
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.,29(13), 1149–1171 (1999)

Reducing the Space Requirement of Suffix Trees

STEFAN KURTZ∗
Technische Fakult¨at, Universität Bielefeld, Postfach 100 131, 33501 Bielefeld, Germany

(e-mail: kurtz@techfak.uni-bielefeld.de)

SUMMARY

We show that suffix trees store various kinds of redundant information. We exploit these redundancies to
obtain more space efficient representations. The most space efficient of our representations requires 20 bytes
per input character in the worst case, and 10.1 bytes per input character on average for a collection of 42
files of different type. This is an advantage of more than 8 bytes per input character over previous work.
Our representations can be constructed without extra space, and as fast as previous representations. The
asymptotic running times of suffix tree applications are retained. Copyright 1999 John Wiley & Sons,
Ltd.

KEY WORDS: data structures; suffix trees; implementation techniques; space reduction

INTRODUCTION

Suffix trees provide efficient access to all substrings of a string, and they can be constructed
and represented in linear time and space. These properties make suffix trees a data structure
whose simplicity and elegance is surpassed only by their versatility. No other idea in the
realm of string processing can be adapted so easily to achieve superb efficiency in such a great
variety of applications. Apostolico [1] gives over 40 references on suffix trees, and Manber
and Myers [2] add several more recent ones. A very thorough discussion of current knowledge
on suffix tree constructions and applications can be found in the textbook by Gusfield [3].

Despite these superior features and the wide acceptance by theoretical computer scientists,
suffix trees have not seen widespread use in string processing software, in contrast to, for
example, finite automata or hashing techniques. One of the main reasons for this is that suffix
trees have a reputation of being very greedy for space. In fact, the suffix tree implementation
described by McCreight [4] requires 28n bytes in the worst case, wheren is the length of the
input string.† The space requirement in practice is smaller, but previous authors do not give
consistent numbers:

(a) Manber and Myers [2] state that their implementation of suffix trees occupies between
18.8n and 22.4n bytes of space for real input strings (text, code, DNA).‡

∗Correspondence to: Stefan Kurtz, Technische Fakult¨at, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany.
†We will usebytesor integersas units when we state results on space requirements. The assumption is always that an integer
occupies four bytes. Unless stated otherwise, the given numbers do not include then bytes for representing the input string.
‡These numbers have been derived from the third column of Table 1 in the paper of Manber and Myers [2]: we just added the
space for the suffix links, which is 4q bytes whereq is the number of internal nodes.

CCC 0038–0644/99/131149–23$17.50 Received 5 February 1999
Copyright 1999 John Wiley & Sons, Ltd. Revised 7 June 1999

Accepted 14 June 1999

1150 S. KURTZ

(b) Kärkkäinen [5] claims that a suffix tree can be implemented in 15n−18n bytes of space
for real input strings. Unfortunately, it is not shown how to achieve this.

(c) Crochemore and V´erin [6] state that suffix trees require 32.7n bytes for DNA sequences.
(d) Thestrmatsoftware package by Knight, Gusfield and Stoye [7] implements suffix trees

in 24n−28n bytes for input strings of length at most 223= 8,388,608. However,strmat
can handle sets of strings, and it is unclear how much of the space requirement is due to
this additional feature.

It is important to note that these numbers include the space required during the construction
of suffix trees. Recently, Munroet al. [8] described a representation of suffix trees which
requiresndlog2 ne + o(n) bits. However, it is restricted to searching for string patterns, and
it is not clear if there is a linear time algorithm to directly construct this representation.
As a consequence, one first has to construct a suffix tree in a usual, less space efficient
representation. So, altogether, the approach of Munroet al. sacrifices versatility and it does
not give a space advantage in practice.

Faced with the numbers above, and the ever growing size of the input strings to be
processed, several authors have developed alternative index structures which store less
information than suffix trees and are therefore more space efficient: thesuffix arrayof Manber
and Myers [2] requires 9n bytes (including the space for construction). Thelevel compressed
trie of Andersson and Nilsson [9] takes about 12n bytes. Thesuffix binary search treeof
Irving [10] requires 10n bytes. Thesuffix cactusof Kärkkäinen [5] can be implemented in 10n
bytes. Finally, thePT -tree of Colussi and De Col [11] requiresn log2 n + O(n) bits. These
five index structures have two properties in common. First, they are specifically tailored to
solve string matching problems, and cannot be adapted to other kinds of problems without
severe performance penalties.§ Thus they are not nearly as versatile and efficient as suffix
trees (and they are not expected to be). Second, the direct construction methods for these
index structures do not run in linear worst case time.¶

Directed acyclic word graphs[12,13] (dawgs, for short), and more space efficient variants
thereof [14,15], have essentially the same applications as suffix trees. The compact dawg,
which is the most space efficient of these index structures, occupies 36n bytes in the worst
case. Recently, Crochemore and V´erin [6] gave a direct method to constructcompact dawgs,
which makes this index structure useful in practice. We will later see thatcompact dawgsare
more space efficient than suffix trees in previous implementations, but less space efficient than
suffix trees in an implementation technique we propose. Dawgs, and in particular compact
dawgs have been less extensively studied than suffix trees. According to Crochemore and
Vérin [6], this may be due to the fact that they display positions of substrings of the input
string in a less obvious way.

To allow constructions and applications of suffix trees for very large input strings (like
they occur in genome research), other authors [16,17] developed techniques to organize
suffix trees on disk, so that the number of disk accesses is reduced. However, again these
techniques are mainly optimized for string matching problems, and the behavior for other
kinds of applications is unclear. Moreover, direct construction in linear time is not possible.

In this paper, we follow the most natural approach to make suffix trees more practical:
we reduce their space requirement. We show that suffix trees store various kinds of

§String matching problems are perhaps the most important kind of applications for index structures. However, there are other
important applications, like finding repetitive structures in strings or sorting suffixes; see also TableVI .
¶All five index structures can be constructedindirectly in linear time. The idea is to first construct the corresponding suffix tree,
and then to traverse it to read off the information of the particular index structure, but this indirect approach of course means that
the space advantage is lost.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1151

redundant information, and we exploit these redundancies to obtain a more space efficient
representation. We are mainly interested to reduce the space in practice, but we also improve
on the worst case. We emphasize that we do not sacrifice any of the superior virtues of suffix
trees as mentioned above. In particular, the suffix tree representations we propose can be
constructed in linear worst case time without using extra space and the asymptotic running
times of suffix tree applications are retained. This approach, which, to our knowledge, has
not been consequently followed since the pioneering work of McCreight,‖ has an important
advantage: suffix trees and their applications have been extensively studied and are well
described in textbooks. All this work can be implemented without change of algorithms on
top of our space efficient representations.

The main contributions of this paper are as follows:

(a) We make several observations about the node structure of suffix trees, which reveal
redundancies of the information stored therein.

(b) We show how to exploit these redundancies to improve the space requirement of
previous implementation techniques based on linked list and hash tables. The worst
case space requirement of the improved linked list implementation is 5n integers, and it
is probably even better but we cannot prove this. Thus the improvement in the worst case
is 2n integers over the technique described by McCreight [4]. It is interesting to note
that for the stringan, where McCreight’s techniques occupy 7n integers, both of our
improved implementation techniques require at most 3n+ 2

31n integers. The worst case
space requirement of the improved hash table implementation technique is 7n integers.
Again, we do not know if this bound is tight. These results hold for input strings of
length up to 227− 1= 134,217,727.

(c) We show that on a 32 bit computer all implementations of suffix trees have similar upper
bounds on the maximal length of the input string they allow.

(d) We present experimental results showing that our improved linked list implementation
requires on average 10.1n bytes of space for a collection of 42 files from different
sources (english text, formal text, binary files, DNA sequences, protein sequences,
random strings). This is an improvement of 46 per cent over the implementation
technique of McCreight, and an improvement of 30 per cent over compact dawgs. The
improved hash table implementation technique requires 14.66n bytes on average, which
is similar to the space consumption of compact dawgs. Our experiments show that the
size of the index structures depends on the kind of input data: binary strings lead to the
smallest data structures, for formal text and english text all data structures are slightly
larger. For protein sequences and in particular DNA sequences the space requirement is
considerably higher.

(e) Timing results show that the space efficient representations we propose can be computed
with virtually no performance penalty in practice. The linked list implementation proves
to be faster than the hash table implementation only if the alphabet is small and the input
string is short.

(f) In the conclusion we shortly sketch current and possible applications of our
implementation techniques, and give advice on which of the proposed techniques to
choose. We argue that it is very important to consider the kind of suffix tree traversals
an application requires.

This paper extracts the core of wider report [18], where we give proofs for the observations,

‖Andersson and Nilsson [9] consider level compressed tries which are different from suffix trees as defined by McCreight [4].

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1152 S. KURTZ

Figure 1. The suffix tree forx = abab

and describe how to modify McCreight’s suffix tree construction [4] such that it computes
the space efficient representations we propose. Documented C-source code constructing the
proposed suffix tree representations in linear time is available at
http://www.techfak.uni-bielefeld.de/˜kurtz/Software/suffixtrees.tar.gz.

The code works on 32 bit as well as on 64 bit machines without any changes.

SUFFIX TREES

Basic definitions

Let 6 be a finite ordered set, thealphabet. The size of6 is k. 6∗ denotes the set of all
strings over6 andε is theempty string. We use6+ to denote the set6∗\{ε} of non-empty
strings. Letx ∈ 6∗ andx = uvw for some possibly empty stringsu, v,w. Thenu is aprefix
of x, v is asubstringof x, w is asuffixof x. |x| is the number of characters inx. xi is theith
character inx. If |x| = n, thenx = x1x2 . . . xn.

A 6+-treeT is a finite rooted tree with edge labels from6+. For eacha ∈ 6, every node
u in T has at most onea-edgeu

av→ w for some stringv and some nodew.
Let T be a6+-tree. A node inT is branchingif it has at least two outgoing edges. Aleaf

in T is a node inT with no outgoing edges. Aninternal nodein T is either theroot or a node
with at least one outgoing edge. An edge leading to an internal node is aninternal edge. An
edge leading to a leaf is aleaf edge. Due to the requirement of uniquea-edges at each node
of T , paths are also unique. Therefore, we denotev byw if and only ifw is the concatenation
of the edge labels on the path from theroot of T to the nodev. The nodeε is theroot. For
any nodew in T , |w| is thedepthof w. A stringw occursin T if T contains a nodewu, for
some stringu.

From now on we assume thatx ∈ 6+ is a string of lengthn ≥ 1 and that $∈ 6 is a
character not occurring inx, thesentinel. Thesuffix treefor x, denoted byST, is the6+-tree
T with the following properties: (i) each node is either a leaf, a branching node, or theroot;
and (ii) a stringw occurs inT if and only ifw is a substring ofx$. Figure1 shows the suffix
tree forx = abab. There are several algorithms to constructST in linear time [4,19,20,21].
Giegerich and Kurtz [22] review three of these algorithms and reveal relationships much
closer than one would think.

For anyi ∈ [1, n + 1], let Si = xi . . . xn$ denote theith non-empty suffix ofx$. Note
that due to the sentinel, noSi is a proper prefix of anySj . Thus, there is a one-to-one
correspondence between the non-empty suffixes ofx$ and the leaves ofST. This implies
that ST has exactlyn + 1 leaves. Moreover, sincen ≥ 1 andx1 6= $, the root of ST is
branching. Hence, each internal node inST is branching. This means that there are at mostn
internal nodes inST. Each node can be represented in constant space. Thus, one needsO(n)
space for the nodes. SinceSThas at most 2n+ 1 nodes, the number of edges is bounded by
2n. Each edge is labeled by a substring ofx$, which can be represented in constant space by

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1153

a pair of pointers intox$. Hence, one needsO(n) space for the edges. Altogether,STrequires
O(n) space.

Thesuffix linkfor a nodeaw in ST is an unlabeled directed edge inSTfrom aw to the node
w. We consider suffix links to be a part of the suffix tree data structure. They are required for
most of the linear time suffix tree constructions [4,19,20], and for some applications of suffix
trees [3].

Head positions

The substringw corresponding to the branching nodew can be represented by a position
delineating an occurrence ofw in x$. Asw may occur several times inx$, there are several
choices for a position, and it is common practice to choose the leftmost occurrence. We shall
show now that there is a less obvious, but more convenient choice: theraison d’etreof a
branching nodew is not the leftmost occurrence ofw in x$, but the leftmostbranching
occurrence. That is, the first occurrence ofwa in x$, for somea ∈ 6, such thatw occurs
to the left, but notwa.

Let head1 = ε and for i ∈ [2, n + 1] let headi be the longest prefix ofSi which is also
a prefix ofSj for somej ∈ [1, i − 1]. The following two observations show that there is a
one-to-one correspondence between thehead’s and the branching nodes inST. The proofs for
these and all subsequent observations can be found elsewhere [18].

Observation 1 Letw be a branching node inST. Then there is ani ∈ [1, n + 1] such that
w = headi .

Observation 2 Let i ∈ [1, n+ 1]. Then there is a branching nodeheadi in ST.

For each branching nodew in ST, let headposition(w) denote the smallest integeri ∈
[1, n+1] such thatw = headi . According to Observation 1, such an integer exists, and hence
headposition(w) is well defined. Ifheadposition(w) = i, then we say that thehead position
of w is i.

While the determination of the head positions seems more complicated than just choosing
the position of the leftmost occurrence, the head position is readily available during linear
time suffix tree construction [18].

TWO SIMPLE IMPLEMENTATION TECHNIQUES

The most space parsimonious implementation techniques for suffix trees is based on linked
lists [2]. McCreight [4] (Fig. 4) showed how to representST using five integers for each
internal node and two integers for each leaf. No extra space for the edges and their labels is
required. Later authors gave the same numbers [2,10]. Recently, Crochemore and V´erin [6]
(p. 121) claimed that McCreight’s implementation technique would also require five integers
for each leaf. This is not true. In the next section we show that one integer suffices for each
leaf.

A simple linked list implementation

The simple linked list implementation technique (SLLI for short) representsST by two
tablesTleaf andTbranchwhich store the following values: for eachleaf number j∈ [1, n+ 1],
Tleaf[j] stores a reference to the right brother of leafSj . If there is no such brother, then

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1154 S. KURTZ

Figure 2. The references of the suffix tree forx = abab (see Figure1). Vertical arcs stand for firstchild references,
and horizontal arcs for branchbrother andTleaf references

Tleaf[j] is a nil reference. For each branching nodew, Tbranch[w] stores abranch record
consisting of five componentsfirstchild, branchbrother, depth, headposition, andsuffixlink
whose values are specified as follows:

1. firstchild refers to the first child ofw.
2. branchbrotherrefers to the right brother ofw. If there is no such brother, then

branchbrotheris a nil reference.
3. depthis the depth ofw.
4. headpositionis the head position ofw.
5. suffixlink refers to the branching nodev, if w is of the formav for somea ∈ 6 and

somev ∈ 6∗.
The successors of a branching node are therefore found in a list whose elements are linked

via thefirstchild, branchbrotherandTleaf references. To speed up the access to the successors,
each such list is ordered according to the first character of the edge labels. Figure2 shows the
child and brother references of the nodes of the suffix tree of Figure1. We use the following
notation to denote a record component: for any componentc and any branching nodew,w.c
denotes the componentc stored in the branch recordTbranch[w]. Note that the head position
j of some branching nodewu tells us that the leafSj occurs in the subtree below nodewu.
Hence,wu is the prefix ofSj of lengthwu.depth, i.e. the equalitywu = xj . . . xj+wu.depth−1
holds. As a consequence, the label of the incoming edge to nodewu can be obtained by
dropping the firstw.depthcharacters ofwu, wherew is the predecessor ofwu:

Observation 3 If w
u→ wu is an edge inST andwu is a branching node, thenu =

xi . . . xi+l−1 wherei = wu.headposition+w.depthandl = wu.depth− w.depth.

Similarly, the label of the incoming edge to a leaf is determined from the leaf number and
the depth of the predecessor:

Observation 4 If w
u→ wu is an edge inST andwu = Sj for somej ∈ [1, n + 1], then

u = xi . . . xn$, wherei = j + w.depth.

A similar observation was made by Larsson [23], but without a clear statement about
its consequences concerning the space requirement ofST. Note that storing the depth of a
branching node has some practical advantages over storing the length of the incoming edge
to a node (the latter is suggested by McCreight [4]). At first, during the sequential suffix tree
constructions [4,19,20], the depth of a node never changes. So it is not necessary to update the
depth of a node (the same is true for the head position). Second, the depth of the nodes along a
chain of suffix links is decremented by one, a property which can be exploited to store a suffix
tree more space efficiently, see the next section. The third advantage of storing the depth is
that several applications of suffix trees assume that the depth of a node is available [3].

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1155

Table I. TablesTleaf andTbranch representing the suffix tree forx = abab (see Figure1). A bold face number
refers to tableTleaf

Tleaf Tbranch

leaf abab$ bab$ ab$ b$ $ branching node root ab b
leaf numberj 1 2 3 4 5 node number 1 2 3

Tleaf[j] 3 4 nil nil nil firstchild 2 1 2
branchbrother nil 3 5
depth 0 2 1
headposition 1 3 4
suffixlink 3 1

Space requirement

The firstchild, branchbrotherandTleaf references can be implemented as integers in the
range[0, n]. An extra bit with each such integer tells whether the reference is to a leaf or to a
branching node. Each leafSj is referred to by leaf numberj . Suppose there areq branching
nodes inST. Let b1, b2, . . . , bq be the sequence of branching nodes ordered by their head
position, i.e.bi.headposition< bi+1.headpositionfor any i ∈ [1, q − 1]. Each branching
nodebi is referred to by its node numberi, which is denoted bynodenum(bi). Obviously,b1
is theroot. TableI depictsTleaf andTbranch for the suffix tree of Figure1.

Like the references, the other components of the branch records can each be implemented
by an integer in the range[0, n]. Thus, tableTleaf requiresn integers and tableTbranchrequires
5q integers. The total space requirement of the simple linked list implementation isn + 5q
integers. The linked list implementation technique of McCreight requires 2n + 5q integers.
ThusSLLI savesn integers.

In the worst case, we haveq = n, so thatSLLI requires 6n integers. McCreight [4] (p. 268)
suggested to store the node with head positioni at indexi in Tbranch. In this way, it is not
required to store the head position with each internal node. This would reduce the space
for each branch record to four integers, and the space requirement would be 5n integers,
independent of the actual numberq of branching nodes. However,q is usually considerably
smaller than 0.8n (q = 0.62n is the theoretical average value for random strings [24]), so that
this worst case improvement would result in a larger space usage in practice. Therefore, we
do not consider it further.

Note that storing the nodes of the suffix tree in depth first or breadth first order (as in
Giegerichet al. [25]) to save the space for thefirstchild- or branchbrother-references does
not allow linear time construction. This is because during linear time suffix tree constructions
the relations of the nodes change dynamically. That is, if a node is created, then it is not
clear what the brother or first child will be in the final suffix tree. Hence, if we would store
the nodes in depth first or breadth first order, the insertion of a new node would require an
unbounded number of node movements. This is in contrast to the three or four updates of
references required if we store the node relations as described above.

A simple hash table implementation

While linked list implementations of suffix trees are space efficient, they have an important
disadvantage: it takesO(k) time to select a certain edge (according to some given character)

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1156 S. KURTZ

outgoing from a node. If the alphabet is large this may slow down suffix tree constructions
and traversals considerably. Using balanced search trees instead of linked lists would improve
worst case access toO(logk). However, with the additional overhead and the additional
space requirement it is not clear whether this would improve the running time in practice.
For this reason, we consider hashing techniques. McCreight [4] already suggested these for
the implementation of suffix trees.

We found the following simple hash table implementation technique (SHTI, for short) to
work well in practice: for each edgew

av→ wavone stores the node number ofwav in a hash
table using the pair (w.headposition, a) as a hash key. Given a nodew and some charactera,
the hash table allows to check whether there is ana-edge outgoing fromw. In case such an
edge exists, sayw

av→ wav, a reference towav is delivered, as well as the edge labelav.

Space requirement

The number of edges is bounded by 2n, so a hash table of size 2n suffices. Besides the
hash table, there is a table storing a record for each branching node. Such a record consists
of the three componentsdepth, headpositionand suffixlink, as defined above, and so this
table requires 3q integers. The space requirement for the hash table depends on the hashing
technique. We use an open addressing hashing technique, with double hashing [26] to resolve
collisions. The hash function is based on the division method. This implies that the actual size
of the hash table is the smallest prime larger than 2n. Each entry of the hash table stores two
integers: the hashed value and the left component of the hash key. It is not necessary to store
the right component of the hash key (i.e. the character), since this can be retrieved in constant
time, provided the depth of the node the edge is outgoing from is known; see Observations 3
and 4. The hash table thus requires 4n integers, which means that the total space requirement
of SHTI is 4n+ 3q integers.

Note that McCreight recommends to use Lampson’s hashing technique (see Knuth [26],
section 6.4, p. 543, and Example 13), which belongs to the class of chaining techniques.
This hashing technique uses an overflow area and a linked list of synonyms, and saves space
by only storing the remainder of the key. However, as remarked by Cleary [27], each hash
table entry (including the original hash location) requires a reference to the next overflow
record. This reference will be of about the same size as the reduction in the key size. So,
Lampson’s hashing technique does not lead to net memory space savings over the open
addressing technique we used. In other words, the latter is the better choice.

We considered other hashing and tree implementation methods, which are, however, not
applicable to suffix trees without severe performance penalties:

(a) Compact Hashing [27] allows to store hash tables in a more space efficient way, by
abbreviating a hash key (which we already did by only storing one component of the
hash key). It requires randomizing hash keys, which can be very time consuming in
practice.

(b) TheBonsai implementation technique [28] is based on Compact Hashing, while the
double-array technique [29,30] combines the advantages of arrays and lists. Both
techniques are specifically designed to represent trees space efficiently. However, they
both required the tree to be built from the root downward, a precondition which is not
met by any of the linear time suffix tree construction methods [4,19,20,21].

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1157

REVEALING AND EXPLOITING REDUNDANCIES

Small nodes and large nodes

We now show that the information stored for the branching nodes of the suffix tree contains
redundancies. We reveal these by studying properties of the head positions. This leads to a
relation between node numbers and suffix links.

Observation 5

1. If u andw are different branching nodes, thenu.headposition6= w.headposition.
2. For any branching nodeaw in ST, w is also a branching node inST. Moreover, the

inequalityaw.headposition+ 1≥ w.headpositionholds.

Observation 5 implies that for any branching nodeaw we either haveaw.headposition+
1 = w.headpositionor aw.headposition> w.headposition. We discriminate all non-root
nodes accordingly:aw is asmallnode if and only ifaw.headposition+ 1= w.headposition.
aw is alargenode if and only ifaw.headposition> w.headposition. Theroot is neither small
nor large. The following observation shows that a small node is always directly followed by
another branching node, and that the last branching node is a large node.

Observation 6 Let aw be a branching node inST. Then the following holds:

1. If aw is small, thennodenum(aw)+ 1= nodenum(w).
2. If nodenum(aw) = q andq > 1, thenaw is large.

According to Observation 6, we can partition the sequenceb2, . . . , bq of branching nodes
into chainsof zero or more consecutive small nodes followed by a single large node: achain
is a contiguous subsequencebl, . . . , br , r ≥ l, of b2, . . . , bq such that the following holds:

(a) bl−1 is not a small node.
(b) bl, . . . , br−1 are small nodes.
(c) br is a large node.

One easily observes that any branching node (except for theroot) in ST is a member of
exactly one chain. The branch records for the small nodes of a chain store some redundant
information, as shown in the following observation:

Observation 7 Letbl, . . . , br be a chain. The following properties hold for anyi ∈ [l, r−1]:
1. bi.depth= br.depth+ (r − i).
2. bi.headposition= br.headposition− (r − i).
3. bi.suffixlink= bi+1.

We now show how to exploit these redundancies to store the information in the branching
nodes in less space. Consider a chainbl, . . . , br . Observation 7 shows that it is not necessary
to storebi.depth, bi.headpositionandbi.suffixlink for any i ∈ [l, r − 1]: bi.suffixlinkrefers
to the next node in the chain, and if the distancer − i of the small nodebi to the large node
br (denoted bybi.distance) is known, thenbi.depthandbi.headpositioncan be obtained in
constant time. This observation leads to the following implementation technique.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1158 S. KURTZ

Table II. The tableT ′branch for the suffix tree forx = abab(see Figure1). A small record is stored in two integers

and a large record in four integers.ab is a small node with head position 3, andb is a large node with head position
4. Both form a chain. The distance ofab andb is 1, depicted as a tiny 1 in the small record forab. Consider the
large record forb: the tiny 0 stands for the unused most significant bits of the first integer, and the third integer

stores the small depth (to the right) and the suffix link (to the left). A bold face number refers toTleaf

5 nil 0 1 1 1 8 0 2 5 0 1 4︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
root ab b

An improved linked list implementation

The improved linked list implementation (ILLI , for short) representsST by two tables
Tleaf andT ′branch. Tleaf is as inSLLI. TableT ′branch stores the information for the small and
the large nodes: for each small nodew, there is asmall recordwhich storesw.distance,
w.firstchild andw.rightbrother. For each large nodew there is alarge recordwhich stores
w.firstchild, w.rightbrother, w.depthandw.headposition. Wheneverw.depth≤ 2α − 1, for
some constantα, we say that the large record forw is complete. A complete large record
also storesw.suffixlink. A large nodew with w.depth> 2α − 1 is handled as follows: let
v be the rightmost child ofw. There is a sequence consisting of onefirstchild reference
and at mostk − 1 rightbrother/Tleaf references which linkw to v. If v = Sj for some
j ∈ [1, n + 1], thenTleaf[j] is a nil reference. Otherwise, ifv is a branching node, then
v.rightbrother is a nil reference. Of course, it only requires one bit to mark a reference as
a nil reference. Hence the integer used for the nil reference contains unused bits, in which
w.suffixlinkis stored. As a consequence, retrieving the suffix link ofw requires traversing the
list of successors ofw until the nil reference is reached, which encodes the suffix link ofw.
This linear retrievalof suffix links takesO(k) time in the worst case. However, despite linear
retrieval, the suffix tree can still be constructed inO(kn) time, since the suffix link is retrieved
at mostn times during suffix tree construction [4,18]. Moreover, suffix tree applications which
utilize suffix links [3,31,32] have an alphabet factor in their running time anyway (if a linked
list implementation of suffix trees is used). As a consequence, linear retrieval of suffix links
does not influence the asymptotic running time, neither of suffix tree constructions, nor of
suffix tree applications. Recall that linear retrieval of suffix links is required only for large
nodes whose depth exceeds 2α − 1. α will be chosen such that those nodes are usually very
rare. If they occur, then the number of successors is expected to be small, and hence linear
retrieval of suffix links is fast.

To guarantee constant time access from a small nodebi to the large nodebr , the records are
stored in tableT ′branch, ordered by the head positions of the corresponding branching nodes.
All branching nodes are referenced by theirbase addressin T ′branch, i.e. the index of the
first integer of the corresponding record. TableII depicts tableT ′branch for the suffix tree of
Figure1.

Space requirement

Suppose a base address can be stored inβ bits. A reference is either a base address or a leaf
number. To distinguish these, we need one extra bit. Thus a reference requires 1+β bits. Each

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1159

depth and each head position occupiesγ = dlog2 ne bits. Consider the range of the distance
values. In the worst case, take for example,x = an, there is only one chain of lengthn− 1,
i.e. the maximal distance value isn− 2. However, this case is very unlikely to occur. To save
space, we delimit the maximal length of a chain to 2δ for some constantδ. As a consequence,
after at most 2δ−1 consecutive small nodes an ‘artificial’ large node is introduced, for which
we store a large record. In this way, we delimit the distance value to be at most 2δ − 1, and
thus the distance occupiesδ bits. Thus we trade a delimited distance value for the saving of
γ − δ bits for each small record.

A small record stores two references, a distance value, and onenil bit to mark a reference as
a nil reference, which add up to 2·(1+β)+δ+1 = 3+2β+δ bits. A large record stores two
references, one nil bit, and onecomplete bitwhich tells whether the large node is complete.
Moreover, there areγ bits required for the head position. If the record is complete thenβ bits
are used for the suffix link andα bits for the depth. Otherwise,γ bits are used for the depth.
We leaveδ bits unused, i.e. they store the ‘distance’ 0. In this way, we can discriminate large
and small nodes, since the latter always have a positive distance value. Altogether a complete
large record requires 2· (1+ β) + 1+ 1+ γ + β + α + δ = 4+ 3β + γ + α + δ and an
incomplete large record requires 2· (1+ β)+ 1+ 1+ 2γ + δ = 4+ 2(β + γ)+ δ bits.

To determine the actual space requirement we must choose the constantsδ and α and
consider the maximal length of the input string we allow. In our current implementation we
assumen ≤ 227− 1 (which impliesγ = 27), and have chosenα = 10 andδ = 5. Then
we can store a small record in two integers and reserve four integers for a large record.∗∗
As a consequence the maximal base address is 4n − 4, and any base address is even. Hence
β = γ + 1, which means that a small record requires 3+ 2β + δ = 64 bits, i.e. two integers.
An incomplete large record requires 4+2(β+γ)+δ = 119 bits, and a complete large record
requires 4+ 3β + γ + α + δ = 130 bits. Both fit into four integers, if we store 2 bits for the
latter type of record inTleaf[w.headposition], wherew is the corresponding node. Recall that
Tleaf[w.headposition] stores a reference (29 bits) and one nil bit.

Letσ be the number of small records andλ be the number of large records.T ′branchrequires
2σ + 4λ integers. TableTleaf occupiesn integers, and hence the space requirement ofILLI is
n+2σ +4λ integers. The implementation technique of McCreight [4] requires 2n+5(σ +λ)
integers. Each leaf and each large node saves one integer, and each small node saves three
integers. ThusILLI leads to large space savings, if there are many small nodes.

Example 1 Consider the input stringx = an. ThenST hasn − 2 small nodes, one large
node (i.e.a), and 2n edges. Hence the space requirement ofILLI is 3n+ 1

16n integers (there
are 2

32n extra integers required for the artificial large nodes). This is the best case. In contrast,
the space requirement forSLLI is 6n, which is the worst case. HenceILLI requires about half
of the space used bySLLI.

Example 2 Consider the input stringx = aabbabaaababbaabaabbof length n = 20.
Then ST contains 3 small nodes and 14 large nodes, and hence the space requirement is
(20+3·2+15·4)/20= 4.3 integers per input character. This is the largest space requirement
of ILLI for all strings of length 20 over the alphabet6 = {a, b}. The saving overSLLI is 24
integers.

The last example shows that there can be many large nodes. We conjecture that the upper
bound onλ occurs for binary alphabets and that it is around 0.7n, as in Example 2. However,

∗∗We assume that each integer occupies 32 bits. Note that this does not imply that the word size of the computer is 32 bits. In
fact, the software constructing our suffix tree representations works on 32 bit as well as on 64 bit machines without any changes.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1160 S. KURTZ

we cannot prove this and have to calculate with an upper boundλ ≤ n.
Note that the proposed suffix tree representations can be constructed in linear time without

extra space, by a slight modification of McCreight’s suffix tree algorithm [4]. The basic
observation is that this algorithm constructs the branching nodes ofST in order of their
head positions, which is compatible with our implementation techniques. For details, see
Kurtz [18].

An improved hash table implementation

The redundancy of the information stored in the branching nodes can also be exploited
to reduce the space requirement of the simple hash table implementation technique. In the
improved hash table implementation technique, referred to byIHTI , we usereference pairsto
address the nodes ofST. In particular, each leafSj is addressed by the reference pair(0, j).
Let l1, l2, . . . , lp be the sequence of large nodes inSTordered by their head position. This is a
subsequence ofb1, b2, . . . , bq , the sequence of branching nodes, as defined above. Consider
the chain which ends with the large nodeli . li is referenced by the pair (1, i). Each small node
in this chain with distanced > 0 to li is referenced by the pair (d+1, i). Using these reference
pairs, it suffices to store the large records. Thesuffixlink, theheadpositionand thedepthof
each small node can be retrieved in constant time, according to Observation 7, since the
distance to the large node of the chain is encoded in a reference pair. The hashing technique
of the previous section only has to be slightly modified: consider the edgew

av→ wav, and
suppose thatwav is a node which is addressed by the reference pairp. Then one stores the
pair (w.headposition, p) in the hash table using (w.headposition, a) as a hash key.

Another observation about the leaf edges allows us to reduce the size of the hash table
considerably. Note that for a nodew with head positioni there is often a leaf edgew

av→ Si .
Let us call such a leaf edgeidentityedge.

Example 3 Consider the suffix tree for the stringabab. Then there are two identity edges

ab
$→ ab$ andb

$→ b$, which can be easily deduced from TableI.

There is at most one identity edge outgoing from each branching node. The observation
is that it is not necessary to explicitly store identity edges in the hash table. We just need a
single bit to mark that there is an identity edge outgoing from a branching node with head
positioni. Knowing this, we can deduce the leaf numberi, the identity edge leads to, as well
as the corresponding edge label, see Observation 4. For eachi ∈ [0, n], the ith entry of the
hash table contains an unused bit. This can be used as a marking bit, so that no extra space
is required to represent the identity edges. If we do not store the identity edges explicitly,
then we can reduce the size of the hash table considerably. In fact, we have never found any
input string for which the number of non-identity edges exceeds 1.5n. Hence we only use a
hash table of size 1.5n. For the very unlikely situation that the hash table overflows, one can
enlarge it and rehash all entries that are currently stored. Unfortunately, we cannot prove a
worst case bound better than 2n for the size of the reduced hash table.

Space requirement

A reference pair is implemented by a single integer. We restrict the maximal length of the
chains to 31 (one less than forILLI). So the maximal distance value is 30, and the maximal

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1161

value in the left component of a reference pair is 31, i.e. it occupies 5 bits. This leaves 27 bits
for storing the right component, i.e. the leaf number or the numberi of a large nodeli . As a
consequence, the length of the string to be processed is delimited to 227− 1= 134,217,727.
The space requirement ofIHTI is thus 4n + 3λ integers. Therefore, the saving overSHTI is
3σ integers.

Example 4 Consider the stringx = an. ThenSTcontainsn− 2 small and one large node.
There are 2n edges,n of which are identity edges. Using a hash table of size 1.5n, the space
requirement forIHTI is 3n+ 3

31n integers, which is almost identical to the space requirement
of ILLI . The saving overSHTI is almost 4n integers.

Example 5 Consider the input stringx = aabbabaaababbaabaabbof Example 2. There
are three small nodes, 14 large nodes, and 38 edges, 11 of which are identity edges. Using a
hash table of size 30, the space requirement forIHTI is (2 · 30+ 3 · 15)/20= 5.25 integers
per input character. The reduction in the size of the hash table saves 10 integers, and the three
small nodes save nine integers overSHTI.

UPPER LIMITS ON THE INPUT STRING LENGTH

Usually, the memory available delimits the maximal length of the input string which can be
processed. However, on some computers with very large memory, one also has to take into
account the available address space. This is delimited by 2ω − 1, whereω is the word size of
the computer. The worst case space requirement ofILLI is 5n integers. With the additionaln
bytes for representing the input string, the total space requirement is 21n bytes in the worst
case. Since 21(227− 1) = 2,818,572,267 is well below 232− 1, we can safely assume that
all bytes of the suffix tree representation ofILLI can be addressed on a computer with word
sizeω ≥ 32. In case strings longer than 227− 1 are to be processed (and enough memory
is available), one can modifyILLI such that each small and each large record contains an
extra integer. This results in an implementation techniqueILLI ′ with a space requirement of
n+ 3σ + 5λ integers.

The improved hash table implementation has a worst case space requirement of 7n integers.
Since 29(227 − 1) = 3,892,314,083 is well below 232 − 1, all bytes can be addressed,
wheneverω ≥ 32. For the other implementation techniques and compactdawgs, the upper
limit on n is (2ω−1)/wcs, wherewcsis the worst case space requirement in bytes (including
the n bytes for the input string). In practice, this number is actually smaller since there is
a constant amount of memory required for the operating system and program execution.
TableIII gives an overview of the space requirements and the upper limits onn for ω = 32.

EXPERIMENTS

For our experiments we collected a set of 42 files (total length 18,684,070) from different
sources:

(a) We used 17 files from the Calgary Corpus and all 14 files from the Canterbury
Corpus [33]. The Calgary Corpus usually consists of 18 files, but since the filepic
is identical to the fileptt5 of the Canterbury Corpus, we did not include it here. Both
corpora are widely used to compare lossless data compression programs.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1162 S. KURTZ

Table III. Overview of the space requirement of different suffix tree implementation techniques and compact
dawgs. n is the length of the input string,σ is the number of small nodes, andλ is the number of large nodes
in the suffix tree. The worst case space requirement is calculated by substituting 0 forσ andn for λ. s is the
number of states andt is the number of transitions in the compactdawg. The worst case occurs for the input string
x = an−1b: thens = n andt = 2n− 2. Since each state and each edge occupies three integers [6], the worst case
space requirement of compactdawgs is 36n bytes. For calculating the upper bounds we addedn bytes which are

required to represent the input string

Space (in integers) Upper limit onn for ω = 32

McCreight 2n+ 5(σ + λ) (232− 1)/29= 148,102,320
SLLI n+ 5(σ + λ) (232− 1)/25= 171,798,691
SHTI 4n+ 3(σ + λ) (232− 1)/29= 148,102,320
ILLI n+ 2σ + 4λ 227− 1= 134,217,727
ILLI ′ n+ 3σ + 5λ (232− 1)/25= 171,798,691
IHTI 3(n+ λ) 227− 1= 134,217,727
Compact dawgs 3(s + t) (232− 1)/37= 116,080,197

(b) We added eight DNA sequences used by Lef´evre and Ikeda [15]. These are denoted by
their EMBL database accession number.

(c) We extracted a section of 500,000 residues from the PIR database, denoted byPIR500.
The underlying alphabet is of size 20.

(d) We generated two random stringsR500k4 andR500k20 of length 500,000 over an
alphabet of size 4 and over an alphabet of size 20. The characters are drawn with uniform
probability.

Space requirement

We compared the space requirement of the described implementation techniques with the
space requirement of variants of directed acyclic word graphs [12,13]. To obtain concrete
numbers, we developed software to computedawgs. Given adawg, it is fairly easy to compute
the number of nodes and edges in the correspondingposition end-set treeof Lefévre and
Ikeda [15] (pestry, for short). The same holds for thecompact dawg[14] (cdawg, for short).
A tight implementation of adawg and apestry, based on linked lists, requires nine bytes
for each node and eight bytes for each edge. For thecdawg, 12 bytes are required for each
node and for each edge. These numbers are consistent with Crochemore and V´erin [6]. We
also counted the number of small and large nodes in the suffix trees to calculate the space
requirement for the different suffix tree implementation techniques, according to the formulas
given in TableIII .

TableIV shows the relative space requirement (in bytes per input char) of thedawg, the
pestry, the cdawg, and for suffix trees using the implementation technique of McCreight
(McC) and the improved implementation techniquesILLI and IHTI we propose. We
emphasize that the given numbers refer to the space required for construction. It doesnot
include then bytes used to store the input string.

The first column of TableIV shows the name of the file and the second its source, as far as it
has not been made precise above:CL stands for the Calgary Corpus,CN for the Canterbury
Corpus, andEM for the EMBL data base. In addition, a single character denotes the type of

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1163

Table IV. Relative space requirement (in bytes/input char) ofdawgs and suffix trees

File Source Length k dawg pestry cdawg McC ILLI IHTI

book1 CL/e 768771 81 30.35 19.97 15.75 18.02 9.83 14.73
book2 CL/e 610856 96 29.78 17.92 12.71 18.63 9.67 14.13
paper1 CL/e 53161 95 30.02 18.12 12.72 18.92 9.82 14.17
paper2 CL/e 82199 91 29.85 18.53 13.68 18.51 9.82 14.42
paper3 CL/e 46526 84 30.00 19.00 14.40 18.28 9.80 14.53
paper4 CL/e 13286 80 30.34 19.50 14.76 18.35 9.91 14.66
paper5 CL/e 11954 91 30.00 18.86 14.04 18.41 9.80 14.46
paper6 CL/e 38105 93 30.29 18.28 12.80 19.07 9.89 14.19
alice29 CN/e 152089 74 30.27 18.90 14.14 18.63 9.84 14.38
lcet10 CN/e 426754 84 29.75 17.84 12.70 18.61 9.66 14.12
plrabn12 CN/e 481861 81 29.98 19.65 15.13 17.84 9.74 14.71
bible CN/e 4047392 63 29.28 16.75 10.87 16.10 7.27 12.04
world192 CN/e 2473400 94 27.98 14.55 7.87 18.81 9.22 13.35
bib CL/f 111261 81 28.53 15.88 9.94 18.76 9.46 13.73
news CL/f 377109 98 29.48 17.58 12.10 18.41 9.54 14.06
progc CL/f 39611 92 29.73 17.42 11.87 18.69 9.59 13.97
progl CL/f 71646 87 29.96 16.27 8.71 20.98 10.22 13.55
progp CL/f 49379 89 30.21 16.24 8.28 21.39 10.31 13.43
trans CL/f 93695 99 30.47 15.97 6.69 22.22 10.49 13.21
fieldsc CN/f 11150 90 29.86 16.39 9.40 19.81 9.78 13.59
cp CN/f 24603 86 29.04 16.64 10.44 18.41 9.34 13.76
grammar CN/f 3721 76 29.96 17.17 10.60 20.2510.14 13.85
xargs CN/f 4227 74 30.02 18.50 13.10 18.15 9.63 14.35
asyoulik CN/f 125179 68 29.97 19.46 14.93 18.02 9.77 14.64
geo CL/b 102400 256 26.97 19.09 13.10 13.41 7.49 13.99
obj1 CL/b 21504 256 27.51 16.68 13.20 14.53 7.69 13.61
obj2 CL/b 246814 256 27.22 14.23 8.66 18.81 9.30 13.46
ptt5 CN/b 513216 159 27.86 13.71 8.08 19.17 8.94 12.71
kennedy CN/b 1029744 256 21.18 8.35 7.29 9.10 4.64 12.31
sum CN/b 38240 255 27.79 14.85 10.26 17.65 8.92 13.58
ecoli CN/d 4638690 4 34.01 27.34 23.55 20.8412.56 17.14
J03071 EM/d 66495 4 33.70 20.47 13.44 24.1412.36 14.85
K02402 EM/d 38059 4 34.12 27.60 23.90 20.8312.59 17.18
M13438 EM/d 2657 4 33.95 27.59 23.96 20.6512.50 17.16
M26434 EM/d 56737 4 34.10 26.51 22.52 21.3812.52 16.75
M64239 EM/d 94647 4 34.10 27.60 23.94 20.8712.62 17.20
V00636 EM/d 48102 4 34.02 27.75 24.04 20.7212.57 17.22
V00662 EM/d 16569 4 34.14 27.61 24.10 20.9012.69 17.29
X14112 EM/d 152261 4 34.13 27.12 23.43 21.1212.58 17.00
PIR500 500000 20 30.35 22.70 15.79 17.51 9.87 15.09
R500k4 500000 4 33.93 28.06 24.15 20.4412.56 17.38
R500k20 500000 20 29.83 27.98 20.06 14.939.40 15.94

Average relative space requirement for all files 30.33 19.78 14.55 18.82 10.10 14.66

Average relative space requirement for DNA 34.03 26.62 22.54 21.27 12.55 16.86

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1164 S. KURTZ

the file:e for english text,f for formal text (like programs),b for binary files (i.e. containing
8-bit characters), andd for DNA sequences. Columns three and four show the lengths and
the alphabet sizes. In each row, the smallest relative space requirement is shown in boldface.
The last two rows show the average relative space requirement for all files and for all DNA
sequences. In the following, when we write space requirement we mean average relative space
requirement.

There are some interesting findings which can be derived from TableIV. Since DNA
sequences are very important for suffix tree applications, we in particular comment on the
corresponding behavior of the considered data structures:

1. Thedawgis the least space efficient data structure.
2. Thepestryrequires about 35 per cent less space than thedawg. For DNA sequences the

saving over thedawg is 22 per cent. This is slightly smaller than the saving of 25–30
per cent reported by Lef´evre and Ikeda [15].

3. A cdawgrequires on average 26 per cent less space than apestry. For DNA sequences
the saving over thepestryis 15 per cent. As suggested by Crochemore and V´erin [6],
the space requirement of thecdawgfor DNA sequences can be reduced by using arrays
instead of linked lists to represent outgoing edges. This results in an implementation
referred to bycdawgA. It requires 20.66n bytes for the DNA sequences we used. This
is consistent with the numbers given by Crochemore and V´erin [6]. For alphabets larger
than four,cdawgAdoes not make sense. In some cases, in particular for formal texts, the
cdawgis the most space efficient data structure. Note that its space requirement varies
very much between 6.69n bytes and 24.15n bytes.

4. The suffix tree in the implementation following McCreight uses 30 per cent more space
than thecdawg. However, for all DNA sequences, except for J03071, it requires less
space than thecdawg. For DNA sequences the saving over thecdawgis 6 per cent, but
it uses 3 per cent more space than thecdawgA.

5. The suffix tree in the improved linked list implementation is the most space efficient
data structure. It improves over thecdawgby 30 per cent and overMcC by 46 per
cent. For all classes of files there is an advantage over thecdawg. However, there are
seven files for which thecdawgrequires less space. For DNA sequences the saving
over thecdawgand thecdawgAis 44 per cent and 39 per cent, respectively. The space
requirement varies between 4.64n bytes and 12.69n bytes. Thus the upper bound on the
space requirement is 11.45n bytes smaller than the upper bound for thecdawg.

6. The suffix tree in the improved hash table implementation requires 45 per cent more
space than the suffix tree in the improved linked list implementation. The space
consumption is similar to thecdawgand it improves overMcC by 22 per cent. For
DNA sequences the space requirement is 16.86n bytes, which is an improvement over
the cdawgandcdawgAof 25 per cent and 18 per cent. The space requirement varies
between 12.31n bytes and 17.38n bytes.

Figure3 presents the data of TableIV in a more compact way. For each type of file (except
random) and each of the considered data structures and implementation techniques, a column
shows the average relative space requirement for all files of that type. For DNA sequences we
have seven columns, where the last column refers tocdawgA. It is obvious that the size of the
data structures depends upon the kind of input data: binary strings lead to the smallest data
structures, for formal text and english text all data structures are slightly larger. For protein
sequences and in particular DNA sequences the space requirement is considerably higher.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1165

Figure 3. Relative space requirement (in bytes/input char) of dawgs and suffix trees for five groups of files

Running time

For our second experiment we implemented four different variants of McCreight’s suffix
tree construction named after the implementation technique they employ:SLLI,SHTI, ILLI
andIHTI . All programs are written in C. We compiled our programs with thegcc compiler,
version 2.8.1, with optimizing option –O3. The programs were run on aSun-UltraSparc,
300 MHz, 192 megabytes RAM under Solaris 2. TableV shows the lengths of the files and
the alphabet sizes. Columns 4–11 present the running times of the four programs:absolute
user runningtimeandrelativeuser running timertime= (106 · time)/n, i.e. the time required
to process 106 characters. Times are in seconds, as measured by thegnu timeutility, averaged
over 1000, 100 or 10 runs, depending on the size of the files. The last row shows the total
running time and the average relative running time. In each line the smallest relative running
time is shown in boldface.

TableV shows that the simple implementation techniques lead to slightly faster programs
than the improved implementation techniques. However, the running time advantage of
the simple implementation techniques are very small: 2 per cent for the linked list
implementation, and 1.5 per cent for the hash table implementation. So, the additional
constant overhead for the improved but more complicated implementation techniques are
worth the effort.

Comparing the linked list implementations with the hash table implementations, one
observes that the former are faster if the alphabet is small (i.e.k ≤ 100) and if the input
string is short (i.e.n ≤ 150,000). We explain this as follows: the most time consuming part
of the linked list implementation is traversing the list of successors of a particular node. Each
such traversal step requires only a few very simple and fast operations. But the nodes accessed
during such a traversal may be stored at very distant locations in memory, which means that
McCreight’s algorithm has a poor locality behavior [34]. If the text is short, then the entire
suffix tree representation usually fits into the cache, so that cache misses are rare. So the poor
locality does not matter, and hence the good performance of the linked list implementations
for the case that the alphabet and the text are small. For larger files one clearly observes that
the linked list implementation becomes slower, independent of the alphabet size.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1166 S. KURTZ

Table V. Running times (absolute and relative in seconds) for different variants of McCreight’s algorithm

SLLI ILLI SHTI IHTI

File Length k Time Rtime Time Rtime Time Rtime Time Rtime

book1 768771 81 3.40 4.42 3.75 4.88 2.58 3.35 2.66 3.46
book2 610856 96 2.21 3.61 2.33 3.82 1.94 3.18 1.903.10
paper1 53161 95 0.10 1.95 0.11 2.05 0.13 2.41 0.12 2.20
paper2 82199 91 0.19 2.26 0.18 2.22 0.23 2.74 0.23 2.83
paper3 46526 84 0.09 2.02 0.09 1.97 0.11 2.30 0.10 2.20
paper4 13286 80 0.02 1.71 0.03 1.93 0.02 1.73 0.02 1.84
paper5 11954 91 0.02 1.81 0.02 1.73 0.02 1.73 0.02 1.98
paper6 38105 93 0.07 1.79 0.07 1.81 0.08 2.20 0.09 2.43
alice29 152089 74 0.43 2.85 0.41 2.67 0.44 2.91 0.42 2.74
lcet10 426754 84 1.44 3.37 1.46 3.42 1.33 3.11 1.272.97
plrabn12 481861 81 1.87 3.88 2.00 4.16 1.56 3.24 1.563.23
bible 4047392 63 15.33 3.79 15.70 3.88 14.01 3.46 13.553.35
world192 2473400 94 9.19 3.72 8.96 3.62 7.50 3.03 7.252.93
bib 111261 81 0.25 2.27 0.23 2.10 0.29 2.63 0.28 2.51
news 377109 98 1.82 4.84 1.79 4.74 1.13 3.00 1.092.90
progc 39611 92 0.07 1.69 0.07 1.80 0.09 2.18 0.08 1.97
progl 71646 87 0.11 1.60 0.12 1.64 0.19 2.72 0.17 2.43
progp 49379 89 0.07 1.45 0.07 1.43 0.12 2.46 0.11 2.14
trans 93695 99 0.15 1.62 0.15 1.60 0.27 2.85 0.23 2.47
fieldsc 11150 90 0.01 1.04 0.01 1.24 0.02 1.64 0.02 1.69
cp 24603 86 0.03 1.39 0.04 1.61 0.04 1.63 0.04 1.67
grammar 3721 76 0.004 0.98 0.004 1.18 0.006 1.62 0.006 1.63
xargs 4227 74 0.004 1.06 0.006 1.43 0.006 1.53 0.007 1.67
asyoulik 125179 68 0.32 2.54 0.32 2.58 0.36 2.84 0.34 2.72
geo 102400 256 0.69 6.75 0.68 6.69 0.212.04 0.23 2.28
obj1 21504 256 0.04 1.70 0.04 2.04 0.03 1.43 0.03 1.59
obj2 246814 256 0.97 3.91 0.98 3.97 0.72 2.93 0.682.77
ptt5 513216 159 0.91 1.77 0.88 1.70 1.44 2.80 1.22 2.37
kennedy 1029744 256 16.16 15.70 16.76 16.27 1.261.22 1.63 1.58
sum 38240 255 0.07 1.94 0.10 2.59 0.08 1.98 0.071.72
ecoli 4638690 4 17.73 3.82 18.07 3.90 17.393.75 20.47 4.41
J03071 66495 4 0.10 1.50 0.10 1.45 0.17 2.51 0.16 2.39
K02402 38059 4 0.05 1.37 0.06 1.51 0.08 2.01 0.08 2.22
M13438 2657 4 0.003 1.02 0.003 1.21 0.004 1.42 0.005 1.74
M26434 56737 4 0.09 1.60 0.09 1.62 0.13 2.35 0.14 2.43
M64239 94647 4 0.19 1.97 0.18 1.92 0.25 2.61 0.27 2.85
V00636 48102 4 0.07 1.55 0.08 1.63 0.11 2.23 0.12 2.41
V00662 16569 4 0.02 1.19 0.03 1.66 0.03 1.58 0.03 1.87
X14112 152261 4 0.34 2.25 0.34 2.23 0.42 2.78 0.47 3.09
PIR500 500000 20 3.07 6.14 3.22 6.44 1.62 3.25 1.68 3.35
R500k4 500000 4 1.69 3.37 1.56 3.11 1.56 3.12 1.82 3.63
R500k20 500000 20 3.68 7.36 3.90 7.80 1.482.95 1.62 3.24

83.09 2.92 84.98 3.03 59.44 2.46 62.28 2.50

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1167

The dominating factor for the hash table implementations is the modulo operation
(remember that we use division hashing). On the machine we used, this operation is slower
than addition by an order of magnitude. However, for large files, the slow modulo operations
are compensated for by the slow paging operations of the memory subsystem required by the
linked lists implementation, so that the hash table implementations become faster.

CONCLUSION

Applications

The main topic of this paper was to show that suffix trees can be implemented in
much less space than previously thought. This should make suffix trees more attractive for
practical applications. Indeed, we have already used our implementation techniques in two
applications:

(a) In a lossless data compression program [35], suffix trees in both improved
implementation techniques are used to compute the Burrows and Wheeler
Transformation [36] of a string in linear time and space. This basically means to sort all
suffixes of a string in lexicographic order; see also TableIV, application 13.

(b) In a program calledREPuter[37], suffix trees in the improved linked list implementation
are used to compute maximal repeats in DNA sequences in optimal time. We used an
algorithm described by Gusfield [3] (see TableIV, application 11). With the improved
linked list implementation we are able to compute all 174,187 maximal repeats of length
at least 20 contained in the entire yeast genome (n = 12,147,818) in 68 seconds, using
160 megabytes of space (Sun-UltraSparc, 300 MHz, 192 megabytes RAM). On the
basis of the average relative space requirement for DNA sequences (see the section on
‘Experiments’), we can estimate the corresponding space requirement forcdawgAand
McCreight’s implementation technique with(20.66·12,147,818)/220≈ 240 megabytes
and(21.27 · 12,147,818)/220 ≈ 246 megabytes, respectively. This does not fit into the
main memory of the machine we used, and so very time consuming memory swaps
would be required. These are not necessary whenILLI is used.

A suffix tree for the human genome

We now develop a conjecture about the resources required for computing the suffix tree
for the complete human genome. The size of the human genome is estimated to be about
3 · 109. We assume a computer with 64 bit architecture, so the address space is large enough.
We modify implementation techniqueILLI such that each small node is represented by three
integers, each large node occupies 5 integers, and tableTleaf consists ofn + 1 entries each
occupying 1.25 integers. This leaves enough space to store references in the range[0,5n],
wheren ≤ 232− 1. For the DNA sequences we used in our experiments, we determined the
average ratiosσ/n = 0.258 andλ/n = 0.406. We now assume that for the human genome,
the same ratios hold. Based on this assumption we estimate that the suffix tree for the complete
human genome will require about 3·109 · (1.25+3 ·0.258+5 ·0.406) = 1.22·1010 integers
or 4 · 1.22 · 1010/230 = 45.31 gigabytes of main memory. Conservatively estimating that our
program requires 10 seconds to process one million characters, we obtain a running time of
about 3· 104 seconds, which is less than nine hours. Given that sequencing of the complete
human genome is probably not finished before December 2001 and taking into account the

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1168 S. KURTZ

Table VI. Applications of suffix trees and the kind of traversal they require. The numbers are the application
numbers used by Gusfield [3]

Applications with partial traversals Applications with complete traversals

1 exact string matching 4 longest common substring of two strings
2 exact set matching 5 recognizing DNA contamination
3 substring problem for a data base of patterns 6 common substrings to more than two strings
8 computing matching statistics 7 building a smaller directed graph for exact
9 space efficient longest common substring matching

problem 10 all pairs suffix prefix matching
15 Boyer-Moore approach to exact set matching 11 finding maximal repetitive structures
16 Ziv-Lempel data compression 12 circular string linearization
17 Minimum length encoding of DNA 13 computing suffix arrays

expected advances in hard-ware technology, it seems feasible to compute the suffix tree for the
entire human genome on some computers. This would be very helpful for genomic research.

Pragmatics of the choice between ILLI and IHTI

We described two basic implementation techniques to implement suffix trees: linked lists
and hash tables. The experiments suggest that the choice of the implementation technique
depends on (i) the alphabet size, (ii) the length of the input string, and (iii) whether space
requirement or running time is more important. However, there is another important point to
consider: we have to take into account the way in which the suffix tree is utilized. There are
basically two ways to utilize a suffix tree:

1. The suffix tree is partially traversed according to some given string, e.g. a pattern. This
task requires to decide for a given nodew and charactera whether there is ana-edge
outgoing fromw, and in case such an edge exists, to deliver this edge.

2. The suffix tree is traversed completely in a particular order. This task requires to have
constant time access from one edgev

aw→ vaw to another edgev
cu→ vcu which has not

been traversed before (if such an edge exists). Sometimes this edge has to be the next
edge w.r.t. to some ordering on the first characters of the edge labels.

Partial traversals (see 1) are typical for pattern matching applications, and complete traversals
(see 2) are typical for finding repetitive elements in strings. To give concrete examples we
considered the first 17 applications of suffix trees given by Gusfield [3], and associated
them according to whether they partially or completely traverse a suffix tree. Application 14
(i.e. suffix trees in genome scale projects) subsumes several different applications, and so it
cannot uniquely be associated with any of the two kinds. In the remaining 16 applications we
have found eight applications which perform partial traversals and eight applications which
perform complete traversals. TableVI lists the applications and their association.

Partial traversals can be accomplished with both basic implementation techniques.
However, when using a linked list implementation this leads to an alphabet factor in the
running time. So, for partial traversals it is usually better to use a hash coded implementation,
unless space is at the premium. Complete traversals can easily be accomplished with the
linked list implementation. In contrast, the hash table implementation is less useful here,

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1169

since it does not immediately reveal the set of edges outgoing from some node. As noted
by Larsson [38], it is possible to sort the hash table such that it allows complete traversals.
In a first phase all edges stored in the hash table are sorted according to the nodes they are
outgoing from. This can be done in time linear in the size of the hash table, i.e. inO(n),
using a bucket sort algorithm. This requires at mostn extra integers to hold the counts for
each node. After the first phase, for each node the edges outgoing from that node are stored
in consecutive positions of the hash table. These can be sorted inO(n) time altogether, again
using a bucket sort algorithm. Thus the extra sorting phase requiresO(n) time andn integers
of extra space. We have implemented such a sorting procedure forIHTI . Unfortunately, it
proved to be slow in practice: the running time of the additional sorting phase is between
27 per cent and 140 per cent of the running time of the corresponding suffix tree construction
(average 73 per cent). So, for complete traversals, the hash table representation is inferior,
except when the alphabet is large.

Further improvements and analyses

We note that our implementation techniques are not optimized for a particular alphabet size.
For DNA sequences, which lead to the largest index structures (see Figure3), there are some
further optimizations possible: ifx is a DNA sequence, we can expect that each substring
of lengthq ≤ log4 n over the DNA alphabet occurs at least twice. This means that most of
the possible nodes of depth≤ q − 1 occur in the suffix tree, and these can be represented
more space efficiently using a heap. A similar technique has already been applied for hashed
position trees [16].

Finally, note that the proposed implementation techniques lead to some interesting
combinatorial questions: what is the expected number of small and large nodes? Are there
better worst case bounds for the number of large nodes? What is the largest/expected number
of non-identity edges? Solutions to these problems definitely improve the acceptance of our
implementation techniques.

ACKNOWLEDGEMENTS

The author is partially supported by DFG-grant Ku 1257/1-1. Bernhard Balkenhol suggested
to further improve preliminary techniques to reduce the space requirement of suffix trees.
Robert Giegerich, Jens Stoye, and Dirk Evers read previous versions of this paper and made
suggestions to improve the presentation. All their contributions are truly appreciated.

REFERENCES

1. A. Apostolico, ‘The myriad virtues of subword trees’,Combinatorial Algorithms on Words, Springer-Verlag,
1985, pp. 85–96.

2. U. Manber and E. W. Myers, ‘Sufix arrays: A new method for on-line string searches’,SIAM Journal on
Computing, 22(5), 935–948 (1993).

3. D. Gusfield,Algorithms on Strings, Trees, and Sequences, Cambridge University Press, New York, 1997.
4. E. M. McCreight, ‘A space-economical suffix tree construction algorithm’,Journal of the ACM, 23(2), 262–

272 (1976).
5. J. Kärkkäinen, ‘Suffix cactus: A cross between suffix tree and suffix array’,Proc. of the Annual Symposium

on Combinatorial Pattern Matching (CPM’95), LNCS 937, 1995, pp. 191–204.
6. M. Crochmore and R. V´erin, ‘Direct construction of compact acyclic word graphs’,Proc. of the Annual

Symposium on Combinatorial Pattern Matching (CPM’97), LNCS 1264, 1997, pp. 116–129.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

1170 S. KURTZ

7. J. Knight, D. Gusfield and J. Stoye, ‘The Strmat Software-Package’, 1998.
http://www.cs.ucdavis.edu/˜gusfield/strmat.tar.gz

8. I. Munro, V. Raman and S. Srinivasa Rao, ‘Space efficient suffix trees’,Proceedings of the 18th Conference
on Foundations of Software Technology and Theoretical Computer Science, Chennai, India, December 1998.
Lecture Notes in Computer Science 1530, Springer-Verlag, 1998.

9. A. Andersson and S. Nilsson, ‘Efficient implementation of suffix trees’,Software—Practice and Experience,
25(2), 129–141 (1995).

10. R. W. Irving, ‘Suffix binary search trees’,Research Report, Department of Computer Science, University of
Glasgow, 1996. http://www.dcs.gla.ac.uk/˜rwi/papers/sbst.ps

11. L. Colussi and A. De Col, ‘A time and space efficient data structure for string searching on large texts’,
Information Processing Letters, 58(5), 217–222 (1996).

12. A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen and J. Seiferas, ‘The smallest automaton
recognizing the subwords of a text’,Theoretical Computer Science, 40, 31–55 (1985).

13. M. Crochemore, ‘Transducers and repetitions’,Theoretical Computer Science, 45, 63–86 (1986).
14. A. Blumer, J. Blumer, D. Haussler, R. McConnell and A. Ehrenfeucht, ‘Complete inverted files for efficient

text retrieval and analysis’,Journal of the ACM, 34, 578–595 (1987).
15. C. Lefévre and J.-E. Ikeda, ‘The position end-set tree: A small automaton for word recognition in biological

sequences’,Comp. Appl. Biosci., 9(3), 343–348 (1993).
16. H. W. Mewes and K. Heumann, ‘Genome analysis: pattern search in biological macromolecules’,Proc. of

the Annual Symposium on Combinatorial Pattern Matching (CPM’95), LNCS 937, 1995, pp. 261–285.
17. P. Ferragina and R. Grossi, ‘The string B-Tree: a new data structure for string search in external memory and

its applications’,Journal of the ACM, 46(2), 236–280 (1999).
18. S. Kurtz, ‘Reducing the space requirement of suffix trees’,Report 98–03, Technische Fakult¨at, Universität

Bielefeld, 1998. http://www.TechFak.Uni-Bielefeld.DE/techfak/˜kurtz/publications.html
19. P. Weiner, ‘Linear pattern matching algorithms’,Proceedings of the 14th IEEE Annual Symposium on

Switching and Automata Theory, The University of Iowa, 1973, pp. 1–11.
20. E. Ukkonen, ‘On-line construction of suffix-trees’,Algorithmica, 14(3), (1995).
21. M. Farach, ‘Optimal suffix tree construction with large alphabets’,Proceedings of the 38th Annual

Symposium on the Foundations of Computer Science, FOCS 97, IEEE Press, New York, 1997.
ftp://cs.rutgers.edu/pub/farach/Suffix.ps.Z

22. R. Giegerich and S. Kurtz, ‘From Ukkonen to McCreight and Weiner: A unifying view of linear-time suffix
tree construction’,Algorithmica, 19, 331–353 (1997).

23. N. J. Larsson, ‘Extended application of suffix trees to data compression’,Proceedings of the IEEE Data
Compression Conference, IEEE Press, Snowbird, Utah, 1996.

24. A. Blumer, A. Ehrenfeucht and D. Haussler, ‘Average size of suffix trees and DAWGS’,Discrete Applied
Mathematics, 24, 37–45 (1989).

25. R. Giegerich, S. Kurtz and J. Stoye, ‘Efficient implementation of lazy suffix trees’,Proc. of the Third
Workshop on Algorithmic Engineering (WAE99), LNCS 1668, 1999, pp. 33–42.

26. D. E. Knuth,The Art of Computer Programming, Volume 3: Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

27. J. G. Cleary, ‘Compact hash tables using bidirectional linear probing’,IEEE Trans. on Computers, 33(9),
828–834 (1984).

28. J. J. Darragh, J. G. Cleary and I. H. Witten, ‘Bonsai: a compact representation of trees’,Software—Practice
and Experience, 23(3), 277–291 (1993).

29. J. I. Aoe, K. Morimoto and T. Sato, ‘An efficient implementation of trie structures’,Software—Practice and
Experience, 22(9), 695–721 (1992).

30. K. Morimoto, H. Iriguchi and J. I. Aoe, ‘A method of compressing trie structures’,Software—Practice and
Experience, 24(3), 265–288 (1994).

31. W. I. Chang and E. L. Lawler, ‘Sublinear approximate string matching and biological applications’,
Algorithmica, 12(4/5), 327–344 (1994).

32. S. Kurtz, ‘Fundamental Algorithms for a Declarative Pattern Matching System’,Dissertation, Technische
Fakultät, Universität Bielefeld. (Available as Report 95–03, July 1995.)

33. R. Arnold and T. Bell, ‘A corpus for the evaluation of lossless compression algorithms’,Proceedings of the
Data Compression Conference, 1997, pp. 201–210. http://corpus.canterbury.ac.nz

34. R. Giegerich and S. Kurtz, ‘A comparison of imperative and purely functional suffix tree constructions’,
Science of Computer Programming, 25(2–3), 187–218 (1995).

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1171

35. B. Balkenhol, S. Kurtz and Y. M. Shtarkov, ‘Modification of the Burrows and Wheeler data compression
algorithm’, Proceedings of the IEEE Data Compression Conference, IEEE Press, Snowbird, Utah, 1999,
pp. 188–197.

36. M. Burrows and D. J. Wheeler, ‘A Block-Sorting Lossless Data Compression Algorithm’,Research Report
124, Digital Systems Research Center, 1994.
http://gatekeeper.dec.com/pub/DEC/SRC/research-reports/abstracts/src-rr-124.html

37. S. Kurtz and C. Schleiermacher, ‘REPuter: Fast computation of maximal repeats in complete genomes’,
Bioinformatics, 15(5), 426–427 (1999).

38. N. J. Larsson, ‘The context trees of block sorting compression’,Proceedings of the IEEE Data Compression
Conference, IEEE Press, Snowbird, Utah, 1998, pp. 189–198.

Copyright 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper.,29(13), 1149–1171 (1999)

	INTRODUCTION
	SUFFIX TREES
	Basic definitions
	Head positions

	TWO SIMPLE IMPLEMENTATION TECHNIQUES
	A simple linked list implementation
	Space requirement

	A simple hash table implementation
	Space requirement

	REVEALING AND EXPLOITING REDUNDANCIES
	Small nodes and large nodes
	An improved linked list implementation
	Space requirement

	An improved hash table implementation
	Space requirement

	UPPER LIMITS ON THE INPUT STRING LENGTH
	EXPERIMENTS
	Space requirement
	Running time

	CONCLUSION
	Applications
	A suffix tree for the human genome
	Pragmatics of the choice between ILLI and IHTI
	Further improvements and analyses

