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Abstract—Contention for shared cache resources has been
recognized as a major bottleneck for multicores—especially for
mixed workloads of independent applications. While most mod-
ern processors implement instructions to manage caches, these
instructions are largely unused due to a lack of understanding
of how to best leverage them.

This paper introduces a classification of applications into
four cache usage categories. We discuss how applications from
different categories affect each other’s performance indirectly
through cache sharing and devise a scheme to optimize such
sharing. We also propose a low-overhead method to automatically
find the best per-instruction cache management policy.

We demonstrate how the indirect cache-sharing effects of
mixed workloads can be tamed by automatically altering some
instructions to better manage cache resources. Practical experi-
ments demonstrate that our software-only method can improve
application performance up to 35% on x86 multicore hardware.

I. INTRODUCTION

The introduction of multicore processors has significantly
changed the landscape for most applications. The literature
has mostly focused on parallel multithreaded applications.
However, multicores are often used to run several independent
applications. Such mixed workloads are common in a wide
range of systems, spanning from cell phones to HPC servers.
HPC clusters often run a large number of serial applications
in parallel across their physical cores. For example, parameter
studies in science and engineering where the same application
is run with different input data sets.

When an application shares a multicore with other appli-
cations, new types of performance considerations are required
for good system throughput. Typically, the co-scheduled appli-
cations share resources with limited capacity and bandwidth,
such as a shared last-level cache (SLLC) and DRAM inter-
faces. An application overusing any of these resources can
degrade the performance of the other applications sharing the
same multicore chip.

Consider a simple example: Application A has an active
working set that barely fits in the SLLC, and application
B makes a copy of a data structure much larger than the
SLLC. When run together, B will use a large portion of
the SLLC and will force A to miss much more often than
when run in isolation. Fortunately, most libraries implementing
memory copying routines, e.g. memcpy, have been hand-
optimized and use special cache-bypass instructions, such as

non-temporal reads and writes. On most implementations,
these instructions will avoid allocation of resources in the
SLLC and subsequently will not force any replacements of
application A’s working set in the cache.

In the example above the use of cache bypass instructions
may seem obvious, and hand-tuning a common routine, such
as memcpy, may motivate the use of special assembler instruc-
tions. However, many common programs also have memory
accesses that allocate data with little benefit in the SLLC
and may slow down co-scheduled applications. Detecting such
reckless use is beyond the capability of most application pro-
grammers, as is the use of assembly coding. Ideally, both the
detection and cache-bypassing should be done automatically
using existing hardware support.

Several software techniques for managing caches have been
proposed in the past [1], [2], [3], [4]. However, most of
these methods require an expensive simulation analysis. These
techniques assume the existence of heavily specialized instruc-
tions [1], [4], or extensions to the cache state and replacement
policy [3], none of which can be found in today’s processors.
Several researchers have proposed hardware improvements to
the LRU replacement algorithm [5], [6], [7], [8]. In general,
such algorithms tweak the LRU order by including additional
predictions about future re-references. Others have tried to
predict [9] and quantify [10] interference due to cache sharing.

In this paper, we propose an efficient and practical software-
only technique to automatically manage cache sharing to
improve the performance of mixed workloads of common
applications running on existing x86 hardware. Unlike pre-
viously proposed methods, our technique does not rely on
any hardware modifications and can be applied to existing
applications running on commodity hardware. This paper
makes the following contributions:

• We propose a scheme to classify applications according
to their impact, and dependence, on the SLLC.

• We propose an automatic and low-overhead method to
find instructions that use the SLLC recklessly and au-
tomatically introduce cache bypass instructions into the
binary.

• We demonstrate how this technique can change the classi-
fication of many applications, making them better mixed
workload citizens.

• We evaluate the performance gain of the applications and
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Figure 1. Miss ratio as a function of cache size for an application with
streaming behavior and a typical non-streaming application that reuses most
of its data. When run in isolation, each application has access to both the
private cache and the entire SLLC. Running together causes the non-streaming
application to receive a small fraction of the SLLC, while the streaming
application receives a large fraction without decreasing its miss ratio. The
change in perceived cache size and miss ratio is illustrated by the arrows.

show that their improved behavior is in agreement with
the classification.

II. MANAGING CACHES IN SOFTWARE

Application performance on multicores is highly dependent
on the activities of the other cores in the same chip due to
contention for shared resources. In most modern processors
there is no explicit hardware policy to manage these shared
resources. However, there are usually instructions to manage
these resources in software. By using these instructions prop-
erly, it is possible to increase the amount of data that is reused
through the cache hierarchy. However, this requires being able
to predict which applications, and which instructions, benefit
from caching and which do not.

In order to know which application would benefit from
using more of the shared cache resources, we need to know
the applications’ cache usage characteristics. The cache miss
ratio as a function of cache size, i.e. the number of cache
misses as a fraction of the total number of memory accesses
as a function of cache size, is a useful metric to determine
such characteristics. Figure 1 shows the miss ratio curves
for a typical streaming application and an application that
reuses its data. The miss ratio of the non-streaming application
decreases as the amount of available cache increases. This
occurs because more of the data set fits in the cache. Since
the streaming application does not reuse its data, the miss ratio
stays constant even when the cache size is increased.

When the applications are run in isolation, they will get
access to both the core-local private cache and the SLLC.
Assuming that the cache hierarchy is exclusive, the amount
of cache available to an application running in isolation is
the sum of the private cache and the SLLC. When two
applications share the cache, they will perceive the SLLC
as being smaller. In the case illustrated by Figure 1, the
streaming application misses much more frequently than the
non-streaming application. The frequent misses causes the
streaming application to install more data in the cache than
the non-streaming application. The non-streaming application
will therefore perceive the cache as being much smaller than
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Figure 2. A generalized miss ratio curve for an application. The minimum,
i.e. only the private cache, and the maximum, i.e. the private cache and the
full shared cache, amount of cache available to an application are shown on
the x-axis. The miss ratio when running in isolation (rs) is the smallest miss
ratio that an application can achieve on this system, while the miss ratio when
running only in the private cache (rp) is the worst miss ratio. The δ represents
how much an application is affected by competition for the shared cache.

when run in isolation. The change in perceived cache size,
and how this affects miss ratio is illustrated by the arrows in
Figure 1.

Decreasing the perceived cache size for the streaming
application does not affect its miss ratio. The non-streaming
application, however, sees an increased miss ratio when access
to the SLLC is restricted. As the number of misses increase,
the bandwidth requirements also increase, which affects the
performance of all the applications sharing the same memory
interface. If we could make sure that the streaming application
does not install any of its streaming data into the cache, the
miss ratio, and bandwidth requirement, of the non-streaming
applications would decrease without sacrificing any perfor-
mance. In fact, the streaming application would run faster
since the total bandwidth requirement would be decreased.

Using the miss ratio curves we can classify applications
based on how they affect others and how they are affected by
competition for the shared cache. We base this classification on
the base miss ratio, rs, when the application is run in isolation
and has access to both its private cache and the entire SLLC,
and the miss ratio, rp, when it only has access to the private
cache, see Figure 2. The rp miss ratio can be thought of as the
maximum miss ratio that an application can get due to cache
contention, while rs is the ideal case when the application is
run in isolation. To capture the sensitivity to cache contention
we define the cache sensitivity, δ, to be the difference between
the two miss ratios. A large δ indicates that an application
benefits from using the shared cache, while a small δ means
that the application exhibits streaming behavior and does not
benefit from additional cache resources.

Using the rs and δ we can classify applications based on
how they use the cache. This classification allows us to predict
how applications will affect each other and how the system
will be affected by software cache management. We define
the following categories:

Don’t care
Small rs and small δ—Applications that are largely
unaffected by contention for the shared cache level.
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Figure 3. Classification map of a subset of the SPEC2006 benchmarks
running with the reference input set on a system with a 576 kB private
cache and 6MB shared cache. The quadrants signify different behaviors when
running together with other applications. Applications to the left tend to reuse
almost all of their data in the shared cache and generally work well with other
applications, applications to the right tend to use large parts of the shared
cache for data that is never reused and are generally troublesome in mixes
with other applications. Applications in the upper half are sensitive to the
amount of data that can be stored in the shared cache, while applications on
the bottom are insensitive.

These applications fit their entire data set in the
private cache, they are therefore largely unaffected
by contention for the shared cache and memory
bandwidth.

Victims
Small rs and large δ—Applications that suffer badly
if the amount of cache at the shared level is restricted.
The data they manage to install in the shared resource
is almost always reused. Applications with a working
set larger than the private cache, but smaller than the
total cache size belong in this category.

Gobblers & Victims
Large rs and large δ—Applications that suffer from
SLLC cache contention, but store large amounts of
data that is never reused in the shared cache. For
example, applications traversing a small and a large
data structure in parallel may reuse data in the cache
when accessing the small structure, while accesses
to the large data structure always miss. Disabling
caching for the accesses to the large data structure
would allow more of the smaller data structure to be
cached. Managing the cache for these applications
is likely to improve throughput, both when they
are running in isolation and in a mix with other
applications.

Cache Gobblers
Large rs and small δ—Applications that do not ben-
efit from the shared cache at all, but still install large
amounts of data in it. Applications in this category
work on streaming data or data structures that are

much larger than the cache. These applications are
good candidates for software cache management.
Since they do not reuse the data they install in
the shared cache, their throughput is generally not
improved when running in isolation. Managing these
applications will improve the full system throughput
by allowing applications from other categories to use
more of the shared cache.

Figure 3 shows the classification of several SPEC2006
benchmarks according to these categories. Applications clas-
sified as wasting cache resources, i.e. applications on the
right-hand side of the map, are obvious targets for cache
management. The large base miss ratio in such applications
is due to memory accesses that touch data that is never reused
while it resides in the cache. Disabling caching for such
instructions does not introduce new misses since data is not
reused, instead it will free up cache space for other accesses.

III. CACHE MANAGEMENT INSTRUCTIONS

Most modern instruction sets include instructions to manage
caches. These instructions can typically be classified into three
different categories: non-temporal memory accesses, forced
cache eviction and non-temporal prefetches. Many processors
support at least one of these instruction classes. However,
their semantics may not always make them suitable for cache
management for performance.

Examples from the first category are the memory accesses
in the PA-RISC which can be annotated with caching hints,
e.g. only spatial locality or write only. Similar instruction
annotations exist for Itanium. Other instruction sets, such as
some of the SIMD extensions to the x86, contain completely
separate instructions for handling non-temporal data. The
hardware may, based on these hints, decide not to install write-
only cache lines in the cache and use write-combining buffers
instead. Non-temporal reads can be handled using separate
non-temporal buffers or by installing the accessed cache line
in such a way that it is the next line to be evicted from a set.

Instructions from the second category, forced cache eviction,
appear in some form in most architectures. However, not
all architectures expose such instructions to user space. Yet
other implementations may have undesired semantics that limit
their usefulness in code optimizations, e.g. the x86 Flush
Cache Line (CLFLUSH) instruction forces all caches in a
coherence domain to be flushed. There are some architectures
that implement instructions in this class that are specifically
intended for code optimizations. For example, the Alpha ISA
specifies an instruction, Evict Data Cache Block (ECB), that
gives the memory system a hint that a specific cache line will
not be reused in the near future. A similar instruction, Write
Hint (WH64), tells the memory subsystem that an entire cache
line will be overwritten before being read again, this allows
the memory system to allocate the cache line without actually
reading its old contents. The ECB and WH64 instructions are
in many ways similar to the caching hints in the previous
category, but instead of annotating the load or store instruction,



the hints are given after or, in case of a store, before the
memory accesses in question.

The third category, non-temporal prefetches, is also included
in several different ISAs. The SPARC ISA has both read and
write prefetch variants for data that is not temporally reused.
Similar prefetch instructions are also available in both Itanium
and x86. Some implementations may choose to prefetch into
the cache such that the fetched line is the next to be evicted
from that set; others may prevent the data from propagating
from the L1 to a higher level in the cache hierarchy.

In the remainder of this paper, we will assume an archi-
tecture with a non-temporal hint that is implemented such
that non-temporal data is fetched into the L1 cache, but never
installed in higher levels. This is how the AMD system we
target implement support for non-temporal prefetches.

IV. LOW-OVERHEAD CACHE MODELING

A natural starting point for modeling LRU caches is the
stack distance [11]. A stack distance is the number of unique
cache lines accessed between two successive memory accesses
to the same cache line. It can be directly used to determine
if a memory access results in a cache hit or a cache miss
for a fully-associative LRU cache: if the stack distance is less
than the cache size, the access will be a hit, otherwise it will
miss. Therefore, the stack distance distribution enables the
application’s miss ratio to be computed for any given cache
size, by simply computing the fraction of memory accesses
with a stack distances greater than the desired cache size.

In this work, we need to differentiate between what we call
backward and forward stack distance. Let A and B be two
successive memory accesses to the same cache line. Suppose
that there are S unique cache lines accessed by the memory
accesses executed between A and B. Here, we say that A has a
forward stack distance of S, and that B has a backward stack
distance of S.

Measuring stack distances is generally very expensive. In
this paper, we use StatStack [12] to estimate stack distances
and miss ratios. StatStack is a statistical cache model that
models fully associative caches with LRU replacement. Mod-
eling fully associative LRU caches is, for most applications, a
good approximation of the set associative pseudo LRU caches
implemented in hardware. StatStack estimates an application’s
stack distances using only a sparse sample of the application’s
reuse distances, i.e. the number of memory accesses performed
between two accesses to the same cache line. This approach
to modeling caches has been shown to be several orders of
magnitude faster than full cache simulation, and almost as
accurate. The runtime profile of an application can be collected
with an overhead of only 40% [13], and the execution time of
the cache model is only a few seconds [12].

To understand how StatStack works, consider the access
sequence shown in Figure 4. Here the arcs connect subsequent
accesses to the same cache line, and represent the reuse of data.
In this example, the second memory access to cache line A has
a reuse distance of five, since there are five memory accesses
executed between the two accesses to A, and a backward

A B B C D C C D BA

Out Boundary

Figure 4. Reuse distance in a memory access stream. The arcs connect
successive memory accesses to the same cache line, and represents the reuse
of cache lines. The stack distance of the second memory access to A is equal
to the number of arcs that cross “Out Boundary”.

stack distance of three, since there are three unique cache
lines (B, C and D) accessed between the two accesses to A.
Furthermore, we see that there are three arcs that cross the
vertical line labeled “Out Boundary”, which is the same as
the stack distance of the second access to A. This observation
holds true in general. Based on it we can compute the stack
distance of any memory access, given that we know the reuse
distances of all memory access performed between it and the
previous access to the same cache line.

The input to StatStack is a sparse reuse distance sample that
only contains the reuse distances of a sparse random selection
of an application’s memory accesses, and therefore does not
contain enough information for the above observation to be
directly applied. Instead, StatStack uses the reuse distance
sample to estimate the application’s reuse distance distribution.
This distribution is then used to estimate the likelihood that
a memory access has a reuse distance greater than a given
length. Since the length of a reuse distance determines if its
outbound arc reaches beyond the “Out Boundary”, we can
use these likelihoods to estimate the stack distance of any
memory access. For example, to estimate the stack distance
of the second access to A in Figure 4, we sum the estimated
likelihoods that the reuse distance of the memory accesses exe-
cuted between the two accesses to A have reuse distances such
that their corresponding arcs reach beyond “Out Boundary”.

StatStack uses this approach to estimate the stack distances
of all memory accesses in a reuse distance sample, effectively
estimating a stack distance distribution. StatStack uses this
distribution to estimate the miss ratio for any given cache size,
C, as the fraction of stack distances in the estimated stack
distance distribution that are greater than C.

V. IDENTIFYING NON-TEMPORAL ACCESSES

Using the stack distance profile of an application we can de-
termine which memory accesses do not benefit from caching.
We will refer to memory accessing instructions whose data
is never reused during its lifetime in the cache hierarchy as
non-temporal memory accesses.

If these non-temporal accesses can be identified, the com-
piler, a post processing pass, or a dynamic instrumentation
engine can alter the application to use non-temporal instruc-
tions in these locations without hurting performance.

The system we model implements a non-temporal hint that
causes a cache line to be installed in the L1, but never in any of



the higher cache levels. It turns out that modeling this system
is fairly complicated, we will therefore describe our algorithm
to find non-temporal accesses in three steps. Each step adds
more detail to the model and brings it closer to the hardware.
A fourth step is included to take effects from sampled stack
distances into account.

A. A first simplified approach

By looking at the forward stack distances of an instruction
we can easily determine if the next access to the data used
by that instruction will be a cache miss, i.e. the instruction is
non-temporal. An instruction has non-temporal behavior if all
forward stack distances, i.e. the number of unique cache lines
accessed between this instruction and the next access to the
same cache line, are larger or equal to the size of the cache. In
that case, we know that the next instruction to touch the same
data is very likely to be a cache miss. Therefore, we can use a
non-temporal instruction to bypass the entire cache hierarchy
for such accesses.

This approach has a major drawback. Most applications,
even purely streaming ones that do not reuse data, may
still exhibit short temporal reuse, e.g. spatial locality where
neighboring data items on the same cache line are accessed in
close succession. Since cache management is done at a cache
line granularity, this clearly restricts the number of possible
instructions that can be treated as non-temporal.

B. Refining the simple approach

Most hardware implementations of cache management in-
structions allow the non-temporal data to live in parts of the
cache hierarchy, such as the L1, before it is evicted to memory.
We can exploit this to accommodate short temporal reuse of
cache lines. We assume that whenever a non-temporal memory
access touches a cache line, the cache line is installed in the
MRU-position of the LRU stack, and a special bit on the cache
line, the evict to memory (ETM) bit, is set. Whenever a normal
memory access touches a cache line, the ETM bit is cleared.
Cache lines with the ETM bit set are evicted earlier than other
lines, see Figure 5. Instead of waiting for the line to reach the
depth dmax it is evicted when it reaches a shallower depth,
dETM . This allows us to model implementations that allow
non-temporal data to live in parts of the memory hierarchy.
For example, the memory controller in our AMD system evicts
ETM tagged cache lines from the L1 to main memory, and
would therefore be modeled with dETM being the size of the
L1 and dmax the total combined cache size.

The model with the ETM bit allows us to consider memory
accesses as non-temporal even if they have short reuses that
hit in the small ETM area. Instead of requiring that all forward
stack distances are larger than the cache size, we require
that there is at least one such access and that the number
of accesses that reuse data in the area of the LRU stack
outside the ETM area, the gray area in Figure 5, is small,
i.e. the number of misses introduced if the access is treated
as non-temporal is small. We thus require that one stack
distance is greater or equal to dmax , and that the number

of stack distances that are larger or equal to dETM but
smaller than dmax is smaller than some threshold, tm. In most
implementations tm will not be a single value for all accesses,
but depend on factors such as how many additional cache hits
can be created by disabling caching for a memory access.

The hardware we want to model does not, unfortunately,
reset the ETM bit when a temporal access reuses ETM data.
This new situation can be thought of as sticky ETM bits, as
they are only reset on cache line eviction.

C. Handling sticky ETM bits
When the ETM bit is retained for the cache lines’ entire

lifetime in the cache, the conditions for a memory accessing
instruction to be non-temporal developed in section V-B are no
longer sufficient. If instruction X sets the ETM bit on a cache
line, then the ETM status applies to all subsequent reuses of
the cache line as well. To correctly model this, we need to
make sure that the non-temporal condition from section V-B
applies, not only to X, but also to all instructions that reuse
the cache lines accessed by X.

The sticky ETM bit is only a problem for non-temporal
accesses that have forward reuse distances less than dETM .
For example, consider a memory accessing instruction, Y, that
reuses the cache line previously accessed by a non-temporal
access X (here Y is a cache hit). When Y accesses the cache
line it is moved to the MRU position of the LRU stack, and the
sticky ETM bit is retained. Now, since Y would have resulted
in a cache hit no matter if X had set the sticky ETM bit or
not, this is the same as if we would have set the sticky ETM
bit for the cache line when it was accessed by Y.

Therefore, instead of applying the non-temporal condition
to a single instruction, we have to apply it to all instructions
reusing the cache line accessed by the first instruction.

In a machine, such as our AMD system, where dETM

corresponds to the L1 cache, this new condition allows us to
categorize a memory access as non-temporal if all the data it
touches is reused through the L1 cache or misses in the entire
cache hierarchy. Due to the stickiness of the non-temporal
status, this condition must also hold for any memory access
that reuses the same data through the L1 cache.

D. Handling sampled data
To avoid the overhead of measuring exact stack distances,

we use StatStack to calculate stack distances from sampled
reuse distances. Sampled stack distances can generally be used
in place of a full stack distance trace with only a small decrease
in average accuracy. However, there is always a risk of missing
some critical behavior. This could potentially lead to flagging
an access as non-temporal, even though the instruction in
fact has some temporal behavior in some cases, and thereby
introducing an unwanted cache miss.

In order to reduce the likelihood of introducing misses due
to sampling, we need to make sure that flagging an instruction
as non-temporal is always based on reliable data. We do this
by introducing a sample threshold, ts, which is the smallest
number of samples originating from an instruction that can be
considered to be non-temporal.
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Table I
CACHE PROPERTIES OF THE MODEL SYSTEM (AMD PHENOM II X4 920)

Level Size (kB) Associativity Line Size (B) Shared
1 (data) 64 2 64 No
2 512 16 64 No
3 6144 48 64 Yes

VI. EVALUATION METHODOLOGY

A. Model system

To evaluate our model we used an x86 based system with
an AMD Phenom II X4 920 processor with the AMD family
10h micro-architecture. The processor has 4-cores, each with a
private L1 and L2 cache and a shared L3 cache. The processor
enforces exclusion between L1 and L2, but not always between
L3 and the lower levels if data is shared between cores.

According to the documentation of the prefetchnta
instruction, data fetched using the non-temporal prefetch is
not installed in the L2 unless it was fetched from the L2 in
the first place. However, our experiments show that this is not
the case. It turns out that data fetched from the L2 cache using
the non-temporal prefetch instruction is never re-installed in
the L2. The system therefore works like the system modeled
in section V-C where the ETM-bit is sticky.

We used the performance counters in the processor to
measure the cycles and instruction counts using the perf
framework provided by recent Linux kernels.

B. Benchmark preparation

The benchmarks were first compiled normally for initial
reference runs and sampling. Sampling was done on each
benchmark running with the reference input set. Due to the
low overhead of the sampler, the benchmarks were run to
completion with the sampler attached throughout the entire
run. After the initial profile run, we analyzed the profile using
the algorithm in the previous section and generated a list of

non-temporal memory accesses. The benchmarks were then
recompiled taking this profile into account.

The cache managed versions of the benchmarks were com-
piled using a compiler wrapper script that hooked into the
compilation process before the assembler was called. The
assembly output was then modified before it was passed to the
assembler. Using the debug information from the binary we
were able to find the memory accesses in the assembly output
corresponding the instruction addresses in the non-temporal
list. Before each non-temporal memory access the script
inserted a prefetchnta instruction to the same memory
location as the original access.

C. Algorithm parameters

We model the cache behavior of our benchmarks using
StatStack and a reuse distance sample with 100 000 memory
access pairs per benchmark. We use a minimum samples
threshold, ts, of 50 samples. The maximum number of intro-
duced misses, tm, is set to 0 samples; this may seem strict at
first, but remember that we are sampling memory accesses and
one sample corresponds to several hundred thousand memory
accesses.

Cache exclusivity guarantees that there is at most one copy
of a cache line in the caches where exclusivity is enforced. For
example, an access to a cache line that resides in the L2 of
our system will cause that cache line to be removed from the
L2 and installed in the L1. A system where cache exclusivity
is not enforced would not remove the copy in the L2. When
the cache line is evicted from the L1 cache it is installed in
the L2 cache, i.e. it is transferred from the LRU position of
the L1 to the MRU position of the L2. This behavior lets us
merge the two caches and treat them as one larger LRU stack
where each cache level corresponds to a contiguous section of
the stack. In the model system, the first 1k lines correspond
to the L1 cache, the next 8 k lines correspond to the L2 and
the last 96 k lines correspond to the L3. This global stack has



105 k lines in total, i.e. the total cache size in lines. We let
dmax be the depth of this global stack.

Since we are using StatStack we have made the implicit
assumption that caches can be modeled to be fully associative,
i.e. conflict misses are insignificant. In most cases this is
a valid assumption, especially for large caches with a high
degree of associativity. A notable case where this assumption
may break is for the L1 cache, which has a low degree of
associativity. We therefore have to be more conservative when
evaluating stack distances within this range. We use different,
conservative, values of dETM , when calculating the number
of introduced misses and handling the stickiness of the ETM
bits. We use a dETM value of twice the L1 size, i.e. 2048
lines, when handling stickiness and half the L1 size, i.e. 512
lines, when calculating the number of misses introduced.

D. Benchmarks

Using the software classification introduced in section II
we selected two benchmarks representing each category for
analysis. The number of non-temporal memory accesses and
the effect on other applications in the system will depend on
a benchmark’s position in the classification map. Applications
on the left-hand side of the map, Don’t care and Victims, do
not install a significant amount of data in the shared cache
and do not disturb other applications running on the system.
As expected, our algorithm does not find any non-temporal
memory accesses in such applications. Applications on the
right-hand side of the map, Gobblers & Victims and Cache
Gobblers, have a high base miss ratio and store a large amount
of non-temporal data in the shared cache. We expect such
applications to be good candidates for cache management.

There is normally no need to differentiate between cache
misses and replacements. Whenever there is a cache miss, a
new cache line is installed and another one is replaced. When
we start to software manage the cache, we disable caching for
certain instructions. This causes misses to occur, but, since the
data is never cached, no replacements take place. When we
classify managed applications, it therefore makes more sense
to use the replacement ratio rather than the miss ratio to better
capture the effect on other application.

We extended the StatStack algorithm to handle non-
temporal memory accesses to calculate new replacement and
miss ratios for managed applications. Looking at Figure 6a
we see that libquantum’s replacement ratio is reduced from
approximately 20% to 0% in the shared cache, while the miss
ratio stays at 20%. This can be explained by the fact that
the instructions installing non-temporal data into the SLLC
now bypass the cache. The fact that they bypass the cache
leads to a decreased replacement ratio, i.e. fewer cache lines
installed in the SLLC. We would normally expect the miss
ratio to be decreased due to a reduction of non-temporal data
in the SLLC, which would allow more temporal data to be
stored instead. In the case of libquantum, there is no additional
temporal data that can be squeezed into the cache.

When looking at cache sizes larger than dmax , another effect
of software cache management is seen. As the data set starts

to fit in the cache, the miss ratio is normally reduced. This
may no longer be the case when applying cache management.
When we manage the cache, we force certain accesses to
bypass the cache and the reuse to become a miss, independent
of cache size.

Lbm has slightly more interesting access patterns than
libquantum, which includes a decrease in miss ratio around
the target cache size. Looking at Figure 6b, we notice that,
in addition to the features displayed by libquantum, parts of
the miss ratio curve have been shifted to the left. This can be
explained by the fact that removing non-temporal data from
the cache allows more of the temporal data to fit in the cache.

We reclassify our benchmarks based on their new replace-
ment ratio curves, the new classification allows us to predict
how applications affect each other after we introduce the non-
temporal memory accesses. The change in classification for
the managed benchmarks is shown in Figure 7.

VII. RESULTS AND ANALYSIS

The results for runs of six different mixes of four SPEC2006
benchmarks running with the reference input set, with and
without software cache management are shown in Figure 8
and Figure 9. Figure 8 shows a mix of four applications from
different categories. Figure 9 shows five different mixes con-
sisting of two pairs of benchmarks from different categories.
The instructions per cycle, IPC, is shown for each of the
benchmarks, both when running in isolation and when running
in the mix and with and without cache management. The cache
management instructions are not included in the instruction
counts when calculating IPC for managed applications, in-
cluding them would give an unfair advantage to the managed
applications. The speedup is the improvement in IPC over the
unmanaged version when running in a mix.

As seen by comparing the IPC for managed and unmanaged
applications in isolation, Figure 8 and Figure 9, inserting
additional prefetchnta instructions does not negatively
impact performance in isolation. In fact, the IPC of LBM is
increased by approximately 12%. This effect can be explained
by Figure 6b, where a miss ratio knee is clearly visible be-
tween 4MB and 8MB. Applying software cache management
pushes the knee to the left, i.e. towards smaller cache sizes,
and decreases the miss ratio for systems with between 4MB
and 8MB of cache.

Looking at Figure 8 and Figure 9 we see that all applica-
tions, except for the applications in the Don’t care category,
have a lower IPC when running in a mix than running in
isolation. This is to be expected since running in a mix means
that all the applications compete for a shared cache and shared
bandwidth. Applications in the Don’t care category fit most of
their data in the private cache, which makes their bandwidth
and SLLC requirements extremely small. This explains why
this category does not benefit from cache management.

The difference between the Victims and the Don’t care
categories is that the former uses some amounts of L3 cache,
while the latter does not. This would suggest that interference
between these two categories should be small when running
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together. This is supported by Figure 9d, where all applications
in this mix run at the same speed as in isolation. There could
still be some interference between applications within the
Victims category, but this is likely to be very small since these
applications have a small bandwidth and cache footprint.

Because applications in the Cache Gobblers and Gobblers &
Victims categories have similar cache and bandwidth pressure
they affect other applications in the same way. Looking at
Figure 9a, Figure 9c and Figure 9e we see that running
together with applications from these categories causes a
significant decrease in IPC compared to when running in
isolation. We expect that managing these categories reduces
their cache footprint, and as a consequence reduce their impact
on IPC. Our results indicate that some of the performance lost
to contention for the shared resources can be regained using

software cache management.
A somewhat surprising result might be that applications

from the Cache Gobblers category benefit from cache man-
agement themselves. This is the case for all of the mixes, but
is particularly visible in Figure 9b. The speedup when running
with applications from the two victim categories can largely
be attributed to a reduction in the total bandwidth requirement
of the mix. The speedup when running together with the Don’t
care, Figure 9b, is harder to explain, but is likely due to small
reductions in the miss ratio in the Cache Gobblers.

VIII. RELATED WORK

There has been plenty of research focused on improving
cache efficiency. Most of this work has been targeting the
miss ratio of private caches [1], [3], [4]. Focus has recently
started to shift towards shared caches [6], [14]. These methods
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are either software driven or hardware driven. They all have
one thing in common, the need to identify non-temporal data
or, as in our case, memory accesses referencing non-temporal
data. Once the non-temporal data is identified this information
is propagated to the cache, typically by setting a non-temporal
bit in the cache tags. This bit is then used by the cache
replacement policy to explicitly handle non-temporal data.

Tyson et al. [1] propose a simulation based method to
identify non-temporal memory accesses. It can be described
in two steps: First, they simulate the cache and identify
the instructions with miss ratios above a threshold (25%).
Then, for each dynamic execution of these instructions, they
keep track of how often the fetched cache line is accessed
before being evicted. If this occurs less than 25% of the
time the instruction is identified as being non-temporal. Our
approach differs on the following key points: 1) It does not
require expensive simulations; 2) It considers all instructions
as potentially non-temporal, not only the ones with a miss
ratio above a threshold. This increases the potential to reduce
the caching of non-temporal data; 3) Our method is tailored
to use existing hardware on the x86 architecture.

Wong et al. [3] propose a method to identify non-temporal
memory accesses based on Mattson’s optimal replacement
algorithm (OPT) [11]. Their method is similar to ours in that
it uses the forward stack distance distribution of a memory ac-
cessing instruction to determine if it is a temporal instruction.
However, instead of using LRU stack distances, they use OPT
stack distances, which requires expensive simulation.

Several hardware methods have been proposed [1], [3],
[6], [14], that dynamically identify non-temporal data.
Xie et al. [14] propose a replacement policy, PIPP, to effec-
tively way-partition a shared cache, that explicitly handles non-
temporal (streaming) data. To detect non-temporal data, they
introduce a set of shadow tags [15] used to count the number
of hits to a cache line that would have occurred if the thread
was allocated all ways in the cache set. Similarly to Tyson’s
method [1], they identify a cache line as non-temporal if there
are no accesses to it prior to its eviction. This approach is
rather course grained, during a time period when the majority
of the data accessed by a thread is non-temporal it assumes
that all data accessed by the thread is non-temporal.

Qureshi et al. [5] propose an insertion policy (DIP) where
on a cache miss to non-temporal data it is installed in the

LRU position, instead of the MRU position of the LRU stack.
To detect non-temporal data they use two sets of training
cache sets. In the first training set, data is installed in the
LRU position, and in the other data is installed in the MRU
position. The rest of the cache sets use the insertion policy
of the training set that currently has the highest hit ratio. This
method has been extended [6] to be thread aware (TADIP), by
using separate training sets and insertion policies (insertion in
LRU or MRU) for the different threads. Both DIP and TADIP
exhibit the same course grained time varying behavior as PIPP.
A recent extension [8] introduces an additional policy that
installs cache lines in the MRU− 1 position.

Petoumenos et al. [7] propose an instruction based reuse
distance predictor and a replacement algorithm based on the
predicted reuse distances. Their algorithm approximates the
optimal algorithm by replacing the cache line that is predicted
to be reused furthest into the future.

The time varying behavior of PIPP, DIP and TADIP can be
effective to handle the time varying behavior of applications
(program phases). However, for applications whose instruction
working set is different between program phases, the static
classification of memory instructions, used in this and other
papers, allows for a more fine grained control, while at
the same time following the time varying behavior of the
applications.

IX. SUMMARY AND FUTURE WORK

We describe an application classification framework that
allows us to predict how applications affect each other when
running on a multicore and a method for finding non-temporal
memory accesses. Using a single low-overhead profile run
of an application, we can acquire enough information to
both classify the application and find non-temporal memory
accesses for any combination of shared and private cache sizes.
Our method can be used together with contemporary hardware
to provide a speedup for existing applications. We show that
this is the case for a selection of the SPEC2006 benchmarks.
Using a modified StatStack implementation we can reclassify
applications based on their replacement ratios after applying
cache management, this allows us to reason about how cache
management impacts performance.

Future work will explore other hardware mechanism for
handling non-temporal data hints from software and possible
applications in scheduling.
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Figure 9. Performance of mixes with benchmarks from two different categories. Benchmarks from different categories are separated by a dotted line. All
of the benchmarks, except for the Don’t care category, generally run slower in mixes than in isolation. Disabling caching for non-temporal memory accesses
regains some of the IPC lost to cache and bandwidth contention without any negative impact on application performance in isolation.
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