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Abstract

We introduce a new subclass of Allen’s interval algebra
we call “ORD-Horn subclass,” which is a strict super-
set of the “pointisable subclass.” We prove that reaso-
ning in the ORD-Horn subclass is a polynomial-time
problem and show that the path-consistency method is
sufficient for deciding satisfiability. Further, using an
extensive machine-generated case analysis, we show
that the ORD-Horn subclass is a maximal tractable
subclass of the full algebra (assuming P#NP). In fact,
it is the unique greatest tractable subclass amongst
the subclasses that contain all basic relations.

Introduction

Temporal information is often conveyed qualitatively
by specifying the relative positions of time intervals
such as “...point to the figure while explaining the
performance of the system ...” Further, for natural
language understanding (Allen 1984; Song & Cohen
1988), general planning (Allen 1991; Allen & Koomen
1983), presentation planning in a multi-media context
(Feiner et al. 1993), and knowledge representation
(Weida & Litman 1992), the representation of quali-
tative temporal relations and reasoning about them is
essential. Allen (1983) introduces an algebra of bi-
nary relations on intervals for representing qualitative
temporal information and addresses the problem of re-
asoning about such information. Since the reasoning
problems are NP-hard for the full algebra (Vilain &
Kautz 1986), it is very unlikely that other polynomial-
time algorithms will be found that solve this problem in
general. Subsequent research has concentrated on desi-
gning more efficient reasoning algorithms, on identify-
ing tractable special cases, and on isolating sources of
computational complexity (Golumbic & Shamir 1992;
Ladkin & Maddux 1988; Nokel 1989; Valdéz-Pérez
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1987; van Beek 1989; 1990; van Beek & Cohen 1990;
Vilain & Kautz 1986; Vilain, Kautz, & van Beek 1989).

We extend these previous results in three ways.
Firstly, we present a new tractable subclass of Allen’s
interval algebra, which we call ORD-Horn subclass.
This subclass is considerably larger than all other
known tractable subclasses (it contains 10% of the full
algebra) and strictly contains the pointisable subclass
(Ladkin & Maddux 1988; van Beek 1989). Secondly, we
show that the path-consistency method 1s sufficient for
deciding satisfiability in this subclass. Thirdly, using
an extensive machine-generated case analysis, we show
that this subclass is a maximal subclass such that sa-
tisfiability is tractable (assuming P#NP).!

From a practical point of view, these results imply
that the path-consistency method has a much larger
range of applicability than previously believed, provi-
ded we are mainly interested in satisfiability. Further,
our results can be used to design backtracking algo-
rithms for the full algebra that are more efficient than
those based on other tractable subclasses.

Reasoning about Interval Relations
using Allen’s Interval Algebra

Allen’s (1983) approach to reasoning about time is
based on the notion of time intervals and binary re-
lations on them. A time interval X is an orde-
red pair (X7, X7T) such that X~ < X%+ where X~
and X1 are interpreted as points on the real line.?
So, if we talk about interval interpretations or -
interpretations in the following, we mean mappings
of time intervals to pairs of distinct real numbers such
that the beginning of an interval is strictly before the
ending of the interval.

'The programs we used and an enumeration of the
ORD-Horn subclass can be obtained from the authors
or by anonymous ftp from duck.dfki.uni-sb.de as
/pub/papers/DFKI-others/RR-93-11.programs.tar.Z.

20ther underlying models of the time line are also possi-
ble, e.g., the rationals (Allen & Hayes 1985; Ladkin 1987).
For our purposes these distinctions are not significant,
however.



Basic Interval Sym- Endpoint

Relation bol Relations
X before Y =< X~ <Y, X <YT,
Y after X - Xt<y-, Xt<yt
X meets Y m X~ <Y, X <YT,
Y met-by X m- | Xt=Y", Xt<vt
X overlaps Y o) X~ <Y, X <YT,
Y overlapped-by X | o~ XT>vy", Xt<yt
X during Y d X~ >Y", X <YT,
Y includes X d~ Xt>Y", Xt<yYt
X starts Y s X—=Y", X <YT,
Y started-by X s~ Xt>y", Xt<yt
X finishes Y f X~ >Y", X <YT,
Y finished-by X = Xt>y-, Xt=v*t
X equals YV = X~ =YY", X <VYT,
Xt>y-, Xt=v*t

Table 1: The set B of the thirteen basic relations.

Given two interpreted time intervals, their relative
positions can be described by exactly one of the ele-
ments of the set B of thirteen basic interval relati-
ons (denoted by B in the following), where each basic
relation can be defined in terms of its endpoint re-
lations (see Table 1). An atomic formula of the form
XBY , where X and Y are intervals and B € B, is said
to be satisfied by an I-interpretation iff the interpre-
tation of the intervals satisfies the endpoint relations
specified in Table 1.

In order to express indefinite information, unions of
the basic interval relations are used, which are writ-
ten as sets of basic relations leading to 2'3 binary in-
terval relations (denoted by R, S,T)—including the
null relation @ (also denoted by L) and the univer-
sal relation B (also denoted by T). The set of all

binary interval relations 9B is denoted by A.

An atomic formula of the form X {By,...,B,}Y
(denoted by ¢) is called interval formula. Such a
formula is satisfied by an I-interpretation & iff X B; Y
is satisfied by & for some 7, 1 < ¢ < n. Finite sets of
interval formulas are denoted by ©. Such a set © is
called I-satisfiable iff there exists an I-interpretation
S that satisfies every formula of ©. Further, such a
satisfying /-interpretation < 1s called /-model of ©.
If an interval formula ¢ is satisfied by every I-model of
a set of interval formulas ©, we say that ¢ is logically
implied by ©, written © = ¢.

Fundamental reasoning problems in this frame-
work include (Golumbic & Shamir 1992; Ladkin & Ma-
ddux 1988; van Beek 1990; Vilain & Kautz 1986): Gi-
ven a set of interval formulas ©, (1) decide the of I-
satisfiability of © (ISAT), and (2) determine for each
pair of intervals X, Y the strongest implied relation bet-
ween them (ISI).

In the following, we often consider restricted rea-
soning problems where the relations used in interval
formulas in © are only from a subclass § of all in-

terval relations. In this case we say that © is a set
of formulas over §, and we use a parameter in the
problem description to denote the subclass considered,
e.g., ISAT(S). As is well-known, ISAT and ISI are
equivalent with respect to polynomial Turing-reduc-
tions (Vilain & Kautz 1986) and this equivalence also
extends to the restricted problems ISAT(S) and ISI(S),
provided & contains all basic relations.

The most prominent method to solve these problems
(approximately for all interval relations or exactly
for subclasses) is constraint propagation (Allen 1983;
Ladkin & Maddux 1988; Nokel 1989; van Beek 1989;
van Beek & Cohen 1990; Vilain & Kautz 1986) using
a slightly simplified form of the path-consistency al-
gorithm (Mackworth 1977; Montanari 1974). In the
following, we briefly characterize this method without
going into details, though. In order to do so, we first
have to introduce Allen’s interval algebra.

Allen’s interval algebra (1983) consists of the set

A =92B ofall binary interval relations and the ope-
rations unary converse (denoted by -~), binary in-
tersection (denoted by N), and binary composition
(denoted by o), which are defined as follows:

VX, Y XR-Y & YRX
VX,Y: X(RNS)Y  XRY AXSY
VX,Y: X (RoS)Y <« 3Z:(XRZAZSY).

Assume an operator I' that maps finite sets of inter-
val formulas to finite sets of interval formulas in the
following way:

o) = OU{XTY |X,Y appear in O}
U{XRY | (Y R- X) € ©}
U{X (BRNS)Y | (XRY),(XSY) € 0}
U{X (RoS)Y | (XRZ),(ZSY) € B}.

Since there are only finitely many different interval for-
mulas for a finite set of intervals and I' 1s monotone, it
follows that for each © there exists a natural number
n such that (@) = I"*t1(0). I'"(O) is called the
closure of ©, written ©. Considering the formulas of
the form (X R;Y) € © for given X, Y, it is evident that
the R;’s are closed under intersection, and hence there
exists (X SY) € © such that S is the strongest relation
amongst the R;’s, i.e., S C R;, for every 7. The subset
of a closure @ containing for each pair of intervals only
the strongest relations is called the reduced closure
of © and is denoted by ©.

As can be easily shown, every reduced closure of a
set © is path consistent (Mackworth 1977), which
means that for every three intervals X,Y, 7 Aand for
every interpretation < that satisfies (X RY') € ©, there
exists an interpretation &’ that agrees with & on X and
Y and in addition satisfies (XSZ), (Z75'Y) € ©. Under
the assumption that (X RY') € O implies (Y R~ X) €
O, it is also easy to show that path consistency of ©
implies that ©® = ©. For this reason, we will use the
term path-consistent set as a synonym for a set that



is the reduced closure of itself. Finally, computing &)
is polynomial in the size of © (Mackworth & Freuder
1985; Montanari 1974).

The ORD-Horn Subclass

Previous results on the tractability of ISAT(S) (and
hence ISI(S)) for some subclass & C A made use of
the expressibility of interval formulas over § as certain
logical formulas involving endpoint relations.

As usual, by a clause we mean a disjunction of li-
terals, where a literal in turn is an atomic formula or
a negated atomic formula. As atomic formulas we
allow a < b and @ = b, where a and b denote endpoints
of intervals. The negation of ¢ = b is also written as
a # b. Finite sets of such clause will be denoted by €2.
In the following, we consider a slightly restricted form
of clauses, which we call ORD clauses. These clauses
do not contain negations of atoms of the form (a < b),
1.e., they only contain literals of the form:

a="b a<b a#b.

The ORD-clause form of an interval formula ¢,
written w(¢), is the set of ORD clauses over endpoint
relations that is equivalent to ¢, i.e., every interval
model of ¢ can be transformed into a model of the
ORD-clause form over the reals and wice versa using
the obvious transformation. Consider, for instance,

(X {d,0,s}Y):

(Y= <Y+, (V- £V,
(X~ <VH), (X~ #Y¥),
(V= <x*), (Xt #Y),
(XTSYH), (X+2YH).

The function m(-) is extended to finite sets of interval
formulas in the obvious way, i.e., for identical inter-
vals in ©, identical endpoints are used in 7(@). Si-
milarly to the notions of [-satisfiability, we define R-
satisfiability of € to be the satisfiability of € over the
real numbers.

Proposition 1 © is I-satisfiable iff =(©) is R-
satisfiable.

Not all relations permit a ORD-clause form that is
as concise as the the one shown above, which contains
only unit clauses. However, in particular those rela-
tions that allow for such a clause form have intere-
sting computational properties. For instance, the con-
tinuous endpoint subclass (which is denoted by C)
can be defined as the subclass of interval relations that
(1) permit a clause form that contains only unit clau-
ses, and (2) for each unit clause a # b, the clause form
contains also a unit clause of the form a < b or b < a.

As demonstrated above, the relation {d,o,s} is a
member of the continuous endpoint subclass. This
subclass has the favorable property that the path-
consistency method solves ISI(C) (van Beek 1989;
van Beek & Cohen 1990; Vilain, Kautz, & van Beek

1989). A slight generalization of the continuous end-
point subclass is the pointisable subclass (denoted
by P) that is defined in the same way as C, but wit-
hout condition (2). Path-consistency is not sufficient
for solving ISI(P) (van Beek 1989) but still sufficient
for deciding satisfiability (Ladkin & Maddux 1988;
Vilain & Kautz 1986).

We generalize this approach by being more liberal
concerning the clause form. We consider the subclass
of Allen’s interval algebra such that the relations per-
mit an ORD-clause form containing only clauses with
at most one positive literal, which we call ORD-Horn
clauses. The subclass defined in this way is called
ORD-Horn subclass, and we use the symbol H to
refer to it. The relation {o,s, ™~} is, for instance, an
element of # because m(X {o,s,f7}Y) can be expres-
sed as follows:

{(X~ < XT), (X~ #X+),
(Y= <Y+, (V- £V,
(X- <Y, (X~ <Y¥), (X-£YH),
(Y= SX*), (X*ZY7), (X+<yH),

(X~ 4Y-VvXt£YH)

By definition, the ORD-Horn subclass contains the
pointisable subclass. Further, by the above example,
this inclusion is strict.

Consider now the theory ORD that axiomatizes “="
as an equivalence relation and “<” as a partial ordering
over the equivalence classes:

Ve,y,z2 z<yAy<z — z<z
Va: <z

Ve, y: r<yAhy<zr — z=y
Ve, y: r=y — x <y
Ve, y: r=y — y<zx.

Although this theory is much weaker than the theory
of the reals, R-satisfiability of a set €2 of ORD clauses is
nevertheless equivalent to the satisfiability of QU ORD
over arbitrary interpretations.

Proposition 2 4 set of ORD clauses € is R-
satisfiable iff QU ORD is satisfiable.3

Proof Sketch. Any linearization of a partial order
that satisfies all atoms appearing in ORD clauses also
satisfies these atoms. Hence, a model of Q@ U ORD
can be used to generate an R-model for Q2. The other
direction is trivial. u

In the following, ORDgq shall denote the axioms of
ORD instantiated to all endpoints mentioned in Q. As
a specialization of the Herbrand theorem, we obtain
the next proposition.

Proposition 3 QU ORD s satisfiable iff QU ORDg
15 satisfiable.

Full proofs are given in the long paper (Nebel &
Biirckert 1993), which can be obtained by anonymous ftp
from duck.dfki.uni-sb.de.



From the fact that ORDg and € are propositio-
nal Horn formulas, polynomiality of ISAT(#) is im-
mediate.

Theorem 4 ISAT(H) is polynomial.

The Applicability of Path-Consistency

Enumerating the ORD-Horn subclass reveals that
there are 868 relations (including the null relation L)
in Allen’s interval algebra that can be expressed using
ORD-Horn clauses. Since the full algebra contains
213 = 8192 relations, H covers more than 10% of the
full algebra. Comparing this with the continuous end-
point subclass C, which contains 83 relations, and the
pointisable subclass P, which contains 188 relations,*
having shown tractability for H is a clear improvement
over previous results. However, there remains the que-
stion of whether the “traditional” method of reasoning
in Allen’s interval algebra, i.e., constraint propagation,
gives reasonable results. As it turns out, this is indeed
the case.

Theorem 5 Let © be a path-consistent set of interval
formulas over H. Then © is I-satisfiable iff (X LY) &
0.

Proof Sketch. A case analysis over the possible non-

~

unit clauses in 7(©) U ORDW@) reveals that no new

units can be derived by positive unit resolution, if the
ORD-clause form of the interval formulas satisfies the
requirement that it contains all implied atoms and the
clauses are minimal. By refutation completeness of
positive unit resolution (Henschen & Wos 1974), the
claim follows. u

The only remaining part we have to show 1s that
transforming @A over H into its equivalent path-
consistent form © does not result in a set that contains
relations not in . In order to show this we prove that
H is closed under converse, intersection, and composi-
tion, i.e., H (together with these operations) defines a
subalgebra of Allen’s interval algebra.

Theorem 6 H s closed under converse, intersection,
and composition.

Proof Sketch. The main problem is to show that the
composition of two relations has an ORD-Horn form.
We show that by proving that any minimal clause ('
implied by 7#({XRY,YSZ}) is either ORD-Horn or
there exists a set of ORD-Horn clauses that are im-

plied by 7({XRY, Y SZ}) and imply C. L]

From that it follows straightforwardly that ISAT(#)
is decided by the path-consistency method.

Theorem 7 AIfG) 15 a set over H, then © 1is satisfiable
iff (XLY) & 0O for all intervals X, Y.

* An enumeration of C and P is given by van Beek and
Cohen (1990).

The Borderline between Tractable and
NP-complete Subclasses

Having identified the tractable fragment # that con-
tains the previously identified tractable fragment P
and that is considerably larger than P is satisfying
in itself. However, such a result also raises the que-
stion for the the boundary between polynomiality and
NP-completeness in Allen’s interval algebra.

While the introduction of the algebraic structure on
the set of expressible interval relations may have seem
to be only motivated by the particular approximation
algorithm employed, this structure is also useful when
we explore the computational properties of restricted
problems. For any arbitrary subset & C A, § shall
denote the closure of & under converse, intersection,
and composition. In other words, § is the carrier of
the least subalgebra generated by §. Apparently,
it 1s possible to translate any set of interval formulas
O over § into a set @ over S in polynomial time in a
way such that /-satisfiability is preserved.

Theorem 8 ISAT(S) can be polynomially transfor-
med to ISAT(S).

In other words, once we have proven that satisfia-
bility is polynomial for some set & C A, this result
extends to the least subalgebra generated by §. Con-
versely, NP-hardness for a subalgebra is “inherited” by
all subsets that generate this subalgebra.

It still takes some effort to prove that a given frag-
ment § is a mazimal tractable subclass of Allen’s inter-
val algebra. Firstly, one has to show that & = 8. For
the ORD-Horn subclass, this has been done in Theo-
rem 6. Secondly, one has to show that ISAT(7) is NP-
complete for all minimal subalgebras 7 that strictly
contain §. This, however, means that these subal-
gebras have to be identified. Certainly, such a case
analysis cannot be done manually. In fact, we used a
program to identify the minimal subalgebras strictly
containing . An analysis of the clause form of the
relations appearing in these subalgebras leads us to
consider the following two relations:

Nl = {d’dv’ov’sv’f}
Ny = {d7,0,07,s7 ,f7}.
One of these two relations can be found in all mini-

mal subalgebras strictly containing H, as can be shown
using a machine-assisted case analysis.

Lemma 9 Let S C A be any set of interval relations
that strictly contains H. Then Ny or Na s an element
of S.

For reasons of simplicity, we will not use the ORD
clause form in the following, but a clause form that also
contains literals over the relations >, <, >. Then the
clause form for the relations mentioned in the lemma
can be given as follows:

T(XN1Y) = {(X-<XT), (Y™ <YT),

(X~ <¥*), (Xt >y),
(X7 >Y7)v(X* >V},



T XN:Y) = {(X-<XT), (Y- <Yt
(X=<Y™h), (XT>Y7),
(X~ <Y )V(XT>YT)}L
We will show that each of these relations together with
the two relations

Bl {_<’dv’o’m’fV}
B2 = {_<adaoam’s}a
which are elements of C, are enough for making the in-

terval satisfiability problem NP-complete. The clause
form of these relations looks as follows:

T(XBY) = {(XT<X7T), (YY" <Y,
(X~ <VY7), (X <Yt}
A(XBY) = {(X~<X¥), (Y- <VT),
(Xt <YH), (X~ <Y™)}

Lemma 10 ISAT(S) is NP-complete if
1. le{Bl,Bz,Nl}gS, or
2. NQI{Bl,BZ,NZ}gS.

Proof Sketch. Since ISAT(A) € NP, membership in
NP follows.

For the NP-hardness part we will show that 3SAT
can be polynomially transformed to ISAT(N). We
will first prove the claim for A;. Let D = {C;} be
a set of clauses, where C; = l;1 V I[; 2 V I; 3 and the
l; ;s are literal occurrences. We will construct a set of
interval formulas @ over A such that © is I-satisfiable
iff D is satisfiable.

For each literal occurrence I; ; a pair of intervals X ;
and Y; ; is introduced, and the following first group of
interval formulas is put into ©:

(Xij N1 Yij).

This implies that 7(©) contains among other things
the following clauses (X;; >V, V X{';j > YZ:;)

Additionally, we add a second group of formulas for
each clause Cj:

(X52B1Yi1), (X53B1Y;0), (X1 B1Yis),

which leads to the inclusion of the clauses (Y, > X,),
(Yip > Xig), (Yig > Xiy) in 7(O).

This construction leads to the situation that there
is no model of © that satisfies for given 7 all dis-
juncts of the form (X;; > Y¥;~) in the clause form
of m(X; ;N1Y; ;). If the jth disjunct (XZ»_J» > YZ;) is
unsatisfied in an /-model of ©, we will interpret this
as the satisfaction of the literal occurrence I; ; in C; of
D.

In order to guarantee that if a literal occurrence [; ;
is interpreted as satisfied, then all complementary lite-
ral occurrences in D are interpreted as unsatisfied, the
following third group of interval formulas for comple-
mentary literal occurrences [; ; and I, ; are added to
O:

(Xg,n B2 Yij), (XijBaYgn),

which leads to the inclusion of (YZ:'"7 > X;h), (Yg‘!'h >

X{';j). This construction guarantees that © is I-
satisfiable iff D is satisfiable.
The transformation for A5 is similar. ]

Based on this result, it follows straightforwardly that
H is indeed a maximal tractable subclass of A.

Theorem 11 If S strictly contains H, then ISAT(S)
1s NP-complete.

The next question is whether there are other ma-
ximal tractable subclasses that are incomparable with
H. One example of an incomparable tractable subclass
isd = {{<,=},T}. Since {<,>} has no ORD-Horn
clause form, this subclass 1s incomparable with H, and
since all sets of interval formulas over I are trivially
satisfiable (by making all intervals disjoint), ISAT(¥/)
can be decided in constant time. The subclass i/ is, of
course, not a very nteresting fragment. Provided we
are interested in temporal reasoning in the framework
as described by Allen (1983), one necessary require-
ment is that all basic relations are contained 1n the sub-
class. A machine-assisted exploration of the space of
subalgebras leads us to the following machine-verifiable
lemma.

Lemma 12 If S is a subclass that contains the thir-
teen basic relations, then S C H, or Ny or Ny is an
element of §.

Using the fact that By, By are elements of the least
subalgebra generated by the set of basic relations and
employing Lemma 10 again, we obtain the quite sa-
tisfying result that H is in fact the unique greatest
tractable subclass amongst the subclasses containing
all basic relations.

Theorem 13 Let S be any subclass of A that contains
all basic relations. Then either § CH and ISAT(S) is
polynomial or ISAT(S) is NP-complete.

Conclusion

We have identified a new tractable subclass of Al-
len’s interval algebra, which we call ORD-Horn sub-
class and which contains the previously identified con-
tinuous endpoint and pointisable subclasses. Enumera-
ting the ORD-Horn subclass reveals that this subclass
contains 868 elements out of 8192 elements in the full
algebra, i.e., more than 10% of the full algebra. Com-
paring this with the continuous endpoint subclass that
covers approximately 1% and with the pointisable sub-
class that covers 2%, our result is a clear improvement
in quantitative terms.

Furthermore, we showed that the “traditional” me-
thod of reasoning in Allen’s interval algebra, namely,
the path-consistency method, 1s sufficient for deciding
satisfiability in the ORD-Horn subclass. In other
words, our results indicate that the path-consistency
method has a much larger range of applicability for



reasoning in Allen’s interval algebra than previously
believed—if we are mainly interested in satisfiability.

Provided that a restriction to the subclass H is not
possible in an application, our results may be employed
in designing faster backtracking algorithms for the full
algebra (Valdéz-Pérez 1987; van Beek 1990). Since
our subclass contains significantly more relations than
other tractable subclasses, the branching factor in a
backtrack search can be considerably decreased if the
ORD-Horn subclass 1s used.

Finally, we showed that it is impossible to improve
on our results. Using a machine-generated case analy-
sis, we showed that the ORD-Horn subclass is a maxi-
mal tractable subclass of Allen’s interval algebra and,
in fact, even the unique greatest tractable subclass in
the set of subclasses that contain all basic relations. In
other words, the ORD-Horn subclass presents an op-
timal tradeoff between expressiveness and tractability
(Levesque & Brachman 1987) for reasoning in Allen’s
interval algebra.
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