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Parallel applications use VM intensively
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Every popular operating system serializes
basic VM operations like mmap and munmap.
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basic VM operations like mmap and munmap.
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Application performance suffers

Multithreaded MapReduce [Mao '10]
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Inside parallel applications

A A A A

— — — —

Independent VM operations on non-overlapping regions.
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Inside parallel applications
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Independent VM operations on non-overlapping regions.

Common pattern for parallel applications.
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Perfectly scalable mmap, munmap, and page fault
operations on non-overlapping address space regions.
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system
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Structure of a VM system

mmap
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Structure of a VM system
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Cross-core communication
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This talk; RadixVM

To achieve perfectly scalable non-overlapping operations,
we eliminate communication between such operations.

Concurrent memory map representation
Method of targeting TLB shootdowns

Scalable, space-efficient reference counting
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Metadata management

Need to store OS-level memory mapping metadata
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Metadata management

Need to store OS-level memory mapping metadata

: Popular operating systems use a
balanced tree of region objects.
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Metadata management

Need to store OS-level memory mapping metadata

: Popular operating systems use a
balanced tree of region objects.
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Metadata management

Need to store OS-level memory mapping metadata

»—|e | Popularoperating systems. use a
| balanced tree of region objects.
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Metadata management

Need to store OS-level memory mapping metadata

Popular operating systems use a

balanced tree of region objects.
¢ ST wX 5

o]  Unnecessary Memory-efficient
communication

Most potential data structures (skip lists, B-trees, etc.) J

induce communication between disjoint operations.
res TS TWX
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Array-based memory map
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Array-based memory map
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Array-based memory map

235

RadixVM: Scalable address spaces for multithreaded applications



Array-based memory map

s rwX file

(anon)
(anon)
(anon)
(anon)

© 0 0 ©

b mm

/lib/libc
/lib/libc
/lib/libc
/lib/libc
/lib/libc
/lib/libc

rprppRe VY
© 0 © 06 0 o
© 0 © 06 0 o

235

RadixVM: Scalable address spaces for multithreaded applications



Array-based memory map

s rwx file Good: Operations on non-overlapping
O regions are concurrent and induce no
96 o o o (anon) communication.
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Good: Operations on non-overlapping
O regions are concurrent and induce no
communication.

Bad: Space use is obscene,
time is proportional to region size
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Array-based memory map

s rwx file
8 e @ (anon)
8 e @ (anon)
8 e @ (anon)
B o @ (anon)
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc

Good: Operations on non-overlapping
O regions are concurrent and induce no
communication.

Bad: Space use is obscene,
time is proportional to region size

How can we achieve good concurrency
while keeping space and time under control?
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s rwx file Solution: Range-oriented radix tree
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s rwxtile Solution: Range-oriented radix tree
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srwxfile  Solution: Range-oriented radix tree
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s rwx file . Solution: Range-oriented radix tree
S (anon) Fold constant-valued chunks into parent,
e o o e (anon) recursively.
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s rwxtile Solution: Range-oriented radix tree

(anon) Fold constant-valued chunks into parent,
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s rwx file . Solution: Range-oriented radix tree
S anon Fold constant-valued chunks into parent,
20 o o o (anon) recursively.

8 e © (anon)

= |
||

B o o o o /lib/libc

2-3x the size of the balanced region tree
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s rwx file . Solution: Range-oriented radix tree
3222 ¢ tanon) Fold constant-valued chunks into parent,
20 o o o (anon) recursively.
8 e © (anon)
B e o o o /lib/libc |

2-3x the size of the balanced region tree

We can achieve array-like concurrency
with time and space similar to the balanced tree.
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TLB shootdown

munmap must notify cores of changes to cached mappings
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TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!

\AAA
\AAA
\AAA
\AAA

\AAA
yvve

RadixVM: Scalable address spaces for multithreaded applications



TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!

\AAA
\AAA
\AAA
\AAA

\AAA
yvve

RadixVM: Scalable address spaces for multithreaded applications



TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!
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TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!
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TLB shootdown

munmap must notify cores of changes to cached mappings
Which cores have a mapping cached? Who knows?!

In the common case, there is little or no sharing.

—
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TLB tracking

A software-managed TLB would make this easy.
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Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
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Soft TLBs, the hard way
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0 Virt  Phys

gr\fvx i ! 18bca | 00230
, — ) ( 8738 | 0049cC
/bin/ls S

—

Virt  Phys

8a4bd | 00382
87¢38 1 0049c

& -

-

Virt  Phys

b987a (00520
8a4bd | 00382
87¢38 [ 0049c

o

-—

| 4
TLB‘misIses

Qo Qo
S I wX
(anon)

|

| 4
Pagi falults
it a1t B mh

1

235

RadixVM: Scalable address spaces for multithreaded applications



Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
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Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
0 Virt  Phys
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TLB tracking allows us to target TLB shootdowns,
eliminating unnecessary shootdown communication.

Trap and track
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Reference counting

Reference counting for physical pages and radix nodes
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Reference counting

Reference counting for physical pages and radix nodes

Shared
counters

Scalable inc/dec N
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Reference counting

Reference counting for physical pages and radix nodes

Shared Distributed

counters counters
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Zero-detection cost O(1) O(objs*cpus)

Space O(1) O(cpus)
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Reference counting

Reference counting for physical pages and radix nodes
Shared Distributed SNZIs

counters counters [Ellen '07]
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Reference counting

Reference counting for physical pages and radix nodes
Shared Distributed SNZIs
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Reference counting

Reference counting for physical pages and radix nodes
Shared Distributed SNZIs

counters counters [Ellen '07] Refcache
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zero detection
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Approach: Shared counters with per-core delta caches
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Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2
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Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2

Caches changes,
not values

V Object Delta V Object Delta V Object Delta V Object Delta

OO OO0o
OO OO0o
OO OO0o
> lolole)

CPUO CPU 1 CPU 2 CPU 3
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Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2

Caches changes,
not values

V Object Delta V Object Delta V Object Delta V Object Delta
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are local
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Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2
True count = ) True count = ) w_Generally
Caches changes, unknown
not values

V Object Delta V Object Delta V Object Delta V Object Delta

0 0 0 0
0 0 0 1 B -1
0 1 A +1| |1 A +1| |0
0 0 0 0
CPUO CPU 1 CPU 2 CPU 3
Inc(A) Operations INc(A) dec(B)

are local
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When is the true count zero?
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When is the true count zero?

Assumption: When the true count is zero, it will stay zero.
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When is the true count zero?

Assumption: When the true count is zero, it will stay zero.

Divide time in to epochs. Each epoch, all CPUs flush their
delta caches. If an object's global count stays zero for a
whole epoch, then its true count is zero.

o

{ >
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When is the true count zero?
Assumption: When the true count is zero, it will stay zero.

Divide time in to epochs. Each epoch, all CPUs flush their
delta caches. If an object's global count stays zero for a
whole epoch, then its true count is zero.

X
0 @ @
1 @ @
2 @ @
3 @ @
t
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When is the true count zero?

Assumption: When the true count is zero, it will stay zero.

Divide time in to epochs. Each epoch, all CPUs flush their
delta caches. If an object's global count stays zero for a
whole epoch, then its true count is zero.

global -

CPUO > @
@ @
> >
@ @

o

~~ WN —

>
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

global ==

CPUO

~ WN —

true
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

Y
global —\
CPUO —— ’gD
1 @
2 @
3 @
{ >

true
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 0 decrements and flushes; global
count is now 0. What about true count?
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

The true count is the sum of everything up to right now.
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

Y Y l

CPUO e |
@

global

—~WN -
©

true

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.
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Refcache example

global
CPUO

~ WN —

true

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

@

 S——r

@ @

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.
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Refcache example

global
CPUO

~ WN —

true

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

Global count now reflects cached ops

Y

@

 S——r

@

@

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.
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Refcache example

global
CPUO

~ WN —

true

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

Global count now reflects cached ops

Y

@

 S——r

@

@

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.  Abort delete
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Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

Global count now reflects cached ops

Y Y
global _
CPUO =@ @

1 @ @
2 &) @
3 | @ @

t —>
true B
Refcache enables time- and space-efficient

scalable reference counting with minimal latency. J

Operations in the orange region are still cached.  Abort delete



Bringing it all together
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Bringing it all together
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Bringing it all together

s r wx file cores
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Bringing it all together

s r wx file cores

@ e o © o (anon)
@ e o o o (anon)
@ e o © o (anon) e > o
@ e o © o (anon) > o
M e o © o (anon)
Page fault EFS i
B e © o o (anon)
M e o © o (anon)
o
Radix tree memory map VR
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Per-core page tables Reference counted physical pages
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Bringing it all together

el Record faulting CPU
Page fault e > (anon) @ o —

Allocate
backing page

Y
Install in local page table

0
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Per-core page tables Reference counted physical pages
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Bringing it all together

s r wx file cores
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Radix tree memory map v VR

®» € $ © [DDDDOm:EmEn
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Bringing it all together

(@I
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Sllae Release
clLide backing pages
Clear .
page table Radix tree memory map
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Per-core page tables Reference counted physical pages
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Bringing it all together

s r wx file cores

@ e o © o (anon)
@ e o o o (anon)
@ e o © o (anon) > > o
8§ e o o o (anon) o
Radix tree memory map VR
> - S - B888E8E5E8E8E3E5E8EEED
Per-core page tables Reference counted physical pages
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Implementation

We built RadixVM in a custom research kernel.
We believe RadixVM could be built in a mainstream kernel.

All benchmarks are source-compatible with Linux.
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The other 99% is perspiration

Booting 80 cores (ACPI, x2APIC, IOMMU, oh my!)

NUMA-aware everything (memory allocation,
per-CPU data, etc)

Performance analysis tools (NMI profiling, PEBS,
load latency profiling, statistics counters)

Hardware curve balls (false sharing, bad prefetch
behavior, etc)

All necessary for good results; all standard engineering.
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Evaluation

Does parallel mmap/munmap matter to applications?

Are all of RadixVM's components necessary for scalability?
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RadixVM improves application scalability

Metis multicore MapReduce [Mao '10], inverse indexing application

1200 — Rad|XVM ....................... ............... ............... ............... ...............

1000 b0 L|nux357 _______________ _______________ _______________ _______________ ______________

BOO |-
600 | T
400 - ............... .......... ............... ............... ............... ...............

200

Total throughput (jobs/hour)

# cores
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RadixVM improves application scalability

Total throughput (jobs/hour)

Metis multicore MapReduce [Mao '10], inverse indexing application
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RadixVM improves application scalability

Total throughput (jobs/hour)

Metis multicore MapReduce [Mao '10], inverse indexing application
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Radix trees avoid communication

350M - Radlxtree .............................. e e e

Lock-free skiplist . -
: ~No communication
250M - .............. .............. .............. .............. g .............. L|near Scalab|||ty

200M - T

300M

oMl T
omb oo T

Total throughput (lookups/sec)

som |- 7

1 10 20 30 40 50 60 70 80

# cores (n/2 readers, n/2 writers)

Y Y

lookup existing keys insert/delete random keys
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Refcache avoids cache line sharing

8OM —~- Refcache ................... .............. .............. .............. ..............

70M === Shared counter ______________ _______________ ______________ ____________
60M ... ______________ ______________ ______________ ______________ ______________ __________ ______________
oM
AOM L= ______________ ______________ ______________ ___________ ______________ ______________ ______________
ol
ol
10M b e S e S T S

Total map-unmap pairs/sec

# cores

Y

map/unmap a shared physical page
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Targeted TLB shootdown improves scalability
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Targeted TLB shootdown improves scalability

Core-local address space use

Per-core

Total pages/sec
(@)}
<
[

# cores

No TLB
shootdowns
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Targeted TLB shootdown improves scalability

Core-local address Space use

_______ <~ |NoTLB

av b - Global address space use

600K = RRRRREERS SRRRRENEY RRRRREERS SRRERRINY SELRIETERS :
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(@)}
<
[

500k
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Related work

Scalable VM systems

* K42 [Krieger '06]

 Corey [Boyd-Wickizer '08]
* Bonsai [Clements '12]

Scalable reference counters
 Modula-2+ local refs [DeTreville '90]

* Distributed counters [Appavoo '07]

« Scalable non-zero indicators [Ellen '07]
* Sloppy counters [Boyd-Wickizer '10]

RadixVM: Scalable address spaces for multithreaded applications



Conclusion
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Conclusion
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Perfect scalability for non-overlapping VM operations
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Conclusion
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Radix trees Per-core page tables Refcache

Perfect scalability for non-overlapping VM operations

Check it out: http://pdos.csail.mit.edu/multicore



