Ray v2 Architecture

Ray Team, October 2022
This document is public; please use "Viewing" mode to avoid accidental comments.

The goal of this document is to motivate and overview the design of the Ray distributed system
(version 2.0+). It is meant as a handbook for:

e Ray users with low-level system questions

e Engineers considering Ray as a backend for new distributed applications

e Contributors to the Ray backend

This document is not meant as an introduction to Ray. For that and any further questions that
arise from this document, please refer to the Getting Started Guide, the Ray GitHub repo, and
the Ray Slack. You may also want to check out the list of common Ray Design Patterns. This
document supersedes previous papers describing Ray; in particular, the underlying architecture
has changed considerably from versions 0.7 to 0.8. Since v1.0, the core architecture has
remained largely the same, but with significant extensions for applications in machine learning,
online serving, and data processing.

The previous whitepaper can be found here.
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Overview

API philosophy

Ray aims to provide a universal API for distributed computing. A core part of achieving this goal
is to provide simple but general programming abstractions, letting the system do all the hard
work. This philosophy is what makes it possible as a developer to use Ray with existing Python

libraries and systems.

A Ray programmer expresses their logic with a handful of Python primitives, while the system
manages physical execution concerns such as parallelism and distributed memory




management. A Ray user thinks about cluster management in terms of resources, while the
system manages scheduling and autoscaling based on those resource requests.

Ray Core enables scalable

Ray AIR enables simple scaling of Al workloads.
. i . apps to be built in pure Python.

Data | Train || Tune || Serve || RLIib . Custom Applications

0% Tasks Actors Objects

Ray provides a universal API of tasks, actors, and objects for building distributed applications.

Some applications may require a different set of system-level tradeoffs that cannot be
expressed through the core set of abstractions. Thus, a second goal in Ray’s APl is to allow the
application fine-grained control over system behavior. This is accomplished through a set of
configurable parameters that can be used to modify system behaviors such as task placement,
fault handling, and application lifetime.

System scope

Ray seeks to enable the development and composition of distributed applications and libraries
in general. Concretely, this includes coarse-grained elastic workloads (i.e., types of serverless
computing), machine learning training (e.g., Ray AIR), online serving (e.g., Ray Serve), data
processing (e.g., Ray Datasets, Modin, Dask-on-Ray), and ad-hoc computation (e.g.,
parallelizing Python apps, gluing together different distributed frameworks).

Ray's API enables developers to easily compose multiple libraries within a single distributed
application. For example, Ray tasks and actors may call into or be called from distributed
training (e.g., torch.distributed) or online serving workloads also running in Ray. This is how the
Ray Al Runtime (AIR) is built, by composing together other Ray libraries under the hood. In this
sense, Ray makes for an excellent "distributed glue" system, because its APl is general and
performant enough to serve as the interface between many different workload types.

System design goals

The core principles that drive Ray’s architecture are APl simplicity and generality, while the
core system goals are performance (low overhead and horizontal scalability) and reliability. At
times, we are willing to sacrifice other desirable goals such as architectural simplicity in return



for these core goals. For example, Ray includes components such as distributed reference
counting and distributed memory, which add to architectural complexity, but are needed for
performance and reliability.

For performance, Ray is built on top of gRPC and can in many cases match or exceed the

performance of naive use of gRPC. Compared to gRPC alone, Ray makes it simpler for an
application to leverage parallel and distributed execution, distributed memory sharing (via a
shared memory object store), and dynamic creation of lightweight services (i.e. actors).

For reliability, Ray’s internal protocols are designed to ensure correctness during failures while
adding low overhead to the common case. Ray implements a distributed reference counting
protocol to ensure memory safety and provides various options to recover from failures.

Since a Ray user thinks about expressing their computation in terms of resources instead of
machines, Ray applications can transparently scale from a laptop to a cluster without any code
changes. Ray's distributed scheduler and object manager are designed to enable this seamless
scaling, with low overheads.

Related systems

The following table compares Ray to several related system categories. Note that we omit
higher-level library comparisons (e.g., RLIib, Tune, RaySGD, Serve, Modin, Dask-on-Ray,
MARS-on-Ray); such comparisons are outside the scope of this document, which focuses on
Ray core only. You may also refer to the full list of community libraries on Ray.

Cluster | Ray can run on top of cluster orchestrators like Kubernetes or SLURM to
Orchestrators | offer lighter weight, language integrated primitives, i.e., tasks and actors
instead of containers and services.

Parallelization | Compared to Python parallelization frameworks such as multiprocessing
Frameworks | or Celery, Ray offers a more general, higher-performance API. The Ray
system also explicitly supports memory sharing.

Data Processing | Compared to data processing frameworks such as Spark, Flink, MARS,
Frameworks | or Dask, Ray offers a lower-level and narrower API. This makes the API
more flexible and more suited as a “distributed glue” framework. On the
other hand, Ray has no inherent understanding of data schemas,
relational tables, or streaming dataflow; such functionality is provided
through libraries only (e.g., Modin, Dask-on-Ray, MARS-on-Ray).

Actor | Unlike specialized actor frameworks such as Erlang and Akka, Ray
Frameworks | integrates with existing programming languages, enabling cross
language operation and the use of language native libraries. The Ray




system also transparently manages parallelism of stateless computation
and explicitly supports memory sharing between actors.

HPC Systems | Many HPC systems expose a message-passing interface, which is a
lower-level interface than tasks and actors. This can allow the
application greater flexibility, but potentially at the cost of developer
effort. Many of these systems and libraries (e.g., NCCL, MPI) also offer
optimized collective communication primitives (e.g., allreduce). Ray
apps can leverage such primitives by initializing communication groups
between sets of Ray actors (e.g, as RaySGD does with torch
distributed).

New in 2.0 whitepaper

Since the 1.x whitepaper:

The Global Control Store is now known as the Global Control Service (GCS) and
features a completely updated design to simplify coordination and reliability.

The distributed scheduler offers expanded functionality and flexibility, including
scheduling policies and placement groups.

General improvements in reliability and fault tolerance, including object reconstruction to
recover from node failures and GCS fault tolerance.

Expanded toolset for managing and interacting with Ray clusters, featuring job
submission, KubeRay (Ray on Kubernetes), and application observability.

Architecture Overview

Application concepts

Task - A remote function invocation. This is a single function invocation that executes on
a process different from the caller, and potentially on a different machine. A task can be
stateless (a “@ray.remote” function) or stateful (a method of a “@ray.remote’ class - see
Actor below). A task is executed asynchronously with the caller: the “.remote()" call
immediately returns one or more "ObjectRefs’ (futures) that can be used to retrieve the
return value(s).

Object - An application value. These are values that are returned by a task or created
through ‘ray.put’. Objects are immutable: they cannot be modified once created. A
worker can refer to an object using an “ObjectRef .

Actor - a stateful worker process (an instance of a “@ray.remote’ class). Actor tasks
must be submitted with a handle, or a Python reference to a specific instance of an
actor, and can modify the actor’s internal state during execution.

Driver - The program root, or the “main” program. This is the code that runs “ray.init()




e Job - The collection of tasks, objects, and actors originating (recursively) from the same
driver, and their runtime environment. There is a 1:1 mapping between drivers and jobs.

Design
Components
Head node Worker node Worker node
Driver Worker Worker || Worker Worker || Worker
® Scheduler ® Scheduler ® Scheduler
) T T
X | Object Store X | Object Store X | Object Store
Global Control
Store (GCS)

A Ray cluster.

A Ray cluster consists of one or more worker nodes, each of which consists of the following
physical processes:

1. One or more worker processes, responsible for task submission and execution. A
worker process is either stateless (can be reused to execute any @ray.remote function)
or an actor (can only execute methods according to its @ray.remote class). Each worker
process is associated with a specific job. The default number of initial workers is equal to
the number of CPUs on the machine. Each worker stores:

a. An ownership table. System metadata for the objects to which the worker has a
reference, e.g., to store ref counts and object locations.

b. An in-process store, used to store small objects.

2. Araylet. The raylet manages shared resources on each node. Unlike worker processes,
the raylet is shared among all concurrently running jobs. The raylet has two main
components, run on separate threads:

a. A scheduler. Responsible for resource management, task placement, and
fulfilling task arguments that are stored in the distributed object store. The
individual schedulers in a cluster comprise the Ray distributed scheduler.

b. A shared-memory object store (also known as the Plasma Object Store).
Responsible for storing, transferring, and spilling large objects. The individual
object stores in a cluster comprise the Ray distributed object store.

Each worker process and raylet is assigned a unique 28-byte identifier and an IP address and
port. The same address and port can be reused by subsequent components (e.g., if a previous



worker process dies), but the unique IDs are never reused (i.e., they are tombstoned upon
process death). Worker processes fate-share with their local raylet process.

One of the worker nodes is designated as the head node. In addition to the above processes,
the head node also hosts:

1.

The Global Control Service (GCS). The GCS is a server that manages cluster-level
metadata, such as the locations of actors, stored as key-value pairs that may be cached
locally by workers. The GCS also manages a handful of cluster-level operations,
including scheduling for placement groups and actors and determining cluster node
membership. In general, the GCS manages metadata that is less frequently accessed
but likely to be used by most or all workers in the cluster. This is to ensure that GCS
performance is not critical to application performance. GCS fault tolerance is new in Ray
2.0, allowing the GCS to run on any and multiple nodes, instead of a designated head
node.

The driver process(es). A driver is a special worker process that executes the top-level
application (e.g., *__main__" in Python). It can submit tasks, but cannot execute any
itself. Note that driver processes can run on any node, but usually run on the head node
by default.

3. Other cluster-level services that handle_job submission, autoscaling, etc.

Ownership

———— Ownership

........ » Dependency

@ray.remote
def b():
return

Driver Worker || Worker

19 |0

@ray.remote

def a(dep): NS
z = b.remote() wa\i’[oie
X Y z
X = ray.put(...)
y = a.remote(x)

Program Task graph Physical execution

Most of the system metadata is managed according to a decentralized concept called
ownership. This concept means that each "ObjectRef" in the application will be managed by a
single worker process. This worker, or the “owner” is responsible for ensuring execution of the
task that creates the value and facilitating the resolution of an "ObjectRef" to its underlying

value.



There are two ways to create an ObjectRef. In both cases, the owner is the worker process of
x_ref that calls this code.

1.

x_ref = f.remote()

2. x_ref =ray.put()

In other words, the owner is the worker that generates the initial ObjectRef. Note that this may
be a different worker from the one that creates the value of the ObjectRef. If, for example, the
ObjectRef is returned by a task, then the value will be created by a remote worker.

Ownership has the following benefits (compared to the more centralized design used in Ray
versions <0.8):

1.

Low task latency (~1 RTT, <200us). Frequently accessed system metadata is local to the
process that must update it.

High throughput (~10k tasks/s per client; linear scaling to millions of tasks/s in a cluster),
as system metadata is naturally distributed over multiple worker processes through
nested remote function calls.

Simplified architecture. The owner centralizes logic needed to safely garbage collect
objects and system metadata.

Improved reliability. Worker failures can be isolated from one another based on the
application structure, e.g., the failure of one remote call will not affect another.

Some of the trade-offs that come with ownership are:

1.

To resolve an "ObjectRef", the object’'s owner must be reachable. This means that an
object will fate-share with its owner. See Object failures and Object spilling for more
information about object recovery and persistence.

Ownership currently cannot be transferred.

Memory model

Worker (Python, Java, etc) Worker

idef fn(): Heap memory used def fn():
! x = np.zeros(...) during task exec !

Heap memory used by object metadata : Worker
i (ObjectRefs created by f.remote or ray.put)

P[] (6] Heap memory used |
: by small objects :

% Shared memory used by
large objects




Types of memory used for a typical Ray node. The GCS (not shown) contains cluster-level

metadata such as for nodes and actors.

Ray may use memory in the following ways:

1.

Heap memory used by Ray workers during task or actor execution. Ray workers
execute user-defined code when executing tasks or actors. Because Ray tasks and
actors usually run in parallel, up to the number of cores, the application developer should
be cognizant of each task’s individual heap memory usage. If heap memory pressure is
too high, Ray will attempt to kill a memory-hungry worker first, to protect the system-level
state in the object store and other system-level processes.
Shared memory used by large Ray objects (values created by “ray.put()’ or returned
by a Ray task). When a worker calls ‘ray.put()’ or returns from a task, it copies the
provided values into Ray’s shared memory object store. Ray will then make these
objects available throughout the cluster, attempt to recover them in case of a failure, spill
them if the object store exceeds its configured capacity, and garbage-collect them once
all ObjectRefs have gone out of scope. For values that can be zero-copy deserialized,
passing the ObjectRef to ‘ray.get’ or as a task argument will return a direct pointer to the
shared memory buffer to the worker. All other values will be deserialized onto the
receiver worker’s heap memory.
Heap memory used by small Ray objects (returned by a Ray task). If an object is
small enough (default 100KB), Ray will store the values directly in the owner’s
“in-memory” object store instead of the Raylet shared memory object store. Any workers
that read the object (e.g., through ‘ray.get’) will copy the value directly into their own
heap memory. Ray also automatically garbage-collects these objects through the same
protocol as for large objects.
Heap memory used by Ray metadata. This is memory allocated by Ray to manage
metadata for the application. The majority of the metadata is in the form of a task
specification or metadata about an object (such as the reference count). As of Ray v2.0,
the total metadata overhead is expected to be a few KB per ObjectRef that is still in
scope. Here is a brief summary of the system-level processes and their expected
memory footprint scale:
a. GCS: # total actors, # total nodes, # total placement groups
b. Raylet: # tasks queued locally, # object arguments of these tasks, # objects
stored in local shared memory or local disk
c. Worker: # tasks submitted that are still pending or that may get re-executed
through lineage reconstruction, # owned objects, # objects in scope at the
language frontend

Language Runtime

All Ray core components are implemented in C++. Ray supports Python, Java, and

(experimental) C++ frontends via a common embedded C++ library called the "core worker.’

This library implements the ownership table, in-process store, and manages gRPC
communication with other workers and raylets. Since the library is implemented in C++, all



language runtimes share a common high-performance implementation of the Ray worker
protocol.

Worker process
(Python, Java, etc.)

Local raylet,
other raylets,
other workers
in Ray cluster

CoreWorker >
library (C++) =
i gRPC/
shared memory

Ray workers interact with other Ray processes through the CoreWorker library.

Code references:

e Core worker source code: src/ray/core_worker/core_worker.h. This code is the backbone
for the various protocols involved in task dispatch, actor task dispatch, the in-process
store, and memory management.

Language bindings for Python: python/ray/includes/libcoreworker.pxd
Language bindings for Java: src/ray/core_worker/lib/java

Lifetime of a Task

The owner is responsible for ensuring execution of a submitted task and facilitating the
resolution of the returned "ObjectRef" to its underlying value.

Driver Worker 1 Worker 2

\/

Execute Task B

Execute Task A

Requeét' T Raylet

resources

The process that submits a task is considered to be the owner of the result and is responsible

for acquiring resources from a raylet to execute the task. Here, the driver owns the result of ‘A",
and "Worker 1° owns the result of 'B’".

The owner can pass normal Python objects as task arguments. If a task argument’s value is
small, it is copied directly from the owner’s in-process object store into the task specification,
where it can be referenced by the executing worker.

If a task’s argument is large, the owner first calls “ray.put()’ on the object under the hood, then
passes the ObjectRef as the task argument. Note that Ray objects are not automatically



memoized or deduplicated; if the same large Python object is passed to two different tasks, it
will result in two separate ‘ray.put()’ calls and two separate objects. This is why it is
recommended to call ‘ray.put()” explicitly if the same object needs to be passed to multiple
tasks.

The owner can also pass other ObjectRefs as task arguments. When the task is submitted, the
owner waits for any ObjectRef arguments to become available. Note that the dependencies
need not be local; the owner considers the dependencies to be ready as soon as they are
available anywhere in the cluster. If the ObjectRef’s physical value is small, then the owner
copies the value directly into the task specification, similar to small Python values. Otherwise,
the owner attaches the ObjectRef metadata to the task specification, and the task executor must
resolve the ObjectRef to the physical value before executing the task. This is to avoid having to
transfer large arguments to the task caller.

Once all task dependencies are ready, the owner requests resources from the distributed
scheduler to execute the task. The distributed scheduler attempts to acquire the resources and
fetch any ObjectRef arguments in the task specification to the local node, through distributed
memory. Once both the resources and arguments are available, the scheduler grants the
request and responds with the address of a worker that is now /eased to the owner.

The owner schedules the task by sending the task specification over gRPC to the leased
worker. After executing the task, the worker must store the return values. If the return values are
small', the worker returns the values inline directly to the owner, which copies them to its
in-process object store. If the return values are large, the worker stores the objects in its local
shared memory store and replies to the owner indicating that the objects are now in distributed
memory. Similar to passing ObjectRefs as task arguments, this allows the owner to refer to the
return values without having to fetch them to its local node.

When a Ray task is first called, its definition is pickled and then stored in the GCS. Later on the
leased worker will fetch the pickled function definition and unpickle it to run the task.

Tasks can end in an error. Ray distinguishes between two types of task errors:
1. Application-level. This is any scenario where the worker process is alive, but the task
ends in an error. For example, a task that throws an “IndexError’ in Python.
2. System-level. This is any scenario where the worker process dies unexpectedly. For
example, a process that segfaults, or if the worker’s local raylet dies.

Tasks that fail due to application-level errors by default are not automatically retried. The
exception is caught and stored as the return value of the task. In 2.0, users can pass a whitelist
of application-level exceptions that may be automatically retried by Ray. Tasks that fail due to
system-level errors may be automatically retried up to a specified number of attempts.

' Less than 100KiB by default.



Code references:

e Backbone for each worker: src/ray/core_worker/core_worker.cc

e Task spec definition: src/ray/common/task/task_spec.h

e Task spec protobuf definition: src/ray/protobuf/common.proto

e Caller code for requesting a worker lease and sending the task to the leased worker:
src/ray/core_worker/transport/direct_task_transport.cc

e | ocal dependency resolution, before a worker lease is requested:
src/ray/core_worker/transport/dependency_resolver.cc
Manager for all called tasks that are still pending: src/ray/core_worker/task_manager.cc -
Runs on Python workers to fetch function definitions:
python/ray/ private/function_manager.py

Lifetime of an Object

Owner Worker 1 Worker 2
Return x AExecute
from task foo.remote(x)
Object store Object store
el X —P> X
release -
Raylet Raylet

Distributed memory management in Ray. Workers can create and get objects. The owner is
responsible for determining when the object is safe to release.

An object is an immutable value that can be stored and referred to from anywhere in the Ray
cluster. The owner of an object is the worker that created the initial "ObjectRef’, by submitting
the creating task or calling “ray.put’. The owner manages the lifetime of the object. Ray
guarantees that if the owner is alive, the object may eventually be resolved to its value (or an
error is thrown in the case of worker failure). If the owner is dead, an attempt to get the object’s
value will throw an exception, even if there are still physical copies of the object.

Each worker stores a ref count for the objects that it owns. See Reference Counting for more
information on how references are tracked. References are only counted during these
operations:
1. Passing an "ObjectRef" or an object that contains an "ObjectRef" as an argument to a
task.
2. Returning an "ObjectRef" or an object that contains an “ObjectRef" from a task.

Objects can be stored in the owner’s in-process memory store or in the distributed object store.
The in-process memory store is allocated on the owner’s heap and does not enforce a capacity
limit. This is because Ray only stores small objects in this store; an excessive number of small



objects in scope may cause the owner process to be killed from out-of-memory. Objects stored
in the distributed object store are first stored in shared memory. The shared memory object
store enforces a user-configurable capacity limit (default 30% of machine RAM) and spills
objects to local disk on reaching capacity. This decision is meant to reduce the memory footprint
and resolution time for each object.

When there are no failures, the owner guarantees that at least one copy of an object will
eventually become available as long as the object is still in scope (nonzero ref count). See
Memory Management for more details.

There are two ways to resolve an "ObjectRef" to its value:
1. Calling ‘ray.get’ on an "ObjectRef(s)".
2. Passing an "ObjectRef" as an argument? to a task. The executing worker will resolve the
"ObjectRef's and replace the task arguments with the resolved values.

When an object is small, it can be resolved by retrieving it directly from the owner’s in-process
store. Large objects are stored in the distributed object store and must be resolved with a
distributed protocol. See Object Resolution for more details.

When there are no system-level failures, resolution is guaranteed to eventually succeed but
may throw an application-level exception. If there are failures, resolution may throw a
system-level exception (e.g., ray.exceptions.WorkerCrashedError) but will never hang. An object
can fail if it is stored in distributed memory and all copies of the object are lost through raylet
failure(s). Ray attempts to automatically recover such lost objects through reconstruction. An
object also fails if its owner process dies.

Code references:

e In-process object store, for small objects:
src/ray/core_worker/store_provider/memory_store/memory_store.cc

e Worker client to shared-memory object store, for accessing large objects:
src/ray/core_worker/store_provider/plasma_store_provider.cc
Reference counting class on each worker: src/ray/core_worker/reference_count.cc
Manager for distributed object transfers: src/ray/object_manager/object_manager.cc
Manager for local objects that are “primary” copies or that need to be spilled:
src/ray/raylet/local_object_manager.cc

2 Note that if the "ObjectRef" is contained within a data structure (e.g., Python list), or otherwise serialized
within an argument, it will not be resolved. This allows passing references through tasks without blocking
on their resolution.



Lifetime of an Actor

Actor lifetimes and metadata (e.g., IP address and port) are managed by the GCS. Each client
of the actor may cache this metadata locally and use it to send tasks to the actor directly over
gRPC.

Driver Actor A Actor B
. Create Create
.. .A.\ctor A *. 5ctor B Raylet
o
GCS Service e ‘Request
resources

Unlike task submission, which is fully decentralized and managed by the owner of the task,
actor lifetimes are managed centrally by the GCS service.

When an actor is created in Python, the creating worker builds a special task known as an actor
creation task that runs the actor’s Python constructor. The creating worker waits for any
dependencies of the creation task to become ready, similar to non-actor tasks. Once this
completes, the creating worker asynchronously registers the actor with the GCS. The GCS then
creates the actor by scheduling the actor creation task. This is similar to scheduling for
non-actor tasks, except that its specified resources are acquired for the lifetime of the actor
process.

Meanwhile, the Python call to create the actor immediately returns an “actor handle” that can be
used even if the actor creation task has not yet been scheduled. Subsequent tasks that take the
actor handle as an argument will not be scheduled until the actor creation task has completed.
See Actor Creation for more details.

Task execution for actors is similar to that of normal tasks: they return futures, are submitted
directly to the actor process via gRPC, and will not run until all ‘ObjectRef* dependencies have
been resolved. There are two main differences:

1. By default, resources do not need to be acquired from the scheduler to execute an actor
task. This is because the actor has already been granted resources for its lifetime, when
its creation task was scheduled.

2. For each caller of an actor, the tasks are executed in the same order® that they are
submitted. This is because the tasks are assumed to modify the actor state.

An actor will be automatically cleaned up when either its creator exits, or there are no more
pending tasks or handles in scope in the cluster (see Reference Counting for details on how this
is determined). Note that this is not true for detached actors, which are designed to be long-lived

3 Unless using async actors or threaded actors.



actors that can be referenced by name and must be explicitly cleaned up using
‘ray.kill(no_restart=True) . See Actor Death for more information on actor failures.

In some cases, it may be desirable to break the requirement that actor tasks run sequentially, in
the order that they are submitted. To support such use cases, Ray also provides an option for
actor concurrency, via async actors that can concurrently run tasks using an asyncio event loop,
or threaded actors that run multiple tasks in parallel using threads. Submitting tasks to these
actors is the same from the caller’s perspective as submitting tasks to a regular actor. The only
difference is that when the task is run on the actor, it is posted to a background thread or thread
pool instead of running directly on the main thread. Ray APIs such as task submission and
ray.get are thread-safe, but the user is responsible for all other thread safety within the actor
code.

Code references:
e Backbone for each worker: src/ray/core_worker/core_worker.cc
e Sending and executing actor tasks:
src/ray/core_worker/transport/direct_actor_transport.cc
GCS manager for actor lifetimes: src/ray/gcs/gcs_server/gcs_actor_manager.cc
GCS scheduler for creating actors: src/ray/gcs/gcs_server/ges_actor_scheduler.cc
src/ray/protobuf/core_worker.proto

Failure Model

System Model

Ray worker nodes are designed to be homogeneous, so that any single node may be lost
without bringing down the entire cluster. The current exception to this is the head node, since it
hosts the GCS. In 2.0, we have added experimental support for GCS fault tolerance, which
allows the GCS to be restarted while minimizing disturbance to the rest of the cluster.

All nodes are assigned a unique identifier and communicate with each other through heartbeats.
The GCS is responsible for deciding the membership of a cluster, i.e. which nodes are currently
alive. The GCS tombstones any node ID that times out, meaning that a new raylet must be
started on that node with a different node ID in order to reuse the physical resources. A raylet
that is still alive exits if it hears that it has been timed out. Failure detection of a node currently
does not handle network partitions: if a worker node is partitioned from the GCS, it will be timed
out and marked as dead.

Each raylet reports the death of any local worker process to the GCS. The GCS broadcasts
these failure events and uses them to handle actor death. All worker processes fate-share with
the raylet on their node.



The raylets are responsible for preventing leaks in cluster resources and system state after
individual worker process failures. For a worker process (local or remote) that has failed, each
raylet is responsible for:

e Freeing cluster resources, such as CPUs, needed for task execution. This is done by
killing any workers that were leased to the failed worker (see Resource Fulfillment). Any
outstanding resource requests made by the failed worker are also canceled.

e Freeing any distributed object store memory used for objects owned by that worker (see
Memory Management). This also cleans up the associated entries in the object directory.

Application Model

— Ownership

........ » Dependency

Driver or
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The system failure model implies that tasks and objects in a Ray graph will fate-share with their
owner. For example, if the worker running "a’ fails in this scenario, then any objects and tasks
that were created in its subtree (the grayed out 'b” and "z") will be collected. The same applies if
b were an actor created in "a’’s subtree (see Actor Death). This has a few implications:

e Any other live process will receive an application-level exception if trying to get the value
of such an object. For example, if the "z" ObjectRef had been passed back to the driver
in the above scenario, the driver would receive an error on ‘ray.get(z)".

e Failures can be isolated from one another by modifying the program to place different
tasks in different subtrees (i.e. through nested function calls).

e The application will fate-share with the driver, which is the root of the ownership tree.

The main application option to avoid fate-sharing behavior is to use a detached actor, which
may live past the lifetime of its original driver and can only be destroyed through an explicit call
from the program. The detached actor itself can own any other tasks and objects, which in turn
will fate-share with the actor once destroyed.

Ray provides some options to aid in transparent recovery, including automatic task retries and
actor restart. As of v1.3, object spilling can also be used to allow objects to persist past the



lifetime of their owner. As of v2.0, Ray enables object reconstruction by default for non-actor
tasks.

Object Management

N . N
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(a) Small objects are stored in the (b) Large objects are stored in the
in-process store. They are copied directly distributed object store. The worker
to the worker through the task retrieves the value through a protocol with
description. the plasma store.

In-process store vs the distributed object store. This shows the differences in how memory is
allocated when submitting a task ("a’) that depends on an object ('x’).

In general, small objects are stored in their owner’s in-process store while large objects are
stored in the distributed object store. This decision is meant to reduce the memory footprint
and resolution time for each object. Note that in the latter case, a placeholder object is stored in
the in-process store to indicate the object is actually stored in the distributed object store.

Objects in the in-process store can be resolved quickly through a direct memory copy but may
have a higher memory footprint when referenced by many processes due to the additional
copies. The capacity of a single worker’s in-process store is also limited to the memory capacity
of that machine, limiting the total number of such objects that can be in reference at any given
time. For objects that are referenced many times, throughput may also be limited by the
processing capacity of the owner process.

In contrast, resolution of an object in the distributed object store requires at least one RPC from
the worker to the worker’s local shared memory store. Additional RPCs may be required if the
worker’s local shared memory store does not yet contain a copy of the object. On the other
hand, because the shared memory store is implemented with shared memory, multiple workers
on the same node can reference the same copy of an object. This can reduce the overall
memory footprint if an object can be deserialized with zero copies. The use of distributed
memory also allows a process to reference an object without having the object local, meaning




that a process can reference objects whose total size exceeds the memory capacity of a single
machine. Finally, throughput can scale with the number of nodes in the distributed object store,
as multiple copies of an object may be stored at different nodes.

Code references:

e src/ray/core_worker/store_provider/memory_store/memory_store.cc
src/ray/core_worker/store_provider/plasma_store_provider.cc
src/ray/common/buffer.h
src/ray/protobuf/object_manager.proto

Object resolution

Resolution is the process by which an "ObjectRef" is converted to the underlying physical value,
i.e. when calling ‘ray.get’ or passing as a task argument. The "ObjectRef’ comprises two fields:
e A unique 28-byte identifier. This is a concatenation of the ID of the task* that produced
the object and the integer number of objects created by that task so far.
e The address of the object’s owner (a worker process). This consists of the worker
process’s unique ID, IP address and port, and local raylet’s unique ID.

Small objects are resolved by copying them directly from the owner’s in-process store. For
example, if the owner calls ‘ray.get’, the system looks up and deserializes the value from the
local in-process store. If the owner submits a dependent task, it inlines the object by copying the
value directly into the task specification. Similarly, if a borrower attempts to resolve the value,

the object value is copied directly from the owner, bypassing the large object resolution protocol
described in the next section.
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4 Task identifiers are computed as a hash of their parent task ID and the number of tasks invoked by that
parent before. The root driver task’s ID is a monotonically increasing integer, based on the number of jobs
that have executed on that cluster before.



Resolving a large object. The object x is initially created on Node 2, e.g., because the task that
returned the value ran on that node. This shows the steps when the owner (the caller of the
task) calls ‘ray.get’: 1) Lookup object’s locations at the owner. 2) Select a location and send a
request for a copy of the object. 3) Receive the object.

Large objects are stored in the distributed object store and must be resolved with a distributed
protocol. If the object is already stored in the reference holder’s local shared memory store, the
reference holder can retrieve the object over IPC. This returns a pointer to shared memory that
may be simultaneously referenced by other workers on the same node.

If the object is not available in the local shared memory store, the reference holder notifies its
local raylet, which then attempts to fetch a copy from a remote raylet. The raylet looks up the
locations from the object directory and requests a transfer from one of these raylets. The object
directory is stored at the owners as of Ray v1.3+ (previously it was stored in the GCS).

Code references:
e src/ray/common/id.h
e src/ray/object manager/ownership based object directory.h

Memory management

For remote tasks, the object value is computed by the executing worker. If the value is small, the
worker replies directly to the owner with the value, which is copied into the owner’s in-process
store. This value is deleted once all references go out of scope.

Node 1 Node 3
Owner Worker
ObjID |Value Primary 0ObjID |Value
X *store N2 X *store
Node 2
Raylet Raylet Raylet
Object Store Object Store Object Store
X | X X
Primamniconmll
T Tmmrman ‘-IUP

Primary copy versus evictable copies. The primary copy (Node 2) is ineligible for eviction.
However, the copies on Nodes 1 (created through ‘ray.get’) and 3 (created through task
submission) can be evicted under memory pressure.

If the value is large, the executing worker stores the value in its local shared memory store. This
initial copy of a shared memory object is known as the primary copy. The primary copy is unique



in that it will not be evicted as long as there is a reference in scope. The raylet “pins” the primary
copy by holding a reference to the physical shared memory buffer where the object is stored,
which prevents the object store from evicting it. In contrast, other copies of the object may get
evicted by LRU if under local memory pressure, unless a Python worker is actively using the
object.

In most cases, the primary copy is the first copy of the object to be created. If the initial copy is
lost through a failure, the owner will attempt to designate a new primary copy based on the
object’s available locations.

Once the object ref count goes to 0, all copies of the object are eventually and automatically
garbage-collected. Small objects are erased immediately from the in-process store by the
owner. Large objects are asynchronously erased from the distributed object store by the raylets.

The raylets also manage distributed object transfer, which creates additional copies of an object
based on where the object is currently needed, e.g., if a task that depends on the object is
scheduled to a remote node.

A, B, C = ( Node 1 Node 2
ray.put(...),
ray.put(...), Cores Task queue
ray.put(...)) driver Qg(B) Q
'F.I"emo'te(A) r\ay.rut .
g.remote(B) \ . - Objeci\store
h.remote(C) A B C A B C

object transfer

The types of objects that can be stored on a node. Objects are either created by a worker (such
as A, B, and C on node 1), or a copy is transferred from a different node because it is needed
by a local worker (such as A, B, and C on node 2).

Thus, an object may be stored in a node’s shared-memory object store due to any of the
following reasons:

1. It was requested by a local worker process through “ray.get’ or “ray.wait’. These can be
freed once the worker finishes the “ray.get’ request. Note that for objects that can be
zero-copy deserialized, the Python value returned from ‘ray.get’ refers directly to the
shared-memory buffer, so the object will be “pinned” until this Python value goes out of
scope.

2. It was returned by a previous task that executed on that node. These can be freed once
there are no more references to the object OR once the object has been spilled.




3. It was created through “ray.put’ by a local worker process on that node. These can be
freed once there are no more references to the object (objects A, B, and C on node 1 in
the above diagram).

4. ltis the argument of a task queued or executing on that node. These can be freed once
the task completes or is no longer queued. Objects B and C on node 2 are both
examples of this, since their downstream tasks g and h have not yet finished.

5. It was previously needed on this node, e.g., by a completed task. Object A on node 2 is
an example of this, since f has already finished executing. These objects may be evicted
based on local LRU if under memory pressure. They are also eagerly evicted when the
ObjectRef goes out of scope (e.g., A is deleted from node 2 after f finishes and after

calling “del A").

Handling out-of-memory cases

For small objects, Ray currently does not impose a memory limit on each worker’s in-process
store. Thus, an excessive number of small objects in scope may cause the owner process to be
killed from out-of-memory.

Ray imposes a hard limit on shared-memory objects The raylet is responsible for enforcing this
limit. Below is a visualization of the different types of shared-memory objects that may be stored

on a node, with a rough priority.
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Object creation requests are queued by the raylet and served once enough memory is available
in (6) to create the object. If more memory is needed, the raylet will choose objects to evict from
(3)-(5) to make space. Even after all of these objects are evicted, the raylet may not have space
for the new object. This can happen if the total memory needed by the application is greater
than the cluster’s memory capacity.

If more space is needed after eviction, the raylet first triggers language-specific garbage
collection at each of the workers in the entire cluster. The ObjectRefs seen in the language
frontend appear to be very small, and thus are unlikely to trigger the usual language-specific



garbage collection mechanisms (e.g., Python’s gc.collect()). However, the actual memory
footprint of an ObjectRef can be very large, since the physical value is stored elsewhere in
Ray’s object store, and potentially on a different node(s) from the language-level ObjectRef.
Thus, when any Ray object store reaches capacity, we trigger the language-level garbage
collection at all workers, which cleans up any unneeded ObjectRefs and allows the physical
values to be freed from the object store.

The raylet starts a timeout to give workers time to asynchronously garbage-collect ObjectRefs,
before triggering spilling to external storage. Spilling allows primary copies in (2) to be freed
from the object store even though the objects may still be referenced. If spilling is disabled, the
application will instead receive an ObjectStoreFullError after a configurable timeout. Spilling can
be expensive and add long delays to task execution; thus Ray also eagerly spills objects once
the object store reaches a configurable threshold (80% by default) to try to ensure available
space.

Note that the object store can still run out of memory even with object spilling enabled. This can
occur if there are too many objects in use (1) at the same time. To mitigate this, the raylet limits
the total size of the executing tasks’ arguments, since an argument cannot be released until the
task completes. The default cap is 70% of the object store memory. This ensures that as long as
there are no other objects actively pinned due to a “ray.get’ request, it should be possible for a
task to create an object that is 30% of the object store’s capacity.

Currently, the raylet does not implement a similar cap for objects pinned by workers’ “ray.get’
request, as doing so naively could introduce deadlock between tasks. Thus, if there are
excessive concurrent ‘ray.get’ requests of large objects, the raylet could still run out of shared
memory. When this happens, the raylet fallback-allocates objects as memory-mapped files on
the local disk (/tmp by default). The fallback-allocated objects are less performant due to 1/0
overhead, but it allows the application to continue running even if the object store is full. The
fallback allocation will fail if the local disk is full, after which the application will receive an
OutOfDiskError.
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Raylet flowchart for handling an object creation request. If there is not enough available memory
in the local object store to serve the request, the raylet attempts a series of steps to make
memory available.

Code references:
e src/ray/object_manager/plasmal/store.cc
e src/ray/object_manager/plasmal/create_request_gqueue.cc
e src/ray/object_manager/plasma/object_lifecycle_manager.cc

Object spilling

Ray has default support for spilling objects to external storage once the capacity of the object
store is used up. This enables out-of-core data processing and memory-intensive distributed
applications.



External storage is implemented with a pluggable interface. There are two types of external
storage supported by default:
e Local storage (stable). Local disk is selected by default so that Ray users can use the
object spilling feature without any additional configuration.
e Distributed storage (experimental, currently offering Amazon S3). Speed of access may
be slower but this can provide better fault tolerance, since data will survive worker node
failures.

Four components are involved in the object spilling protocol.
e Within the raylet:

o Local object manager: Keeps track of object metadata, such as the location in
external storage, and coordinates 1O workers and communication with other
raylets.

o Shared-memory object store

e 10 workers: Python processes that spill and restore objects.
e External storage: Stores Ray objects that cannot fit into the object store memory.
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An overview of the design for spilling or restoring an object. The raylet manages a pool of I/O
workers. I/O workers read/write from the local shared-memory object store and external storage.

When Ray does not have enough memory capacity to create objects, it initiates object spilling.
Note that Ray only spills the primary copy of an object: this is the initial copy of the object,
created by executing a task or through “ray.put’. Non-primary copies can be evicted
immediately, and this design ensures that we have at most one spilled copy of each object in the
cluster. Primary copies are only evictable after object spilling, or if there are no more references
in the application.

The protocol is as follows, repeating until enough space is made to create any pending objects:

1. Raylet (local object manager) finds all primary copies in the local object store.



2. Raylet sends spill requests for these objects to an 1O worker.

3. An IO worker writes the object value along with its metadata to external storage.

4. Once the primary copies are spilled to external storage, the raylet updates the object
directory with the location of the spilled objects.

5. The object store evicts the primary copies.

6. Once an object’s reference count goes to 0, the owner notifies the raylet that the object
can be removed. The raylet sends a request to an 10 worker to remove the object from
external storage.

Spilled objects are restored as they are needed. When an object is requested, the Raylet either
restores the object from external storage by sending a restore request to a local 10 worker, or it
fetches a copy from a raylet on a different node. The remote raylet might have the object spilled
on local storage (e.g., local SSD). In this case, the remote raylet directly reads the object from
local storage and sends it to the network.

Spilling many small objects with one object per file is inefficient due to IO overhead. For local
storage, the OS would run out of inodes very quickly. If objects are smaller than 100MB, Ray
fuses objects into a single file to avoid this problem.

Ray also supports multi-directory spilling, meaning it utilizes multiple file systems mounted at
different locations. This helps to improve spilling bandwidth and maximum external storage
capacity when there are multiple local disks attached to the same machine.

Known limitations:

- When using local file storage, spilled objects are lost if the node where the object is
stored is lost. In this case, Ray will attempt to recover the object as if it was lost from
shared memory.

- A spilled object is not reachable if the owner is lost, since the owner stores the object’s
locations.

- Objects that are currently in use by the application are “pinned”. For example, if the
Python driver has a raw pointer to an object that was obtained by ray.get, (e.g., a numpy
array view over shared memory), then the object is pinned. These objects are not
spillable until the application releases them. Arguments of a running task are also pinned
for the task’s duration.

Code references:
e src/ray/raylet/local object manager.cc
e python/ray/ private/external storage.py

Reference Counting

Each worker stores a ref count for each object that it owns. The owner’s local ref count includes
the local Python ref count and the number of pending tasks submitted by the owner that depend



on the object. The former is decremented when a Python “ObjectRef" is deallocated. The latter
is decremented when a task that depends on the object successfully finishes (note that a task
that ends in an application-level exception counts as a success).

"ObjectRef's can also be copied to another process by storing them inside another object. The
process that receives the copy of the "ObjectRef" is known as a borrower. For example:

@ray.remote
def temp_borrow(obj_refs):

X = ray.get(obj _refs[0])

@ray.remote
class Borrower:
def borrow(self, obj refs):

self.x = obj_refs[0]

x_ref = foo.remote()
temp_borrow.remote([x_ref])

b = Borrower.remote()
b.borrow.remote([x_ref])

These references are tracked through a distributed reference counting protocol. Briefly, the
owner adds to the local ref count whenever a reference “escapes” the local scope. For example,
in the above code, the owner would increment the pending task count for x_ref when calling
‘temp_borrow.remote’ and "b.borrow.remote’. Once the task finishes, it replies to its owner with
a list of the references that are still being borrowed. For example, in the above code,
‘temp_borrow™’s worker would reply saying that it is no longer borrowing "x_ref’, while the
‘Borrower™ actor would reply saying that it is still borrowing "x_ref .

If the worker is still borrowing any references, the owner adds the worker’s ID to a local list of
borrowers. The borrower keeps a second local ref count, similar to the owner, and the owner
asks the borrower to reply once the borrower’s local ref count has gone to 0. At this point, the
owner may remove the worker from the list of borrowers and collect the object. In the above
example, the "Borrower™ actor is borrowing the reference permanently, so the owner would not
free the object until the "Borrower’ actor itself goes out of scope or dies.



Borrowers can also be added recursively to the owner’s list. This happens if the borrower itself
passes the "ObjectRef" to another process. In this case, when the borrower responds to the
owner that its local ref count is 0, it also includes any new borrowers that it has created. The
owner in turn contacts these new borrowers using the same protocol.

A similar protocol is used to track "ObjectRef's that are returned by their owner. For example:

@ray.remote

def parent():
y_ref = child.remote()
x_ref = ray.get(y_ref)
X = ray.get(x_ref)

@ray.remote

def child():
x_ref = foo.remote()
return x_ref

When the “child" function returns, the owner of “x_ref" (the worker that executes “child*) would
mark that "x_ref" is contained in "y_ref". The owner would then add the “parent” worker to the list
of borrowers for “x_ref'. From here, the protocol is similar to the above: the owner sends a
message to the “parent’ worker asking the borrower to reply once its references to both 'y_ref’

and "x_ref* have gone out of scope.

Python ref
count

instances. This is equal to the
worker’s process-local Python
ref count.

Reference | Description When is it updated?
type
Local Number of local *ObjectRef Incremented/decremented when a new

Python "ObjectRef" is allocated/deallocated.

Submitted
task count

Number of tasks that depend on
the object that have not yet
completed execution.

Incremented when the worker submits a task
(e.g., ‘foo.remote(x_ref)’). Decremented
when the task completes. If the object is small
enough to be stored in the in-process store,
this count is decremented early, when the
object is copied into the task specification.

A set of worker IDs for the
processes that are currently
borrowing the "ObjectRef". A
borrower is any worker that is
not the owner and that has a
local instance of the Python

Borrowers

When a task is passed an ObjectRef and
continues to use it past the end of the task
(e.g., saving the ObjectRef in an actor’s local
state), the task notifies its caller that it is
borrowing the object. Then, the calling worker
adds the task worker’s ID to this set.




"ObjectRef". Each borrower also
maintains a local set of
borrowers, forming a tree of
borrower sets rooted at the
owner. This allows a borrower to
send the "ObjectRef" to another
borrower without having to
contact the owner.

Removal if an owner: The owner sends an
async RPC to each of the borrower workers.
A borrower responds once its ref count for the
"ObjectRef" goes to 0. The owner removes a
worker when it receives this reply or if the
borrower dies first.

Removal if a borrower: The worker waits for
RPC from the owner. Once the worker’s local
ref count (local Python count + submitted task
count) is 0, the worker pops its local set of
borrowers into the reply to the owner. In this
way, the owner learns of and can track
recursive borrowers.

Nested Number of "ObjectRef's that are | Incremented when the "ObjectRef" is stored

count in scope and whose values inside another object (e.g., ‘ray.put([x_ref])" or
contain the "ObjectRef" in ‘return x_ref’). Decremented when the outer
question. "ObjectRef" goes out of scope.

Lineage Maintained when reconstruction | Incremented when a task is submitted that

count is enabled. Number of tasks that | depends on the object. Decremented if the

depend on this "ObjectRef
whose values are stored in the
distributed object store (and
therefore may be lost upon a
failure).

task’s returned “ObjectRef" goes out of scope,
or if the task completes and returns a value in
the in-process store.

Corner cases

Summary of the different types of references and how they are updated.

References that are captured in a remote function or class definition will be pinned permanently.

For example:

x_ref = foo.remote()

@ray.remote

def capture():
ray.get(x_ref)

The conventional method for creating references is to pass ObjectRefs to other workers as task
arguments, either directly or inside a data structure like a list. References can also be created

“out-of-band” by pickling an “ObjectRef" with “ray.cloudpickle’. In this case, Ray cannot track the
serialized copy of the object or determine when the ObjectRef has been deserialized (e.g., if the




ObjectRef is deserialized by a non-Ray process). Thus, a permanent reference will be added to
the object’s count to prevent the object from going out of scope.

Other methods of out-of-band serialization include using “pickle’ or custom serialization
methods. Similar to above, Ray cannot track these references. Accessing the deserialized
ObjectRef, i.e. by calling ‘ray.get’ or passing as a task argument, may result in a reference
counting exception.

Code references:
e src/ray/core_worker/reference_count.cc
e python/ray/includes/object_ref.pxi
e java/runtime/src/main/javalio/ray/runtime/object/ObjectReflmpl.java

Actor handles

The same reference counting protocol described above is used to track the lifetime of an
(non-detached) actor. A dummy object is used to represent the actor. This object’s ID is
computed from the ID of the actor creation task. The creator of the actor owns the dummy
object.

When the Python actor handle is deallocated, this decrements the local ref count for the dummy
object. When a task is submitted on an actor handle, this increments the submitted task count
for the dummy object. When an actor handle is passed to another process, the receiving
process is counted as a borrower of the dummy object. Once the ref count reaches 0, the owner
notifies the GCS service that it is safe to destroy the actor.

Note that detached actors are not automatically garbage-collected by Ray. They must be
explicitly deleted by the application.

Code references:
e src/ray/core_worker/actor_handle.cc
e python/ray/actor.py
e javal/api/src/main/javalio/ray/api/ActorCall.java

Interaction with Python GC

When objects are part of reference cycles in Python, the Python garbage collector does not
guarantee these objects will be garbage collected in a timely fashion. Since uncollected Python
"ObjectRef's can spuriously keep Ray objects alive in the distributed object store, Ray triggers
‘ge.collect()” in all Python workers periodically and when the object store is near capacity. This
ensures that Python reference cycles never lead to a spurious object store full condition.




Object Failure

In the event of a system failure, Ray will attempt to recover any lost objects and, if recovery is
not possible, will instead throw an application-level exception if a worker tries to get the value of
the object.

At a high level, Ray guarantees that if the owner is still alive, recovery of the object will be
attempted. If recovery fails, the owner will populate the exception with the cause. Otherwise, if
the owner of an object has died, any worker that tries to get the value will receive a generic error
about the owner’s death, even if the object copies still exist in the cluster.

Small objects

Small objects: Small objects are stored in the owner’s in-process object store and thus will be
lost if the owner dies. Any workers that try to get the value of the object in the future will learn
that the owner has died and store the error in their local in-process object store. If the worker
tries to access the object, e.g., via ray.get(), it will receive this error.

Large objects and lineage reconstruction

If the object is lost from distributed memory: Non-primary copies of an object can be lost
without consequences. If the primary copy of an object is lost, the owner will attempt to
designate a new primary copy by looking up the remaining locations in the object directory.

If no other copies exist, Ray will then attempt to recover the object through object
reconstruction. This refers to the recovery of a lost object through re-execution of the task that
created the object. If dependencies of the task are also lost, or were evicted previously due to
garbage collection, then these objects are recursively reconstructed.

Lineage reconstruction works by keeping an additional “lineage ref count” alongside each
object. This refers to the number of tasks that depend on the object that may themselves be
re-executed. A task can be re-executed if any objects that it or a downstream task returns are
still in scope. Once the lineage ref count reaches 0, Ray will garbage-collect the specification of
the task that creates the object. Note that this is a separate garbage collection mechanism from
the object value: If an object’s direct reference count reaches 0, its value will be
garbage-collected from Ray’s object store even if its lineage stays in scope.

Note that lineage reconstruction can cause higher than usual driver memory usage because of
the cached lineage. Each Ray worker will attempt to evict their locally cached lineage if the total
size exceeds a system-wide threshold (default 1GB).

Lineage reconstruction currently has the following limitations. If the application does not meet
these requirements, then it will instead receive an error with the reason reconstruction failed:



e The object, and any of its transitive dependencies, must have been generated by a task
(actor or non-actor). This means that objects created by ray.put are not recoverable.
Note that objects created by ‘ray.put’ are always stored on the same node as their
owner and the owner will fate-share with this node; thus in the case that the primary
copy of " ray.put” object is lost, the application will receive a generic *OwnerDiedError’.

e Tasks are assumed to be deterministic and idempotent. Thus, by default, objects
created by actor tasks are not reconstructable. Actor tasks may be re-executed as
part of the lineage if the user sets the actor’s "'max_task_retries’ and ‘max_restarts™ to a
nonzero value.

e Tasks will only be re-executed up to their maximum number of retries. By default, a
non-actor task can be retried up to 3 times and an actor task cannot be retried. This can
be overridden with the ‘'max_retries’ parameter for non-actor tasks and the
‘max_task_retries’ parameter for actors.

e The owner of the object must still be alive (see below).

If the owner of an object stored in distributed memory is lost: During object resolution, a
raylet will attempt to locate a copy of the object. At the same time, the raylet will periodically
contact the owner to check that the owner is still alive. If the owner has died, the raylet will store
a system-level error that will be thrown to the reference holder during object resolution.

Code references:
e src/ray/core_worker/object_recovery _manager.h - Recovery protocol
e src/ray/core_worker/reference_count.h - Lineage ref counting
e src/ray/core_worker/task_manager.h - Lineage cache

Task Management

Task execution
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The scheduling workflow of a normal Ray task.



Dependency resolution

The task caller waits for all task arguments to be created before requesting resources from the
distributed scheduler. In many cases, the caller of a task is also the owner of the task
arguments. For example, for a program like “foo.remote(bar.remote())’, the caller owns both
tasks and will not schedule “foo™ until “bar’ has completed. This can be executed locally
because the caller will store the result of “bar’ in its in-process store.

The caller of a task may be borrowing a task argument, i.e., it received a deserialized copy of
the argument’s "ObjectRef" from the owner. In this case, the task caller must determine whether
the argument has been created by executing a protocol with the owner of the argument. A
borrower process will contact the owner upon deserializing an “ObjectRef". The owner responds
once the object has been created, and the borrower marks the object as ready. If the owner
fails, the borrower also marks the object as ready, since objects fate-share with their owner.

@ray.remote
def caller(refs: List[ObjectRef]):
foo.remote(refs[0])

Tasks can have three types of arguments: plain values, inlined objects, and non-inlined objects.
e Plain values: f.remote(2)
e Inlined object: f.remote(small_obj_ref)
e Non-inlined object: f.remote(large_or_pending_obj_ref)

Plain values don't require dependency resolution.

Inlined objects are objects small enough to be stored in the in-process store (default threshold is
100KB). The caller can copy these directly into the task specification.

Non-inlined objects are those stored in the distributed object store. These include large objects
and objects that have been borrowed by a process other than the owner. In this case, the caller
will ask the raylet to account for these dependencies during the scheduling decision. The raylet
will wait for those objects to become local to its node before granting a worker lease for the
dependent task. This ensures that the executing worker will not block upon receiving the task,
waiting for the objects to become local.



Resource fulfillment

A task caller schedules a task by first sending a resource request to the preferred raylet for that
request. This is chosen either:

1. By data locality: If the task has object arguments stored in shared memory, then the
caller chooses the node that has the most number of object argument bytes already
local. This information is retrieved through the caller’s local object directory and may be
stale (e.g., if an object transfer or eviction occurs concurrently).

2. By node affinity: If a target raylet is specified by the NodeAffinitySchedulingStrategy.

3. By default, the local raylet.

The preferred raylet queues the request and if it chooses to grant the resources, responds to
the caller with the address of a local worker that is now leased to the caller. The lease remains
active as long as the caller and leased worker are alive, and the raylet ensures that no other
client may use the worker while the lease is active. To ensure fairness, a caller returns the idle
worker if no more task remains or if enough time has passed (e.g., a few hundred milliseconds).

double.remote(2)

oo 00
Caller Worker

Core Worker Core Worker
(2) PushTask RPC

(1) RequestWorkerLease RPC

Raylet

Resource fulfillment and execution of the “double(2)" task in a Ray cluster.

The caller may schedule any number of tasks onto the leased worker, as long as the tasks are
compatible with the granted resource request. Hence, leases can be thought of as an
optimization to avoid communication with the scheduler for similar scheduling requests. A
scheduling request can reuse the leased worker if it has the same:

1. Resource shape (e.g., {“CPU”: 1}), as these must be acquired from the node during task
execution.

2. Shared-memory task arguments, as these must be made local on the node before task
execution. Note that small task arguments do not need to match since these are inlined
into the task argument. Also, ObjectRefs that are passed inside a data structure do not
need to match, since Ray does not make these local before the task begins.

3. Runtime environment, as the leased worker is started inside this environment.
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Caller can hold multiple worker leases to increase parallelism. Worker leases are cached across
multiple tasks as an optimization to reduce the load on the scheduler.

If the preferred raylet chooses not to grant the resources locally, it may also respond to the
caller with the address of a remote raylet at which the caller should retry the resource request.
This is known as spillback scheduling. The remote raylet may grant or reject the resource
request depending on the current availability of its local resources. Should the resource request
be rejected, the caller will request again from the preferred raylet and the same process repeats
until the resource request is granted by some raylet.

double.remote(2)
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During spillback scheduling, the local raylet redirects the caller’s request to a remote raylet that
might have resources available.

Code references:
src/ray/core worker/core worker.cc

e src/ray/common/task/task_spec.h
e src/ray/core_worker/transport/direct_task_transport.cc
e src/ray/core_worker/transport/dependency_resolver.cc




src/ray/core_worker/task _manager.cc

src/ray/protobuf/common.proto

Backbone class for raylet: src/ray/raylet/node_manager.cc

Distributed scheduler on each raylet: src/ray/raylet/scheduling/cluster_task_manager.cc
Local task queue on each raylet: src/ray/raylet/local_task manager.cc

Resource Management and Scheduling

A resource in Ray is a key-value pair where the key denotes a resource name, and the value is
a float quantity. For convenience, the Ray scheduler has native support for CPU, GPU, and
memory resource types. Ray resources are logical and don’t need to have 1-to-1 mapping with
physical resources (e.g. you can start a Ray node with 3 GPUs even if it physically has zero).
By default, Ray sets the quantities of logical resources on each node to the physical quantities
auto detected by Ray.

The user may also define custom resource requirements using any valid string, e.g., specifying
a resource requirement of {“custom_resource”: 0.01}. Custom resources can be added to a
node on startup, for example, to advertise that a node has a particular hardware feature. By
requesting that custom resource, tasks or actors can effectively be constrained to running on
that particular node.

The purpose of the distributed scheduler is to match resource requests from the callers to
resource availability in the cluster. Resource requests are hard scheduling constraints. For
example, {"CPU": 1.0, "GPU": 1.0} represents a request for 1 CPU and 1 GPU. This task can
only be scheduled on a node that has >= 1 CPU and >= 1 GPU. Each “@ray.remote” function
requires 1 CPU for execution ({*CPU”: 1}) by default. An actor, i.e. a "@ray.remote” class, will
request 0 CPU for execution by default. This is so that a single node can host more actors than
it has cores, leaving CPU multiplexing to the OS. Actors also request 1 CPUs for placement,
meaning that the chosen node must have at least 1 CPU in its total resources. This is to enable
applications to prevent actors from being scheduled to particular nodes, i.e. by starting the node
with “--num-cpus=0".

There are a few resources with special handling:
e The quantity of "CPU", "GPU", and "memory" are autodetected during Ray startup.
e Assigning "GPU" resources to a task will automatically set the
CUDA_VISIBLE_DEVICES env var within the worker to limit it to specific GPU ids.

Note that because resource requests are logical, physical resource limits are not enforced by
Ray. It is up to the user to specify accurate resource requirements, e.g., specifying
‘num_cpus=n" for a task with n threads. The main purposes of Ray’s resource requirements are
admission control and intelligent autoscaling.



Distributed scheduler

Resource accounting

Each raylet tracks the resources local to its node. When a resource request is granted, the
raylet decreases the available local resources accordingly. Once the resources are returned (or
the requester dies), the raylet increases the local resource availability accordingly. Thus, the
raylet always has a strongly consistent view of the local resource availability.

Each raylet also receives information from the GCS about resource availability on other nodes
in the cluster. This is used for distributed scheduling, e.g., to load-balance across nodes in the
cluster. To reduce overheads of collection and dissemination, this information is only eventually
consistent; it may be stale. The information is sent through a periodic broadcast. GCS pulls
resource availability from each raylet periodically (100ms by default) and then aggregates and
rebroadcasts them back to each raylet.



Scheduling state machine
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State machine of raylet distributed scheduling

When a resource request (i.e RequestWorkerLease PRC) is received by the raylet, it will go
through the above state machine and end with one of the three states:

e Granted: The client may now use the granted resources and worker to execute a task or
actor.

e Reschedule: There was a better node than the current one, according to the current
node’s view of the cluster. The client should reschedule the request. There are two
possibilities:

o If the current node is the client’s preferred raylet (i.e. the first raylet that the client
contacted), then this is a spillback request. The client should retry the request at
the raylet specified by the first raylet.




o Else, the current node was the one chosen by the client’s preferred raylet. The
client should retry the request at the preferred raylet again.
e Canceled: The resource request could not be run. This can happen if the requested
scheduling policy is not feasible. For example:
o The client requested a hard node affinity policy but the node is dead.
o The requested runtime env for a task failed to be created, so the raylet could not
start workers to fulfill the request.

The actual logic of deciding “Which node is best” to fulfill the request is controlled by the
scheduling policies, described below.

Code references:
e src/ray/raylet/node_manager.cc
e src/ray/raylet/local_task_manager.cc
e src/ray/raylet/scheduling
e src/ray/protobuf/node_manager.proto

Scheduling policies

Ray has several scheduling policies that control where to run the task or actor. When a task or
actor is submitted, the user can optionally specify a scheduling strategy/policy to use (e.g.
“task.options(scheduling_strategy=MySchedulingPolicy).remote()’).

Default Hybrid Policy

This is the default policy when nothing else is specified. This policy first tries to pack tasks onto
the local node until the node’s critical resource utilization exceeds a configured threshold (50%
by default). The critical resource utilization is the max utilization of any resource on that node,
e.g., if a node is using 8/10 CPUs and 70/100GB RAM, then its critical resource utilization is
80%.

After the threshold is exceeded on the local node, the policy packs tasks onto the first remote
node (sorted by the node id), then the second remote node and so on and so forth until the
critical resource utilization on all nodes exceeds the threshold. After that it will pick the node with
the least critical resource utilization.

The purpose of this policy is to achieve a medium between bin-packing and load-balancing.
When nodes are under the critical resource utilization, the policy favors bin-packing. Sorting by
node ID ensures that all nodes use the same order when bin-packing. When nodes are over the
critical resource utilization, the policy favors load-balancing, picking the least-loaded node.

Spread Policy

This policy spreads tasks among nodes with available resources using round-robin. Note that
the round-robin order is local to each node’s distributed scheduler; there is no global



round-robin. If no node has available resources, tasks are spread round-robin among feasible
nodes.

Node Affinity Policy

With this policy, a user can explicitly specify a target node where the task or actor should run. If
the target node is alive, the task or actor only runs there. If the target node is dead, then
depending on whether the affinity is soft or not, the task or actor may be scheduled to other
nodes or fail to be scheduled.

Data Locality Policy

Ray supports data locality by having each task caller choose a preferred raylet based on the
caller’s local information about task argument locations. The scheduling policies implemented
by the raylets do not consider data locality. This is to avoid adding extra RPCs and complexity to
raylets to discover which task arguments are stored on which other nodes.

Placement Group Policy

This policy runs the task or actor where the given placement group is located.

Code references:
e src/ray/raylet/scheduling/policy

e python/ray/util/scheduling_strategies.py

Placement Groups

Since 1.0, Ray supports Placement Groups. Placement groups allow users to atomically reserve
groups of resources across multiple nodes (i.e., for gang scheduling). Each placement group
consists of resource bundles, i.e. {CPU: 2}. Bundles in the group can be packed as close as
possible for locality (PACK), or spread apart (SPREAD). Groups can be destroyed to release all
resources associated with the group. The Ray Autoscaler is aware of placement groups, and
auto-scales the cluster to ensure pending groups can be placed as needed.

Placement Group Creation

When the application requests a placement group creation, the worker sends a synchronous
RPC to the GCS. The GCS flushes the creation request to its backing storage and queues the
creation request.



placement_group()

0

Caller

Core Worker (1) B (2) PrepareBundle RPC
CreatePlacementGroup (3) CommitBundle RPC
RPC 3 .

a

Raylet ‘ ‘ Raylet ‘ ‘ Raylet

Since resource groups may involve resources across multiple nodes, Ray uses a two phase
commit protocol across the raylets to ensure atomicity. The protocol is coordinated by the GCS.
If any raylet dies in the middle of the protocol, the placement group creation is rolled back and
the GCS queues the request again. If the GCS dies and GCS fault tolerance is enabled, it pings
all participants upon restart to reinitiate the protocol.

Placement Group Lifetime

Unlike other Ray primitives (tasks, actors, objects), placement groups are not
reference-counted. They are owned by a job or a detached actor that creates them and are
automatically destroyed when the owner is dead. Users are also allowed to destroy the
placement group using the API ‘remove_placement_group’. Like actors, placement groups also
support detached placement groups, which live beyond the lifetime of their owners.

When a placement group is destroyed, all actors and tasks that use the reserved resources are
killed, and all reserved resources are released.

Fault Tolerance

When a placement group is created, it reserves resource bundles across multiple nodes. When

one of the nodes is killed, the lost bundles are rescheduled with higher priority than any pending
placement groups. Until those bundles are recreated, the placement group remains in a partially
allocated state.

Code references:
e src/ray/gcs/gcs_server/ges_placement_group_manager.h
e src/ray/gcs/gcs_server/gcs_placement_group _scheduler.h




Actor management

Actor creation
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Actor creation tasks are scheduled through the centralized GCS service.

When an actor is created in Python, the creating worker first registers the actor with the GCS.
For detached actors, the registration is done in a synchronized way to avoid race conditions
between actors with the same name. For non-detached actors (the default), registration is
asynchronous for performance.

After the registration, once all of the input dependencies for an actor creation task are resolved,
the creator then sends the task specification to the GCS service. The GCS service then
schedules the actor creation task through the same distributed scheduling protocol that is used
for normal tasks, as if the GCS were the actor creation task’s caller.

The original creator of the handle can begin to submit tasks on the actor handle or even pass it
as an argument to other tasks/actors before the GCS has scheduled the actor creation task.
Note that for asynchronous registration, the creator does not pass the actor handle to other
tasks/actors until the actor has been registered with the GCS. This is in case the creator dies
before registration finishes; by blocking task submission, we can ensure that other workers with
a reference to the actor can discover the failure. In this case, task submission is still
asynchronous, as the creator simply buffers the remote task until the actor registration is
complete.

Once the actor has been created, the GCS notifies any worker that has a handle to the actor via
pub-sub. Each handle caches the newly created actor’s run-time metadata (e.g., RPC address).



Any pending tasks that were submitted on the actor handle can then be sent to the actor for
execution.

Similar to task definitions, actor definitions are downloaded onto workers via the GCS.

Actor task execution
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caller are executed in order.
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The scheduling workflow of a Ray actor task.

An actor can have an unlimited number of callers. An actor handle represents a single caller: it
contains the RPC address of the actor to which it refers. The calling worker connects and

submits tasks to this address.
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Once created, actor tasks translate into direct gRPC calls to the actor process. An actor can
handle many concurrent calls, though here we only show one.

The execution order of submitted tasks is described here.

Actor death

Actors may be detached or non-detached. Non-detached actors are the default and are
recommended for most use cases. They are automatically garbage-collected by Ray when all
handles go out of scope or the job exits. Detached actors’ lifetimes are not tied to their original
creator and must be deleted manually by the application once they are no longer needed.

For a non-detached actor, when all pending tasks for the actor have finished and all handles to
the actor have gone out of scope (tracked through reference counting), the original creator of
the actor notifies the GCS service. The GCS service then sends a KillActor RPC to the actor




that will cause the actor to exit its process. The GCS also terminates the actor if it detects that
the creator has exited (published through the heartbeat table). All pending and subsequent
tasks submitted on this actor will then fail with a RayActorError.
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Actor termination is also through the GCS.

Actors may also unexpectedly crash during their runtime (e.g., from a segfault or calling
sys.exit). By default, any task submitted to a crashed actor will fail with a RayActorError, as if
the actor exited normally.

Ray also provides an option (max_restarts) to automatically restart actors, up to a specified
number of times. If this option is enabled and the actor’s owner is still alive, the GCS service will
attempt to restart a crashed actor by resubmitting its creation task. All clients with handles to the
actor will cache any pending tasks to the actor until the actor has been restarted. If the actor is
not restartable or has reached the maximum number of restarts, the client will fail all pending
tasks.

A second option (max_task_retries) can be used to enable automatic retry of failed actor tasks
after the actor has restarted. This can be useful for idempotent tasks and cases where the user
does not require custom handling of a RayActorError.

Code references:

e src/ray/core_worker/core_worker.cc
src/ray/common/task/task_spec.h
src/ray/core_worker/transport/direct_actor_transport.cc
src/ray/gcs/gcs_server/ges_actor_manager.cc
src/ray/gcs/ges_server/ges_actor_scheduler.cc
src/ray/protobuf/core_worker.proto




Global Control Service

Overview

The Global Control Service, also known as the GCS, is Ray’s cluster control plane. It manages
the Ray cluster and serves as a centralized place to coordinate raylets and discover other

cluster processes. The GCS also serves as an entry point for external services like the
autoscaler and dashboard to communicate with the Ray cluster. The GCS is currently

single-threaded except for heartbeat checks and resource polling; there are ongoing efforts to

scale other operations such as actor management via multithreading.

GCS
Actor manager
Node manager
In-memory
table store

gRPC
endpoints for
cluster status

Backing
Storage

If the GCS fails, features involving the GCS won’t work. These are:
¢ Node management: Manage addition and deletion of nodes to the cluster. It also

broadcasts this information to all raylets so the raylets will be aware of the node

changes.

e Resource management: Broadcast the resource availability of each raylet to the whole

cluster to make sure each raylet’s view of the resource usage is updated.

e Actor management: Manage actor creation and deletion requests. It also monitors the

actor liveness and triggers recreation (if configured) in case of an actor failure.

e Placement group management: Coordinate placement group creation and deletion in

the Ray cluster.




e Metadata store: Provide a key-value store which can be accessed by any worker. Note
that this is meant for small metadata only and is not meant to be a scalable storage
system. Task and object metadata, for example, are stored directly in the workers.
Worker manager: Handle worker failure reported by raylet.

Runtime env: GCS is the place managing the runtime env package, including counting
the number of usage of the plackages and the garbage collection.

GCS also provides several gRPC endpoints to retrieve the current status of the ray cluster, like
actor, worker and node information.

GCS can be optionally backed by an external storage system. By default, a simple in-memory
hash map is used, but it can be configured to write-through to a Redis store.

Node management

When a raylet starts, it registers with the GCS. The GCS writes the raylet’s information to
storage. Once the raylet is registered to the GCS, the event is broadcasted to all other raylets.

RPC: RegisterNode
GCS - New Raylet

RPC: ReportHeartbeat

Broadcast node additions
and failures Raylet

After the node is registered, the GCS monitors the liveness of the raylet by doing periodic health
checks. The GCS also pulls the resource view of the raylet and broadcasts it to the other
raylets. If the raylet fails, the GCS also broadcasts the death of the raylet to the cluster. Once
raylets receive the information, they clean up any related state as needed.

Raylets also report deaths of any local worker processes to the GCS so it can be broadcasted
to the other raylets. This is used to clean up any related system state, e.g., killing tasks that
were submitted by that worker.

Code references:
e src/ray/gcs/gces_server/gecs_node_manager.cc
e src/ray/gcs/ges_server/gces_heartbeat_manager.cc
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The GCS is responsible for making sure raylets have the latest view of the resource usage in
the cluster. Distributed scheduling efficiency depends on this: if the view is not fresh enough a
raylet might mistakenly schedule a task to another raylet which doesn’t have resources to run
the task.

The GCS will pull the resource usage from registered raylets every 100ms by default. It also
broadcasts the global view to all the raylet every 100ms.

The GCS is also the entrypoint for the autoscaler to get the current cluster load. The autoscaler
uses this to allocate or remove nodes from the cluster.

Code references:
e src/ray/gcs/ges_server/ges_resource_manager.cc
e src/ray/gcs/gcs_server/gcs_resource_report_poller.cc
e src/ray/gcs/gcs_server/ray_syncer.h

Actor management

The GCS plays an important role in actor management. All actors need to be registered in the
GCS first before being scheduled. GCS is also the owner of the detached actors. Refer to actor
management for more information.

Code references:
e src/ray/gcs/gcs_server/ges_actor_manager.cc
e src/ray/gcs/gces_server/ges_actor_scheduler.cc




Placement group management

The GCS also manages the lifecycle of the placement groups. The GCS implements a two
phase commit protocol to create placement groups. For more details, please check the
placement groups section.

Code reference:
e src/ray/gcs/gcs_server/gcs_placement_group _manager.cc
e src/ray/gcs/gcs_server/ges_placement group_scheduler.cc

Metadata store

The GCS stores certain cluster-level metadata in an internal key-value store. This includes:

e The cluster’s dashboard address.

e Remote function definitions. Whenever a remote function is defined in the language
frontend, the Ray worker process will check whether it's stored in the GCS and add it if
not. The worker assigned to run a task then loads the function definition from the GCS.

e Runtime environment data. By default, the runtime environment’s working dir is stored in
the GCS. The GCS garbage collects runtime environments by counting the number of
detached actors and jobs using the environment.

e Some Ray libraries also use the GCS to store metadata. For example, Ray Serve stores
deployment metadata in the GCS.

Code reference:
e src/ray/gcs/gces_server/gcs_kv_manager.cc

Fault tolerance

The GCS is a critical component of the Ray cluster, and if it fails, all functions mentioned above
will not work.

In Ray v2.0, the GCS can optionally recover from failure. However, during recovery the above
functions will be temporarily unavailable.

By default, the GCS stores everything into an in-memory store, which is lost upon failure. To
make the GCS fault-tolerant, it has to write the data into a persistent store. Ray supports Redis
as an external storage system. To support GCS fault tolerance, the GCS should be backed by
an HA Redis instance. Then, when the GCS restarts, it loads the information from the Redis
store first, including any Raylets, actors, and placement groups that were running in the cluster
at the time of the failure. Then the GCS will resume regular functions like health checks and
resource management.



Thus, the following features won’t be available while the GCS recovers:
e Actor creation/deletion/reconstruction

Placement group creation/deletion/reconstruction

Resource management

New raylets won’t be able to register

New Ray workers won’t be able to start

Note that any running Ray tasks and actors will remain alive since these components do not
require reading or writing the GCS. Similarly, any existing objects will continue to be available.

Code references:
e src/ray/gcs/gces_server/ges_server.cc
e src/ray/protobuf/gcs.proto
e src/ray/protobuf/gcs _service.proto

Cluster Management

The previous sections described the system design for execution of Ray tasks, actors, and
objects. However, realistic Ray usage requires additional operations for deploying applications,
adding and removing nodes, observing cluster state, etc. Here, we describe these auxiliary
operations related to managing and deploying Ray clusters.
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Auxiliary processes involved in cluster management. Blue processes are singletons that live on
the head node. Pink processes are launched per-node and manage auxiliary operations for their
local node.

Here is a summary of the auxiliary processes that Ray clusters launch and the process name



Process name

Role

Autoscaler
(also known as the
cluster launcher)

autoscaler/_private/monitor.py

Adds and removes nodes based on
cluster resources and utilization.

Ray Client server

ray.util.client.server

Proxy server for Ray Client, which is
used for interactive development on a
cluster.

API server
(also known as the
Dashboard server)

dashboard/dashboard.py

Previously the main role was to host
the dashboard server, but today it is
also the main endpoint for API calls to
the cluster, including job submission
and the state API.

API agent
(also known as Ray
agent)

dashboard/agent.py

Collects metrics on the local node for
cluster-level aggregation, installs
runtime environments for task and
actor execution.

Log monitor log_monitor.py Monitors local logs (by default stored
in /tmp/ray/session_latest/logs) and
publishes errors to the driver.

Autoscaler

The Ray Autoscaler is responsible for adding and removing nodes from the cluster. It looks at
the logical resource demands exposed by the distributed scheduler, the nodes currently in the
cluster, the node profiles of the cluster, calculates the desired cluster configuration and performs

the operations to move the cluster to the desired state.

Pull and broadcast

> GCS

resources
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Raylet

Autoscaler

Cloud provider (AWS,
GCP, Azure, etc)




Autoscaler pulls current cluster load from the GCS and invokes cloud providers to add or
remove machines
The autoscaling loop works as follows:

e The application submits tasks, actors, placement groups, which requests resources such
as cpu.

e The scheduler looks at the demand and availability and makes a decision to place the
task for execution or puts it into pending if it cannot be satisfied. This information is
shapshotted into GCS.

e The autoscaler, running as a separate process, will periodically fetch the snapshot from
GCS. It looks at the resources available in the cluster, resources requested, what is
pending, the worker node configuration specified for the cluster, and runs a bin-packing
algorithm to calculate the number of nodes to satisfy both running and pending tasks,
actors, and placement group requests.

e The autoscaler then adds or removes nodes from the cluster via the node provider
interface. The node provider interface allows Ray to plug into different cloud providers
(e.g- AWS, GCP, Azure), cluster managers (e.g. Kubernetes), or on-premise data
centers.

e When the node comes up it registers with the cluster and accepts application workload.

Downscaling
If a node is idle for a timeout (5 minutes by default), it is removed from the cluster. A node is
considered idle when there are no active tasks, actors, or primary copies of the objects.

Upscaling speed

There is a limit on the number of pending nodes, determined by the upscaling speed. The speed
is defined as the ratio of the number of nodes pending to the current number of nodes. The
higher the value, the more aggressive upscaling will be. For example, if this is set to 1.0, the
cluster can grow in size by at most 100% at any time, so if the cluster currently has 20 nodes, at
most 20 pending launches are allowed. The minimum number of pending nodes is 5 to ensure
sufficient upscaling speed even for small clusters.

Heterogeneous node types

Ray also supports multiple cluster node types. The concept of a cluster node type encompasses
both the physical instance type (e.g., AWS p3.8xI GPU nodes vs m4.16xI CPU nodes), as well
as other attributes (e.g., IAM role, the machine image, etc). Custom resources can be specified
for each node type so that Ray is aware of the demand for specific node types at the application
level (e.g., a task may request to be placed on a machine with a specific role or machine image
via custom resource).

Code references:
e python/ray/autoscaler/ private/autoscaler.py
e python/ray/autoscaler/_private/resource_demand_scheduler.py
e python/ray/autoscaler/node_provider.py




Job Submission

Jobs can be submitted to the Ray cluster via a command line interface (CLI), a Python SDK, or
a REST API. The CLI calls into the Python SDK, which in turn makes HTTP requests to the
Jobs REST API server on the Ray cluster. The REST APl is currently hosted in the Ray
dashboard backend, but may be moved to a standalone API server in the future.

Job1 Job2
supervisor || supervisor Worker Worker
Client (e.g., actor actor

A

user laptop)

A
7
Naylet Job Raylet

NA—start/stop
ATTP ' : P Worker node

Job Manager \

Job . _
request | endpoint

Ray API server

In-memory KV store

GCS

Job status

Head node

Ray cluster

A diagram of the architecture of Ray Job Submission. Blue boxes indicate singleton services
that manage job submission, among other cluster-level operations.

Each job is managed by its own dedicated job supervisor actor that runs on the Ray head node.
This actor runs in the job’s user-specified runtime environment, and the job’s user-specified
entrypoint command is run in a subprocess that inherits this runtime environment. If this
command contains a Ray script, the Ray script will attach to the running Ray cluster.

Jobs report structured statuses (e.g. PENDING, RUNNING, SUCCEEDED) and messages that
can be fetched via the API. These are stored in the GCS.

The job supervisor actor and the subprocess it starts fate-share with each other. If the job actor
dies, the latest job status remains. The status is updated to FAILED the next time the user
requests the job status.

Stopping a job happens asynchronously by setting a “stop” event on the corresponding job
supervisor actor. This actor is responsible for terminating the job subprocess, updating its
status, then exiting.



The job manager manages job supervisor actors and logs. The output of the entrypoint script is
written directly to a file on the head node, and this file can be read or streamed via the HTTP
endpoint.

Job Submission is in beta as of Ray 2.0. A key step on the roadmap for exiting beta is enabling
job supervisor actors to be scheduled on nodes other than the head node to reduce pressure on
the head node in multi-tenant setups.

Runtime Environments and Multitenancy

A runtime environment defines dependencies such as files, packages, environment variables
needed for a Python script to run. It is installed dynamically on the cluster at runtime, and can
be specified for a Ray job, or for specific actors and tasks.

Installation and deletion of runtime environments are handled by a RuntimeEnvAgent gRPC
server that runs on each node. The RuntimeEnvAgent fate-shares with the raylet to simplify the
failure model and because it is a core component for scheduling tasks and actors.

When a task or actor requires a runtime environment, the raylet sends a gRPC request to the
RuntimeEnvAgent to create the environment if it does not already exist.

Creating an environment may entail:
- Downloading and installing packages via "pip install’
- Setting environment variables for a Ray worker process
- Calling “conda activate™ before starting a Ray worker process
- Downloading files from remote cloud storage

Runtime environment resources such as downloaded files and installed conda environments are
cached on each node so that they can be shared between different tasks, actors and jobs.
When the cache size limit is exceeded, resources not currently used by any actor, task or job
will be deleted.

In ongoing work, support is being added for user-defined third-party plugins for setup and
installation of custom resources (such as PEX files, for example).
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An overview of the lifecycle of a runtime environment.

KubeRay

The KubeRay operator manages Ray clusters in a Kubernetes setting. Each Ray node runs as
a Kubernetes pod. KubeRay follows the Kubernetes Operator Pattern:
- A custom resource, called a RayCluster, describes the desired state of a Ray cluster.
- A custom controller, the KubeRay operator, manages Ray pods in order to match the
RayCluster’s specification.

See the docs on KubeRay for more information.

Ray Observability

Ray provides various tools and features to give more visibility into the cluster.

Ray Dashboard

Ray provides a built-in dashboard that runs as an HTTP server on the head node. The Ray
dashboard periodically aggregates system state from the cluster, organizes and stores data,
and provides the web Ul to visualize the cluster state.



Log Aggregation

The Ray driver aggregates and prints all log messages printed from actors and tasks. When a
task or actor prints logs to its stdout or stderr, they are automatically redirected to the
corresponding worker log file. A Python process known as a log monitor runs on each node.
The log monitor periodically reads local Ray log files and publishes the log messages to the
driver program via GCS pubsub.

Worker Node @ray.remote Head Node
def task():
print("hello")

Worker

(Task/Actor) )
(1) Redirect

stdout/stderr to a
file

(3) Driver receives
the published logs

Log Monitor

(2) Read log files

i and publish them to
tmp/ray/session_latest GCSp (4) Print

hello

Metrics

Ray has native integration with OpenCensus and supports export to Prometheus by default. All
Ray components (GCS Service, Raylet, Workers) emit metrics to their local Ray agent process.
Each Ray agent exposes the metrics via OpenCensus (by default as a Prometheus endpoint).
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Ray State API

Since Ray 2.0, Ray supports state APIs that allow users to conveniently access snapshots of
the current Ray state through a CLI or the Python SDK. State APIs support summaries and
queries of specific Ray tasks, actors, etc.

Systems like Kubernetes that support similar APIs often write such execution metadata, e.g.,
the current pods, to a persistent key-value store or database. In contrast, Ray does not persist
execution information such as currently running tasks. This is because Ray tasks, objects, etc.
are much lighter-weight, and the cost of writing such metadata to a database would be
prohibitively high. Instead, the execution metadata is distributed across workers via the
ownership model, and the metadata fate-shares with the workers. Thus, to perform a query
such as ‘“list all tasks”, the state APls must query the data from the data source (e.g., workers)
on demand.

Currently, the API server collects the following information from these data sources:

e Raylet

o Tasks

o Objects
e Ray agent

o Runtime environments
e GCS

o Actors

o Nodes

o Placement groups

o Worker (processes)



Appendix

Below are more detailed diagrams and examples of the system architecture.
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when replacing a task’s ObjectID argument with the object’s value.

f. Scheduler fetches objects from remote nodes to fulfill dependencies of locally queued

tasks.

Example of task scheduling and object storage

We’'ll walk through the physical execution of a Ray program that looks like this:

Storage and retrieval of large objects. Retrieval is via “ray.get’ or during task execution,




@ray.remote
def A():
y_id = C.remote(B.remote())

y = ray.get(y_id)

In this example, task A submits tasks B and C, and C depends on the output of B. For
illustration purposes, let's suppose that B returns a large object X, and C returns a small object
Y. This will allow us to show the difference between the in-process and shared-memory object
stores. We'll also show what happens if tasks A, B, and C all execute on different nodes, to
show how distributed scheduling works.



Distributed task scheduling

We'll start off with worker 1 executing A. Tasks B and C have already been submitted to worker
1. Thus, worker 1’s local ownership table already includes entries for both X and Y. First, we’'ll
walk through an example of scheduling B for execution:

/r Scheduler Scheduler
~ ajf

[1 Worker <::) M || Worker
2 6

{ 3 | Task |Val | Loc \ LA

X | B() ﬁ]nz

Y [ C(X)

vs]

Node 1 Node 2

Worker 1 asks its local scheduler for resources to execute B.

Scheduler 1 responds, telling worker 1 to retry the scheduling request at node 2.
Worker 1 updates its local ownership table to indicate that task B is pending on node 2.
Worker 1 asks the scheduler on node 2 for resources to execute B.

Scheduler 2 grants the resources to worker 1 and responds with the address of worker
2. Scheduler 2 ensures that no other tasks will be assigned to worker 2 while worker 1
still holds the resources.

6. Worker 1 sends task B to worker 2 for execution.

oM~



Task execution

Next, we’ll show an example of a worker executing a task and storing the return value in the

distributed object store:
=4 =
Sche?dﬁg- Scheduler

1 @X: N2

| S ——
Worker @Sf Worker
Obj | Task |Val |Loc A
X B(ﬁ} *x | N2 [1
Y | C(X)
Object X J/
Store b
Node 1 Node 2 1
Object Table g N2
Obj |Locs

1. Worker 2 finishes executing B and stores the return value X in its local object store.

a. Node 2 asynchronously updates the object table to indicate that X is now on
node 2 (dotted arrow).

b. Since this is the first copy of X to be created, node 2 also pins its copy of X until
worker 1 notifies node 2 that it is okay to release the object (not shown). This
ensures that the object value is reachable while it is still in reference.

2. Worker 2 responds to worker 1 indicating that B has finished.

3. Worker 1 updates its local ownership table to indicate that X is stored in distributed
memory.

4. Worker 1 returns the resources to scheduler 2. Worker 2 may now be reused to execute
other tasks.



Distributed task scheduling and argument resolution

Now that B has finished, task C can start execution. Worker 1 schedules C next, using a similar
protocol as for task B:

/v Scheduler ; Scheduler
[ 1 1W rker @ .
\ 2

J | Task |Vval |Loc

e

X | B() | *x | N2

Y [c(X)| | 3|n3

Node 1 Node 3

/

Object Table X3
Obj |Locs

X [N2]

Worker 1 asks its local scheduler for resources to execute C.

Scheduler 1 responds, telling worker 1 to retry the scheduling request at node 3.
Worker 1 updates its local ownership table to indicate that task C is pending on node 3.
Worker 1 asks the scheduler on node 3 for resources to execute C.

Scheduler 3 sees that C depends on X, but it does not have a copy of X in its local
object store. Scheduler 3 queues C and asks the object table for a location for X.

oD~



Task C requires a local copy of X to begin execution, so node 3 fetches a copy of X:

I —
=
- Scheduler
Worker @
Obj | Task |Val |Loc
X | B() | *x | N2
Y [[CCX) N3
Object x | Object
Store Store/
Node 3.
X: N3
Object Table ﬂ X: N2
Obj |Locs
X [N2]

1. Object table responds to scheduler 3 indicating that X is located on node 2.
2. Scheduler asks object store on node 2 to send a copy of X.

3. Xis copied from node 2 to node 3.

a. Node 3 also asynchronously updates the object table to indicate that X is also on
Node 3 (dotted arrow).
b. Node 3’s copy of X is cached but not pinned. While a local worker is using it, the
object will not be evicted. However, unlike the copy of X on node 2, node 3’s copy
may be evicted according to LRU when object store 3 is under memory pressure.
If this occurs and node 3 later needs the object again, it can re-fetch it from node
2 or a different copy using the same protocol shown here.
4. Since node 3 now has a local copy of X, scheduler 3 grants the resources to worker 1
and responds with the address of worker 3.



Task execution and object inlining

Task C executes and returns an object small enough to be stored in the in-process memory

store:

H
)
1
Worker A L__f__
Obj | Task |Val |Loc
X | B() | *x | N2
()Y Jeoor v -

o= i

zﬁ

Scheduler

I

1. Worker 1 sends task C to worker 3 for execution.
2. Worker 3 gets the value of X from its local object store (similar to a ‘ray.get’) and runs

C(X).

FeCt
Store

Node 3

3. Worker 3 finishes C and returns Y, this time by value instead of storing it in its local

object store.

4. Worker 1 stores Y in its in-process memory store. It also erases the specification and
location of task C, since C has finished execution. At this point, the outstanding “ray.get’
call in task A will find and return the value of y from worker 1’s in-process store.

5. Worker 1 returns the resources to scheduler 3. Worker 3 may now be reused to execute
other tasks. This may be done before step 4.



Garbage collection

Finally, we show how memory is cleaned up by the workers:

1. Worker 1 erases its entry for object X. This is safe to do because the pending task C had
the only reference to X and C has now finished. Worker 1 keeps its entry for Y because

the application still has a reference to y’s ObjectID.

a. Eventually, all copies of X are deleted from the cluster. This can be done at any
point after step 1. As noted above, node 3’s copy of X may also be deleted

Obj | Task |Val |Loc
1] [P leded - Reepmnn,
] S e
Y ey | -- ! =
Object Object
Store Store
Node 1 Node 2 Node 3:
y &
Object Table del X
Obj | Locs 4-"'
X | [N2,N3]

before step 1, if node 3’s object store is under memory pressure.




