RadixVM: Scalable address spaces

for multithreaded applications

Austin T. Clements
M. Frans Kaashoek
Nickolai Zeldovich

MIT CSAIL

RadixVM: Scalable address spaces for multithreaded applications

Parallel applications use VM intensively

00101110110100011110111001001100110000111001101110110000111010101110100101111011
10100101000100001110010010010000001000100011110010111001101001011111111011110001

ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#

L

S
LT TN

[¥

Hardware ; Application

RadixVM: Scalable address spaces for multithreaded applications

Parallel applications use VM intensively

00101110110100011110111001001100110000111001101110110000111010101110100101111011

é 10100101000100001110010010010000001000100011110010111001101001011111111011110001
E B R F R H R FRFEFEFFIF R
g Virtual memory system

£

Every popular operating system serializes
basic VM operations like mmap and munmap.

RadixVM: Scalable address spaces for multithreaded applications

Parallel applications use VM intensively

00101110110100011110111001001100110000111001101110110000111010101110100101111011

.§ 10100101000100001110010010010000001000100011110010111001101001011111111011110001
O
3
o
<
£
g Memory manager
>
o
mmap munmap
E °
5 Virtual memory system
7
Q
©
=
©
E
XL

Every popular operating system serializes
basic VM operations like mmap and munmap.

RadixVM: Scalable address spaces for multithreaded applications

Application performance suffers

Multithreaded MapReduce [Mao '10]
1200 i I o e e §

00} ________________ _______________ _______________ _______________
800 _ _______________ _______________ ________________ ______________ _______________ ________________
600 et
a0l

200

Total throughput (jobs/hour)

cores

RadixVM: Scalable address spaces for multithreaded applications

Inside parallel applications

A A A A

— — — —

Independent VM operations on non-overlapping regions.

RadixVM: Scalable address spaces for multithreaded applications

Inside parallel applications

A A A A

_ - - _—
Independent VM operations on non-overlapping regions.

Common pattern for parallel applications.

RadixVM: Scalable address spaces for multithreaded applications

Perfectly scalable mmap, munmap, and page fault
operations on non-overlapping address space regions.

RadixVM: Scalable address spaces for multithreaded applications

@ 0 0 O
SIrwkxX

/bin/ls

@ O 0 o

S I WX
(anon)

Memory map

Structure of a VM system

Hardware
page table

RadixVM: Scalable address spaces for multithreaded applications

Virt

Phys

18bca

00230

87¢38

0049c

&

Virt

Phys

8adbd
87c38

00382
0049c

&

Virt

Phys

b987a
8adbd
87c38

00520
00382
0049c

&

-—"

Per-CPU TLB

Structure of a VM system

@ 0 0 O
SIrwkxX

/bin/ls

@ O 0 o

SIrwkX

I"\V‘\f\v‘\\

[T

racks mapped region
and region metadata

S]

Memory map

Hardware
page table

Virt

Phys

18bca

00230

87¢38

0049c

&

Virt

Phys

8adbd
87c38

00382
0049c

&

Virt

Phys

b987a
8adbd
87c38

00520
00382
0049c

s

-—"

Per-CPU TLB

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

Virt Phys
°o 0 o 18bca | 00230
S IrwX

_ 87¢38 [0049c
/bin/ls NS

Virt Phys

8a4bd | 00382

87¢38 [0049c
e,

° ° Virt PhyS

> WX b987a]00520

(@non) Shared by OS and hardware. g%ﬂgg 8822%
Maps virtual to physical. S

Memory map Hardware Per-CPU TLB
page table

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

Virt Phys
@ 0 @ 0 18bca [00230
S WX
_ 87¢38 | 0049c
/bin/ls <
Virt Phys
8a4bd | 00382
87¢38 | 0049c
e,
@ 0 0 o Virt PhyS
>TWX b987a 00520
(@non) Caches page tables.
Internal to CPU.
Memory map Hardware Per-CPU TLB
page table

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

RadixVM: Scalable address spaces for multithreaded applications

Application
mmap munmap load/store
Virt 'Phys
@ 0 0 0 18bca | 00230
S WX

, 87¢38 [0049c

/bin/ls S
Virt Phys
8adbd [00382
87¢38 | 0049c

’,
© 0 0 o Virt PhyS
> FWX b987a]00520
(anon) 8a4bd | 00382
87¢38 [0049c

&

-

Structure of a VM system

RadixVM: Scalable address spaces for multithreaded applications

Application
mmap munmap load/store
Virt 'Phys
@ 0 0 0 18bca | 00230
S I WX
, 87¢38 [0049c
/bin/ls S
— Virt Phys
S I WX
(anon) 8a4bd 00382
87¢38 | 0049c
’,
© 0 0 o Virt PhyS
> FWX b987a]00520
(anon) 8a4bd | 00382
87¢38 [0049c
&

-

Structure of a VM system

Application
mmap munmap load/store
Virt 'Phys
@ 0 0 0 18bca | 00230
S WX
, 87¢38 | 0049c
/bin/ls S
— Virt Phys
S rwX 2 4
(anon) |em o m— <= == |8a4bd|00382
by = 87¢38 | 0049c
ol o -
© 0 0 o = ~ Virt PhyS
> FWX b987a]00520
(anon) 8a4bd | 00382
87c¢38 | 0049c
”

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

Application
mmap munmap load/store
Virt 'Phys
@ 0 0 0 18bca | 00230
S WX
, 87¢38 [0049c
/bin/ls <
— Virt Phys
Srwx| @& O
(anon) |em o m— <= == |8a4bd|00382
— = & g | 8738 [0049C
oYy m >
& =
© 0 0 o Virt PhyS
> FWX b987a]00520
(anon) 8a4bd | 00382
87c¢38 | 0049c
’,

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

Application
mmap munmap load/store
Virt 'Phys
K 18bca | 00230
S I wX
, 87c38 |1 0049c
/bin/ls -
- - Virt Phys
Srwx| @ C O
(anon) |em o m— <= == |8a4bd|00382
— = & g | 8738 [0049C
b0 m &
& =
° ° C Virt PhyS
STIrwxX M—Ana=_TAanranl

Seems reasonable. Why doesn't it scale?

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

Application
mmap munmap load/store
(Virt 'Phys
K 18bca | 00230
S I wX
, 87¢38 | 0049c
/bin/ls 'S
- - Virt Phys
srwx| | @& C O
(anon) |em o m— <= == |8a4bd|00382
— 0 = & g | 8738 [0049C
b0 m >
& =
° ° Virt PhyS
STIrwxX M—Ana=_TAanranl

Seems reasonable. Why doesn't it scale?

Locking

RadixVM: Scalable address spaces for multithreaded applications

Structure of a VM system

mmap

|

@ 0 o
SIrwkX

/bin/ls

Qo Qo
S I wX
(anon)

4

Page faults

o (@)

SIrwxX

Seems reasonable. Why c
Shootdown broadcast

munmap

b

Application

| 4

TLB misses

Locking

RadixVM: Scalable address spaces for multithreaded applications

load/store

H

Virt ’Phys

18bca

00230

87¢38

0049c

& -

-

Virt

Phys

8adbd
87c38

00382
0049c

o

-

Virt

Phys

I | B oV o Y B I laVaVl mRaWal I

oesn't it scale?

Structure of a VM system

mmap

RadixVM: Scalable address spaces for multithreaded applications

@ 0 o
SIrwkX

/bin/ls

Qo Qo
S I wX
(anon)

4

Page faults

o (@)

SIrwxX

Seems reasonable. Why c
Shootdown broadcast

munmap

b

Application

| 4

TLB misses

=

Locking

load/store

H

Virt ’Phys

18bca

00230

87¢38

0049c

& -

-

Virt

Phys

8adbd
87c38

00382
0049c

o

-

Virt

Phys

I | B oV o Y B I laVaVl mRaWal I

oesn't it scale?
Cache contention

Structure of a VM system

Application
mmap munmap load/store
| Virt ’Phys
K 18bca | 00230
S I wX
. 87¢38 [0049c
/bin/ls S
. . Virt Phys
srwx| | @& C O
(anon) |em o m— <= } =mm |8a4bd 00382
i __ £ 87¢38 | 0049c
%—» - - —»g/
o o o L = Virt PhyS
STIrwxX M—Aa—_ [AArF~A |

Seems reasonable. Why doesn't it scale?
Shootdown broadcast Locking Cache contention

Cross-core communication

RadixVM: Scalable address spaces for multithreaded applications

This talk; RadixVM

To achieve perfectly scalable non-overlapping operations,
we eliminate communication between such operations.

Concurrent memory map representation
Method of targeting TLB shootdowns

Scalable, space-efficient reference counting

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

: Popular operating systems use a
balanced tree of region objects.

©
©

o o
SIrwkx

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

: Popular operating systems use a
balanced tree of region objects.

©
©

o Memory-efficient

o o
SIrwkx

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

»—|e | Popularoperating systems. use a
| balanced tree of region objects.
¢ S IrwX 5
» e rwy| Unnecessary Memory-efficient
communication
4 S I WX
0 ST WX
1S r WX

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

»—|e | Popularoperating systems. use a
| balanced tree of region objects.
¢ S IrwX 5
» e rwy| Unnecessary Memory-efficient
communication
4 S I WX
S T WX
S WX

o o
SIrwkx

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

»—|e | Popularoperating systems. use a
| balanced tree of region objects.
¢ S IrwX 5
» e rwy| Unnecessary Memory-efficient
communication
4 S I WX
S T WX
S WX

o o
SIrwkx

RadixVM: Scalable address spaces for multithreaded applications

Metadata management

Need to store OS-level memory mapping metadata

Popular operating systems use a

balanced tree of region objects.
¢ ST wX 5

o] Unnecessary Memory-efficient
communication

Most potential data structures (skip lists, B-trees, etc.) J

induce communication between disjoint operations.
res TS TWX

RadixVM: Scalable address spaces for multithreaded applications

Array-based memory map

RadixVM: Scalable address spaces for multithreaded applications

Array-based memory map

RadixVM: Scalable address spaces for multithreaded applications

Array-based memory map

235

RadixVM: Scalable address spaces for multithreaded applications

Array-based memory map

s rwX file

(anon)
(anon)
(anon)
(anon)

© 0 0 ©

b mm

/lib/libc
/lib/libc
/lib/libc
/lib/libc
/lib/libc
/lib/libc

rprppRe VY
© 0 © 06 0 o
© 0 © 06 0 o

235

RadixVM: Scalable address spaces for multithreaded applications

Array-based memory map

s rwx file Good: Operations on non-overlapping
O regions are concurrent and induce no
96 o o o (anon) communication.
8 e @ (anon)
8 e @ (anon)
B o @ (anon)
o o o o /lib/libc
& o o o o /lib/libc
o o o o /lib/libc
2o o o o /lib/libc
o o o o /lib/libc
Be o e o flibflibe |3

RadixVM: Scalable address spaces for multithreaded applications

Array-based memory map

s rwx file
8 e @ (anon)
8 e @ (anon)
8 e @ (anon)
B o @ (anon)
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc

RadixVM: Scalable address spaces for multithreaded applications

Good: Operations on non-overlapping
O regions are concurrent and induce no
communication.

Bad: Space use is obscene,
time is proportional to region size

235

Array-based memory map

s rwx file
8 e @ (anon)
8 e @ (anon)
8 e @ (anon)
B o @ (anon)
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc
B e o o o [/lib/libc

Good: Operations on non-overlapping
O regions are concurrent and induce no
communication.

Bad: Space use is obscene,
time is proportional to region size

How can we achieve good concurrency
while keeping space and time under control?

235

RadixVM: Scalable address spaces for multithreaded applications

s rwx file Solution: Range-oriented radix tree
0
B e @ (anon)
B o @ (anon)
8 e @ (anon)
B o @ (anon)
8 e o o /lib/libc
8 e o © /lib/libc
8 e o © /lib/libc
8 e o © /lib/libc
8 e o © /lib/libc
Be o e o flibflibe |3

RadixVM: Scalable address spaces for multithreaded applications

s rwxtile Solution: Range-oriented radix tree
B e ® (anon)
B e ® (anon)
B e ® (anon)
B e © (anon)
B e o o o /lib/libc
e o o o /lib/libc
e o o o /lib/libc
B e o o o /lib/libc
B e o o o /lib/libc
o o o o /lib/libc

RadixVM: Scalable address spaces for multithreaded applications

srwxfile Solution: Range-oriented radix tree
B e ® (anon)
B e ® (anon)
B e ® (anon)
B e © (anon)
o
e °
o
o
o
@
30 oo o flib/libc [
& e o o o /lib/libc
B e o o o /lib/libc
& o o o o /lib/libc
& o o o o /lib/libc
B e o o o /lib/libc

RadixVM: Scalable address spaces for multithreaded applications

srwxfile Solution: Range-oriented radix tree
B e ® (anon)
B e ® (anon)
B e ® (anon)
B e © (anon)

(i

/lib/libc
/lib/libc
/lib/libc
/lib/libc
/lib/libc
/lib/libc

DO ME®E
© ©6 06 06 00
© ©6 0606 00

RadixVM: Scalable address spaces for multithreaded applications

s rwx file . Solution: Range-oriented radix tree
S (anon) Fold constant-valued chunks into parent,
e o o e (anon) recursively.

8 e © (anon)

20 o o o /lib/libc |
e o o o /lib/libc

e o o o /lib/libc

B e o o o /lib/libc

B e o o o /lib/libc

o o o o /lib/libc

RadixVM: Scalable address spaces for multithreaded applications

s rwx file . Solution: Range-oriented radix tree
S (anon) Fold constant-valued chunks into parent,
e o o e (anon) recursively.

8 e © (anon)

20 o o o /lib/libc |
e o o o /lib/libc

e o o o /lib/libc

B e o o o /lib/libc

B e o o o /lib/libc

o o o o /lib/libc

RadixVM: Scalable address spaces for multithreaded applications

s rwxtile Solution: Range-oriented radix tree

(anon) Fold constant-valued chunks into parent,

Qo
@ (anon)
o
o

(anon) recursively.

(anon)

=N 0R e
© 0 0 ©

1

(i

B o o o o /lib/libc

RadixVM: Scalable address spaces for multithreaded applications

s rwx file . Solution: Range-oriented radix tree
S anon Fold constant-valued chunks into parent,
20 o o o (anon) recursively.

8 e © (anon)

= |
||

B o o o o /lib/libc

2-3x the size of the balanced region tree

RadixVM: Scalable address spaces for multithreaded applications

s rwx file . Solution: Range-oriented radix tree
3222 ¢ tanon) Fold constant-valued chunks into parent,
20 o o o (anon) recursively.
8 e © (anon)
B e o o o /lib/libc |

2-3x the size of the balanced region tree

We can achieve array-like concurrency
with time and space similar to the balanced tree.

RadixVM: Scalable address spaces for multithreaded applications

TLB shootdown

munmap must notify cores of changes to cached mappings

RadixVM: Scalable address spaces for multithreaded applications

TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!

\AAA
\AAA
\AAA
\AAA

\AAA
yvve

RadixVM: Scalable address spaces for multithreaded applications

TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!

\AAA
\AAA
\AAA
\AAA

\AAA
yvve

RadixVM: Scalable address spaces for multithreaded applications

TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!

\AAA
\AAA
\AAA
vvvy
vvvy

\AAA

RadixVM: Scalable address spaces for multithreaded applications

TLB shootdown

munmap must notify cores of changes to cached mappings

Which cores have a mapping cached? Who knows?!

\AAA
\AAA
\AAA
\AAA

\AAA
yvve

RadixVM: Scalable address spaces for multithreaded applications

TLB shootdown

munmap must notify cores of changes to cached mappings
Which cores have a mapping cached? Who knows?!

In the common case, there is little or no sharing.

—

RadixVM: Scalable address spaces for multithreaded applications

TLB tracking

A software-managed TLB would make this easy.
Virt Phys

0
° 0 o 18bca [00230
ST wX 7
. 87c380049c | -
/bin/ls S
Virt Phys
£ 0
4_723_ <= /)= (834bd|00382 7
4= c 87¢c3810049c|
—gJO—> —m—b’l
E =
® ® Virt PhyS
Sl X b987a[00520
(anon) | 334bd | 00382 9.
— 87¢c38 | 0049c °
235 -

RadixVM: Scalable address spaces for multithreaded applications

TLB tracking

A software-managed TLB would make this easy.
Virt Phys

0
° 0 o 18bca [00230
ST WX 7
. 87c380049c | -
/bin/ls -
Virt Phys
b4
4_723_ <= § == (834bd| 00382 7
— = — 87¢38 10049c|
S -
® ® o Virt PhyS
SRR b987a]00520
(anon) 8a4bd | 00382 7
87¢c3810049c|
235 -

Trap and track
RadixVM: Scalable address spaces for multithreaded applications

© 0 @ O
SIrrwkxX

/bin/ls

(anon)

0

K

Page faults

235

b

—

<=

Virt

TLB tracking

A software-managed TLB would make this easy.

Phys

18bca

00230

87¢38

0049c

’,

Virt

Phys

8adbd
87¢c38

00382
0049c

&

-

Virt

Phys

b987a
8adbd
87c38

00520
00382
0049c

’,

—Frapana-track-

RadixVM: Scalable address spaces for multithreaded applications

Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
0 Virt Phys
18bca | 00230

87¢38 [0049c

&

—

Virt Phys

@ 0 o
SIrrwkxX

/bin/ls

8a4bd | 00382
87¢38 1 0049c

o

-

Virt Phys

b987a (00520
8a4bd | 00382
87¢38 [0049c

&

-—

| 4
Page faults

| 4
TLB‘misises

b

Qo Qo
S I wX
(anon)

1

235

RadixVM: Scalable address spaces for multithreaded applications

Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
0 Virt Phys

gr\fvx i ! 18bca | 00230
, —) (8738 | 0049cC
/bin/ls S

—

Virt Phys

8a4bd | 00382
87¢38 1 0049c

& -

-

Virt Phys

b987a (00520
8a4bd | 00382
87¢38 [0049c

o

-—

| 4
TLB‘misIses

Qo Qo
S I wX
(anon)

|

| 4
Pagi falults
it a1t B mh

1

235

RadixVM: Scalable address spaces for multithreaded applications

Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
0 Virt Phys

so .0 i 18bca [00230
| —- | 8738 | 0049¢
/bin/ls S
Virt Phys
0
< <= J = [8a4bd|00382
— _g»’?7c38 0049c
] -
° ° = Virt PhyS
> WX b987a 00520
(anon) | 334bd | 00382
&
235 .
Trap and track

RadixVM: Scalable address spaces for multithreaded applications

Soft TLBs, the hard way

Solution: Per-core page tables for precise TLB tracking
0 Virt Phys

XN Q , 18bca [00230
. N ——- (87c38 [0049cC
/bin/ls <
> >
Virt Phys
3
<=) - <= /== |834bd|00382
—) == _g» 87¢38 1 0049c
> i |:| —
® ® Virt Ph S
LR ﬁ@ b987a {00520
AnANn) O~aAA I NNDON

TLB tracking allows us to target TLB shootdowns,
eliminating unnecessary shootdown communication.

Trap and track

RadixVM: Scalable address spaces for multithreaded applications

Reference counting

Reference counting for physical pages and radix nodes

RadixVM: Scalable address spaces for multithreaded applications

Reference counting

Reference counting for physical pages and radix nodes

Shared
counters

Scalable inc/dec N

RadixVM: Scalable address spaces for multithreaded applications

Reference counting

Reference counting for physical pages and radix nodes

Shared Distributed

counters counters
e
— =
>(Je ~.C
> -
o
Scalable inc/dec N Y

Zero-detection cost O(1) O(objs*cpus)

Space O(1) O(cpus)

RadixVM: Scalable address spaces for multithreaded applications

Reference counting

Reference counting for physical pages and radix nodes
Shared Distributed SNZIs

counters counters [Ellen '07]
> - _JSl
= 5 -
'/ | ’/ ’/ U:ﬂ '/ ﬂ:g
> — — N
= e 5}
Scalable inc/dec N Y Mostly

/Zero-detection cost O(1) O(objs*cpus) O(1)

Space O(1) O(cpus) O(cpus)

RadixVM: Scalable address spaces for multithreaded applications

Reference counting

Reference counting for physical pages and radix nodes
Shared Distributed SNZIs

counters counters [Ellen '07] Refcache
= -
__ = =
- :/g > ==} P -c
> — | e
> > o
Scalable inc/dec N Y Mostly Y
Zero-detection cost O(1) O(objs*cpus) O(1) O(1)
Space O(1) O(cpus) O(cpus) O(1)

RadixVM: Scalable address spaces for multithreaded applications

Reference counting

Reference counting for physical pages and radix nodes
Shared Distributed SNZIs

counters counters [Ellen '07] Refcache
- _JdISE]
= = =
> 53 > -l ol
'/ '/ '/ e -
> ()
Scalable inc/dec N Y Mostly Y
Zero-detection cost O(1) O(objs*cpus) O(1) O(1)
Space O(1) O(cpus) O(cpus) O(1)
Immediate y N Y N

zero detection

RadixVM: Scalable address spaces for multithreaded applications

Approach: Shared counters with per-core delta caches

RadixVM: Scalable address spaces for multithreaded applications

Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2

RadixVM: Scalable address spaces for multithreaded applications

Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2

Caches changes,
not values

V Object Delta V Object Delta V Object Delta V Object Delta

OO OO0o
OO OO0o
OO OO0o
> lolole)

CPUO CPU 1 CPU 2 CPU 3

RadixVM: Scalable address spaces for multithreaded applications

Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2

Caches changes,
not values

V Object Delta V Object Delta V Object Delta V Object Delta

0 0 0 0
0 0 0 0
0 1 A +1| |1 A +1| |0
0 0 0 0
CPUO CPU 1 CPU 2 CPU 3
Inc(A) Operations INc(A)

are local

RadixVM: Scalable address spaces for multithreaded applications

Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2

Caches changes,
not values

V Object Delta V Object Delta V Object Delta V Object Delta

0 0 0 0
0 0 0 1 B -1
0 1 A +1| |1 A +1| |0
0 0 0 0
CPUO CPU 1 CPU 2 CPU 3
Inc(A) Operations INc(A) dec(B)

are local

RadixVM: Scalable address spaces for multithreaded applications

Approach: Shared counters with per-core delta caches

Single counter Object A Object B
per object ~>global_count =1 global_count =2
True count =) True count =) w_Generally
Caches changes, unknown
not values

V Object Delta V Object Delta V Object Delta V Object Delta

0 0 0 0
0 0 0 1 B -1
0 1 A +1| |1 A +1| |0
0 0 0 0
CPUO CPU 1 CPU 2 CPU 3
Inc(A) Operations INc(A) dec(B)

are local

RadixVM: Scalable address spaces for multithreaded applications

When is the true count zero?

RadixVM: Scalable address spaces for multithreaded applications

When is the true count zero?

Assumption: When the true count is zero, it will stay zero.

RadixVM: Scalable address spaces for multithreaded applications

When is the true count zero?

Assumption: When the true count is zero, it will stay zero.

Divide time in to epochs. Each epoch, all CPUs flush their
delta caches. If an object's global count stays zero for a
whole epoch, then its true count is zero.

o

{ >

RadixVM: Scalable address spaces for multithreaded applications

When is the true count zero?
Assumption: When the true count is zero, it will stay zero.

Divide time in to epochs. Each epoch, all CPUs flush their
delta caches. If an object's global count stays zero for a
whole epoch, then its true count is zero.

X
0 @ @
1 @ @
2 @ @
3 @ @
t

RadixVM: Scalable address spaces for multithreaded applications

When is the true count zero?

Assumption: When the true count is zero, it will stay zero.

Divide time in to epochs. Each epoch, all CPUs flush their
delta caches. If an object's global count stays zero for a
whole epoch, then its true count is zero.

global -

CPUO > @
@ @
> >
@ @

o

~~ WN —

>

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

global ==

CPUO

~ WN —

true

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

Y
global —\
CPUO —— ’gD
1 @
2 @
3 @
{ >

true

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 0 decrements and flushes; global
count is now 0. What about true count?

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

The true count is the sum of everything up to right now.

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

Y Y l

CPUO e |
@

global

—~WN -
©

true

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

global
CPUO

~ WN —

true

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

@

 S——r

@ @

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

global
CPUO

~ WN —

true

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

Global count now reflects cached ops

Y

@

 S——r

@

@

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached.

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

global
CPUO

~ WN —

true

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

Global count now reflects cached ops

Y

@

 S——r

@

@

A

The true count is the sum of everything up to right now.
But the global count only reflects the blue region.
Operations in the orange region are still cached. Abort delete

RadixVM: Scalable address spaces for multithreaded applications

Refcache example

Initially: Global countis 1, no cached deltas (so true count is 1)

CPU 1 increments after flush, before CPU 0's decrement

CPU 0 decrements and flushes; global
count is now 0. What about true count?

|

Global count now reflects cached ops

Y Y
global _
CPUO =@ @

1 @ @
2 &) @
3 | @ @

t —>
true B
Refcache enables time- and space-efficient

scalable reference counting with minimal latency. J

Operations in the orange region are still cached. Abort delete

Bringing it all together

s r wx file cores

@ e o © o (anon)
@ e o o o (anon)
@ e o © o (anon) > > o
8§ e o o o (anon) o
Radix tree memory map VR
> - S - B888E8E5E8E8E3E5E8EEED
Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

alla-e ® (anon)
g 8o © (anon)

8 o ® (anon)
S @ o © (anon)

Radix tree memory map

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

s r wx file cores

B e © o e (anon)
@ e o o o (anon)
@ e o © o (anon) > > o
@ e o © o (anon) > o
@; ; ; ; (anon)
M e o © o (anon)
B e © o o (anon)
M e o © o (anon)
o
Radix tree memory map VR
e - S S B6888/6565868/68/6888E5E5ES
Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

s r wx file cores

@ e o © o (anon)
@ e o o o (anon)
@ e o © o (anon) e > o
@ e o © o (anon) > o
M e o © o (anon)
Page fault EFS i
B e © o o (anon)
M e o © o (anon)
o
Radix tree memory map VR
> - - - B6888/6565868/68/6888E5E5ES
Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

el Record faulting CPU
Page fault e > (anon) @ o —

Allocate
backing page

Y
Install in local page table

0

-)
Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

s r wx file cores

B e © o e (anon)
@ e © o o (anon)
@& e © o o (anon) > > ®
@ e o © o (anon) > o
B e © o o (anon)
B e © o o (anon) > ®
B e © o o (anon)
B e © © o (anon)
Q

Radix tree memory map v VR

®» € $ © [DDDDOm:EmEn

Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

(@I
o||8 o ® (anon)
Ellae © (anon) —
Sllae Release
clLide backing pages
Clear .
page table Radix tree memory map
/
Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Bringing it all together

s r wx file cores

@ e o © o (anon)
@ e o o o (anon)
@ e o © o (anon) > > o
8§ e o o o (anon) o
Radix tree memory map VR
> - S - B888E8E5E8E8E3E5E8EEED
Per-core page tables Reference counted physical pages

RadixVM: Scalable address spaces for multithreaded applications

Implementation

We built RadixVM in a custom research kernel.
We believe RadixVM could be built in a mainstream kernel.

All benchmarks are source-compatible with Linux.

RadixVM: Scalable address spaces for multithreaded applications

The other 99% is perspiration

Booting 80 cores (ACPI, x2APIC, IOMMU, oh my!)

NUMA-aware everything (memory allocation,
per-CPU data, etc)

Performance analysis tools (NMI profiling, PEBS,
load latency profiling, statistics counters)

Hardware curve balls (false sharing, bad prefetch
behavior, etc)

All necessary for good results; all standard engineering.

RadixVM: Scalable address spaces for multithreaded applications

Evaluation

Does parallel mmap/munmap matter to applications?

Are all of RadixVM's components necessary for scalability?

RadixVM: Scalable address spaces for multithreaded applications

RadixVM improves application scalability

Metis multicore MapReduce [Mao '10], inverse indexing application

1200 — Rad|XVM

1000 b0 L|nux357 _______________ _______________ _______________ _______________ ______________

BOO |-
600 | T
400 -

200

Total throughput (jobs/hour)

cores

RadixVM: Scalable address spaces for multithreaded applications

RadixVM improves application scalability

Total throughput (jobs/hour)

Metis multicore MapReduce [Mao '10], inverse indexing application

1200

1000

800

600

400

200

- i
== Llinux357

Page fault lock

/ ~ contention
et | | | | | | |

cores

RadixVM: Scalable address spaces for multithreaded applications

RadixVM improves application scalability

Total throughput (jobs/hour)

Metis multicore MapReduce [Mao '10], inverse indexing application

1200

1000

800

600

400

200

RadixVM
me | [NUX 3.5.7

< Pairwise

B Sharing

Page fault lock

/ ~ contention
et | | | | | | |

cores

RadixVM: Scalable address spaces for multithreaded applications

Radix trees avoid communication

350M - Radlxtree e e e

Lock-free skiplist . -
: ~No communication
250M - g L|near Scalab|||ty

200M - T

300M

oMl T
omb oo T

Total throughput (lookups/sec)

som |- 7

1 10 20 30 40 50 60 70 80

cores (n/2 readers, n/2 writers)

Y Y

lookup existing keys insert/delete random keys

RadixVM: Scalable address spaces for multithreaded applications

Refcache avoids cache line sharing

8OM —~- Refcache

70M === Shared counter ______________ _______________ ______________ ____________
60M ... ______________ ______________ ______________ ______________ ______________ __________ ______________
oM
AOM L= ______________ ______________ ______________ ___________ ______________ ______________ ______________
ol
ol
10M b e S e S T S

Total map-unmap pairs/sec

cores

Y

map/unmap a shared physical page

RadixVM: Scalable address spaces for multithreaded applications

Targeted TLB shootdown improves scalability

RadixVM: Scalable address spaces for multithreaded applications

Targeted TLB shootdown improves scalability

Core-local address space use

Per-core

Total pages/sec
(@)}
<
[

cores

No TLB
shootdowns

RadixVM: Scalable address spaces for multithreaded applications

Targeted TLB shootdown improves scalability

Core-local address Space use

_______ <~ |NoTLB

av b - Global address space use

600K = RRRRREERS SRRRRENEY RRRRREERS SRRERRINY SELRIETERS :
Per-core : 5 : : :

Shared

Total pages/sec
(@)}
<
[

500k

400k S T N BN

|Page table
ycontention

300k

Total pages/sec

200k b m T é é é ; ;”

100k oo __________ __________ SO SV ST N S

cores

RadixVM: Scalable address spaces for multithreaded applications

Related work

Scalable VM systems

* K42 [Krieger '06]

 Corey [Boyd-Wickizer '08]
* Bonsai [Clements '12]

Scalable reference counters
 Modula-2+ local refs [DeTreville '90]

* Distributed counters [Appavoo '07]

« Scalable non-zero indicators [Ellen '07]
* Sloppy counters [Boyd-Wickizer '10]

RadixVM: Scalable address spaces for multithreaded applications

Conclusion

- L=

=
@
=
> > > @

Radix trees Per-core page tables Refcache

>OmD
© © 0 ©
© © 0 ©

5 e

@ O

RadixVM: Scalable address spaces for multithreaded applications

Conclusion

_ ﬂ

@
8 e o
8 e o)
80000 ‘ @
A o o > &> &> >
Radix trees Per-core page tables Refcache

Perfect scalability for non-overlapping VM operations

RadixVM: Scalable address spaces for multithreaded applications

Conclusion

_ ﬂ

8 e o @ @
8 e o)
) o) ¢ @
80000 @
8eooe > - S >

Radix trees Per-core page tables Refcache

Perfect scalability for non-overlapping VM operations

Check it out: http://pdos.csail.mit.edu/multicore

