
Reevaluation of Programmed I/O with Write-Combining
Buffers to Improve I/O Performance on Cluster Systems

Steen Larsen
Intel Corporation
22238 NW Beck

Portland, OR 97231
Steenx.k.larsen@intel.com

Ben Lee
School of Electrical Engineering and Computer Science

Oregon State University
Corvallis, OR 97331-5501, USA

benl@eecs.orst.edu

Abstract—Performance improvement of computer system
I/O has been slower than CPU and memory technologies
in terms of latency, bandwidth, and other factors. Based
on this observation, how I/O is performed needs to be re-
examined and explored for optimizations. To optimize
the performance of computer system having multiple
CPU cores and integrated memory controllers, this
paper re-visits a CPU oriented I/O method where data
movement is controlled directly by the CPU cores,
instead of being indirectly handled by DMA engines
using descriptors. This is achieved by leveraging the
write-combining memory type and implementing the I/O
interface as simple FIFOs. Our implementation and
evaluation of the proposed method show that transmit
latency and throughput significantly better for small and
medium sized messages, and throughput for large
messages is comparable to descriptor-based DMA
approach.

Keywords- I/O latency, memory, DMA, I/O bandwidth
communication

I. INTRODUCTION
I/O transactions are typically performed using descriptor-

based Direct Memory Access (DMA), which decouples the
software that produces data on a CPU core from the data
departure from the system. This allows an I/O device to
execute I/O transactions as fast as it can handle. Descriptor-
based DMA transactions are appropriate for transferring
large messages. However, the overhead of using descriptors
diminishes the performance of transferring small and
medium sized messages.

In order to better understand this overhead and thus the
motivation for this paper, Fig. 1 shows the typical Ethernet
transmit flow. After the kernel software constructs the
outgoing packet and enqueues it in the transmit buffer within
the system memory (1), the core sends a doorbell request to
the NIC via the platform interconnect (e.g., PCIe) indicating
that there is a pending packet transmission (2). The doorbell
request triggers the NIC to initiate a DMA operation to read
the descriptor containing the physical addresses of the
transmit header and payload (3). The NIC parses the
descriptor contents and then initiates a DMA operation to

read the header information (e.g., IP addresses and the
sequence number) and payload data of the packet (4). An
Ethernet frame is constructed with the correct ordering for
the bit-stream (5). The NIC will also signal the operating
system (typically with an interrupt) that the transmit payload
has been processed, which allows the transmit buffer of the
packet data to be deallocated. Finally, the bit-stream is
passed to a PHYsical (PHY) layer that properly conditions
the signaling for transmission over the medium (6).

As can be seen, descriptor-based DMA operations
require several round-trip latencies between the system
memory and the I/O device. A simple and obvious approach
to eliminating this overhead and improving the performance
of small messages is to use Programmed I/O (PIO), where a
CPU core writes directly to an I/O device [7]. However, PIO
cannot fully utilize the available I/O bus bandwidth, and thus
the throughput suffers. Therefore, this paper presents the use
of Kernel-protected Programmed I/O with Write-Combining
buffers (kPIO+WC) to improve I/O performance. The idea
behind PIO with WC buffers is not new. Bhoedjang et al.
first presented a study that showed that PIO with WC buffers
outperformed DMA for messages less than 1 KB. However,

Figure 1. Typical Ethernet transmit flow

there are two major reasons for reevalauting the potential of
this concept. First, the original study on PIO with WC
buffers was performed on older CPUs, which had the issue
of quickly over-running the few available WC buffers and
stalling the CPU during packet transmission. For example,
their study showed that PIO with WC buffers for message
sizes larger than 1 KB resulted in only about 70% of the
traditional DMA throughput. In contrast, current CPUs have
many WC buffers per core allowing pipelined write
transactions to provide near DMA throughput. Second, with
the proliferation of cores in CPUs, there are benefits of
having these cores be more directly involved in I/O
transactions to improve latency and throughput for small and
medium-sized messages.

Low latency for small- and medium-sized messages
would be beneficial in clustering applications, such as
Memcached, as well as in the financial market where a
microsecond can garner millions. Memcached is a
distributed memory caching system used by companies such
as Facebook to quickly access vast amounts of inter-related
data [18]. Low latency stock prices allow for sophisticated
high-frequency trading methods such as algorithmic and
arbitrage trading [1]. One example is Xasax claiming 30
microseconds delay between NASDAQ quotes and trade
execution [1].

The kPIO+WC approach was implemented as an I/O
adapter using an FPGA and tested on a current high-
performance system. Our study shows that the proposed
kPIO+WC method reduces the latency by 86.7% for small
messages compared to descriptor-based DMA operations. In
addition, kPIO+WC provides similar throughput results as
descriptor-based DMA operations.

II. RELATED WORK
There have been specialized approaches to improve I/O

performance. Mukherjee et al. proposed the use of coherent
memory interfaces for I/O communications, bypassing DMA
transfers completely [2]. Although this can reduce system-
to-system latency and is applicable to top-tier HPC systems,
our goal is to explore the general-purpose cluster
interconnect for HPC and datacenters that is more cost
sensitive and compatible with the existing ubiquitous PCIe-
based Ethernet and InfiniBand interconnects.

Ethernet-based interconnects are widely used in HPC
systems as shown by the Top500 supercomputers, where
41% of the systems are Ethernet-based [3]. InfiniBand,
which also uses descriptor-based DMA, is also a common
HPC interconnect [3]. However, InfiniBand is a complex
I/O device that offloads the connection management task
(essentially the TCP/IP stack) to the I/O device. This
requires I/O device memory to support connection contexts
and possible re-ordering of packets. There are also some
supercomputers that use dedicated I/O processors to perform
I/O forwarding, which minimizes operating system noise due
to interrupts and context switches associated with I/O
transactions [24].

The proposed kPIO+WC method is baselined to Ethernet
interconnects since our motivation is to examine
improvements to generic I/O devices. Since descriptor-

based DMA is used in most high-performance I/O devices,
Ethernet interconnects allow for a comparative study of both
latency and throughput performance.

The closest related work on simplifying I/O transactions
can be found in Programmed I/O (PIO) or memory-mapped
I/O that allows direct access by an application to perform I/O
transactions. A comparison of PIO and DMA showed that
PIO has lower latency for messages less than 64B; however,
DMA outperforms PIO for messages larger than 64B [4].
Part of the reason PIO performs poorly for large I/O
transactions is that they are treated as uncacheable memory
transactions. In addition, PIO transactions using the PCIe
interface occur in maximum of 8-byte PCIe payload packets.
Adding the 24-byte PCIe packet header effectively reduces
PCIe bandwidth utilization to 25% of the peak PCIe
bandwidth.

A variation of PIO is user-level I/O that avoids system
calls to the operating system, which may include memory
copies to kernel buffers impacting I/O transaction
performance [7]. The primary issue with user-level I/O is
sharing, or I/O virtualization, which causes possible
contention between multiple writers and readers for the
shared I/O queues.

Another variation of PIO is the PIO with Write-
Combining (WC) buffer [5] (which Intel has recently
renamed them as Fill Buffers [6]), which involves writing
packets directly to the I/O device using the WC buffers. A
WC buffer can be used to combine multiple 4-byte or 8-byte
writes into a 64-byte data, which can then be written to an
I/O device using a single PCIe transaction.

This approach is similar to our proposed method, but
with the following differences. First, each Intel CPU core
implements up to 10 WC buffers allowing for pipelined write
transactions at near system memory bandwidths using PCIe
memory writes [16]. For example, if a CPU core issues a
64-bit write operation each cycle, a 64-byte WC buffer
would fill in 8 cycles and a 2.5 GHz CPU core could be
writing at maximum data rate of 20 GB/s. This throughput is
comparable to the 16 GB/s bandwidth of a single PCIe Gen3
×16 slot. Although this throughput does not account for
PCIe protocol overhead, a single I/O slot can almost sustain
the 16 GBps peak throughput of a single PCIe Gen3 ×16
slot. As a result, an individual PCIe interface can now
support an individual core throughput. Second, our method
maintains the OS kernel protection by using a kernel module
(or driver) to protect accesses between the I/O device and
system memory. This approach allows multiple applications
to access the I/O device without special access arbitration
control such as virtualization managers or custom software.

III. PROPOSED METHOD
The structure of the NIC based on kPIO+WC is shown in

Fig. 2. In addition to legacy components PCIe Host
Interface, TX and RX DMAs, TX and RX queues, and the
MAC and PHY layers, the proposed method requires
kPIO+WC Queue, EOP Filter, and MUX. The kPIO+WC
Queue act as a buffer for contents evicted from WC buffers.
The EOP Filter module filters demarcation signatures
required for WC buffer eviction (see Section III.A). Finally,

MUX is needed to support both legacy and kPIO+WC-based
traffic.

From a software perspective, kPIO+WC utilizes a kernel-
based approach where the contents of WC buffers in the
CPU core are directly written into the kPIO+WC TX Queue.
This approach simplifies porting of higher level software
stack protocols since the driver already has a network packet
data structure with the proper frame headers and checksums.
This also provides the device sharing protection that is
currently supported by mainstream kernels and operating
systems (such as Linux and Windows).

The following subsections describe the I/O transmit
operation, as well as some implementation issues.

A. I/O Transmit operation
In order to transmit an I/O message, the driver first

initializes the kPIO+WC TX Queue as a write combining
memory type, which allows any writes to the kPIO+WC TX
Queue to be performed using WC buffers instead of typical
PIO. Then, the CPU core formulates the message and
appropriate header information. The header information is
the standard Ethernet header with source and destination
MAC addresses as well as higher-level packet information,
such as IP, TCP, ICMP, etc. The CPU core writes the entire
Ethernet frame to the kPIO+WC TX Queue.

In our implementation, the driver is coded to align all
transmit frames on a 64-byte WC buffer. This allows a CPU
core to write a 64-byte data to the PCIe interface with a 24-
byte PCIe frame overhead. This is significantly better than
PIO that can only transfer an 8-byte data (in a 64-bit
operating system) on each PCIe frame, which improves the
PCIe write throughput efficiency from 25% (8/(8+24)) to
72.7% (64/(64+24)).

The current Intel WC buffer implementation does not
guarantee that the writes will occur in the correct order as
issued by the CPU core, and this is often referred to as
weakly-ordered memory. This restriction is not a limitation
in our kPIO+WC method since the Ethernet driver uses the
WC buffer such that packets are sent out of the system as
non-temporal memory writes, i.e., these packets will not be
cached, and thus do not require coherency checks

The WC buffers are not directly visible to the software
and can be mapped to different memory regions allowing
each WC buffer to operate independent of other WC buffers
within a CPU core. In our implementation, there is a 4 KB
address range allocated in the kernel memory for the
kPIO+WC TX Queue. This means that when a transmit
packet is written, a new WC buffer is requested and each 64-
byte region is filled. A WC buffer gets evicted from the
CPU core when it becomes full. In our case, the driver is
executing in the kernel and the 4 KB transmit region is not
being shared with any other cores, and thus it has full control
of the order among WC buffers. Therefore, transmissions by
multiple CPU cores would require either a locking
mechanism or multiple kPIO+WC TX Queues, such as seen
in Receive Side Scaling (RSS) [7].

One limitation of WC buffers is that the data writes needs
to combined until a WC buffer becomes full, or some other
event flushes the buffer, to optimally coalesce the write
operations. The WC buffers can be flushed with x86
instruction cflush, sfence, or mfence [8], but each of
these instructions is a costly operation of about 100 CPU
core cycles [9]. In our implementation, the eviction of WC
buffers is carefully controlled in the kernel driver code to
avoid this explicit flush requirement as explained below.

The Intel specification for WC buffer eviction [8] notes
an “option” to evict a given WC buffer, but the wording is in
the context of cache coherency. This is a critical
specification for proper memory coherence (which does not
apply to our non-temporal data movement instructions) as
well as the understanding that a partial fill of a WC buffer
may not be evicted for a long period of time. Our
interpretation is that as soon as a WC buffer is completely
filled, its eviction is triggered. This assumption was verified
by our measurements over multiple WC buffer writes as well
as PCIe trace analysis, where 4 KB writes to WC buffers
were measured and very little variability between PCIe write
transactions were observed.

Since transmit frames may not align on 64-byte
boundaries of WC buffers, the remaining bytes are “stuffed”
with an 8-byte End-Of-Packet (EOP) signature similar to an
Ethernet frame EOP. This stuffing serves the purpose of
reliably flushing the WC buffer. This EOP field is not part
of the network packet outside the system, and thus, it is an
overhead only between the CPU and the I/O device. In our
implementation, a special 64-bit code is used to implement
EOP. There is some inefficiency due to this artificial
stuffing of data, but the overhead is small when compared to
the bandwidth inflation involved with doorbells and
descriptors [10].

Fig. 3 shows how the PCIe write transactions are
enqueued in the kPIO+WC TX queue of the I/O device.
Each entry is 64 bytes and the figures shows four packets of
different payload sizes. In our implementation, the EOP
signature is included in the message passed between the CPU
core and I/O device. The EOP Filter module then filters the
EOP signatures before the message is sent out to the
network. This allows compatibility between legacy devices
and kPIO+WC-enabled devices. Packet A with 120-byte
payload has a single 8-byte EOP signature. Packet B with

kPIO+WC
NIC

Rx DMA

MAC and PHY

Tx DMA

EOP Filter

PCIe Interface

Tx Descriptor
Queue

Rx Descriptor
Queue

MUX

Tx Queue Rx Queue

kPIO+WC
Tx Queue

Figure 2. Structure of the proposed method

64-byte payload requires an additional 64-byte of EOP
stuffing to notify the I/O adapter that it is only 64 bytes.
This is because it needs to signal an EOP, but there is no
space within a single 64-bit WC buffer. Packet C contains
240 bytes with two EOP signatures.

Note that there is a potential of having a code generate a
false EOP signature. However, the probability of this is
extremely low (~1/264 or 5.4×10-20), and when such an event
occurs the false transmit payload will effectively be treated
as a dropped packet. Thus, higher-level protocols will be
relied on to recover the packet via retransmissions.

A CPU core can quickly over-run the kPIO+WC TX
Queue on an I/O device, and thus a larger buffer would be
needed to account for increase in bandwidth-delay products.
To address this issue, our implementation takes advantage of
each CPU core in a typical system having between 6~10 WC
buffers depending on the core architecture. Some tests have
shown 2×~4× throughput improvement by pipelining writes
across the available WC buffers using inline assembly
instructions that bypass L1 and L2 lookups [8]. An example
of such a device driver code that writes two 64-byte portions
of a packet using in-line assembly is shown below where
each SSE2 movntdq instruction writes 16 bytes to a WC
buffer so that it can be filled with four instructions.

__asm__ __volatile__ (
 " movntdq %%xmm0, (%0)\n"
 " movntdq %%xmm0, 16(%0)\n"
 " movntdq %%xmm0, 32(%0)\n"
 " movntdq %%xmm0, 48(%0)\n"
 : : "r" (chimera_tx) : "memory");
__asm__ __volatile__ (
 " movntdq %%xmm1, (%0)\n"
 " movntdq %%xmm1, 16(%0)\n"
 " movntdq %%xmm1, 32(%0)\n"
 " movntdq %%xmm1, 48(%0)\n"
 : : "r" (chimera_tx + 64) : "memory");
chimera_tx+=64;
The above code shows that WC buffer xmm0 is first

written. As xmm0 is flushed to the PCIe interface, the second

half of this code increments the index to WC buffers and
writes to xmm1. This code segment can be expanded with
pointers to different WC buffers based on the number of WC
buffers available to each core in the CPU. By efficiently
using the available WC buffers on each CPU core there will
be no throughput transmit bottleneck and the throughput will
track closely with the available PCIe bandwidth.

Note that the movntdq instruction is a non-temporal
move, meaning there are no cache lookups or coherency
checks. Moreover, since the example code is part of the I/O
device driver code, the operating system protects the device
and only allows access with the normal function calls such as
send().

B. kPIO+WC Implementation Issues
There are two general implementation options for

kPIO+WC. The simplest implementation is similar to I/O
adapter accelerator functions, e.g., Large Receive Offloads
(LRO) [11], which are enabled for all connections using the
I/O adapter during driver initialization. In this case, all
network connections are either descriptor DMA based or
kPIO+WC generated transmissions. To enable kPIO+WC
transmits, a control bit in the I/O adapter would be set via an
operating system command such as modprobe().

The second more complex implementation is to define
each network connection to be either kPIO+WC or
descriptor-based DMA. For example, kPIO+WC can be
used for a certain range of TCP ports. It is also possible to
control kPIO+WC versus descriptor-based DMA
transmission on a per-packet basis, but the added overhead
probably may not justify the flexibility.

IV. MEASUREMENTS AND ANALYSIS
Our baseline measurements and analysis are based on a

2.5 GHz Intel Sandy Bridge 4-core i5-2400S platform
configured as shown in Fig 1. A Linux x64 kernel 2.6.35 is
used with an Ubuntu distribution to support the custom
network driver code. The proposed method is implemented
using a PCIe-based Xilinx Virtex5 (XC5VTX240T) FPGA.
The PCIe bandwidth is 8 Gbps simplex. Although PCIe
Gen1 interface technology is used, the subsequent PCIe
generations also follow the same protocol basically
increasing lane speed and number of lanes. This allows
extrapolation of our Gen1 data to the current Gen2 I/O
devices, and future Gen3 devices. Each core in the CPU
used has 10 WC buffers. The measurements are taken using
a combination of Lecroy PCIe analyzer tracing and internal
FPGA logic tracing. These hardware measurements are
strictly passive and do not induce any latency or performance
overhead. The software micro-benchmarks ICMP/IP ping
and iperf are used for latency and bandwidth testing,
respectively, to compare the proposed method versus the
standard Ethernet.

Packet A (2 of 2)

EOP EOP EOP EOP EOP EOP EOP EOP

Packet B (1 of 1)

Packet A (1 of 2)

Packet C (3 of 4)
Packet C (2 of 4)
Packet C (1 of 4)

Packet C (4 of 4)

EOP

EOP EOP

PCIe Interface

EOP Filter
Figure 3. kPIO+WC-enabled TX Queue

 Our test code is built on the example Ethernet driver
code found in Linux Device Drivers [12], which loops back
the subnet and IP addresses allowing experiments to be run
without a real external network. This is done by instantiating
two bi-directional Ethernet interfaces on two separate
subnets. This allows us to isolate the system latencies for
analysis without wire and fiber PHY latencies and their
variations.

Note that it is also possible to utilize kPIO+WC on the
receive path. However, existing I/O devices prefetch and
coalesce Ethernet frame descriptors, and thus there is no
significant latency improvement by having kPIO+WC for
receive data. As a result, latency savings appear only in the
transmit path, and thus our analysis is focused on the
transmit path.

Fig. 4 shows how the kPIO+WC-based I/O adapter
implemented in FPGA is interfaced to the host system. Our
implementation only includes a single I/O adapter with a
single kPIO+WC Queue since our interest is in how a single-
core interacts with a single I/O adapter. This avoids any
undesired PCIe traffic, such as TCP/IP ACK frames, and
other multi-core and multi-interface traffic that occurs over a
single PCIe device to skew the experiment. Therefore, the
only traffic on the PCIe interface, marked by the green
arrow, is transmitted from the chi0 interface and received by
the chi1 interface. The reverse traffic (from chi1 to chi0
marked with a red arrow) occurs only in memory as the
original driver is coded to avoid irrelevant PCIe traffic in the
analysis. This reverse traffic is needed to support higher-
level network protocols such as TCP, which assumes ACK
packets to ensure a reliable connection.

In order to compare the CPU transmit overhead, similar
tests are performed on a descriptor-based Intel 10GbE NIC.
Using the Linux perf performance tool show that up to 2% of
CPU overhead was due to transmit descriptor related
operations in the ixgbe_xmit_frame() function.

If the PCIe bandwidth cannot sustain the CPU core
throughput, meaning the 10 WC buffers (640 bytes) are not
drained, the transmitting core will stall and CPU transmit
overhead will increase. The risk of stalls is highly workload
dependent and requires further explorations [10].

A. Latency Results
The latency is evaluated by sending a single Ethernet

ICMP ping packet, which consists of 64 bytes along with the
required IP (24-byte) and Ethernet (12-byte) header
information. Since an 8-byte EOP signature is used, a packet
needs to be aligned to 8 bytes. Therefore, four more bytes of
dummy data are needed for a total payload size of 104 bytes.
The 104-byte payload requires three 8-byte EOP signatures
to align the 104-byte ICMP message across two 64-byte WC
buffers.

Fig. 5 shows the loopback trace for the proposed method
where each PCIe packet is shown as a separate line and
enumerated in the field marked “Packet”. The two PCIe
write transactions for the ICMP message are indicated by
PCIe packets #1572 and #1573. The temporal reference
point at the beginning of packet #1572 is T0. These two
packets are acknowledged with packets #1574 and #1576 by
the FPGA I/O device at T0 + 492 ns and T0 + 692,
respectively. Note that there are CRC failures in the
upstream PCIe frames due to a PCIe analyzer failure, but the
software verified that the expected loopback data was
properly written into the pinned system memory buffers.

The I/O device initiates the DMA write to the system
memory for the looped back packet starting with packet
#1578. This transaction is seen on the PCIe interface at
T0+1,292 ns. The second 64-byte PCIe packet containing
EOP signatures is written to the system memory with packet
#1579 at time T0 + 1,388 ns.

Fig. 6 shows the latency breakdown of the 64-byte ICMP
message using a standard 1GbE NIC [13, 14]. Since the
measurement was between two different systems, Fig. 6 only
shows the transmit operation. Again, T0 is used as the initial
observance of PCIe traffic in the transmit direction of the
doorbell write in packet #2555, which is acknowledged with
packet #2556 at T0+184 ns in. The NIC responds with the
transmit descriptor fetch request in packet #2557. The read
request is completed with data in packet #2559 and
acknowledged at T0+1,064 ns in packet #2560. After parsing
the descriptor, the NIC requests the payload data in packet
#2561, which completes with data in packet #2563 and is
acknowledged by the NIC at T0+2,048 ns.

kPIO+WC
NIC

Rx DMA

Loopback

Tx DMA

EOP Filter

Tx Descriptor
Queue

Rx Descriptor
Queue

MUX

Tx Queue Rx Queue

kPIO+WC
Tx Queue

CPU Software Interface
Chi0 Chi1

PCIe Interface

Transmit Data
ACKs

Figure 4. HW & SW co-utilization of interfaces

Since both the kPIO+WC method and the standard 1GbE
use DMA for receive transactions, there is little latency
difference in the I/O receive path. Table 1 compares the
latencies in these two example traces for a 64-byte ICMP
message between two systems. Table 1 shows that
kPIO+WC reduces the latency by 1,504 ns.

Note that our proposed approach can reduce latency even
further when the message is within a single WC buffer
instead of the two WC buffers shown in Fig. 5. Accounting
for the header and EOP requirement, only a single WC
buffer is needed if the message is less than 20 bytes, which is
applicable in the financial trading market. Based on multiple
back-to-back WC buffer writes, there is on average 108 ns
delay between two consecutive WC buffer writes.
Therefore, the minimum latency to send a message out of a
system in our implementation is 108 ns. In contrast, the
minimum latency to send a 64-byte message out of a system
in a descriptor-based 1GbE NIC, including the frame header,
is 1,736 ns.

Fig. 7 shows the transmit latency as a function of
message size for kPIO+WC and the descriptor-based DMA
operation. The figure also shows the 8 Gbps PCIe
theoretical bandwidth limitation of our test environment,

which is the limit of our ×4 Gen1 configurations and
provides the asymptote that the latencies for both kPIO+WC
and descriptor-based DMA approach. The descriptor-based
DMA transmit latency curve is smoother than the latency for
the proposed method since the latter uses 64-byte alignment
while the former uses byte-level alignment.

B. Throughput Results
Fig. 8 compares throughput as a function of message size

for the two methods, which shows that the proposed method
outperforms descriptor-based DMA for small messages and
the throughput converges with descriptor-based DMA as
message size increases. The abrupt degradation for
kPIO+WC is again due to the 64-byte WC buffer alignment.

Our analysis of the iperf microbenchmark throughput
results (sampled for > 100 ms) on the PCIe interface using a
dual 10GbE Intel 82599 NIC shows that for transmit
overhead, up to 43% of the traffic on the PCIe interface is
used for descriptors or doorbells for small 64-byte messages.
For larger messages, e.g., 64 KB, the overhead is less than
5%. The proposed approach removes this PCIe bandwidth
overhead.

Figure 5. Ping loopback trace on the PCIe interface for kPIO+WC.

Figure 6. Ping loopback trace on the PCIe interface for Intel 82575EB 1GbE

V. CONCLUSION AND FUTURE WORK
This paper evaluated the performance of PIO with WC

buffers. Our results show that the proposed method provides
significant latency improvement on current systems.
Although some changes are required in both the hardware
implementation and software driver interface, the
implementation costs are small relative to the benefits gained
in HPC applications where latency and throughput
performance is crucial.

Other less quantifiable benefits of the kPIO+WC
approach include a core directly controlling the I/O transmit
transactions to allow system power algorithms involving the
on-die Power Control Unit (PCU) [15] to react more
effectively than sending slow control messages to a PCIe
attached I/O DMA engine. I/O transaction Quality-of-
Service (QoS) also improves since a core can control (or
filter) I/O transactions based on priority. In addition, system
memory bandwidth utilization and memory latency improve
by not having I/O DMA transactions between multiple I/O
devices contending with core related memory transactions.

As future work, we plan to explore other improvements
to the kPIO+WC approach. For example, increasing the WC

buffers would benefit I/O performance in general. We also
want to further explore and quantify the receive flow benefits
with and without descriptor-based DMA. Finally, we plan to
study how kPIO+WC can be used to moving data across a
PCIe switch fabric.

VI. ACKNOWLEDGMENTS
The authors would like to thanks Guandeng Liao, Jesse

Brandeburg, and Steve McGowan at Intel for providing
helpful comments and clarifications. This research was
supported in part by Ministry of Education Science and
Technology (MEST) and the Korean Federation of Science
and Technology Societies (KOFST).

REFERENCES
[1] Goldstein, J. The Million Dollar Microsecond. 2010; Available from:

http://www.npr.org/blogs/money/2010/06/08/127563433/the-
tuesday-podcast-the-million-dollar-microsecond.

[2] Mukherjee, S.S., et al. Coherent network interfaces for fine-grain
communication. 1996: IEEE.

[3] Top500. 2013; Available from: http://i.top500.org/stats.
[4] Bhoedjang, R.A.F., T. Ruhl, and H.E. Bal, User-level network

interface protocols. Computer, 1998. 31(11): p. 53-60.
[5] Wikipedia. Write-combining. 2012; Available from:

http://en.wikipedia.org/wiki/Write-combining.
[6] Intel, Intel 64 and IA-32 Architectures Optimization Reference

Manual. 2012.
[7] Corporation, M. Introduction to Receive Side Scaling. 2012 [cited

June 2012; Available from: http://msdn.microsoft.com/en-
us/library/ff556942.aspx.

[8] Intel, Intel 64 and IA-32 Architectures Software Developer's Manual
Vol1-3. 2013.

[9] Milewski, B. Memory fences on x86. 2008; Available from:
http://bartoszmilewski.com/2008/11/05/who-ordered-memory-
fences-on-an-x86/.

[10] Larsen, S. and B. Lee, Platform IO DMA Transaction Acceleration.
International Conference on Supercomputing (ICS) Workshop
on Characterizing Applications for Heterogeneous Exascale
Systems (CACHES), 2011.

Figure 7. Transmit latency comparison

Table 1: 64-byte Latency Breakdown Comparison

Latency critical
path for 64B
message

kPIO+WC
(Fig.7)

Standard 1GbE Intel
82575EB (Fig. 8)

Doorbell to PCIe 0 T0
Descriptor fetch 0 T0 + 1,064 ns
Payload (DMA
fetch or core
write)

T0 + 232 ns T0 + 1,736 ns

PCIe NIC to
fiber

NA (equivalent) NA (equivalent)

Fiber delay NA (equivalent) NA (equivalent)
Fiber to PCIe NA (equivalent) NA (equivalent)
PCIe to system
memory

NA (DMA
operations are
similar)

NA (DMA
operations are
similar)

Total latency 232 ns 1,736 ns

Figure 8. Transmit throughput comparison

[11] Hatori, T. and H. Oi, Implementation and Analysis of Large Receive
Offload in a Virtualized System. Proceedings of the
Virtualization Performance: Analysis, Characterization, and
Tools (VPACT’08), 2008.

[12] Jonathan Corbet, A.R., Greg Kroah-Hartman, Linux Device Drivers
3rd Edition. 2005.

[13] Intel 82599 10GbE NIC. Available from:
http://download.intel.com/design/network/prodbrf/321731.pdf.

[14] Larsen, S., et al., Architectural Breakdown of End-to-End Latency in
a TCP/IP Network. International Journal of Parallel
Programming, 2009. 37(6): p. 556-571.

[15] Wikipedia, Haswell PCU. 2012.

