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Abstract
A minimal perfect hash function bijectively maps a key set S out
of a universe U into the first |S| natural numbers. Minimal perfect
hash functions are used, for example, to map irregularly-shaped keys,
such as strings, in a compact space so that metadata can then be
simply stored in an array. While it is known that just 1.44 bits per key
are necessary to store a minimal perfect hash function, no published
technique can go below 2 bits per key in practice. We propose a new
technique for storing minimal perfect hash functions with expected
linear construction time and expected constant lookup time that makes
it possible to build for the first time, for example, structures which
need 1.56 bits per key, that is, within 8.3% of the lower bound, in less
than 2ms per key. We show that instances of our construction are
able to simultaneously beat the construction time, space usage and
lookup time of the state-of-the-art data structure reaching 2 bits per
key. Moreover, we provide parameter choices giving structures which
are competitive with alternative, larger-size data structures in terms of
space and lookup time. The construction of our data structures can
be easily parallelized or mapped on distributed computational units
(e.g., within the MapReduce framework), and structures larger than
the available RAM can be directly built in mass storage.

1 Introduction
Minimal perfect hash functions (MPHFs) are static data struc-
tures storing a bijection of a given set S of keys, |S| = n, into
the first n natural numbers. While such a bijection can easily
be stored using hash tables, MPHFs are allowed to return any
value if the queried key is not in the original set S; this relax-
ation enables to break the information-theoretical lower bound
of storing the set S. Indeed, MPHFs constructions achieve
O(n) bits of space, regardless of the size of the keys. This prop-
erty makes MPHFs powerful techniques when handling, for
instance, large sets of strings, and they are important building
blocks of space-efficient data structures.

The usual requirement on MPHFs is that construction can be
completed in linear time, and that lookup takes constant time;
often these requirements are relaxed to expected linear/constant
time.

The space lower bound of a MPHF is about lg e ≈ 1.44 bits
per key [FKS84], and independent from S. Some theoretical
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constructions reach the lower bound, but they work only for
preposterously large n [HT01]. In practice, the CHD construc-
tion [BBD09], detailed below, is currently able to reach about 2
bits per key, but at such a space we show that it is significantly
slower than our approach for both construction and lookup.
Techniques based on random linear systems, such as deriva-
tives of the venerable construction by Majewski, Wormald,
Havas, and Czech [MWHC96], are reasonably fast in construc-
tion and quite fast in lookups, but they each only achieve about
2.24 bits per key [GOV16]. Finally, techniques based on finger-
prints [MSSZ14] are extremely fast in construction and lookup,
but only when the space occupancy is extremely large (e.g.,
above 4 bits per key).
In this paper we present a new technique for storing min-

imal perfect hash functions based on recursive splitting and
brute-force searching, with expected linear construction time
and constant expected lookup time. Our technique is able to
break the 2 bits barrier, and at the same time can improve the
construction time, space usage and lookup time of CHD.

Our approach to build an MPHF is conceptually simple, and
on a high level similar to existing approaches: we partition a
set into buckets, and then process each bucket independently.
Unlike other approaches, in our case the entries of a bucket
logically form a tree which defines an independent MPHF. We
analyze how exactly those trees should "look like", for a brute-
force search to be efficient, for lookup to be fast, and to use
little space. We also show how to implicitly encode such trees,
and how to employ succinct data structures that allow efficient
lookup and storage even for very small MPHFs.
One of the main virtues of our approach is that it makes it

possible to create practical MPHFs using less than 9% more
space than the information-theoretical lower bound, compared
to the state of the art, which uses 40% more space. But our
approach is also very flexible and amenable, such that it is
useful for a wide range of parameters: it not only yields the
most space-saving practical MPHFs, but it is also competitive
regarding construction time and lookup over a wide range of
parameter values. Existing algorithms, on the other hand, are
competitive only in a narrow area.

All the code used in this paper is available from the authors
under the GNU Lesser General Public License, version 3 or
later, as a part of the Sux project (http://sux.di.unimi.
it/).
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2 Notation
We use von Neumann’s definition and notation for the set of
natural numbers, so n = {0, 1,… , n−1}. We use≫ and≪ for
left and right bit shifting. Following Knuth [Knu11], we use �x
for the index of the highest (leftmost) bit set (�x is undefined
when x ≤ 0).

3 Background and related work
3.1 Early work
Sprugnoli [Spr77] defines perfect hash functions on small sets
by testing exhaustively constants in simple expressions involv-
ing integer divisions and remainders; in some small-sized cases,
he is able to find a MPHF. He suggests that for large key
sets one can first hash the keys into a fixed number of buck-
ets (called therein segments), and then operate independently.
Jaeschke [Jae81] refines his approach to obtain minimal perfect
hash functions on small sets by exhaustive search. Both exhaus-
tive search and hashing into buckets are essential elements of
our construction.

3.2 Random Linear Systems
In their seminal paper [MWHC96], Majewski, Wormald, Havas,
and Czech (MWHC hereinafter) introduced the first compact
construction for static functions using the connection between
linear systems and hypergraphs. To store a function f ∶ S → t,
they generate a random system with n = |S| equations in m
variables of the form
wℎ0(x) +wℎ1(x) +⋯ +wℎk−1(x) = f (x) mod t x ∈ S.

Here ℎi ∶ U → m are k fully random hash functions, and the
wi’s are variables assuming values in Z∕tZ. Due to bounds on
the acyclicity of random graphs, if the ratio between the number
of variables and the number of equations is above a certain
threshold 
k, the system can be almost always triangulated
in linear time by peeling the associated hypergraph, and thus
solved; in other words, we have both a probabilistic guarantee
that the system is solvable, and that the solution can be found
in linear time.
The data structure is then a solution of the system (i.e., the

values of the variables wi): storing the solution makes it pos-
sible to compute f (x) in constant time. The space usage is
approximately 
kb bits per key. The constant 
k depends on thedegree k, and attains its minimum at k = 3 (
3 ≈ 1.23).Chazelle, Kilian, Rubinfeld and Tal [CKRT04], unaware of
the MWHC construction, proposed it independently, but also
exploited the fact that a peelable hypergraph is also orientable:
since as a side effect of the peeling process each hyperedge can
be assigned a unique vertex (or, equivalently, each equation
can be assigned a unique variable), each key can be assigned
injectively an integer in ⌈
kn⌉. Then, we just need to modify
the MWHC construction so that instead of storing f (x), we
store which of the k vertices of the hyperedge is the assigned

one, and this can be done in approximately 
k⌈log k⌉ bits perkey. At retrieval time, the value we store makes it possible to
recover the unique integer assigned to the key.
To make the perfect hash function minimal, that is, a func-

tion to n, rather than ⌈
rn⌉, a ranking data structure can be
added. A bit vector of size ⌈
rn⌉ records which vertices havebeen assigned to a hyperedge, and then with additional o(n)
bits the number of ones preceding a given one (i.e., its rank)
can be computed in constant time (see [Vig08] for practical
implementations).

Again, the best k is 3, which yields theoretically a 2.46n+o(n)
bits data structure [BPZ13], using 2 bits per variable: since the
value 3 never appears in the solution, it can be used instead of
zero to mark vertices associated with hyperedges. In this way,
vertices assigned to hyperedges have always nonzero values
and are the only ones with nonzero values because of the way
the solution is computed by the peeling process. In the end,
it is easy to adapt ranking structures so as to rank nonzero
pairs of bits, rather than ones, eliminating the need for the
additional bit vector (see [BPZ13] for details). Finally, Genuzio,
Ottaviano andVigna have shown that it is possible to use bounds
on solvability, rather than acyclicity, for the same purpose,
obtaining a 2.24n + o(n) bits data structure [GOV16].

3.3 CHD
Belazzougui, Botelho, and Dietzfelbinger [BBD09] introduced
a completely different construction, called CHD (compressed
hash-and-displace), which makes it possible, in theory, to reach
the information-theoretical lower bound of ≈ 1.44 bits per
key, at the price of increasing the expected construction time.
Keys are first mapped into small buckets of expected size � (e.g.,
� = 4), and then buckets are mapped into the codomain without
collisions, starting with the largest ones. To map the buckets
into the codomain they examine for each bucket an enumeration
of fully random independent hash functions 'ki ∶ U → k,
i = 0, 1, 2,…: once a function mapping the current bucket in
the codomain without collisions is found, its index is stored
in the data structure. While the theoretical analysis suggests
that by increasing the bucket size it is possible to achieve space
usage as close to the lower bound as desired, in practice it is
unfeasible to go below 2 bits per key.

3.4 Fingerprinting
Recently, Müller et al. [MSSZ14] introduced a completely new
technique for minimal perfect hashing. A series of bit arrays
of decreasing size, called levels, is used to record information
about collisions between keys. More precisely, all positions
in the first level to which a single key is mapped by a random
hash function are marked with a one. Then, one takes all keys
which participated in collisions, and tries to map them into the
second level, using the same strategy, and so on. As a result,
one obtains a perfect hashing of the key set: to retrieve the
output associated with a key, one maps the key in turn to each
level until a one is found, and then the (overall) position of
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the one yields a distinct number for each key. A constant-time
ranking structure over the concatenation of the bit arrays is then
used, as in the case of hypergraph-based techniques, to turn the
perfect hash function into a minimal perfect hash function.
Fingerprint-based minimal perfect hash functions have the

advantage of being very tunable for speed (both for construction
and lookup) by suitably setting the length of each level, and thus
the space usage: at 3 bits per elements, for example, the authors
report that only 1.56 levels are accessed on average, resulting in
a very low number of cache misses. However, the best result for
space is 2.58 bits per key, which is not competitive, for example,
with CHD or the techniques described in this paper. Moreover,
at that size construction and lookup are very slow.

4 RecSplit
RecSplit is based on the idea that for very small sets it is pos-
sible to find a MPHF simply by brute-force searching for a
bijection with suitable codomain. However, we extend the idea
to brute-force searching of splittings which bring large sets to
an amenable size.
To build a RecSplit instance for a set of n keys, we first dis-

tribute keys randomly into buckets of average size b using a
random hash function g ∶ S → ⌈n∕b⌉. Then, each bucket is
recursively split into smaller pieces until we reach a target leaf
size l on which it is feasible to directly search for an MPHF.
As we will see, the parameters l and b provide different space
and time tradeoffs. We will build an MPHF for each bucket
independently, opening the way to parallel or distributed con-
struction.
We search for both splittings and bijections considering an

enumeration of fully random independent hash functions 'ki ∶
U → k, i = 0, 1, 2,…, whose indices will be stored in the data
structure.

Given a set of keysX (e.g., a whole bucket) of sizem, a split is
defined by a list of parts k0, k1,… , ks−1 such that∑s−1

i=0 ki = m.We compute the splitting index by searching for the first function
'mi such that
|

|

|

|

|

(

'mi
)−1

(

[ t−1
∑

i=0
ki . .

t
∑

i=0
ki

)

)

∩X
|

|

|

|

|

= kt, 0 ≤ t < s − 1.

In other words, we map the elements of X in m, and find the
first function such that the elements mapped to a value smaller
than k0 are exactly k0, the elements mapped to values greater
than or equal to k0 but smaller than k0 + k1 are exactly k1, andso on.

Then, we proceed recursively on the s parts until the current
size of a part is less than or equal to l. At that point, given a
part X we search for the first function '|X|

i that is bijective on
X. Thus, we obtain a rooted splitting tree with a splitting index
associated to each internal node and a bijection index associated
with each leaf (see Figure 1). We will represent each such index
using an optimal Golomb-Rice instantaneous code [Sal07], as
such indices have a geometric distribution.

While the size of each part is in principle arbitrary, we will
see that it is convenient to work with sizes that are multiples of
l, and to have all parts of the same size except possibly the last
one. In this way, in every bucket all leaves have exactly size l,
except possibly the last one, and for each tree node all subtrees
have the same shape, except possibly the last one.
A splitting strategy is made of a leaf size l and a desired

splitting unit u (which must be a multiple of l) for each m >
l. These pieces of information univocally define the shape
of the splitting tree for each m > l: the fanout of a node
associated with m keys will be ⌈m∕u⌉, with all parts of size u
except possibly the last one, which may have size m mod u.
Given a splitting tree for a set X, we can compute a MPHF

on X: given x ∈ X, we follow the tree from the root up to a
leaf using the splitting indices. Every time we move to a child,
we know exactly how many keys we are leaving to our left, as
that number only depends on the splitting strategy. Thus, when
we get to a leaf, we know that, say, c keys are mapped to the
left of the leaf. We then apply the bijection associated with the
leaf to x, and add c to the resulting value. Multiple buckets
are handled by keeping track of the prefix sums of the number
of keys in each bucket (i.e., of how many keys are assigned to
previous buckets) and modifying the result accordingly.

5 Searching for splittings and bijec-
tions

Many different splitting strategies are possible. While a com-
pletely analytical analysis appears to be formidable, in this
section we prove a number of results which will make it much
easier to devise a good strategy.
A first observation is that bucket sizes are distributed as

a binomially distributed random variable S with parameters
p = b∕n and n. The moments of S can be written as [Kno08]

E
[

Sd
]

=
d
∑

i=0

{

d
i

}

i!
(

n
i

)

(

b
n

)i

=
d
∑

i=0

{

d
i

}

n!
ni(n − i)!

bi ≤
d
∑

i=0

{

d
i

}

bi.

In particular, every algorithm that is polynomially bounded
(even just in expectation) for each bucket will be linear in ex-
pectation when run on all keys, and any lookup algorithm doing
polynomial work on a bucket will be constant-time in expecta-
tion.

5.1 Searching for splittings

Assuming that our family of functions is fully random, the
probability of finding a split for a set of size m in a left part of
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a b c d e f g h i j k l m n o (93)

a j m n (3) f k l o (2) b c g i (5) d e h (3)

c g (1) b i (1) d h (1) e (-)a j (0) m n (2) k l (2) f o (1)

Figure 1: An example of a splitting tree for 15 element with l = 2. Each node is decorated with the associated keys and the
splitting or bijection index. Note that the leaf of size one has no associated index.

size k and a right part of size m − k is

1
mm

(

m
k

)

kk(m − k)m−k ∼

1
mm

(m
e

)m√2�m
(k
e

)k√2�k
(m−k

e

)m−k√2�(m − k)
kk(m − k)m−k

=
√

m
2�k(m − k)

.

using Stirling’s approximation. Then, the average number of
trials to find a splitting hash function will be asymptotic to

√

2�k(m − k)
m

which is maximized when k = ⌈m∕2⌉, that is, for balanced
splits.

We remark that our choice of codomain m and threshold k is
optimal. Indeed, if we consider the general case of a codomain
r and a threshold t, the probability

(1) 1
rm

(

m
k

)

tk(r − t)m−k

depends only on the ratio r∕t, as

1
(�r)m

(

m
k

)

(�t)k(�r − �t)m−k = 1
rm

(

m
k

)

tk(r − t)m−k.

Now, if we explicitly write t = �r and minimize (1) in �, we
obtain � = k∕m. Thus, any choice of r and t with t∕r = k∕m
provides the highest probability of success.

We will also use splittings with more than two parts. In gen-
eral, if we want to splitm into s parts asm = k0+k1+⋯+ks−1,the number of splitting functions is given by the number
of possible ordered partitions of m into sets of cardinality
k0, k1,… , ks−1 (i.e., the associated multinomial coefficient),
multiplied by the number of possible functions within each set.

Dividing by the overall number of functions mm we obtain

(2) 1
mm

(

m
k0, k1,… , ks−1

) s−1
∏

i=0

(

ki
)ki

= 1
mm

m!
∏s−1

i=0 ki!

s−1
∏

i=0

(

ki
)ki = m!

mm

s−1
∏

i=0

(

ki
)ki

ki!

∼
√

m
(2�)s−1

∏s−1
i=0 ki

,

where the last approximation is once again obtained using Stir-
ling’s. In the end, the average number of trials is asymptotically

(3)
√

(2�)s−1
∏s−1

i=0 ki
m

.

By Jensen’s inequality the worst case happens when all parts
are equal, that is,

√

(2�)s−1
(m
s

)s

m
,

which grows polynomially in m for fixed s, but with exponent
s, which means that we cannot expect to be able to choose a
large value of s.
We now want to give a bound of the expected amount of

work done on a single bucket. To do so, we make a simplifying
assumption, that is, that splitting always happens in s parts: we
fix the leaf size l and we use a bucket size of sℎl (if the bucket
has not a size of this form, we use the closest approximation
from above). Let Xi

j be a set of random variables, where i
represent the distance from the root, and 0 ≤ j ≤ si − 1. The
variables are independent and for each i they have a geomet-
ric distribution defined by (2); moreover, we upper bound the
number of function evaluations using the number of elements
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on which the splitting is computed:

E
[ℎ−1
∑

i=0

si−1
∑

j=0
Xi
js
ℎ−il

]

= sℎl
ℎ−1
∑

i=0
E
[

Xi
0
]

∼ sℎl
ℎ−1
∑

i=0

√

(2�)s−1
(

sℎ−i−1l
)s

sℎ−il

= sℎl
√

(2�l)s−1
ℎ−1
∑

i=0

√

(

sℎ−i−1
)s

sℎ−i

≤ sℎl
√

(2�l)s−1
ℎ−1
∑

i=0

(√

ss−1
)i

= sℎl
√

(2�l)s−1
1 −

(
√

ss−1
)ℎ

1 −
√

ss−1

≤
√

(2�)s−1
(

sℎl
)s+1.

As we already remarked, since the expected work on a bucket
is polynomial in the bucket size, the expected overall work for
finding splittings will be linear in the number of keys. Our
computation does not apply to a generic splitting strategy, but
the strategies we will use in practice will be covered by our
analysis.

5.2 Searching for bijections
Analogously, we can estimate the probability of finding aMPHF
on a leaf of size m. The probability of hitting a bijection is
m!∕mm, as there are m! bijections and mm overall possible func-
tions from the leaf to itself, so the average number of trials is
mm∕m! ≈ em∕

√

2�m using Stirling’s approximation. Note that
since leaf sizes are bounded by a constant, the overall work for
finding bijections is linear in the number of keys.

5.3 Invariance
A useful feature of our technique is that it satisfies an invariance
property: the probability of finding a bijection on a set of m
elements is equal to the probability of finding a splitting and
finding a bijection on each part. More formally,
Theorem 1 Given a set of m elements, the probability of find-
ing a minimal perfect hash on the set is equal to the probability
of finding a split in s parts k0, k1,… , ks−1, multiplied by the
probabilities of finding a bijection on each part.

Proof. Immediate, as

m!
mm

s−1
∏

i=0

(

ki
)ki

ki!

s−1
∏

i=0

ki!
(

ki
)ki

= m!
mm

. □

As an inductive consequence, for every tree defining split-
tings and bijections on a set of size m, the product of the proba-
bilities on all nodes is constant, and equal to m!∕mm.

5.4 A splitting strategy
We start from the observation that if we had no limit on the
construction time, searching for a bijection would provide a
space-optimal structure in expectation. This happens because
the optimal parameter r(p) (i.e., the length of the fixed part)
of a Golomb-Rice code [Sal07] for a geometrically distributed
source with parameter p, i.e., k ≥ 0 appears with probability
(1 − p)kp, is given by [Kie04]

(4) r(p) = max
{

0,
⌈

lg
(

−
lg'

lg(1 − p)

)⌉}

,

where ' = (

√

5+ 1
)

∕2 is the golden ratio. For this choice, the
expected length of the unary part is

1
1 − (1 − p)2r(p)

,

which is always between ' and 1 + '. In particular, in expec-
tation the length of the codeword for trials with probability p
when p→ 0 is

1 + ' +
⌈

lg
(

−
lg'

lg(1 − p)

)⌉

= 1 + ' +

⌈

lg ln'
p + O

(

p2
)

⌉

= 1 + ' + ⌈lg ln' − lg p − lg(1 + O(p))⌉

= c + lg 1
p
+ O(p),

with 1.56 ≈ 1 + ' + lg ln' ≤ c < 2 + ' + lg ln' ≈ 2.56.
Essentially, modulo less than three bits (which we pay for not
using full Golomb codes, for rounding and for instantaneous-
ness) the expected length of the codeword is the logarithm of
its expected value. If we apply this formula to the case of a
bijection on m elements, we obtain

c + lg m
m

m!
+ O

(

m!
mm

)

= m lg e + O(lgm)

so for large enough m we can get arbitrarily close to the lower
bound.1 More interestingly, the invariance property tells us
that if we have probabilities p0, p1,… , pt−1 at the nodes of a
splitting tree for m keys, then ∏t−1

i=0 pi = m!∕m
m. So now the

cost of storing the tree is in expectation
t−1
∑

i=0

(

c + lg 1
pi
+ O

(

pi
)

)

= ct + lg
t−1
∏

i=0

1
pi
+ O

(

t−1
∑

i=0
pi
)

= ct + m lg e + O(lgm).

In other words, we lose about c bits for each split and bijection,
but otherwise the number of bits will tend to the optimal value
when m grows (and t is fixed, which in particular means that
the leaf size has to grow). Increasing the number of splits will
thus speed up construction and slow down lookups, but just

1For feasible leaf sizes, the per key expected cost of the unary prefix for
bijections is ⪆ 0.1.
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slightly increase the space usage, as long as the number of keys
going through the split is sufficiently large. The main space
loss associated with c, however, is that due to the leaves, as it
is amortized over the smallest number of keys.
Armed with the information gathered so far, we are now

going to describe our splitting strategy. Our main drive is that
of making the choice of the leaf size the main factor in bounding
the time required to build the data structure, and we will assume
l ≤ 24 as the search on larger leaves is simply too slow; besides,
the Golomb-Rice parameter in this range is smaller than 32 and
can be packed into just five bits. We expect that larger leaves
will lead to less evaluations and thus to structures with faster
lookups, too.
From (3) it is clear that if we want to flatten the splitting

tree, we should use larger values of s in the lower levels. We
thus define the following criterion: starting from the bottom,
we want to aggregate leaves so that the work that is necessary
to compute the splitting is the same work as computing the
leaf bijections, combined. We assume that each trial for a
splitting will needm function evaluations, and that each trial for
a bijection will require√�m∕2 function evaluations [Ram12,
FGKP95]; both estimations are approximations. If we look for
the integer minimizing

(5) |

|

|

|

s
√

�l
2
ll

l!
− sl (sl)

sl

(sl)!

(

l!
ll

)s
|

|

|

|

for l ≤ 24 we obtain s = max{ 2, ⌈0.35l + 0.5⌉ }. Thus, we
will greedily try to aggregate this number of leaves.

If we go up another level, we can ask the same: that is, when
the fanout is such that the work done is the same as the work
done on the two lower levels. This leads to minimizing

|

|

|

|

st
√

�l
2
ll

l!
− tsl (tsl)

tsl

(tsl)!

(

(sl)!
(sl)l

)t
|

|

|

|

assuming s is the (exact) solution of (5). Once again, we can
numerically compute the best integer solutions, obtaining t =
⌈0.21l + 0.9⌉ for 7 ≤ l ≤ 24, and 2 for l < 7.
One can continue with further aggregation levels using the

same criterion, but the impact on the space used by the data
structure becomes negligible, and each aggregation level re-
quires a test in the lookup code. After the second aggregation
level we thus fix the fanout at 2, and use as unit (and left part)
⌈⌊m∕2⌋∕stl⌉ ⋅ stl, with s and t as above.

6 Data representation
The following data must be stored to be able to evaluate a
RecSplit MPHF efficiently:

• The initial bucket-assignment function g.
• For each bucket, a representation of its splitting tree, in-

cluding the indices stored at each node.

• Since we build MPHFs independently for each bucket, we
need to store the prefix sums of the number of keys in each
bucket (i.e., for each bucket, the number of keys in all
previous buckets).

• Finally, we will concatenate the representations of all buck-
ets in a single bit array: we will thus need to store the offset
(i.e., the starting position) of each bucket in the array.

6.1 The bucket-assignment function g
First, we replace every key x ∈ S with a unique signature
s(x) of Θ(n) bits (in our implementation, 128). The bucket
assignment is generated using fixed-point multiplication: we
interpret the value u(x) of the upper t bits (e.g., t = 64) of
s(x) as a real number �(x) = u(x)∕2t in the interval [0 . . 1)
represented in fixed-point arithmetic, and we assign to x the
bucket ⌊�(x) ⋅ ⌈n∕b⌉⌋. If we interpret �(x) as a real random
uniform value in the unit interval, this operation correspond to
an inversion [Dev86] returning a random uniform discrete value
in ⌈n∕b⌉, which is exactly what we need.2 Since we use fixed-
point arithmetic, this amounts to computing ⌊u(x) ⋅ ⌈n∕b⌉∕2t⌋,
which can be performed with a multiplication and a shift. We
will use the same technique when searching for splittings and
bijections.

6.2 Splitting trees
Splitting trees will form the bulk of the space occupied by a
RecSplit instance. It is thus essential to devise a parsimonious
representation that is at the same time quickly accessible.
To attain these goals, we will not store the shape of the

tree (e.g., pointers to children). Instead, we only write the
indices associated with each node in preorder using an optimal
Golomb-Rice code, in a bit array. We remind that once the
splitting strategy has been fixed, the Golomb-Rice parameter
of each index is known, as it depends only on the number of
keys associated with the node.3
Since the number of children of every node is defined by

the splitting strategy, we do not need to store them explicitly.
However, when navigating the tree top-to-bottom, whenever we
do not move to the first child of a node, we need to recursively
skip the subtrees associated to the previous children.
In principle, to skip a subtree, we only need to know the

Golomb-Rice parameter associated with the root: we then skip
the first code, and recurse into each child. This strategy would
be, however, very slow.
We thus write all the constant-length part of the codes, fol-

lowed by all their unary parts (see Figure 2) in the bit array.
This choice makes skipping the constant-length part of a sub-
tree very fast, as we just have to move a pointer: the amount of

2Indeed, fixed-point inversion has been since the early days the technique
of choice for turning the bits returned by a pseudorandom number generator
into a uniform discrete value in a finite range (see, e.g., [Knu86]).

3Empirically, using optimal Golomb codes reduces the size of the structure
by less than 1%. The fact that Golomb-Rice codes have a fixed part of constant
length will have an important part in the implementation.
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movement can be precomputed in a table (for a fixed splitting
strategy, it depends only on the number of keys associated with
the node). Using the same idea, we can retrieve the overall
length of the fixed part, that is, the starting point of the unary
codes, without additional information.
Skipping a number of unary codes is actually a selection

operation (e.g., find the k-th one in a bit array), for which
very fast broadword programming algorithms exist [Vig08,
GP14].4 We need to know the number of ones to skip, which
corresponds to the number of skipped nodes: also this number
can be precomputed and stored in a table.

6.3 Prefix sums and offsets
Finally, the prefix sums of bucket sizes si and the offset of
each bucket oi are stored using a customized Elias-Fano rep-
resentation, which is a succinct representation of monotone
sequences [Eli74, Fan71].
First, we compact our data by exploiting the dependence

between these two values: we store si and oi − �si, where �is the number of bits per key that are necessary to store the
splitting trees. Then, as it is customary, for both sequences we
compute the minimum delta � between successive elements
and use it to rescale the sequences by subtracting i� from the
i-th element: this operation reduces the range of the sequences
and, correspondingly, the bits per element. If the minimum
delta between items of the modified list oi − �si is negative, therescaling will enlarge the elements of the list so that it is again
monotone.

The Elias-Fano representation uses space proportional to the
logarithm of the average gap between two elements, which in
our case is b or �b. Thus, the space used to store prefix sums
can be reduced arbitrarily by enlarging the target bucket size b
(at the price of slower construction and lookup).

7 Implementation details
7.1 Logarithms
In several computations we need to estimate the closest integer
to lg x, that is, ⌊lg x + 1∕2⌋. For this, we use the approximate
formula
�(x + (x≫ 1)) = ⌊lg(x + ⌊x∕2⌋)⌋ ≈ ⌊lg(x + x∕2)⌋

= ⌊lg x + lg 3 − 1⌋ ≈ ⌊lg x + 0.58⌋,

which contains only integer operations.

7.2 Choosing the parameter for Golomb-Rice
codes

The optimal parameter r(p) of a Golomb-Rice code for a geo-
metrically distributed source with parameter p is given by (4).

4On the Intel cores after Haswell the PDEP instruction makes it possible to
perform selection in a word using just three instructions.

The possible values of p depend only on m, as the splitting strat-
egy specifies univocally the number and sizes of the parts in
which to perform the split, so we can precompute the possible
values of r(p) and store the results in a table for the most likely
bucket sizes.5
In the (practically negligible) case of large buckets we de-

veloped the following integer approximation for the optimal
parameter when splitting m elements in s parts k0, k1,… , ks−1:
(

((s − 1) ⋅ 5≫ 1) +
s−1
∑

i=0
�
(

ki +
(

ki≫ 1
))

− �(m)

)

≫ 1.

Analogously, we store the optimal Golomb-Rice codes for bi-
jections in a table, as they will be needed only for a few dozen
leaf sizes.

7.3 Avoiding correlation
For our estimations of the number of trials to be applicable,
every search for a split or for a bijection must be independent.
We will compute both splittings and bijections on the Θ(n)-bit
signatures used for the bucket assignments, but discard the up-
per t bits, so we will be working, in each bucket, with a set of
random signatures. When recursively descending during the
splitting procedure, we take care of never reusing functions that
have been already searched through. Thus, along a path inde-
pendence is guaranteed by the independence of the functions
'ki , whereas on different parts it is guaranteed by the fact thatthe involved keys are actually a random set of signatures with
an empty intersection.

7.4 Customizing Elias–Fano
We briefly recall the details of the Elias–Fano representation.
We assume to have a monotonically non-decreasing sequence
of n > 0 natural numbers

0 ≤ x0 ≤ x1 ≤ ⋯ ≤ xn−2 ≤ xn−1 ≤ u,

where u > 0 is any upper bound on the last value. We will
represent such a sequence in two bit arrays as follows:

• the lower l = max{ 0, ⌊lg(u∕n)⌋ } bits of each xi arestored explicitly and contiguously in the lower-bits array;
• the upper bits are stored in the upper-bits array as a se-

quence of unary-coded gaps.
One then puts a selection data structure on the high bits, so that
the position p of the k-th one can be found in constant time. At
that point, the upper bits of the k-element are just p − k, and
the lower bits can be retrieved directly.

First, we notice that since the lower bits have fixed width, if
you need to work, as in our case, with two Elias–Fano represen-
tations of the same length and you always need to access the

5A single table of 32-bit integers indexed by bucket size is sufficient to
memorize the Golomb-Rice parameter of a node, the skipping information of
its subtree and the number of nodes in the subtree when l ≥ 4 and b ≤ 2000.
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01 001 1 001 01 001 01 001 01 01 01 01

11101 1 0 1 1fixed

unary

Figure 2: An example of coding for the tree in Figure 1. The indices are first laid out in preorder. Then each index is represented
using a suitable Golomb-Rice code (the unary part is separated by a bar). Then the unary and fixed parts are stored separately.

elements with the same position in the two lists, the lower bits
can be interleaved, saving one cache miss.
Then, we notice that the gaps between elements of the list

are extremely regular, as they are bucket sizes, or the number
of bits used to encode a bucket. Because of this property, the
selection data structure can be significantly simplified to a two-
level inventory: we record the position of the ones of index
multiple of 214 in a 64-bit integer, and then use an array of
16-bit integers to record the position of the intermediate ones
whose index is a multiple of 2q for some q (in our code, q = 8).
For the remaining ones we perform a local linear search using
broadword programming, starting from the closest one in the
inventory.

By interleaving this information from the two lists, we often
save a further cache miss.

8 Experiments
In this section, we present the results of our experiments, which
were performed on an Intel® Core™ i7-7770 CPU @3.60GHz
(Kaby Lake), with 64GiB of RAM, Linux 4.17.19 and Java 12.
For the C code, we used the GNU C compiler 8.1.1.

Time is measured by wall clock. For the lookup timings we
report, the relative standard deviation is below 5%. Construc-
tion times (which include reading the input, generating the data
structure and serializing it) have a bit more variability due to
I/O. We fix the CPU clock to avoid variations due to throttling
from the Turbo Boost controller.

We compare RecSplit with the three current state-of-the-art
MPHF implementations:

• GOV [GOV16]6 is a structure based on random hyper-
graphs that provides maps at 2.24 bits per key with fast
access.

• CHD [BBD09]7 has been discussed in Section 3.3. It is
by far the slowest map we tested, but it is the only one that
can reach about 2 bits per key. We report data for � = 5
and � = 6. We have not been able to build maps with
� = 7 beyond a few thousand keys.

6https://github.com/vigna/Sux4J
7https://sourceforge.net/projects/cmph/

• BBHash [LRCP17]8 is an implementation of
fingerprinting-based minimal perfect hashing (see
Section 3.4) that aims at being very fast in construction
and lookup, but uses a large amount of space. We tested
the version using the smallest amount of space (
 = 1),
which however needs more than 3 bits per key to be
stored.

In our experiment, we build and evaluate maps on 128-bit
random keys: this way, we significantly increase the resolution
of our results, as we cut off the time that is necessary to compute
hashes of long keys. Since all implementations we consider
hash as a first step their keys into random short keys, our choice
of keys has no impact on the behavior of the structures.

RecSplit has different behavior depending on the parameters
l and b: increasing l leads to smaller data structures and faster
lookups, at the price of a greater construction time. Increasing
b can further decrease space (as the Elias–Fano lists are better
amortized), at the price of a slightly larger construction and
lookup times. Figure 3 illustrates the dependence of space from
these two parameters.

Among the many possible variations, we isolate:
• l = 8, b = 100 breaks the 2 bits/key barrier of CHD,

providing better space, as well as significantly faster con-
struction and lookup.

• l = 12, b = 9 uses less space than GOV and BBHash;
it is faster or comparable in lookup time, but requires a
longer time to build in a single threaded, non-distributed
setting.

• l = 5, b = 5 uses less space than BBHash, and it is faster
to build at large sizes.

• l = 16, b = 2000 is at the boundary of feasibility in
construction, as it requires almost two milliseconds per
key: nonetheless, it reaches 1.56 bits per key, that is, 8.3%
from the lower bound. Its lookup time is significantly
larger than that of GOV or BBHash, but it is still faster
than CHD.

In Table 1 and 2 we report space usage in bits per key, and
the construction and lookup time in nanoseconds per key. In

8https://github.com/rizkg/BBHash
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MPHF b/key Constr. Lookup
CHD (� = 5) 2.07 1627 91
CHD (� = 6) 2.01 6440 92
l = 8, b = 100 1.79 1027 67
GOV 2.26 4210 58
l = 12, b = 9 2.23 7245 39
BBHash (
 = 1) 3.07 96 33
l = 5, b = 5 2.95 139 47
l = 16, b = 2000 1.56 1733801 87

Table 1: Space usage, construction time and lookup time, in
nanoseconds per key, for a million keys.

MPHF b/key Constr. Lookup
CHD (� = 5) 2.07 6310 447
CHD (� = 6) 2.01 25550 444
l = 8, b = 100 1.80 1063 227
GOV 2.25 1007 210
l = 12, b = 9 2.23 7331 189
BBHash (
 = 1) 3.06 290 172
l = 5, b = 5 2.95 181 241

Table 2: Space usage, construction time and lookup time, in
nanoseconds per key, for a billion keys.

each group, we compare an alternative (CHD, GOV, BBHash)
with RecSplit. We remark that for all structures we consider,
the number of bits per key is essentially independent from the
size of the key set.
An immediate observation is that in the case of Table 1 all

structures fit the cache, whereas in the case of Table 2 they
do not. As consequence, the lookup times are an order of
magnitude larger, even though all structures perform lookups
in constant time.
A more global view depending on the number of keys is

given by Figure 5 and 6. Note that all code is in C or C++,
except for the construction of GOV, which is available only in
Java.
Immediately evident is that for each of the state-of-the-art

maps we compare with, there is an instantiation of RecSplit that
is comparable in space and/or lookup speed, and improves at
least one of the two. Figure 7 shows the Pareto frontier (the set
of coordinate-wise minimal points) of the space of pairs giving
space usage and lookup time: below 3 bits per element, these
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Figure 3: Space usage depending on bucket size and leaf size.
Lines from top to bottom correspond to values of l from 2 to
21. The dashed line shows the lower bound lg e ≈ 1.44.
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Figure 6: Lookup time depending on the key set size.

elements are all RecSplit instances. BBHash has a slightly
better lookup speed (≈ 10% faster) at the price of a ≈ 40%
larger space.

If we consider the three-dimensional Pareto frontier, the situ-
ation is different because instances of RecSplit with fast lookup
require usually more construction time. However, RecSplit
improves on all three parameters at the same time with respect
to CHD, which is presently the state of the art for small space.
Moreover, both CHD and BBHash require that as much RAM
as the final size of the data structure is available. On the con-
trary, GOV and RecSplit in principle allow to build the structure
on-disk, possibly in a distributed fashion, using a very small
amount of RAM, as both structures distribute keys in small
buckets which can be processed independently.
Another interesting advantage of RecSplit is that, as we al-

ready mentioned, increasing l leads to slower construction,
but at the same time decreases space and makes lookup faster,
whereas for BBHash, building a smaller map means slower con-
struction and slower lookups; for CHD, a smaller map means
slower construction, and no effect on lookups.

If we consider the points associated with RecSplit instances
with l ≥ 4 and 64 ≤ b ≤ 2048 in isolation, they are essentially
all on the three-dimensional Pareto frontier. This means that
all these parameter choices provide different tradeoffs between
our three measures.
From the figures, it is evident that the in-memory construc-

tion of CHD and BBHash induces a significantly nonlinear be-
havior due to cache and Translation Lookahead Buffer misses
as the number of keys increase. This does not happen for GOV
and RecSplit.
Finally, in Figure 4 we show the increase in construction

time depending on the leaf size for a choice of exponentially
spaced bucket sizes. As it is evident, increasing the leaf size
by one approximately multiplies the construction time by e, as
expected from the discussion in Section 5.4, whereas the bucket
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Figure 7: Scatter plots of bits per key vs. lookup time. Points
on the Pareto frontier are in the lower left region. The upper
half is based on Table 1, whereas the lower on Table 2.

size has less impact.

9 Conclusions
We have presented RecSplit, a new static data structure storing
a minimal perfect hash function with expected linear-time con-
struction and expected constant-time lookup. RecSplit is the
first data structure able to break the 2 bits/key barrier in practice,
and instances very close to the lower bound can be built feasibly,
albeit slowly. Construction time can be reduced by using a dis-
tributed computational setting such as MapReduce [DG08], as
fixed-point inversion is monotone, so buckets can be computed
by a linear scan of the (offline) sorted signatures, and then the
splitting tree of each bucket can be built independently.

By enlarging the size of the codomain of bijections and split-
tings, the techniques described in this paper can also be used to
build extremely compact perfect (but not minimal) hash func-
tions. We leave this extension for future work.
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