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SUMMARY

We show that suffix trees store various kinds of redundant information. We exploit these redundancies to
obtain more space efficient representations. The most space efficient of our representations requires 20 bytes
per input character in the worst case, and 10.1 bytes per input character on average for a collection of 42
files of different type. This is an advantage of more than 8 bytes per input character over previous work.
Our representations can be constructed without extra space, and as fast as previous representations. The
asymptotic running times of suffix tree applications are retained. CopyrightD 1999 John Wiley & Sons,
Ltd.
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INTRODUCTION

Suffix trees provide efficient access to all substrings of a string, and they can be constructed
and represented in linear time and space. These properties make suffix trees a data structure
whose simplicity and elegance is surpassed only by their versatility. No other idea in the
realm of string processing can be adapted so easily to achieve superb efficiency in such a great
variety of applications. Apostolicdl] gives over 40 references on suffix trees, and Manber
and Myers P] add several more recent ones. A very thorough discussion of current knowledge
on suffix tree constructions and applications can be found in the textbook by Gusfield [
Despite these superior features and the wide acceptance by theoretical computer scientists,
suffix trees have not seen widespread use in string processing software, in contrast to, for
example, finite automata or hashing techniques. One of the main reasons for this is that suffix
trees have a reputation of being very greedy for space. In fact, the suffix tree implementation
described by McCreight] requires 28 bytes in the worst case, wheids the length of the
input string? The space requirement in practice is smaller, but previous authors do not give
consistent numbers:

(a) Manber and Myerg?] state that their implementation of suffix trees occupies between
18.8n and 224n bytes of space for real input strings (text, code, DNA).

*Correspondence to: Stefan Kurtz, Technische Fakulthiversitit Bielefeld, Postfach 100131, 33501 Bielefeld, Germany.
Twe will usebytesor integersas units when we state results on space requirements. The assumption is always that an integer
occupies four bytes. Unless stated otherwise, the given numbers do not includbyttes for representing the input string.

*These numbers have been derived from the third column of Table 1 in the paper of Manber and2MyeegUst added the
space for the suffix links, which ispdbytes wherey is the number of internal nodes.
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1150 S. KURTZ

(b) Karkkainen p] claims that a suffix tree can be implemented im £51L87 bytes of space
for real input strings. Unfortunately, it is not shown how to achieve this.
(c) Crochemore and&fin [6] state that suffix trees require 32 bytes for DNA sequences.
(d) Thestrmatsoftware package by Knight, Gusfield and Stoyjinplements suffix trees
in 24n — 28 bytes for input strings of length at most?2= 8,388 608. Howeverstrmat
can handle sets of strings, and it is unclear how much of the space requirement is due to
this additional feature.

Itis important to note that these numbers include the space required during the construction
of suffix trees. Recently, Munret al. [8] described a representation of suffix trees which
requiresn[log, n] + o(n) bits. However, it is restricted to searching for string patterns, and
it is not clear if there is a linear time algorithm to directly construct this representation.
As a consequence, one first has to construct a suffix tree in a usual, less space efficient
representation. So, altogether, the approach of Mem. sacrifices versatility and it does
not give a space advantage in practice.

Faced with the numbers above, and the ever growing size of the input strings to be
processed, several authors have developed alternative index structures which store less
information than suffix trees and are therefore more space efficiersutfie arrayof Manber
and Myers P] requires @ bytes (including the space for construction). Téxeel compressed
trie of Andersson and Nilssor9] takes about 12 bytes. Thesuffix binary search treef
Irving [10] requires 1@ bytes. Thesuffix cactusf Karkkdinen p] can be implemented in 0
bytes. Finally, theP T'-tree of Colussi and De Col[] requiresn log, n + O(n) bits. These
five index structures have two properties in common. First, they are specifically tailored to
solve string matching problems, and cannot be adapted to other kinds of problems without
severe performance penalte3hus they are not nearly as versatile and efficient as suffix
trees (and they are not expected to be). Second, the direct construction methods for these
index structures do not run in linear worst case time.

Directed acyclic word graphgL2,13] (dawgs, for short), and more space efficient variants
thereof [L4,15], have essentially the same applications as suffix trees. The compact dawg,
which is the most space efficient of these index structures, occupieby@és in the worst
case. Recently, Crochemore andrii’ [6] gave a direct method to construmimpact dawgs
which makes this index structure useful in practice. We will later seectirapact dawgare
more space efficient than suffix trees in previous implementations, but less space efficient than
suffix trees in an implementation technique we propose. Dawgs, and in particular compact
dawgs have been less extensively studied than suffix trees. According to Crochemore and
Verin [6], this may be due to the fact that they display positions of substrings of the input
string in a less obvious way.

To allow constructions and applications of suffix trees for very large input strings (like
they occur in genome research), other authdg1[/] developed techniques to organize
suffix trees on disk, so that the number of disk accesses is reduced. However, again these
techniques are mainly optimized for string matching problems, and the behavior for other
kinds of applications is unclear. Moreover, direct construction in linear time is not possible.

In this paper, we follow the most natural approach to make suffix trees more practical:
we reduce their space requirement. We show that suffix trees store various kinds of

§String matching problems are perhaps the most important kind of applications for index structures. However, there are other
important applications, like finding repetitive structures in strings or sorting suffixes; see alsd/Table

YAl five index structures can be constructiedirectly in linear time. The idea is to first construct the corresponding suffix tree,

and then to traverse it to read off the information of the particular index structure, but this indirect approach of course means that
the space advantage is lost.
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REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1151

redundant information, and we exploit these redundancies to obtain a more space efficient
representation. We are mainly interested to reduce the space in practice, but we also improve
on the worst case. We emphasize that we do not sacrifice any of the superior virtues of suffix
trees as mentioned above. In particular, the suffix tree representations we propose can be
constructed in linear worst case time without using extra space and the asymptotic running
times of suffix tree applications are retained. This approach, which, to our knowledge, has
not been consequently followed since the pioneering work of McCréighs an important
advantage: suffix trees and their applications have been extensively studied and are well
described in textbooks. All this work can be implemented without change of algorithms on
top of our space efficient representations.

The main contributions of this paper are as follows:

(a) We make several observations about the node structure of suffix trees, which reveal
redundancies of the information stored therein.

(b) We show how to exploit these redundancies to improve the space requirement of
previous implementation techniques based on linked list and hash tables. The worst
case space requirement of the improved linked list implementationirst@égers, and it
is probably even better but we cannot prove this. Thus the improvementin the worst case
is 2n integers over the technique described by McCreightlf is interesting to note
that for the stringz”, where McCreight's techniques occupy ihtegers, both of our
improved implementation techniques require at m@st?%ln integers. The worst case
space requirement of the improved hash table implementation techniquaiggers.
Again, we do not know if this bound is tight. These results hold for input strings of
length up to 37 — 1 = 134217,727.

(c) We show that on a 32 bit computer all implementations of suffix trees have similar upper
bounds on the maximal length of the input string they allow.

(d) We present experimental results showing that our improved linked list implementation
requires on average 1 bytes of space for a collection of 42 files from different
sources (english text, formal text, binary files, DNA sequences, protein sequences,
random strings). This is an improvement of 46 per cent over the implementation
technique of McCreight, and an improvement of 30 per cent over compact dawgs. The
improved hash table implementation technique requiredckdytes on average, which
is similar to the space consumption of compact dawgs. Our experiments show that the
size of the index structures depends on the kind of input data: binary strings lead to the
smallest data structures, for formal text and english text all data structures are slightly
larger. For protein sequences and in particular DNA sequences the space requirement is
considerably higher.

(e) Timing results show that the space efficient representations we propose can be computed
with virtually no performance penalty in practice. The linked listimplementation proves
to be faster than the hash table implementation only if the alphabet is small and the input
string is short.

(M In the conclusion we shortly sketch current and possible applications of our
implementation techniques, and give advice on which of the proposed techniques to
choose. We argue that it is very important to consider the kind of suffix tree traversals
an application requires.

This paper extracts the core of wider repds]f where we give proofs for the observations,
Il Andersson and Nilssor®] consider level compressed tries which are different from suffix trees as defined by McCight [

Copyright[] 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper29(13), 1149-1171 (1999)
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Figure 1. The suffix tree for = abab

and describe how to modify McCreight's suffix tree constructidnsuch that it computes

the space efficient representations we propose. Documented C-source code constructing the

proposed suffix tree representations in linear time is available at
http://www.techfak.uni-bielefeld.de/kurtz/Software/suffixtrees.tar.gz.

The code works on 32 bit as well as on 64 bit machines without any changes.

SUFFIX TREES
Basic definitions

Let X be a finite ordered set, tridphabet The size ofX is k. ¥* denotes the set of all
strings overz ande is theempty stringWe usex ™ to denote the seX*\{e} of non-empty
strings. Letx € £* andx = uvwfor some possibly empty strings v, w. Thenu is aprefix
of x, v is asubstringof x, w is asuffixof x. |x| is the number of characters.in x; is theith
characterinx. If |x| = n, thenx = x1x2... x,.

A T t-treeT is a finite rooted tree with edge labels fradT. For eachu € X, every node

u in T has at most one-edgeu & w for some stringy and some node.

Let T be ax*-tree. A node inT is branchingif it has at least two outgoing edges.|éaf
in T is a node inl" with no outgoing edges. Amternal noden T is either theoot or a node
with at least one outgoing edge. An edge leading to an internal noddnsesinal edge An
edge leading to a leaf islaaf edge Due to the requirement of uniqueedges at each node
of T', paths are also unique. Therefore, we demdig w if and only if w is the concatenation
of the edge labels on the path from tto®t of 7 to the nodev. The node is theroot. For
any nodew in T, |w| is thedepthof w. A stringw occursin T if T contains a nodau, for
some stringq.

From now on we assume thate T is a string of lengtl > 1 and that $¢ T is a
character not occurring in, thesentinel Thesuffix treefor x, denoted byST, is theX T-tree
T with the following properties: (i) each node is either a leaf, a branching node, codhe
and (i) a stringw occurs inT if and only if w is a substring ok$. Figurel shows the suffix
tree forx = abah There are several algorithms to constr8atin linear time §,19,20,21].
Giegerich and Kurtz42] review three of these algorithms and reveal relationships much
closer than one would think.

For anyi € [1,n + 1], let S; = x;...x,$ denote theth non-empty suffix ofc$. Note
that due to the sentinel, n§; is a proper prefix of anys;. Thus, there is a one-to-one
correspondence between the non-empty suffixes$oind the leaves o8 T. This implies
that ST has exactly: + 1 leaves. Moreover, since > 1 andx1 # $, theroot of ST is
branching. Hence, each internal nodesifis branching. This means that there are at most
internal nodes iS5 T. Each node can be represented in constant space. Thus, ona@éeds
space for the nodes. Sin€d has at most2+ 1 nodes, the number of edges is bounded by
2n. Each edge is labeled by a substringe®f which can be represented in constant space by

Copyright[] 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper29(13), 1149-1171 (1999)



REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1153

a pair of pointers inta$. Hence, one need3(n) space for the edges. Altogeth&i requires
O(n) space.

Thesuffix linkfor a nodezw in STis an unlabeled directed edgeSi from aw to the node
w. We consider suffix links to be a part of the suffix tree data structure. They are required for
most of the linear time suffix tree constructiodsl,20], and for some applications of suffix
trees B].

Head positions

The substringy corresponding to the branching nodiecan be represented by a position
delineating an occurrence of in x$. Asw may occur several times i, there are several
choices for a position, and it is common practice to choose the leftmost occurrence. We shall
show now that there is a less obvious, but more convenient choiceagmn d'etreof a
branching nodeaw is not the leftmost occurrence af in x$, but the leftmosbranching
occurrence. That is, the first occurrenceuaf in x$, for somea € %, such thatw occurs
to the left, but notwa.

Lethead = ¢ and fori € [2,n + 1] let head be the longest prefix of; which is also
a prefix ofS; for some;j < [1,i — 1]. The following two observations show that there is a
one-to-one correspondence betweerttads and the branching nodes$8T. The proofs for
these and all subsequent observations can be found elsewBere [

Observation 1 Letw be a branching node i8T. Then there is an € [1, n + 1] such that
w = head.

Observation 2 Leti € [1, n + 1]. Then there is a branching notlead in ST.

For each branching nod@ in ST, let headpositioiw) denote the smallest integére
[1, n+ 1] such thatw = head. According to Observation 1, such an integer exists, and hence
headpositiow) is well defined. Itheadpositiotw) = i, then we say that thieead position
ofwisi.

While the determination of the head positions seems more complicated than just choosing
the position of the leftmost occurrence, the head position is readily available during linear
time suffix tree constructiorip].

TWO SIMPLE IMPLEMENTATION TECHNIQUES

The most space parsimonious implementation techniques for suffix trees is based on linked
lists [2]. McCreight §] (Fig. 4) showed how to represeBIT using five integers for each
internal node and two integers for each leaf. No extra space for the edges and their labels is
required. Later authors gave the same numhigfid]. Recently, Crochemore andevinh [6]

(p. 121) claimed that McCreight's implementation technique would also require five integers
for each leaf. This is not true. In the next section we show that one integer suffices for each
leaf.

A simple linked list implementation

The simple linked list implementation techniqueL(I for short) representST by two
tablesTieas andThranch Which store the following values: for eatdaf number je [1, n + 1],

Tieat[j] Stores a reference to the right brother of Ié_g;u‘ If there is no such brother, then

Copyright[] 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper29(13), 1149-1171 (1999)
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Figure 2. The references of the suffix tree foe abab (see Figuré). Vertical arcs stand for firstchild references,
and horizontal arcs for branchbrother arfie5s references

Tieai[j1 is a nil reference. For each branching nadeTyancHw] stores abranch record
consisting of five componentgstchild, branchbrother, depth, headpositjcemnd suffixlink
whose values are specified as follows:

1. firstchild refers to the first child ofv.

2. branchbrotherrefers to the right brother ofv. If there is no such brother, then
branchbrotheiis a nil reference.

3. depthis the depth ofw.

4. headpositions the head position ab.

5. suffixlinkrefers to the branching nodg if w is of the formav for somea € ¥ and
somev € X*.

The successors of a branching node are therefore found in a list whose elements are linked
via thefirstchild, branchbrotheandTjeas references. To speed up the access to the successors,
each such list is ordered according to the first character of the edge labels. Fanaes the
child and brother references of the nodes of the suffix tree of Figui¢e use the following
notation to denote a record component: for any componant any branching node, w.c
denotes the componenttored in the branch recofanc{w]. Note that the head position
J of some branching nodeu tells us that the lea$; occurs in the subtree below node:.
Hencewu is the prefix ofS; of lengthwu.depth i.e. the equalitywu = x; ... x; 1wz depth-1
holds. As a consequence, the label of the incoming edge to madean be obtained by
dropping the firsw.depthcharacters ofvu, wherew is the predecessor aiu:

Observation 3 If w —> wu is an edge inST andwu is a branching node, them =
Xi ... Xi+1—1 Wherei = wu.headpositiont- w.depthand/ = wu.depth— w.depth

Similarly, the label of the incoming edge to a leaf is determined from the leaf number and
the depth of the predecessor:

Observation 4 If w — wx is an edge irBTandwu = S_] for somej € [1,n + 1], then
u=x;...x,$, wherei = j +w.depth

A similar observation was made by LarssdiB]f but without a clear statement about
its consequences concerning the space requiremedT.dflote that storing the depth of a
branching node has some practical advantages over storing the length of the incoming edge
to a node (the latter is suggested by McCreigh [At first, during the sequential suffix tree
constructions4,19,20], the depth of a node never changes. So itis not necessary to update the
depth of a node (the same is true for the head position). Second, the depth of the nodes along a
chain of suffix links is decremented by one, a property which can be exploited to store a suffix
tree more space efficiently, see the next section. The third advantage of storing the depth is
that several applications of suffix trees assume that the depth of a node is available [
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REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1155

Table I. TablesTieas and Thranch representing the suffix tree far = abab (see Figurel). A bold face number
refers to tablejgaf

Tieaf Toranch
leaf abal bab$ ab$ b$ S branching node root ab b
leaf numberj 1 2 3 4 5 node number 1 2 3
Tieaflj] 3 4 nil  nil  nil firstchild 2 1 2
branchbrother  nil 3 5
depth 0 2 1
headposition 1 3 4
suffixlink 3 1

Space requirement

Thefirstchild, branchbrotheiand Tjeas references can be implemented as integers in the
range[0, n]. An extra bit with each such integer tells whether the reference is to a leaf or to a
branching node. Each Ies_§~ is referred to by leaf number. Suppose there atggbranching
nodes inST. Let by, by, ..., b, be the sequence of branching nodes ordered by their head
position, i.e.b;.headposition< b;,1.headpositiorfor anyi € [1, g — 1]. Each branching
nodeb; is referred to by its node numbgrwhich is denoted bypodenun(;). Obviously,b1
is theroot. Tablel depictsTieas and Tpranch for the suffix tree of Figurd.

Like the references, the other components of the branch records can each be implemented
by an integer in the randé, n]. Thus, tableliea requires: integers and tabl@,anchrequires
Bq integers. The total space requirement of the simple linked list implementation iS¢
integers. The linked list implementation technique of McCreight requires 8q integers.
ThusSLLI saves: integers.

In the worst case, we haye= n, so thatSLLI requires @ integers. McCreight4] (p. 268)
suggested to store the node with head positian indexi in Tyranch In this way, it is not
required to store the head position with each internal node. This would reduce the space
for each branch record to four integers, and the space requirement would ibe§ers,
independent of the actual numhgof branching nodes. However,is usually considerably
smaller than Bn (¢ = 0.62n is the theoretical average value for random stririg$)[ so that
this worst case improvement would result in a larger space usage in practice. Therefore, we
do not consider it further.

Note that storing the nodes of the suffix tree in depth first or breadth first order (as in
Giegerichet al. [25]) to save the space for tHestchild- or branchbrothefreferences does
not allow linear time construction. This is because during linear time suffix tree constructions
the relations of the nodes change dynamically. That is, if a node is created, then it is not
clear what the brother or first child will be in the final suffix tree. Hence, if we would store
the nodes in depth first or breadth first order, the insertion of a new node would require an
unbounded number of hode movements. This is in contrast to the three or four updates of
references required if we store the node relations as described above.

A simple hash table implementation

While linked list implementations of suffix trees are space efficient, they have an important
disadvantage: it take@ (k) time to select a certain edge (according to some given character)
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outgoing from a node. If the alphabet is large this may slow down suffix tree constructions
and traversals considerably. Using balanced search trees instead of linked lists would improve
worst case access tO(logk). However, with the additional overhead and the additional
space requirement it is not clear whether this would improve the running time in practice.
For this reason, we consider hashing techniques. McCreiglatifeady suggested these for
the implementation of suffix trees.

We found the following simple hash table implementation techni@k€T(, for short) to

work well in practice: for each edge 2 Wavone stores the node number@vin a hash
table using the paing.headpositiona) as a hash key. Given a nodeand some charactet
the hash table allows to check whether there ig-#tge outgoing fromw. In case such an

. __av ____ . .
edge exists, say — Way, a reference twavis delivered, as well as the edge labgl

Space requirement

The number of edges is bounded by, 2o a hash table of size:Xuffices. Besides the
hash table, there is a table storing a record for each branching node. Such a record consists
of the three componentdepth, headpositiomnd suffixlink as defined above, and so this
table requires @ integers. The space requirement for the hash table depends on the hashing
technique. We use an open addressing hashing technique, with double hashioggsolve
collisions. The hash function is based on the division method. This implies that the actual size
of the hash table is the smallest prime larger thanEach entry of the hash table stores two
integers: the hashed value and the left component of the hash key. It is not necessary to store
the right component of the hash key (i.e. the character), since this can be retrieved in constant
time, provided the depth of the node the edge is outgoing from is known; see Observations 3
and 4. The hash table thus requiresidtegers, which means that the total space requirement
of SHTIis 4n + 3q integers.

Note that McCreight recommends to use Lampson’s hashing technique (see Kéluth [
section 6.4, p. 543, and Example 13), which belongs to the class of chaining techniques.
This hashing technique uses an overflow area and a linked list of synonyms, and saves space
by only storing the remainder of the key. However, as remarked by Cléatydach hash
table entry (including the original hash location) requires a reference to the next overflow
record. This reference will be of about the same size as the reduction in the key size. So,
Lampson’s hashing technique does not lead to net memory space savings over the open
addressing technique we used. In other words, the latter is the better choice.

We considered other hashing and tree implementation methods, which are, however, not
applicable to suffix trees without severe performance penalties:

(a) Compact Hashing2[7] allows to store hash tables in a more space efficient way, by
abbreviating a hash key (which we already did by only storing one component of the
hash key). It requires randomizing hash keys, which can be very time consuming in
practice.

(b) TheBonsaiimplementation technique2§] is based on Compact Hashing, while the
double-arraytechnique 29,30] combines the advantages of arrays and lists. Both
techniques are specifically designed to represent trees space efficiently. However, they
both required the tree to be built from the root downward, a precondition which is not
met by any of the linear time suffix tree construction methdgs320,21].
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REVEALING AND EXPLOITING REDUNDANCIES

Small nodes and large nodes

We now show that the information stored for the branching nodes of the suffix tree contains
redundancies. We reveal these by studying properties of the head positions. This leads to a
relation between node numbers and suffix links.

Observation 5

1. If w andw are different branching nodes, theeadpositionz w.headposition
2. For any branching nodew in ST, w is also a branching node f&T. Moreover, the
inequalityaw.headposition+ 1 > w.headpositiorholds.

Observation 5 implies that for any branching nede we either hav@w.headposition+
1 = w.headpositioror aw.headposition> w.headpositionWe discriminate all non-root
nodes accordinglygw is asmallnode if and only ilaw.headpositiont 1 = w.headposition
aw is alargenode if and only ilzw.headposition> w.headpositionTherootis neither small
nor large. The following observation shows that a small node is always directly followed by
another branching node, and that the last branching node is a large node.

Observation 6 Letaw be a branching node @T. Then the following holds:

1. If aw is small, themodenum(aw) + 1 = nodenum(w).
2. If nodenum(aw) = g andq > 1, thenaw is large.

According to Observation 6, we can partition the sequénce. ., b, of branching nodes
into chainsof zero or more consecutive small nodes followed by a single large nadtexia
is a contiguous subsequerige. .., b, r > [, 0f by, ..., b, such that the following holds:

(a) b;—1 is not a small node.
(b) by, ..., b,_1 are small nodes.
(c) b, is a large node.

One easily observes that any branching node (except forothein ST is a member of
exactly one chain. The branch records for the small nodes of a chain store some redundant
information, as shown in the following observation:

Observation7 Letby, ..., b, be achain. The following properties hold for ang [/, r—1]:

1. b;.depth= b,.depth+ (r — i).
2. b; .headposition= b, .headposition- (r — 7).
3. b;.suffixlink= b; 1.

We now show how to exploit these redundancies to store the information in the branching
nodes in less space. Consider a chiain. ., b,. Observation 7 shows that it is not necessary
to storeb;.depth b;.headpositiorandb;.suffixlinkfor anyi e [/, r — 1]: b;.suffixlinkrefers
to the next node in the chain, and if the distance i of the small nodé; to the large node
b, (denoted by, .distancg is known, therb;.depthandb; .headpositiorcan be obtained in
constant time. This observation leads to the following implementation technique.
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Table Il. The tableiq;ranchfor the suffix tree forr = abab(see Figurel). A small record is stored in two integers
and a large record in four integerg: is a small node with head position 3, ahis a large node with head position
4. Both form a chain. The distance @b andb is 1, depicted as a tiny 1 in the small record &@r. Consider the

large record foib: the tiny 0 stands for the unused most significant bits of the first integer, and the third integer
stores the small depth (to the right) and the suffix link (to the left). A bold face number refBgsto

5 nil 0 1 11 8 02 5 01 4

root ab b

An improved linked list implementation

The improved linked list implementatiodL{I, for short) representST by two tables
Tieat @nd Ty .+ Tieaf is @s inSLLI. TableT{ ., stores the information for the small and
the large nodes: for each small node there Is asmall recordwhich storesw.distance
w.firstchild andw.rightbrother. For each large node there is aarge recordwhich stores
w.firstchild, w.rightbrother, w.depthandw.headpositionWheneveiw.depth< 2* — 1, for
some constant, we say that the large record far is complete A complete large record
also storesv.suffixlink A large nodew with w.depth > 2* — 1 is handled as follows: let
v be the rightmost child oiv. There is a sequence consisting of diretchild reference
and at most — 1 rightbrother/ Tiear references which linkv to v. If v = S; for some
j € [1,n + 1], thenTiea[j] is a nil reference. Otherwise, if is a branching node, then
v.rightbrotheris a nil reference. Of course, it only requires one bit to mark a reference as
a nil reference. Hence the integer used for the nil reference contains unused bits, in which
w.suffixlinkis stored. As a consequence, retrieving the suffix linkb@équires traversing the
list of successors ab until the nil reference is reached, which encodes the suffix link.of
Thislinear retrievalof suffix links takesO (k) time in the worst case. However, despite linear
retrieval, the suffix tree can still be constructedifkn) time, since the suffix link is retrieved
at most: times during suffix tree construction, L 8. Moreover, suffix tree applications which
utilize suffix links [3,31,32] have an alphabet factor in their running time anyway (if a linked
list implementation of suffix trees is used). As a consequence, linear retrieval of suffix links
does not influence the asymptotic running time, neither of suffix tree constructions, nor of
suffix tree applications. Recall that linear retrieval of suffix links is required only for large
nodes whose depth exceeds-2 1. « will be chosen such that those nodes are usually very
rare. If they occur, then the number of successors is expected to be small, and hence linear
retrieval of suffix links is fast.

To guarantee constant time access from a small hpttethe large nodé,, the records are
stored in tablefy . ., ordered by the head positions of the corresponding branching nodes.
All branching nodes are referenced by thease addresin 7] .., i-e. the index of the
first integer of the corresponding record. Tablelepicts tablery . .., for the suffix tree of
Figurel.

Space requirement

Suppose a base address can be storgaits. A reference is either a base address or a leaf
number. To distinguish these, we need one extra bit. Thus a reference regufdsts. Each
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depth and each head position occupies: [log, n] bits. Consider the range of the distance
values. In the worst case, take for examples «”, there is only one chain of lengih— 1,

i.e. the maximal distance valueris— 2. However, this case is very unlikely to occur. To save
space, we delimit the maximal length of a chain td& some constarst As a consequence,
after at most 2— 1 consecutive small nodes an ‘artificial’ large node is introduced, for which
we store a large record. In this way, we delimit the distance value to be at fhest 2and
thus the distance occupiédits. Thus we trade a delimited distance value for the saving of
y — & bits for each small record.

A small record stores two references, a distance value, andlildnieto mark a reference as
a nil reference, whichaddupto@+8)+68+1 = 3+ 28+ bits. A large record stores two
references, one nil bit, and omemplete bitwhich tells whether the large node is complete.
Moreover, there arg bits required for the head position. If the record is complete thbits
are used for the suffix link ang bits for the depth. Otherwise, bits are used for the depth.
We leave’ bits unused, i.e. they store the ‘distance’ 0. In this way, we can discriminate large
and small nodes, since the latter always have a positive distance value. Altogether a complete
large record requires 21+ B8) +1+14+y+B8+a+86=4+38+y +a+§andan
incomplete large record requires @+ 8) + 1+ 1+ 2y + 8 =4+ 2(8 + y) + 6 bits.

To determine the actual space requirement we must choose the costamds: and

consider the maximal length of the input string we allow. In our current implementation we
assumer < 227 — 1 (which impliesy = 27), and have chosen = 10 ands = 5. Then
we can store a small record in two integers and reserve four integers for a large*fecord.
As a consequence the maximal base address is 4, and any base address is even. Hence
B =y + 1, which means that a small record requires 38 + § = 64 bits, i.e. two integers.
An incomplete large record requires(8 + y) + 8§ = 119 bits, and a complete large record
requires 4+ 38 + y + « + § = 130 bits. Both fit into four integers, if we store 2 bits for the
latter type of record iffieas[w.headpositiof wherew is the corresponding node. Recall that
Tieaf[w.headpositiohstores a reference (29 bits) and one nil bit.

Leto be the number of small records antie the number of large recordg, ., .,requires
20 + 4. integers. Tabldieas OCcupies: integers, and hence the space requiremehitldfis
n+ 20 + 4 integers. The implementation technique of McCreightéquires 2 +5(o + 1)
integers. Each leaf and each large node saves one integer, and each small node saves three
integers. Thu$LLI leads to large space savings, if there are many small nodes.

Example 1 Consider the input string = «". ThenST hasn — 2 small nodes, one large
node (i.ea), and 2 edges. Hence the space requirementLbf is 3 + %n integers (there

are 312;1 extra integers required for the artificial large nodes). This is the best case. In contrast,
the space requirement f&LLI is 6z, which is the worst case. HentleLl requires about half
of the space used LI

Example 2 Consider the input string = aabbabaaababbaabaaldf lengthn = 20.

Then ST contains 3 small nodes and 14 large nodes, and hence the space requirement is
(204-3-2+15-4)/20 = 4.3 integers per input character. This is the largest space requirement
of ILLI for all strings of length 20 over the alphalit= {a, b}. The saving oveSLLIis 24
integers.

The last example shows that there can be many large nodes. We conjecture that the upper
bound omk occurs for binary alphabets and that it is arountkQas in Example 2. However,

**We assume that each integer occupies 32 bits. Note that this does not imply that the word size of the computer is 32 bits. In
fact, the software constructing our suffix tree representations works on 32 bit as well as on 64 bit machines without any changes.
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we cannot prove this and have to calculate with an upper baund.

Note that the proposed suffix tree representations can be constructed in linear time without
extra space, by a slight modification of McCreight’s suffix tree algoritdin The basic
observation is that this algorithm constructs the branching nodesTon order of their
head positions, which is compatible with our implementation techniques. For details, see
Kurtz [18].

An improved hash table implementation

The redundancy of the information stored in the branching nodes can also be exploited
to reduce the space requirement of the simple hash table implementation technique. In the
improved hash table implementation technique, referred tblby, we usereference pair$o
address the nodes 8IT. In particular, each IeaSTj is addressed by the reference p@ir;j).

Letly, o, ..., 1, be the sequence of large nodeSihordered by their head position. This is a
subsequence @fy, b, . .., b,, the sequence of branching nodes, as defined above. Consider
the chain which ends with the large ndgdég; is referenced by the pair (2). Each small node

in this chain with distancé > 0tol; is referenced by the paii ¢+ 1, i). Using these reference

pairs, it suffices to store the large records. Baéffixlink the headpositiorand thedepthof

each small node can be retrieved in constant time, according to Observation 7, since the
distance to the large node of the chain is encoded in a reference pair. The hashing technique

of the previous section only has to be slightly modified: consider the édgaé wav, and
suppose thaivavis a node which is addressed by the reference pairhen one stores the
pair w.headpositionp) in the hash table usin@{ headpositiona) as a hash key.

Another observation about the leaf edges allows us to reduce the size of the hash table

considerably. Note that for a no@ewith head position there is often a leaf edge L S;.
Let us call such a leaf edgdentityedge.

Example 3 Consider the suffix tree for the strirapah Then there are two identity edges
ab > ab$ andb > b$, which can be easily deduced from Tahle

There is at most one identity edge outgoing from each branching node. The observation
is that it is not necessary to explicitly store identity edges in the hash table. We just need a
single bit to mark that there is an identity edge outgoing from a branching node with head
positioni. Knowing this, we can deduce the leaf numhehe identity edge leads to, as well
as the corresponding edge label, see Observation 4. Fori ead, n], theith entry of the
hash table contains an unused bit. This can be used as a marking bit, so that no extra space
is required to represent the identity edges. If we do not store the identity edges explicitly,
then we can reduce the size of the hash table considerably. In fact, we have never found any
input string for which the number of non-identity edges exceelis. Hence we only use a
hash table of size.Bn. For the very unlikely situation that the hash table overflows, one can
enlarge it and rehash all entries that are currently stored. Unfortunately, we cannot prove a
worst case bound better than fr the size of the reduced hash table.

Space requirement

A reference pair is implemented by a single integer. We restrict the maximal length of the
chains to 31 (one less than fiill). So the maximal distance value is 30, and the maximal
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value in the left component of a reference pair is 31, i.e. it occupies 5 bits. This leaves 27 bits
for storing the right component, i.e. the leaf number or the numbén large nodé;. As a
consequence, the length of the string to be processed is delimitéd-to2= 134,217,727.

The space requirement ATl is thus 4 + 3X integers. Therefore, the saving oM@ Tl is

3o integers.

Example 4 Consider the string = «”. ThenST contains: — 2 small and one large node.
There are 2 edgesp of which are identity edges. Using a hash table of siba,lthe space
requirement fotHTI is 3n + 3%71 integers, which is almost identical to the space requirement
of ILLI. The saving oveBHTIlis almost 4 integers.

Example 5 Consider the input string = aabbabaaababbaabaaldf Example 2. There

are three small nodes, 14 large nodes, and 38 edges, 11 of which are identity edges. Using a
hash table of size 30, the space requirementHdi is (2- 30+ 3 - 15)/20 = 5.25 integers

per input character. The reduction in the size of the hash table saves 10 integers, and the three
small nodes save nine integers o4 TI.

UPPER LIMITS ON THE INPUT STRING LENGTH

Usually, the memory available delimits the maximal length of the input string which can be
processed. However, on some computers with very large memory, one also has to take into
account the available address space. This is delimited’by 2, wherew is the word size of
the computer. The worst case space requiremeltidfis 52 integers. With the additional
bytes for representing the input string, the total space requirement iby2és in the worst
case. Since 2227 — 1) = 2,818572267 is well below 32 — 1, we can safely assume that
all bytes of the suffix tree representationlbEl can be addressed on a computer with word
sizew > 32. In case strings longer tha”’2— 1 are to be processed (and enough memory
is available), one can modifitLl such that each small and each large record contains an
extra integer. This results in an implementation technigé’ with a space requirement of
n + 30 + 5\ integers.

The improved hash table implementation has a worst case space requiremeimtefj@rs.
Since 29227 — 1) = 3,892314,083 is well below 32 — 1, all bytes can be addressed,
wheneverw > 32. For the other implementation techniques and comgaets, the upper
limit on n is (2¥ — 1) /wcs wherewcsis the worst case space requirement in bytes (including
the n bytes for the input string). In practice, this number is actually smaller since there is
a constant amount of memory required for the operating system and program execution.
Tablelll gives an overview of the space requirements and the upper limitdamns = 32.

EXPERIMENTS

For our experiments we collected a set of 42 files (total length 18,684,070) from different
sources:

(@) We used 17 files from the Calgary Corpus and all 14 files from the Canterbury
Corpus B3]. The Calgary Corpus usually consists of 18 files, but since thepfite
is identical to the filepzt5 of the Canterbury Corpus, we did not include it here. Both
corpora are widely used to compare lossless data compression programs.
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Table Ill. Overview of the space requirement of different suffix tree implementation techniques and compact

dawgs. n is the length of the input strings is the number of small nodes, ands the number of large nodes

in the suffix tree. The worst case space requirement is calculated by substituting Gafatn for A. s is the

number of states ands the number of transitions in the compdetwg The worst case occurs for the input string

x = a"1p: thens = n andr = 21 — 2. Since each state and each edge occupies three intépeéhe[worst case

space requirement of compatawgs is 36: bytes. For calculating the upper bounds we addégtes which are
required to represent the input string

Space (inintegers)  Upper limit onfor o = 32

McCreight 2n 4+ 5(0 + 1) (232 - 1)/29 = 148102320
SLLI n+5( + 1) (232 1)/25= 171798691
SHTI 4n +3(c + ) (232 — 1)/29 = 148102320
ILLI n+ 20 + 4h 227 _1=134217727

LI’ n+ 30 451 (232 - 1)/25= 171798691
IHTI 3(n+ 1) 227 1 =134217727

Compact dawgs 3(s + 1) (232 - 1)/37= 116080197

(b) We added eight DNA sequences used byeled’and Ikedal[5]. These are denoted by
their EMBL database accession number.

(c) We extracted a section of 500,000 residues from the PIR database, den&tbQ
The underlying alphabet is of size 20.

(d) We generated two random strin@500t4 and R500k20 of length 500,000 over an
alphabet of size 4 and over an alphabet of size 20. The characters are drawn with uniform
probability.

Space requirement

We compared the space requirement of the described implementation techniques with the
space requirement of variants of directed acyclic word grappd.§]. To obtain concrete
numbers, we developed software to complawgs. Given adawg it is fairly easy to compute
the number of nodes and edges in the correspongasition end-set treef Lefévre and
Ikeda [L5] (pestry for short). The same holds for titempact dawd14] (cdawg for short).

A tight implementation of alawgand apestry based on linked lists, requires nine bytes

for each node and eight bytes for each edge. Foctiaavg 12 bytes are required for each
node and for each edge. These numbers are consistent with CrochemoreranfbV We

also counted the number of small and large nodes in the suffix trees to calculate the space
requirement for the different suffix tree implementation techniques, according to the formulas
given in Tablell.

TableV shows the relative space requirement (in bytes per input char) afavg the
pestry the cdawg and for suffix trees using the implementation technique of McCreight
(McC) and the improved implementation techniqukdl and IHTI we propose. We
emphasize that the given numbers refer to the space required for construction. todoes
include then bytes used to store the input string.

The first column of Tabl#&/ shows the name of the file and the second its source, as far as it
has not been made precise abavé: stands for the Calgary Corpus)N for the Canterbury
Corpus, andE M for the EMBL data base. In addition, a single character denotes the type of
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Table IV. Relative space requirement (in bytes/input chadasigs and suffix trees

1163

File Source Length k dawg pestry cdawg McC ILLI  IHTI
book1 CL/e 768771 81 30.35 19.97 15.75 18.02 9.83 14.73
book2 CL/e 610856 96 29.78 17.92 12.71 18.63 9.67 14.13
paperl CL/e 53161 95 30.02 18.12 12.72 18.92 9.82 14.17
paper2 CL/e 82199 91 29.85 1853 13.68 18.51 9.82 14.42
paper3 CL/e 46526 84 30.00 19.00 1440 18.28 9.80 14.53
paperd CL/e 13286 80 30.34 1950 14.76 18.359.91 14.66
paper5 CL/e 11954 91 30.00 18.86 14.04 18.41 9.80 14.46
paper6 CL/e 38105 93 30.29 18.28 1280 19.07 9.89 14.19
alice29 CN/e 152089 74 30.27 18.90 14.14 18.63 9.84 14.38
Icetl0 CN/e 426754 84 29.75 17.84 1270 18.619.66 14.12
plrabnl2 CN/e 481861 81 29.98 19.65 15.13 17.849.74 1471
bible CN/e 4047392 63 29.28 16.75 10.87 16.10 7.27 12.04
world192 CN/e 2473400 94 27.98 1455 7.87 1881 9.22 13.35
bib CL/f 111261 81 28,53 15.88 9.94 18.76 9.46 13.73
news CL/f 377109 98 29.48 17.58 12.10 18.419.54 14.06
progc CL/f 39611 92 29.73 17.42 11.87 18.69 9.59 13.97
progl CL/f 71646 87 29.96 16.27 8.71 2098 10.22 13.55
progp CL/f 49379 89 30.21 16.24 828 21.39 10.31 13.43
trans CL/f 93695 99 30.47 1597 6.69 2222 1049 13.21
fieldsc CN/f 11150 90 29.86 16.39 9.40 1981 9.78 13.59
cp CN/f 24603 86 29.04 16.64 10.44 18.41 9.34 13.76
grammar CN/f 3721 76 29.96 17.17 10.60 20.2510.14 13.85
xargs CN/f 4227 74 30.02 1850 13.10 18.15 9.63 14.35
asyoulk CN/f 125179 68 29.97 19.46 1493 18.02 9.77 14.64
geo CL/b 102400 256 26.97 19.09 13.10 13.417.49 13.99
obj1 CL/b 21504 256 2751 16.68 13.20 14.537.69 13.61
obj2 CL/b 246814 256 27.22 1423 866 1881 9.30 13.46
ptt5 CN/b 513216 159 27.86 13.71 8.08 19.17 894 1271
kennedy CN/b 1029744 256 21.18 8.35 729 910 464 1231
sum CN/b 38240 255 27.79 1485 10.26 17.658.92 13.58
ecoli CN/d 4638690 4 3401 2734 2355 20.8412.56 17.14
J03071 EM/d 66495 4 33.70 2047 13.44 24.1412.36 14.85
K02402 EM/d 38059 4 3412 2760 2390 20.8312.59 17.18
M13438 EM/d 2657 4 3395 2759 2396 20.6512.50 17.16
M26434 EM/d 56737 4 3410 2651 2252 21381252 16.75
M64239 EM/d 94647 4 3410 2760 23.94 20.8712.62 17.20
V00636 EM/d 48102 4 3402 2775 24.04 20.7212.57 17.22
V00662 EM/d 16569 4 3414 2761 2410 20.9012.69 17.29
X14112 EM/d 152261 4 3413 2712 2343 21121258 17.00
PIR500 500000 20 30.35 22.70 15.79 17.519.87 15.09
R500k4 500000 4 3393 28.06 24.15 20.44256 17.38
R500k20 500000 20 29.83 27.98 20.06 14.939.40 15.94
Average relative space requirement for all files 30.33 19.78 14.55 18.82 10.10 14.66
Average relative space requirement for DNA 34.03 26.62 2254 21.27 1255 16.86
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the file:e for english text,f for formal text (like programs); for binary files (i.e. containing
8-bit characters), and for DNA sequences. Columns three and four show the lengths and
the alphabet sizes. In each row, the smallest relative space requirement is shown in boldface.
The last two rows show the average relative space requirement for all files and for all DNA
sequences. In the following, when we write space requirement we mean average relative space
requirement.

There are some interesting findings which can be derived from Tahl&Since DNA
sequences are very important for suffix tree applications, we in particular comment on the
corresponding behavior of the considered data structures:

1. Thedawgis the least space efficient data structure.

2. Thepestryrequires about 35 per cent less space than#wray For DNA sequences the
saving over thelawgis 22 per cent. This is slightly smaller than the saving of 25-30
per cent reported by Lefire and lkedal]5).

3. A cdawgrequires on average 26 per cent less space thstay For DNA sequences
the saving over theestryis 15 per cent. As suggested by Crochemore aadiVo],
the space requirement of tedawgfor DNA sequences can be reduced by using arrays
instead of linked lists to represent outgoing edges. This results in an implementation
referred to bycdawgA It requires 2066n bytes for the DNA sequences we used. This
is consistent with the numbers given by Crochemore amidin6]. For alphabets larger
than four,cdawgAdoes not make sense. In some cases, in particular for formal texts, the
cdawgis the most space efficient data structure. Note that its space requirement varies
very much between.69% bytes and 2451 bytes.

4. The suffix tree in the implementation following McCreight uses 30 per cent more space
than thecdawg However, for all DNA sequences, except for J03071, it requires less
space than thedawg For DNA sequences the saving over taawgis 6 per cent, but
it uses 3 per cent more space than¢dawgA

5. The suffix tree in the improved linked list implementation is the most space efficient
data structure. It improves over tleelawgby 30 per cent and ovevicC by 46 per
cent. For all classes of files there is an advantage ovecdhe/g However, there are
seven files for which thedawgrequires less space. For DNA sequences the saving
over thecdawgand thecdawgAis 44 per cent and 39 per cent, respectively. The space
requirement varies betweerbdn bytes and 159 bytes. Thus the upper bound on the
space requirement is ¥bn bytes smaller than the upper bound for duawg

6. The suffix tree in the improved hash table implementation requires 45 per cent more
space than the suffix tree in the improved linked list implementation. The space
consumption is similar to thedawgand it improves oveMcC by 22 per cent. For
DNA sequences the space requirement i8@&6 bytes, which is an improvement over
the cdawgand cdawgAof 25 per cent and 18 per cent. The space requirement varies
between 1281n bytes and 1.88x bytes.

Figure3 presents the data of Talll¢ in a more compact way. For each type of file (except
random) and each of the considered data structures and implementation techniques, a column
shows the average relative space requirement for all files of that type. For DNA sequences we
have seven columns, where the last column refecsl&mvgA It is obvious that the size of the
data structures depends upon the kind of input data: binary strings lead to the smallest data
structures, for formal text and english text all data structures are slightly larger. For protein
sequences and in particular DNA sequences the space requirement is considerably higher.

Copyright[] 1999 John Wiley & Sons, Ltd. Softw. Pract. Exper29(13), 1149-1171 (1999)



REDUCING THE SPACE REQUIREMENT OF SUFFIX TREES 1165

35 —
30 9 3 M
254 H = ..
20 R ok =
54| E 8- =gk =R . =
it = = - N
10 i =] = Z N
Z = Z ¢§
5 - zZ Z zZ 28
) Z Z Z Z8
english formal binary dna protein

dawg [ pestry = cdawg B mcc BB 123 =Y cdawes I R

Figure 3. Relative space requirement (in bytes/input char) of dawgs and suffix trees for five groups of files

Running time

For our second experiment we implemented four different variants of McCreight’s suffix
tree construction named after the implementation technique they engilay; SHTI, ILLI
andIHTI. All programs are written in C. We compiled our programs with glae compiler,
version 2.8.1, with optimizing option —O3. The programs were run @ua-UltraSpargc
300 MHz, 192 megabytes RAM under Solaris 2. Tatllshows the lengths of the files and
the alphabet sizes. Columns 4-11 present the running times of the four progizsohite
user runningimeandrelativeuser running timetime = (10° - time)/n, i.e. the time required
to process 1®characters. Times are in seconds, as measured Ignthémeutility, averaged
over 1000, 100 or 10 runs, depending on the size of the files. The last row shows the total
running time and the average relative running time. In each line the smallest relative running
time is shown in boldface.

TableV shows that the simple implementation techniques lead to slightly faster programs
than the improved implementation techniques. However, the running time advantage of
the simple implementation techniques are very small: 2 per cent for the linked list
implementation, and 1.5 per cent for the hash table implementation. So, the additional
constant overhead for the improved but more complicated implementation techniques are
worth the effort.

Comparing the linked list implementations with the hash table implementations, one
observes that the former are faster if the alphabet is smallk(i. 100) and if the input
string is short (i.en < 150,000). We explain this as follows: the most time consuming part
of the linked list implementation is traversing the list of successors of a particular node. Each
such traversal step requires only a few very simple and fast operations. But the nodes accessed
during such a traversal may be stored at very distant locations in memory, which means that
McCreight's algorithm has a poor locality behavi@¢]. If the text is short, then the entire
suffix tree representation usually fits into the cache, so that cache misses are rare. So the poor
locality does not matter, and hence the good performance of the linked list implementations
for the case that the alphabet and the text are small. For larger files one clearly observes that
the linked list implementation becomes slower, independent of the alphabet size.
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Table V. Running times (absolute and relative in seconds) for different variants of McCreight's algorithm

SLLI ILLI SHTI IHTI

File Length Time Rtime Time Rtime Time Rtime Time Rtime
book1 768771 3.40 4.42 3.75 4.88 2.583.35 266 3.46
book2 610856 221 361 233 382 194 3.18 1.98.10
paperl 53161 0.10 1.95 0.11 2.05 013 241 0.12 2.20
paper2 82199 0.19 2.26 0.18 2.22 023 274 023 283
paper3 46526 0.09 2.02 0.09 1.97 0.11 230 0.10 2.20
paperd 13286 0.02 1.71 0.03 1.93 0.02 1.73 0.02 1.84
paper5 11954 0.02 181 0.02 1.73 0.02 1.73 0.02 1.98
paper6 38105 0.07 1.79 0.07 181 0.08 2.20 0.09 243
alice29 152089 0.43 285 0.41 2.67 044 2091 042 274
Icetl0 426754 144  3.37 146  3.42 1.33 311 1.22.97
plrabn12 481861 187 3.88 200 4.16 156 3.24 1.56.23
bible 4047392 15.33 3.79 1570 3.88 14.01 3.46 13.58.35
world192 2473400 9.19 3.72 8.96 3.62 750 3.03 7.22.93
bib 111261 025 227 0.23 2.10 029 2.63 028 251
news 377109 1.82 484 1.79 474 1.13  3.00 1.02.90
progc 39611 0.07 1.69 0.07 1.80 0.09 218 0.08 197
progl 71646 0.11 1.60 0.12 1.64 019 272 0.17 243
progp 49379 0.07 1.45 0.07 1.43 0.12 2.46 011 214
trans 93695 0.15 1.62 0.15 1.60 0.27 285 0.23 247
fieldsc 11150 0.01 1.04 0.01 124 0.02 1.64 0.02 1.69
cp 24603 0.03 1.39 0.04 161 0.04 1.63 0.04 1.67
grammar 3721 0.004 0.98 0.004 1.8 0.006 1.62 0.006 1.63
xargs 4227 0.004 1.06 0.006  1.43 0.006  1.53 0.007 1.67
asyoulik 125179 0.32 2.54 032 258 036 284 034 272
geo 102400 0.69 6.75 0.68 6.69 0.212.04 0.23 2.28
obj1 21504 0.04 1.70 0.04 2.04 0.031.43 0.03 1.59
obj2 246814 0.97 391 0.98 3.97 0.72 293 0.68.77
ptt5 513216 091 177 0.88 1.70 144 2380 122 237
kennedy 1029744 16.16 15.70 16.76 16.27 1.24.22 163 1.58
sum 38240 0.07 194 0.10 2.59 0.08 1.98 0.071.72
ecoli 4638690 4 1773 3.82 18.07  3.90 17.393.75 2047 441
J03071 66495 4 010 1.50 0.10 1.45 0.17 251 0.16  2.39
K02402 38059 4 005 137 0.06 151 0.08 2.01 0.08 222
M13438 2657 4 0.003 1.02 0.003 1.21 0.004 1.42 0.005 1.74
M26434 56737 4 0.09 1.60 0.09 1.62 0.13 235 0.14 243
M64239 94647 4 019 197 0.18 1.92 025 261 0.27 285
V00636 48102 4 0.07 155 0.08 1.63 0.11 2.23 0.12 241
V00662 16569 4 0.02 119 0.03 1.66 0.03 1.58 0.03 1.87
X14112 152261 4 034 225 0.34 2.23 042 278 0.47  3.09
PIR500 500000 20 3.07 6.14 322 6.44 1.62 3.25 168 3.35
R500k4 500000 4 169 3.37 1.56 3.11 156  3.12 182 3.63
R500k20 500000 20 3.68 7.36 390 7.80 1.482.95 162 3.24

83.09 292 84.98  3.03 59.44  2.46 62.28  2.50
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The dominating factor for the hash table implementations is the modulo operation
(remember that we use division hashing). On the machine we used, this operation is slower
than addition by an order of magnitude. However, for large files, the slow modulo operations
are compensated for by the slow paging operations of the memory subsystem required by the
linked lists implementation, so that the hash table implementations become faster.

CONCLUSION
Applications

The main topic of this paper was to show that suffix trees can be implemented in
much less space than previously thought. This should make suffix trees more attractive for
practical applications. Indeed, we have already used our implementation techniques in two
applications:

(@) In a lossless data compression progra®b],[ suffix trees in both improved
implementation techniques are used to compute the Burrows and Wheeler
Transformation36] of a string in linear time and space. This basically means to sort all
suffixes of a string in lexicographic order; see also Tatleapplication 13.

(b) Inaprogram calleBREPute[37], suffix trees in the improved linked listimplementation
are used to compute maximal repeats in DNA sequences in optimal time. We used an
algorithm described by Gusfiel@][(see TableV, application 11). With the improved
linked list implementation we are able to compute all 174,187 maximal repeats of length
at least 20 contained in the entire yeast genome (12,147,818) in 68 seconds, using
160 megabytes of spac&yn-UltraSparc 300 MHz, 192 megabytes RAM). On the
basis of the average relative space requirement for DNA sequences (see the section on
‘Experiments’), we can estimate the corresponding space requiremearttdargAand
McCreight's implementation technique witB0.66-12,147,818) /220 ~ 240 megabytes
and(21.27- 12,147,818)/220 ~ 246 megabytes, respectively. This does not fit into the
main memory of the machine we used, and so very time consuming memory swaps
would be required. These are not necessary whehis used.

A suffix tree for the human genome

We now develop a conjecture about the resources required for computing the suffix tree
for the complete human genome. The size of the human genome is estimated to be about
3.10°. We assume a computer with 64 bit architecture, so the address space is large enough.
We modify implementation techniqueLl such that each small node is represented by three
integers, each large node occupies 5 integers, and Tabfeconsists ofz 4+ 1 entries each
occupying 1.25 integers. This leaves enough space to store references in thg0r&nge
wheren < 232 — 1. For the DNA sequences we used in our experiments, we determined the
average ratios/n = 0.258 and./n = 0.406. We now assume that for the human genome,
the same ratios hold. Based on this assumption we estimate that the suffix tree for the complete
human genome will require about B0 - (1.25+ 3-0.258+ 5-0.406) = 1.22- 10 integers
or 4.1.22.10'0/230 — 4531 gigabytes of main memory. Conservatively estimating that our
program requires 10 seconds to process one million characters, we obtain a running time of
about 3- 10* seconds, which is less than nine hours. Given that sequencing of the complete
human genome is probably not finished before December 2001 and taking into account the
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Table VI. Applications of suffix trees and the kind of traversal they require. The numbers are the application
numbers used by Gusfield][

Applications with partial traversals Applications with complete traversals
1 exact string matching 4 longest common substring of two strings
2 exact set matching 5 recognizing DNA contamination
3 substring problem for a data base of patterns 6 common substrings to more than two strings
8 computing matching statistics 7  building a smaller directed graph for exact
9 space efficient longest common substring matching
problem 10 all pairs suffix prefix matching
15 Boyer-Moore approach to exact set matching 11 finding maximal repetitive structures
16  Ziv-Lempel data compression 12 circular string linearization
17  Minimum length encoding of DNA 13 computing suffix arrays

expected advances in hard-ware technology, it seems feasible to compute the suffix tree for the
entire human genome on some computers. This would be very helpful for genomic research.

Pragmatics of the choice between ILLI and IHTI

We described two basic implementation techniques to implement suffix trees: linked lists
and hash tables. The experiments suggest that the choice of the implementation technique
depends on (i) the alphabet size, (ii) the length of the input string, and (iii) whether space
requirement or running time is more important. However, there is another important point to
consider: we have to take into account the way in which the suffix tree is utilized. There are
basically two ways to utilize a suffix tree:

1. The suffix tree is partially traversed according to some given string, e.g. a pattern. This
task requires to decide for a given nodeand charactes whether there is an-edge
outgoing fromw, and in case such an edge exists, to deliver this edge.

2. The suffix tree is traversed completely in a particular order. This task requires to have

constant time access from one edg%\g vaw to another edge = vew which has not
been traversed before (if such an edge exists). Sometimes this edge has to be the next
edge w.r.t. to some ordering on the first characters of the edge labels.

Partial traversals (see 1) are typical for pattern matching applications, and complete traversals
(see 2) are typical for finding repetitive elements in strings. To give concrete examples we
considered the first 17 applications of suffix trees given by Gusfiglldand associated

them according to whether they patrtially or completely traverse a suffix tree. Application 14
(i.e. suffix trees in genome scale projects) subsumes several different applications, and so it
cannot uniquely be associated with any of the two kinds. In the remaining 16 applications we
have found eight applications which perform partial traversals and eight applications which
perform complete traversals. Tablé lists the applications and their association.

Partial traversals can be accomplished with both basic implementation techniques.
However, when using a linked list implementation this leads to an alphabet factor in the
running time. So, for partial traversals it is usually better to use a hash coded implementation,
unless space is at the premium. Complete traversals can easily be accomplished with the
linked list implementation. In contrast, the hash table implementation is less useful here,
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since it does not immediately reveal the set of edges outgoing from some node. As noted
by Larsson B8], it is possible to sort the hash table such that it allows complete traversals.

In a first phase all edges stored in the hash table are sorted according to the nodes they are
outgoing from. This can be done in time linear in the size of the hash table, i@(nin

using a bucket sort algorithm. This requires at mosixtra integers to hold the counts for

each node. After the first phase, for each node the edges outgoing from that node are stored
in consecutive positions of the hash table. These can be sor@gintime altogether, again

using a bucket sort algorithm. Thus the extra sorting phase reqiivestime andn integers

of extra space. We have implemented such a sorting proceduiklTor Unfortunately, it

proved to be slow in practice: the running time of the additional sorting phase is between
27 per cent and 140 per cent of the running time of the corresponding suffix tree construction
(average 73 per cent). So, for complete traversals, the hash table representation is inferior,
except when the alphabet is large.

Further improvements and analyses

We note that our implementation techniques are not optimized for a particular alphabet size.
For DNA sequences, which lead to the largest index structures (see Bjgthiere are some
further optimizations possible: i is a DNA sequence, we can expect that each substring
of lengthg < log,n over the DNA alphabet occurs at least twice. This means that most of
the possible nodes of depth ¢ — 1 occur in the suffix tree, and these can be represented
more space efficiently using a heap. A similar technique has already been applied for hashed
position trees16)].

Finally, note that the proposed implementation techniques lead to some interesting
combinatorial questions: what is the expected number of small and large nodes? Are there
better worst case bounds for the number of large nodes? What is the largest/expected number
of non-identity edges? Solutions to these problems definitely improve the acceptance of our
implementation techniques.
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