 

m2t[iCol], 
m2t[iCol+1], 
&result[iRow][iCol], size); 

    return ; 
   } 
   if (Is1x1()) 
   { 
    result[iRow][iCol] = doDOT( m1[iRow], m2t[iCol] , size); 
    return ; 
   } 
   return ; // ?? 
  } 
  // either Master or Slave 
  if (Is2x1()) 
  { 
   iRow += iTeamMemberInL2; 
  } 
  else 
  if (Is1x2()) 
  { 
   iCol += iTeamMemberInL2; 
  } 
  else 
  if (Is1x1()) 
  { 
   if (IsSlave()) 
    return ; 
  } 
  // single DOT 
  result[iRow][iCol] = doDOT(m1[iRow], m2t[iCol], s ize); 
 } 
 
 
 void  DoWork() 
 { 
  while (SelectTile()) 
  { 
   if (IsOnDiagonal()) 
    DoDiagonal(); 
   else 
    DoOffDiagonal(); 
  } 
 } 
}; 
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void  parallel_matrix_multiplyTransposeTagTeam( double ** m1, double ** m2, 
double ** result, intptr_t size) 
{ 
 // create whole system tag team object for this 
 // matrix multiplication 
 TagTeamsSystem System(m1, m2, result, size); 
 if (System.allocationError()) 
 { 
  cout << "Allocation error for System"  << endl; 
  return ; 
 } 
 
 // divide the iteration space accross each multi-co re processor 
 // L3$ specifies by L3 cache 
 //  .OR. 
 // within processor for processors without L3 cache  
 parallel_for( 
  OneEach_L3$, 
  intptr_t(0), size, 
  [&](intptr_t iBeginL3, intptr_t iEndL3) 
  { 
   // adjust partitioning such that partitions 
   // fall on 2x2 cell boundaries 
   iBeginL3 += (iBeginL3 & 1); 
   if (iBeginL3 >= size) 
    return ; 
   if (iEndL3 < size) 
    iEndL3 += (iEndL3 & 1); 
 
   TagTeamsProcessor Processor( 

&System, iBeginL3, iEndL3); 
   if (Processor.allocationError()) 
   { 
    cout << "Allocation error for Processor" << endl; 
    return ; 
   } 
 
   if (nThreadsPerL2 > 0) 
   { 
    // divide our L3 iteration space by L2 within this L3 
    parallel_for( 
     OneEach_Within_L3$ + L2$, 
     iBeginL3, iEndL3, 
     [&](intptr_t iBeginL2, intptr_t iEndL2) 
     { 
      // adjust partitioning such that 
      // partitions fall on 2x2 cell boundaries 
      iBeginL2 += (iBeginL2 & 1); 
      if (iBeginL2 >= size) 
       return ; 
      if (iEndL2 < size) 
       iEndL2 += (iEndL2 & 1); 
      // Here we are running as the Master thread of a 
      // 2 team member team (or 1 in the event of o lder 
      // processor) 
      // 
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      TagTeamSameCache SameCache( &Processor, 
                iBeginL2, 
                iEndL2); 
      if (SameCache.allocationError()) 
      { 
       cout << "Allocation error for SameCache" << endl; 
       return ; 
      } 
      // Now bring in our other team member(s) 
      parallel_distribute( 
       L2$, 
         [&]( intptr_t iTeamMemberInL2, 
         intptr_t nTeamMembersInL2) 
       { 
        TagTeamMember TeamMember( 
              &SameCache, 
              iTeamMemberInL2, 
              nTeamMembersInL2); 
        if (TeamMember.allocationError()) 
        { 
         cout << "Allocation error for TeamMember" 
           << endl; 
         return ; 
        } 
        TeamMember.DoWork(); 
       } // [&]( intptr_t iTeamMemberInL2, 
         //   intptr_t nTeamMembersInL2) 
      ); // parallel_distribute( L2$, 
     } // [&](intptr_t iBeginL2, intptr_t iEndL2) 
    ); // parallel_for( 
     //  OneEach_Within_L3$ + L2$, iBeginL3, iEndL3 , 
   } 
   else 
   { 
    // older style processor (e.g. AMD Opteron 270) 
    // two cores/socket, no sharing of L2 
    // divide our L3 iteration space by L2 within this L3 
    intptr_t iBeginL2 = iBeginL3; 
    intptr_t iEndL2 = iEndL3; 
    // adjust partitioning such that partitions 
    // fall on 2x2 cell boundaries 
    iBeginL2 += (iBeginL2 & 1); 
    if (iBeginL2 >= size) 
     return ; 
    if (iEndL2 < size) 
     iEndL2 += (iEndL2 & 1); 
    // Here we are running as the Master thread of a 2 team 
    // member team (or 1 in the event of older proc essor) 
    // 
    TagTeamSameCache SameCache(&Processor, iBeginL2 , iEndL2); 
    if (SameCache.allocationError()) 
    { 
     cout << "Allocation error for SameCache"  << endl; 
     return ; 
    } 
    // Now bring in our other team member(s) 
    // Note, we use L3$ distribution but reference as L 2 
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    parallel_distribute( 
     L3$, 
     [&](intptr_t iTeamMemberInL2, intptr_t nTeamMe mbersInL2) 
     { 
      TagTeamMember TeamMember( &SameCache, 
               iTeamMemberInL2, 
               nTeamMembersInL2); 
      if (TeamMember.allocationError()) 
      { 
       cout << "Allocation error for TeamMember"  << endl; 
       return ; 
      } 
      TeamMember.DoWork(); 
     } //[&](intptr_t iTeamMemberInL2, 
      //   intptr_t nTeamMembersInL2) 
    ); // parallel_distribute( L2$, 
   } 
  } // [&](intptr_t iBeginL3, intptr_t iEndL3) 
 ); 
} 
 
#if  defined (_WIN32) 
long  get_PageSize() 
{ 
 SYSTEM_INFO info; 
 GetSystemInfo(&info); 
 return  ( long )info.dwPageSize; 
} 
#endif 
#if  defined (__linux) 
long  get_PageSize() 
{ 
} 
#endif 
 
 
bool  verbose = false ; 
intptr_t size; 
uint64_t timeSerial = 0; 
uint64_t timeSerialTranspose = 0; 
uint64_t timeSerialTransposeXMM = 0; 
uint64_t timeParallel = 0; 
uint64_t timeParallelTranspose = 0; 
uint64_t timeParallelTransposeXMM = 0; 
uint64_t timeParallelTransposeTagTeam = 0; 
uint64_t timeParallelTransposeTagTeamXMM = 0; 
 
void  report() 
{ 
 cout << size 
    << ","  << timeSerial 
    << ","  << timeParallel 
    << ","  << timeSerialTranspose 
    << ","  << timeSerialTransposeXMM 
    << ","  << timeParallelTranspose 
    << ","  << timeParallelTransposeXMM 
    << ","  << timeParallelTransposeTagTeam 
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    << ","  << timeParallelTransposeTagTeamXMM 
    << endl; 
} 
 
void  reportTopology() 
{ 
 qtInit qtInit(-1,0); 
 qtControl ctrl; 
 int_Native nThreads = 0; 
 nThreads = qt_get_num_threads(); 
 cout << "nThreads="  << nThreads << endl; 
 cout << "nL3="  << ctrl.SelectAffinities(OneEach_L3$) << endl; 
 cout << "nThreadsPerL3="  << ctrl.SelectAffinities(L3$) << endl; 
 cout << "CacheSize_L3="  << CacheLevelSize(3) << endl; 
 cout << "CacheLineSize_L3="  << CacheLevelLineSize(3) << endl; 
 cout << "nL2="  << ctrl.SelectAffinities(OneEach_L2$) << endl; 
 cout << "nThreadsPerL2="  << ctrl.SelectAffinities(L2$) << endl; 
 cout << "CacheSize_L2="  << CacheLevelSize(2) << endl; 
 cout << "CacheLineSize_L2="  << CacheLevelLineSize(2) << endl; 
 cout << "nL1="  << ctrl.SelectAffinities(OneEach_L1$) << endl; 
 cout << "nThreadsPerL1="  << ctrl.SelectAffinities(L1$) << endl; 
 cout << "CacheSize_L1="  << CacheLevelSize(1) << endl; 
 cout << "CacheLineSize_L1="  << CacheLevelLineSize(1) << endl; 
 
 volatile  intptr_t coutL3 = 0; 
 parallel_distribute(OneEach_L3$, 
   [&](intptr_t iTeamMemberL3, intptr_t nTeamMember sL3) 
   { 
    while (iTeamMemberL3 > coutL3) 
     _mm_pause(); 
    volatile  intptr_t coutInL3 = 0; 
    parallel_distribute(L3$, 
     [&](intptr_t iTeamMemberInL3, intptr_t nTeamMe mbersInL3) 
     { 
      while (iTeamMemberInL3 > coutInL3) 
       _mm_pause(); 
      if (iTeamMemberInL3 == 0) 
       cout << "L3("  << iTeamMemberL3 << ") = {" ; 
      cout << qt_get_thread_num(); 
      if (iTeamMemberInL3 + 1 == nTeamMembersInL3) 
       cout << "} NUMA("  << get_NUMA_NodeNumber() << ")" 

<< endl; 
      else 
       cout << "," ; 
      cout << flush; 
      ++coutInL3; 
     }); 
     ++coutL3; 
   }); 
 volatile  intptr_t coutL2 = 0; 
 parallel_distribute(OneEach_L2$, 
   [&](intptr_t iTeamMemberL2, intptr_t nTeamMember sL2) 
   { 
    while (iTeamMemberL2 > coutL2) 
     _mm_pause(); 
    volatile  intptr_t coutInL2 = 0; 
    parallel_distribute(L2$, 
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     [&](intptr_t iTeamMemberInL2, intptr_t nTeamMe mbersInL2) 
     { 
      while (iTeamMemberInL2 > coutInL2) 
       _mm_pause(); 
      if (iTeamMemberInL2 == 0) 
       cout << "L2("  << iTeamMemberL2 << ") = {" ; 
      cout << qt_get_thread_num(); 
      if (iTeamMemberInL2 + 1 == nTeamMembersInL2) 
       cout << "}"  << endl; 
      else 
       cout << "," ; 
      cout << flush; 
      ++coutInL2; 
     }); 
     ++coutL2; 
   }); 
 
 if (ctrl.SelectAffinities(L1$) > 1) 
 { 
  volatile  intptr_t coutL1 = 0; 
  parallel_distribute(OneEach_L1$, 
    [&](intptr_t iTeamMemberL1, intptr_t nTeamMembe rsL1) 
    { 
     while (iTeamMemberL1 > coutL1) 
      _mm_pause(); 
     volatile  intptr_t coutInL1 = 0; 
     parallel_distribute(L1$, 
      [&](intptr_t iTeamMemberInL1, 

 intptr_t nTeamMembersInL1) 
      { 
       while (iTeamMemberInL1 > coutInL1) 
        _mm_pause(); 
       if (iTeamMemberInL1 == 0) 
        cout << "L1("  << iTeamMemberL1 << ") = {" ; 
       cout << qt_get_thread_num(); 
       if (iTeamMemberInL1 + 1 == nTeamMembersInL1) 
        cout << "}"  << endl; 
       else 
        cout << "," ; 
       cout << flush; 
       ++coutInL1; 
      }); 
      ++coutL1; 
    }); 
 
 } 
} 
 
void  reportHeader() 
{ 
 cout << "N" 
    << ","  << "S" 
    << ","  << "P" 
    << ","  << "ST" 
    << ","  << "STx" 
    << ","  << "PT" 
    << ","  << "PTx" 
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    << ","  << "PTT" 
    << ","  << "PTTx" 
    << endl; 
} 
 
 
int  main( int  argc, char  *argv[]) 
{ 
 if (argc == 1) 
 { 
  reportTopology(); 
  reportHeader(); 
  return  0; 
 } 
    intptr_t sizeBegin = 750; // ~10 seconds in Debug build on 

// 2x Opteron 270 (4 cores) 
 if (argc >= 2) 
    sizeBegin = atoi(argv[1]); 
 intptr_t sizeEnd = sizeBegin; 
 if (argc >= 3) 
    sizeEnd = atoi(argv[2]); 
 intptr_t sizeIncrement = 2; 
 if (argc >= 4) 
    sizeIncrement = atoi(argv[3]); 
 
 for (size = sizeBegin; size <= sizeEnd; size += sizeInc rement) 
 { 
 
 if (verbose) 
 { 
  wcout << L "matrix size = "  << size << L " x "  << size << L " (" 

<< size * size << L ")"  << endl; 
 } 
 
 PageSize = get_PageSize(); 
 
   // Create a random number generator. 
   mt19937 gen(42); 
 
   // Create and initialize the input matrices and the  matrix that 
   // holds the result. 
   m1 = initialize_matrix(create_matrix(size), size , gen); 
   m2 = initialize_matrix(create_matrix(size), size , gen); 
   resultSerial = create_matrix(size); 
   resultSerialt = create_matrix(size); 
   resultSerialtXMM = create_matrix(size); 
   resultParallel = create_matrix(size); 
   resultParallelt = create_matrix(size); 
   resultParalleltXMM = create_matrix(size); 
   resultParalleltt = create_matrix(size); 
   resultParallelttXMM = create_matrix(size); 
   bool  doSerial = false ; 
   bool  doSerialTranspose = false ; 
   bool  doSerialTransposeXMM = false ; 
   bool  doParallel = false ; 
   bool  doParallelTranspose = false ; 
   bool  doParallelTransposeXMM = false ; 
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   bool  doParallelTransposeTagTeam = true ; 
 
  if (doSerial) 
   { 
    timeSerial = time_call([&] { 
     matrix_multiply(m1, m2, resultSerial, size); 
    }); 
 
   } 
 
   if (doSerialTranspose) 
   { 
   timeSerialTranspose = time_call([&] { 
      matrix_multiplyTranspose(m1, m2, resultSerial t, size); 
   }); 
#if  defined (USE_matrix_compare) 
   matrix_compare(resultSerial, resultSerialt, size ); 
#endif 
   } 
 
   if (doSerialTransposeXMM) 
   { 
   timeSerialTransposeXMM = time_call([&] { 
    UseXMM = true ; 
      matrix_multiplyTranspose(m1, m2, resultSerial tXMM, size); 
    UseXMM = false ; 
   }); 
#if  defined (USE_matrix_compare) 
   matrix_compare(resultSerial, resultSerialtXMM, s ize); 
#endif 
   } 
   { 
    // scope the qtInit object _after_ running serial t est 
    // as we do not wish for the establishment of the t hread 
    // pool to detract from the serial run time 
    // initialize QuickThread thread pool 
    // (-1 = all available hardware threads for compute  class, 

//   0 = no I/O threads) 
    qtInit qtInit(-1,0); 
    int_Native nThreads = 0; 
    nThreads = qt_get_num_threads(); 
    { 
   qtControl ctrl; 
   nThreadsPerL2 = ctrl.SelectAffinities(L2$); 
    } 
 
 CacheLineSize_L1 = CacheLevelLineSize(1); 
 CacheFlushLineSize = CLFLUSHCacheLineSize; 
 CacheSize_L1 = CacheLevelSize(1); 
 CacheSize_Larger = CacheLevelSize(3); 
 if (!CacheSize_Larger) 
  CacheSize_Larger = CacheLevelSize(2); 
 if (!CacheSize_Larger) 
  CacheSize_Larger = CacheLevelSize(1); 
 
 if (doParallel) 
 { 
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 timeParallel = time_call([&] { 
      parallel_matrix_multiply(m1, m2, resultParall el, size); 
   }); 
 
#if  defined (USE_matrix_compare) 
   matrix_compare(resultSerial, resultParallel, siz e); 
#endif 
 } 
 
 if (doParallelTranspose) 
 { 
 timeParallelTranspose = time_call([&] { 
      parallel_matrix_multiplyTranspose(m1, m2, res ultParallelt, size); 
   }); 
#if  defined (USE_matrix_compare) 
   matrix_compare(resultSerial, resultParallelt, si ze); 
#endif 
 } 
 
 if (doParallelTransposeXMM) 
 { 
 timeParallelTransposeXMM = time_call([&] { 
  UseXMM = true ; 
      parallel_matrix_multiplyTranspose(m1, m2, res ultParalleltXMM, 
size); 
  UseXMM = false ; 
   }); 
#if  defined (USE_matrix_compare) 
    matrix_compare(resultSerial, resultParalleltXMM , size); 
#endif 
 } 
 
 if (doParallelTransposeTagTeam) 
 { 
 timeParallelTransposeTagTeam = time_call([&] { 
      parallel_matrix_multiplyTransposeTagTeam( 

m1, m2, resultParalleltt, size); 
   }); 
#if  defined (USE_matrix_compare) 
   matrix_compare(resultSerial, resultParalleltt, s ize); 
#endif 
 } 
 timeParallelTransposeTagTeamXMM = time_call([&] { 
  UseXMM = true ; 
      parallel_matrix_multiplyTransposeTagTeam( 

m1, m2, resultParallelttXMM, size); 
  UseXMM = false ; 
   }); 
#if  defined (USE_matrix_compare) 
   matrix_compare(resultSerial, resultParallelttXMM , size); 
#endif 
 
   report(); 
 
   // Free the memory that was allocated for the matri ces. 
   destroy_matrix(m1, size); 
   destroy_matrix(m2, size); 
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   destroy_matrix(resultSerial, size); 
   destroy_matrix(resultSerialt, size); 
   destroy_matrix(resultSerialtXMM, size); 
   destroy_matrix(resultParallel, size); 
   destroy_matrix(resultParallelt, size); 
   destroy_matrix(resultParalleltXMM, size); 
   destroy_matrix(resultParalleltt, size); 
   destroy_matrix(resultParallelttXMM, size); 
   } // end scope the qtInit object _after_ running seri al test 
 
 } // for(intptr_t size = sizeBegin; 

//  size <= sizeEnd; 
//  size += sizeIncrement) 

  return  0; 
} 
 
// Creates a square matrix with the given number of  rows and columns. 
double ** create_matrix(intptr_t size) 
{ 
 // allocate an array of pointers for rows 
 double ** m = new double *[size]; 
 for  (intptr_t i = 0; i < size; ++i) 
 { 
  //m[i] = new double[size]; 
  m[i] = cacheAligned_doubles.allocate(size); 
 } 
 return  m; 
} 
 
// Frees the memory that was allocated for the give n square matrix. 
void  destroy_matrix( double ** m, intptr_t size) 
{ 
   for  (intptr_t i = 0; i < size; ++i) 
   { 
      // delete[] m[i]; 
    cacheAligned_doubles.deallocate( m[i], size); 
   } 
   delete  [] m; 
} 
 
// Initializes the given square matrix with values that are generated 
// by the given generator function. 
template  < class  Generator> 
double ** initialize_matrix( double ** m, intptr_t size, Generator& gen) 
{ 
   for  (intptr_t i = 0; i < size; ++i) 
   { 
      for  (intptr_t j = 0; j < size; ++j) 
      { 
         m[i][j] = static_cast <double >(gen()); 
      } 
   } 
   return  m; 
} 
 


