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Abstract

In this paper, I describe first the background behind
the development of the original ARIES recovery
method, and its significant impact on the
commercial world and the research community.
Next, I provide a brief introduction to the various
concurrency control and recovery methods in the
ARIES family of algorithms. Subsequently, I discuss
some of the recent developments affecting the
transaction management area and what these mean
for the future. In ARIES, the concept of repeating
history turned out to be an important paradigm. As I
examine where transaction management is headed
in the world of the internet, I observe history
repeating itself in the sense of requirements that
used to be considered significant in the mainframe
world (e.g., performance, availabilit y and reliabilit y)
now becoming important requirements of the
broader information technology community as well .

1. Introduction

Transaction management is one of the most important
functionaliti es provided by a database management system
(DBMS). Over the years, several techniques have been
developed to deal with the two most important aspects of
transaction management, namely, concurrency control and
recovery (CC&R). The transaction abstraction with its
ACID (atomicity, consistency, isolation and durabilit y)
properties [HaRe83] has been supported by DBMSs to let
users designate the scope of their atomic and isolated
database interactions. Over the last two decades, several
CC&R techniques have been developed and a small subset
of them have been implemented in products and prototypes

[BeHG87, BeNe97, Elmag92, GrRe93, JaKe97, KuHs98,
Kumar95].

In this paper, I describe the background behind the
invention of the ARIES (Algorithms for Recovery and
Isolation Exploiting Semantics) family of CC&R
algorithms,  and the significant impact that these
algorithms have had on the research community and the
commercial world (section 2). In section 3, I briefly
summarize some of the ARIES algorithms and discuss
their implementation status. This presentation also gives a
roadmap across the numerous papers that focus on ARIES
and related work. The rest of this paper discusses some of
the recent developments in transaction processing and
distributed computing in general (section 4). Based on
these observations, I speculate on what is li kely to happen
in the next few years (section 5).

2. Background and Impact

In the Starburst project [HCLMW90], which was started in
the mid-80s at IBM’s Almaden Research Center as the R*
distributed DBMS project [MoLO86] was ending, we
focussed on building a brand new relational DBMS with
extensibilit y as the primary objective. Some of us treated
this new project as a golden opportunity and decided to
revisit many of the assumptions and conclusions of IBM’s
very influential System R RDBMS project [CABGK81] in
the area of transaction management. We also decided to
learn from the accumulated experiences with the IBM
RDBMS products DB2/MVS [HaJa84] and SQL/DS
[ChGY81], which, by then, had undergone customer usage
for a few years. In particular, we decided to examine more
closely the different approaches to database recovery
adopted by these products – write-ahead logging (WAL) in
DB2/MVS and shadow paging in SQL/DS.

While the System R researchers concluded [CABGK81]
that WAL is better than shadow paging, they did not
succeed in producing a recovery method that supported
fine-granularity (e.g., record level) locking while still
allowing the flexible management of variable length
records as in System R. This was the primary reason
behind DB2/MVS being released in 1984 with only a page
as the smallest granularity of locking. Even though IBM’s
hierarchical DBMS IMS supported record level locking
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[GaKi85, Ober80, Ober98a, Ober98b, PeSt83], it was
unsatisfactory since it was doing very physical (e.g., byte-
range) logging and locking that resulted in inflexible
storage management and the need for frequent off line data
reorganizations. We decided to aim for the best of both
worlds! Since most of us were not IBMers during the
System R days, we were able to look at the problems with a
fresh perspective.

At a time when the research community had wrongly come
to the conclusion that everything about CC&R was well
understood and that there was no need for any additional
work to be done, we had to be courageous to try to justify
spending time on examining not only the paltry
documentation but also the code of System R, SQL/DS,
DB2/MVS and even IMS to try to understand everything
about how their CC&R worked. Finding significant design
bugs in System R ten years after the release of the product
version of it (SQL/DS) was not considered, by some
colleagues, to be a worthwhile exercise! In retrospect, such
investigations proved to be extremely educative, insightful
and invaluable. Almost all of the knowledge that we
gained through these investigations have been documented
extensively in the ARIES collection of papers cited here.

The original ARIES work, which was done in the mid-80s
and publicly documented in a research report form in 1989
[MHLPS92], led to the establi shment of the IBM Data
Base Technology Institute (DBTI). This umbrella
organization, which encompassed many database research
and product groups within IBM, gave us, the IBM
researchers, numerous opportunities to interact with
IBM’s DBMS customers and product developers. We were
able to learn from them about important unsolved
problems, and drawbacks of solutions and features
implemented in different DBMS products and prototypes.

The basic ARIES algorithm summarized in Section 3.2
has been extended by us and others in numerous ways. We
describe some of the extensions in the following
subsections. Because of its generalit y and its extensive
flexibilit y, ARIES has been implemented not only in
DBMSs but also in persistent object systems, recoverable
file systems, messaging and queuing systems, and
transaction-based operating systems. Various approaches
have been taken to formalize subsets of ARIES [Kuo96,
LoTu95, MaRa97]. Extensions to ARIES have been
proposed to exploit operation semantics [Bill a96], provide
high availabilit y [BGHJ92] and support the client-server
context [FZTCD92]. Simulation and analytical studies of
ARIES’s performance have been done [JhKh92, VuDo90].

Many of the algorithms summarized in this paper have
been implemented to varying degrees in numerous
products and research prototypes li ke Starburst extensible
DBMS [HCLMW90], OS/2 Extended Edition Database

Manager [ChMy88], DB2/390 [JMNT97], DB2 UDB for
Unix, Windows and OS/2, Encina transaction processing
monitor and recoverable file system, Microsoft SQL Server
and NT file system, Gamma database machine
[DGSBH90], EXODUS extensible DBMS [FZTCD92],
Shore persistent object system [CDFHM94], Paradise GIS
system, PREDATOR object-relational DBMS, MQSeries
transactional messaging and queuing product [MoDi94],
SQL/DS [ChGY81], ADSTAR Distributed Storage
Manager (ADSM) [CaRH95], Lotus Domino/Notes R5
[Mohan99], QuickSilver distributed operating system
[CMSW93], and VM Shared File System [StNC91]. There
are li kely to be many other implementations about which I
am unaware.

ARIES has been covered in many database textbooks and
tutorials (e.g., [RaCh96, Ramak98, Weihl95]). A cursory
search on the web reveals that ARIES is being taught in
university courses at Austin, Ben Gurion, Berkeley,
Cornell , Duke, Ioannina, Maryland, Pittsburgh,
Rensselaer, Seoul, Stanford, Trier and  Wisconsin. At
Cornell , based on earlier work at Wisconsin, a system
called Mars has been developed for educational purposes.
It is a recovery simulator that is used to explain and
explore ARIES. It includes visualization features.

IBM obtained European patents [HLMPS94] on the basic
ARIES recovery method. However, due to some fumbling
by lawyers, after many years it gave up on trying to get the
corresponding US patent! Subsequently, it let the
European patents also lapse. IBM did obtain in the US and
elsewhere patents on most of the other ARIES-related
locking and recovery methods (for detail s, see
www.almaden.ibm.com/u/mohan/aries_papers.html).

3. The ARIES Family of Algorithms

This section summarizes some of the CC&R algorithms
that belong to the ARIES (Algorithms for Recovery and
Isolation Exploiting Semantics) family. These algorithms
support very high concurrency via fine-granularity
locking, operation logging, eff icient recovery, and flexible
storage and buffer management. They relate to nested
transactions, index management, hashing, cheap
techniques for reducing or eliminating locking while
guaranteeing consistency, fast restart recovery and
interactions between query processing and concurrency
control. While the recovery techniques are based on write-
ahead logging, many of the concurrency control techniques
that have been developed are applicable to systems using
other recovery methods also (e.g., shadow paging).

3.1 Recovery Methods

There are two general approaches to recovery: the write-
ahead logging (WAL) approach [Gray78, MHLPS92] and

2



the shadow-page technique [GMBLL81, MHLPS92].
WAL is the recovery method of choice in most systems,
even though the shadow-page technique of System R is
used in some systems, possibly in a limited form (e.g., for
managing long fields or BLOBs). In WAL systems, an
updated page is written back to the same disk location
from which it was read. That is, in-place updating is done
on disk. The WAL protocol asserts that the log records
representing changes to some data must already be on
stable storage before the changed data is allowed to
replace the previous version of that data on disk.

Each log record is assigned, by the log manager, a unique
log sequence number (LSN) at the time the record is
written to the log. The LSNs are assigned in ascending
sequence. Typicall y, they are the logical addresses of the
corresponding log records [Crus84]. At times, version
numbers or timestamps are also used as LSNs [Borr84,
MoNP90]. On finishing the logging of an update to a page,
in many systems whose recovery is based on WAL, the
LSN of the log record corresponding to the latest update to
the page is placed in a field in the page header. Hence,
knowing the LSN of a page allows the system to correlate
the state of the page with respect to those logged updates
relating to that page. That is, at the time of recovery, given
a log record, the LSN of the database page referenced in
the log record and the LSN of the log record can be
compared to determine unambiguously whether or not that
log record's update is already reflected in that page. The
buffer manager, in order to enforce the WAL protocol,
uses the LSN associated with a modified page to ensure
that the log has been forced to disk up to that LSN before
it writes that page to disk.

With the shadow-page technique, as it is implemented in
System R and SQL/DS, the first time a (logical) page is
modified after a checkpoint, a new physical page is
associated with it on disk. Later, when the page (the
current version) is written to disk, it is written to the new
location. The old physical page (the shadow version)
associated with the (logical) page is not discarded until the
next checkpoint. Restart recovery occurs from the shadow
version of the page if a system failure should occur. With
shadow paging, checkpoints tend to be very expensive and
disruptive. This is because a checkpoint is taken only when
all activities in the data manager have been quiesced to an
action-consistent state. After quiescing, all the modified
pages in the buffer pool and the log are written to disk.
Then, the shadow version is discarded and the current
version is also made the new shadow version. As a result
of all these synchronous actions by the checkpointing
process, restart recovery always happens from the
internally consistent, shadow version of the database.

Even when the shadow-page technique is used for
recovery, logging of updates is still performed.
Commerciall y, the WAL approach has been much more
widely adopted than the shadow-page technique. Very
detailed comparisons between the two methods are given
in [MHLPS92]. In this paper, whenever I discuss recovery
methods, I assume that it is based on WAL. The
concurrency protocols that I discuss are applicable also to
systems that use the shadow-page technique.

In the following, I summarize the original ARIES
algorithm and its variants ARIES-RRH and ARIES/NT. I
also discuss the adaptation of ARIES for the shared disks
and client-server environments, and for the management
of semi-structured data in Lotus Domino/Notes.

3.2 ARIES

The aim of this section is to provide a brief overview of the
original ARIES recovery method which was developed for
the flat (i.e., unnested) transaction model [MHLPS92].

3.2.1 Logging

Like other recovery methods, ARIES also guarantees the
atomicity and durabilit y properties of transactions
[HaRe83]. In order to provide these guarantees, ARIES
keeps track of the changes made to the database by using a
log. It implements the WAL protocol. All updates to all
pages are logged. Changes to each page may be logged in
a logical fashion. That is, not every byte that was changed
on the page needs to be logged. ARIES uses an LSN on
every database page to track the page's state. Every time a
page is updated and a log record is written, the LSN of the
log record is placed in the page_LSN  field of the updated
page. Tagging every page with an LSN allows ARIES to
precisely track, for restart/media recovery purposes, the
state of a page with respect to logged updates for that page.

In addition to logging, on a per-affected-page basis, update
activities performed during forward (i.e., normal)
processing of transactions, ARIES also logs, typicall y
using compensation log records (CLRs), updates
performed during partial or total rollbacks of transactions
during both normal and restart undo processing. For
example, if the original log record (nonCLR) described the
deletion of record R10 on page P1, the CLR written during
the undo of that log record would describe the insertion of
R10 on P1. As a result of writing CLRs and updating the
page_LSN field with the LSNs of the CLRs also, as far as
recovery is concerned, the state of a page is always viewed
as evolving forward, even when some original updates are
being undone.

ARIES allows the support of even semanticall y-rich lock
modes li ke increment/decrement [BaRa87] that permit
multiple transactions to update the same data concurrently.
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This is the kind of feature that requires a recovery method
to (1) support operation logging (i.e., logging the quantity
by which a field's value was decremented or incremented,
rather than logging the before and after values of the field
as in IMS), (2) avoid erroneous attempts to undo or redo
some actions unnecessaril y by precisely tracking the state
of a page using the LSN concept, and (3) write CLRs.

Unlike in earlier recovery methods, in ARIES, CLRs have
the property that they are redo-only log records. By
appropriate chaining of the CLRs to log records written
during forward processing, a bounded amount of logging
is ensured during rollbacks, even in the face of repeated
failures during restart recovery or of nested rollbacks.1

This is to be contrasted with what happens in IMS
[PeSt83], which may undo the same nonCLR multiple
times, and in AS/400 [ClCo89], DB2/MVS V1 and
NonStop SQL, which, in addition to undoing the same
nonCLR multiple times, may also undo CLRs one or more
times (see [MHLPS92]  for examples). In the past, these
have caused severe problems in real-li fe situations.

When the undo of a log record causes a CLR to be written,
the CLR is made to point, via the UndoNxtLSN field of
the CLR, to the predecessor of the log record being
undone. The latter information is readily available since
every log record, including a CLR, contains a pointer
(PrevLSN) to the most recent preceding log record written
by the same transaction. Thus, during rollback, the
UndoNxtLSN field of the most recently written CLR keeps
track of the progress of rollback. It tell s the system from
where to continue the rollback of the transaction, if a
system failure were to interrupt the completion of the
rollback or if a nested rollback were to be performed. It lets
the system bypass those log records that had already been
undone.

Since CLRs can describe what actions are actuall y
performed during the undo of an original action, the undo
action need not be, in terms of which page(s) is affected,
the exact inverse of the action that is being compensated
(i.e., logical undo is made possible). This allows very high
concurrency to be supported. For example, in a B+-tree, a
key inserted on page 10 by one transaction may be moved
to page 20 by another transaction before the key insertion
is committed, as we permit in ARIES/IM [Mohan95b,
MoLe92] (see [Mohan93a] for the description of
ARIES/LHS which also exploits this feature). Now, if the
first transaction were to roll back, then the key will be
located on page 20 by retraversing the tree and deleted

                                                       
1 A nested rollback is said to have occurred if a partial rollback

were to be later followed by a total rollback or another partial
rollback whose point of termination is an earlier point in the
transaction than the point of termination of the first rollback.

from there. A CLR will be written to describe the key
deletion on page 20. This enables page-oriented redo,
which is very eff icient, during restart and media recovery
[MHLPS92].

3.2.2 Restart Recovery

When restarting the transaction system after an abnormal
termination, recovery processing in ARIES involves
making three passes (analysis, redo and undo) over the
log. In order to make this processing eff icient, periodicall y
during normal processing, ARIES takes checkpoints. The
checkpoint log records identify the transactions that are
active, their states, and the addresses of their most recently
written log records, and also the modified data (dirty data)
that is in the buffer pool. During restart recovery, ARIES
first scans the log from the last checkpoint to the end of
the log. During this analysis pass, information about dirty
data and transactions that were in progress at the time of
the checkpoint is brought up to date as of the end of the
log. The analysis pass, using the dirty data information,
determines the starting point (RedoLSN) for the log scan
of the immediately following redo pass. The analysis pass
also determines the li st of transactions to be rolled back in
the undo pass. For each in-progress transaction, the LSN
of the most recently written log record will also be
determined.

Next, during the redo pass, ARIES repeats history with
respect to those updates logged on stable storage but whose
effects on the database pages did not get reflected on disk
before the system failure. This is done for the updates of
ALL transactions, including the updates of those
transactions that had neither committed nor reached the
in-doubt state of two-phase commit by the time of the
crash (i.e., even the missing updates of the so-called loser
transactions are redone).

The process of repeating history essentiall y reestabli shes
the state of the database as of the time of the failure. A log
record's update is redone if the affected page's page_LSN
is less than the log record's LSN. The redo pass also
obtains the locks needed to protect the uncommitted
updates of those distributed transactions which will remain
in the in-doubt (prepared) state [MoLO86] at the end of
restart recovery. In contrast, in the recovery methods of
System R [GMBLL81]  and DB2 V1 [Crus84], only the
missing updates of terminated and in-doubt transactions
(the nonloser transactions) are redone during the redo
pass. This is called the selective redo paradigm. In
[MHLPS92], we show why this paradigm leads to
problems when fine-granularity (i.e., smaller than page-
granularity) locking is to be supported with WAL.

The next pass is the undo pass during which all l oser
transactions' updates are rolled back, in reverse
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chronological order, in a single sweep of the log. This is
done by continually taking the maximum of the LSNs of
the next log record to be processed for each of the yet-to-
be-completely-undone loser transactions, until no loser
transaction remains to be undone. Unlike during the redo
pass, during the undo pass (as well as during normal
undo), performing undos is not a conditional operation.
That is, ARIES does not compare the page_LSN of the
affected page to the LSN of the log record to decide
whether or not to undo the update. Once a log record is
processed for a transaction, the next record to process for
that transaction is determined by looking at the PrevLSN
or the UndoNxtLSN field of the record, depending on
whether it is a nonCLR or a CLR, respectively.

3.2.3 Nested Top Actions

There are times when we would li ke some changes of a
transaction to be committed irrespective of whether later
on the transaction as a whole commits or not. We do need
the atomicity property for these changes themselves. A few
of the many situations where this is very useful are: for
performing page split s and page deletes in indexes
[Mohan95b, MoLe92], for relocating records in a hash-
based storage method [Mohan93a], and for allowing out-
of-current-transaction PUTs and GETs in a transactional
messaging system [MoDi94]. ARIES supports this via the
concept of nested top actions (NTAs). The desired effect is
accomplished by writing a dummy CLR at the end of the
NTA. The dummy CLR has as its UndoNxtLSN the LSN
of the most recent log record written by the current
transaction just before it started the NTA.. Thus, the
dummy CLR lets ARIES bypass the log records of the
NTA if the transaction were to be rolled back after the
completion of the NTA..

ARIES's repeating history feature ensures that the NTA's
changes would be redone, if necessary, after a system
failure even though they may be changes performed by a
loser transaction. If a system failure were to occur before
the dummy CLR is written, then the NTA will be undone
since the NTA's log records are written as undo-redo (as
opposed to redo-only) log records. This provides the
desired atomicity property for the NTA itself.

3.2.4 Concurrency Control

While locks are acquired on data at the desired granularity
to assure logical consistency of the accessed data, latches2

on pages are acquired both during forward and undo

                                                       
2 A latch is li ke a semaphore. Compared to a lock, acquiring and

releasing a latch is very cheap in terms of instructions executed
[MHLPS92, Mohan90a, Mohan90b]. Readers of a page acquire
a share (S) latch on the page before reading it, while updaters
acquire an exclusive (X) latch.

processing to assure physical consistency of the data, when
a page is being examined. Deadlocks involving latches
alone, or latches and locks are avoided by ensuring that the
following rules are obeyed:

1. Restricting the number of page latches held
simultaneously to 2 [MoHa94].

2. Ordering the latches hierarchicall y and if they are
requested unconditionally then ordering the requests
to obey the hierarchy restriction.

3. Avoiding requesting a lock unconditionally while
holding a latch.

No locks have to be acquired during transaction rollback,
thereby preventing rolli ng back transactions from ever
getting involved in deadlocks (contrast this with what
happens in System R and R* [GMBLL81, MoLO86]).

ARIES supports selective and deferred restart [Mohan93c],
fuzzy image copies (archive dumps) and eff icient media
recovery [MoNa93], and high-concurrency lock modes
(e.g., increment/decrement), which exploit the semantics
of the operations and which require the abilit y to do
operation logging. It is flexible with respect to the kinds of
buffer management poli cies (e.g., steal, no-force, etc.
[HaRe83]) that can be implemented and the characteristics
of the stored data. Eff icient storage management can be
done for varying length objects [MoHa94]. In the interest
of eff iciency, page-oriented redos and, in the interest of
high concurrency, logical undos are supported.
Opportunities also exist for exploiting paralleli sm during
restart recovery. Algorithms for supporting the above
features are summarized in [MHLPS92] and detailed in
the other cited papers. Algorithms for creating remote site
backups for recovering from disasters are presented in
[MoTO93].

Even though CLRs have been written by many systems for
a long time, [MHLPS92] was the first paper to explain the
rationale behind writing them, and to point out the
numerous advantages of writing them and not undoing
their updates. In [MHLPS92], besides presenting a new
recovery method, by way of motivation for our work, we
also describe some previously unpublished aspects of
recovery in System R (e.g., how partial rollbacks are
handled). That paper also shows why the following System
R paradigms for logging and recovery, which were based
on the shadow page technique, had to be changed in the
context of WAL.

• Selective redo

• Undo pass preceding redo pass

• No logging of updates performed during transaction
rollback (i.e., no writing of CLRs)

• No logging of index updates and space management
information changes
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• No tracking of page state on page itself to relate it to
logged updates (i.e., no LSNs on pages)

With our ARIES work, we also showed why it is very
important to consider concurrency control, recovery and
storage management together to produce high concurrency
and high performance CC&R methods.

3.3 ARIES for Shared Disks

With multiple computer systems, there are two approaches
to providing scalabilit y in DBMSs. One is the shared disks
(SD) architecture and the other is the shared nothing (SN)
architecture. SN has been implemented in Tandem’s
NonStop SQL, NCR’s Teradata DBMS and IBM’s DB2
Parallel Edition. SD has been implemented in IBM’s IMS,
DEC’s Rdb, Oracle and, more recently, in IBM’s
DB2/390. The introduction of record level locking and
support for SD was done in the same release of DB2/390.
This necessitated enhancements to ARIES to deal with the
fact that multiple instances of DB2, each with its own
buffer pool, had concurrent read and write accesses to the
same set of data on the shared disks. To make matters even
more interesting, in addition to the shared disks, as in
previous systems, in the S/390 Parallel Sysplex
environment, we also had to deal with a page-addressable
store (called Coupling Facilit y) that is shared by the S/390
machines running DB2 [IBM97].

As we designed for the SD environment, the hardware and
software environment that we had to deal with kept
changing: from centrali zed lock manager to distributed
lock manager, from special-purpose hardware to general-
purpose hardware running speciali zed software, from a
software-only global lock manager to a hybrid lock
manager, and so on. Our papers [JMNT97, MoNa91,
MoNa92a, MoNa92b, MoNP90] document some of the
alternatives in this environment for locking, logging,
recovery, etc. What was implemented is described in
[JMNT97]. Each DB2 instance writes its log records to its
own local log, but the local logs are asynchronously
merged for media recovery purposes [MoNa93]. The
failure possibiliti es here are much more complex than in a
single system environment.

3.4 ARIES/CSA

In the typical client-server environment, as exempli fied by
the object-oriented DBMSs, the client DBMS software
directly operates on the database pages even though the
disks containing the database are managed by only the
server. The server ships the database pages to the clients
and handles global locking across clients. Clients might
cache pages across transaction commits. ARIES/CSA
(ARIES for the Client Server Architecture) [MoNa94]
supports such an environment. Here, the clients produce

log records when they perform their updates and send
them to the server at appropriate times. They generate
LSNs locall y rather than letting the log manager assign
them. The server manages the log disk. It writes into a
single log the log records received from the different
clients. In many such ways, the CS environment differs
from the SD environment of the last section in which the
sharing systems have a peer-peer relationship. While we
did not implement ARIES/CSA, a different version of
ARIES designed for the client server environment has
been implemented in EXODUS [FZTCD92].

3.5 ARIES for Semi-Structured Data

Since its first release in 1989, long before the topic became
fashionable in the database and web research communities,
Lotus Notes had been targeted for the management of
semi-structured data. A few years ago, Notes was enabled
for the internet. At that time, the product name was
changed so that Domino represents the server and Notes
the client. Database functionalit y is almost identical in
Domino and Notes. Through the joint efforts of Lotus’s
subsidiary Iris Associates and IBM Almaden's Dominotes
project, one of the major features implemented in the latest
release (R5) of Lotus Domino/Notes is a traditional
DBMS-style, log-based recovery scheme [Mohan99]. Since
Notes had not been designed originall y with this type of
recovery in mind, accomplishing this required significant
design work. Enhancements had to be made to ARIES to
deal with the fact that storage management in Notes is
done in an unconventional way, as described below.

A Notes database in its entirety is stored in a single
operating system file in a location and machine
architecture independent format. Some of the data
structures in the file are paginated while others are just
byte-streams. Over time, these data structures might also
be moved around in arbitrary ways. Since some of the data
structures might contain attachments li ke audio, video,
etc., logging had to be made optional at the data structure
level also. At the granularity of a database, logging can be
turned on or off by the user. Notes users also frequently
move or repli cate databases by doing file copying via the
operating system. This can cause a logged version of a
database to be overlaid with an older or newer version of
that database from another system. Accommodating all
these complications has required changes to the analysis
and redo passes of ARIES. For example, the modified
analysis pass gathers some extra information that is used
during the redo pass to skip processing some log records
whose LSNs might have normally been compared with
LSNs on corresponding database pages. In the future, we
will write a paper describing the resulting variant of
ARIES called ARIES/SSD (ARIES for Semi-Structured
Data).
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3.6 ARIES-RRH

ARIES-RRH (Algorithm for Recovery and Isolation
Exploiting Semantics with Restricted Repeating of
History) [MoPi91] is an enhanced version of the original
ARIES recovery method. The ARIES-RRH enhancements
relate to the amount of redo of updates that needs to be
performed at the time of system restart in order to bring
the database to a consistent state. They try to minimize the
extent of repeating of history that needs to be performed.

As described earlier, the repeating history paradigm of
ARIES includes redoing the missing updates of even those
transactions that are to be rolled back later in the undo
pass of restart. The latter may lead to some wasted work
being done. We ill ustrated in the ARIES paper why
repeating history was required to support fine-granularity
(e.g., record) locking. [MoPi91] further analyzed this
paradigm and proposed more eff icient handling of redos,
especiall y when the smallest granularity of locking is not
less than a page, by combining the paradigm of selective
redo from DB2/MVS V1 [Crus84] with the original
ARIES algorithm. Even for data for which fine-granularity
locking is being done, it is not always the case that all the
unapplied but logged changes need to be redone. ARIES-
RRH, which incorporates these changes, still retains all the
good properties of ARIES - avoiding undo of CLRs, single
pass media recovery, NTAs, etc. The ARIES-RRH
enhancements should result in a reduction in the number
of I/Os and in the amount of CPU processing during the
redo and undo passes of restart. This should improve the
availabilit y of the system by allowing processing of new
transactions to begin earlier than with the original ARIES
algorithm [Mohan93c].

ARIES-RRH requires that, for each page, all  updates
logged at least up to the point of the most recent
committed3 or in-doubt update for that page be redone, if
those updates are not already present in the page. The
latter is as usual determined by comparing the LSN of the
page with the LSNs of the relevant log records. For data
for which page or coarser granularity of locking is being
used, this rule implies that all l oser transactions' logged
but missing updates need not be redone, as was the case
with DB2 V1 [Crus84]. It turns out that following this rule
alone is not suff icient since some loser transaction might
have already been rolli ng back when a system failure
happened and as a result some CLRs might have been
written which survived the system failure. Some of the
pages affected by those CLRs' updates might not have been
written back to disk after those undos were performed.

                                                       
3 Conceptuall y, we treat a transaction which terminated after

rolli ng back completely as a transaction which performed a
partial rollback to its beginning and then committed.

Since those pages might have been written to disk after the
original updates (i.e., the ones which the CLRs
compensated) were performed on them, we need to ensure
that the corresponding CLRs' updates are also redone, even
though they belong to a loser transaction and they may not
be followed by any nonloser transactions' updates for the
affected pages. To be able to figure out when such a
condition is true, given a CLR and the page affected by it,
if the page's LSN is less than the CLR's LSN, then we
need to know if the page contains the original log record's
(nonCLR's) update. Comparing the UndoNxtLSN of the
CLR with the LSN of the page is not suff icient for this
purpose since the page LSN being greater than
UndoNxtLSN does not necessaril y mean that the original
update is present in the page (see [MoPi91] for an
example). What is needed is the LSN of the original
(nonCLR) log record. So, the contents of a CLR are
enhanced to also include a field called UndoneLSN which
is the LSN of the log record which the CLR compensated.

Now, the rule for handling a CLR can be stated as follows:
The update of a CLR must be redone if the LSN of the
affected page is greater than or equal to the UndoneLSN
of the CLR and is less than the LSN of the CLR. It should
be noted that a rule li ke this was not needed in DB2 V1
since (1) DB2's recovery method performed the undo of
CLRs' updates and (2) CLRs did not have the
UndoNxtLSN pointer and hence DB2 did not bypass
processing of already undone nonCLR log records.

Since, with ARIES-RRH, history is not being completely
repeated, the handling of undos also needs to be changed
to be a conditional one li ke in DB2 V1. That is, during
undo, when a nonCLR is encountered, the undo of that log
record's update should be performed only if the page's LSN
is greater than or equal to the log record's LSN. A
surprising requirement is that, irrespective of whether the
undo has to performed or not, a CLR must always be
written as if the undo was performed (see [MoPi91] for the
explanation of why this is the case).

With the flexibilit y offered via operation logging and the
support for semanticall y-rich modes of locking by ARIES
and ARIES-RRH, this is the best that can be done in terms
of reducing the extent of repeating of history for loser
transactions' updates. Of course, if only physical logging
and locking are supported (as in IMS), then the missing
updates of loser transactions for a given page that even
precede the updates of nonloser transactions for the same
page need not be redone. ARIES-RRH does not
compromise on the original ARIES algorithm's properties
of never undoing a CLR's updates and never undoing the
same nonCLR's updates more than once. [MoPi91] also
explains the fundamental reasons behind why certain
existing recovery algorithms work correctly in the face of
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failures during restart recovery or during media recovery.
The ARIES-RRH work has led to a better understanding of
the fundamental interactions between concurrency control
and recovery methods. So far ARIES-RRH has not been
implemented.

3.7 ARIES/NT

ARIES/NT (Algorithm for Recovery and Isolation
Exploiting Semantics for Nested Transactions) [RoMo89]
is an extension of the ARIES algorithm which was
originall y designed for the single-level transaction model.
ARIES/NT applies to a very general model of nested
transactions [HaRo87, HaRo93], which includes partial
rollbacks of subtransactions, upward and downward
inheritance of locks, and concurrent execution of ancestor
and descendent subtransactions. The adopted system
architecture encompasses aspects of distributed database
management also.

We will briefly summarize here the extensions that were
made to the original ARIES recovery method to obtain
ARIES/NT. In both ARIES and ARIES/NT, all l og records
written by the same transaction are linked via a so-called
backward chain (BW-chain) using the PrevLSN pointers.
In addition, in ARIES/NT, the BW-chains of committed
subtransactions are linked to the BW-chains of their
parents to reflect the transaction trees on the log. When a
subtransaction T commits, a c-committed log record,
which contains a pointer to the last record of T's BW-
chain, is written to the BW-chain of T's parent.
Consequently, the BW-chain of an in-progress transaction
together with the chains of its committed inferiors form a
tree structure, which is called the transaction's backward
chain tree (BWC-tree). Since the parent/child
relationships of committed subtransactions are stored on
the log, subtransactions can be forgotten after their
commit. The analysis pass need not collect data about
committed subtransactions, thereby simpli fying recovery.

Because our very general model of nested transactions
allows upward and downward inheritance of locks, and
concurrent execution of ancestor and descendent
subtransactions, when a (sub)transaction is to be rolled
back, the actions of that (sub)transaction and its
(committed or active) inferiors must be rolled back in
reverse chronological order. Like ARIES, ARIES/NT logs
updates performed during rollback by means of CLRs. A
CLR is also used to keep track how much of a
(sub)transaction and its committed inferiors has already
been rolled back, and how much more remains to be
undone. This is achieved by recording in a CLR a set of
pointers, each of which points to the next log record to be
processed in the BW-chain of the (sub)transaction or a
committed inferior during undo.

As in ARIES, in ARIES/NT also, restart processing starts
with an analysis pass, continues with a redo pass and ends
with an undo pass. Redo processing of ARIES/NT works
in exactly the same way as in ARIES, while the algorithms
of the analysis and undo passes have been modified to
support tree-structured log contents. In ARIES/NT, the
UndoNxtLSN field of a CLR contains a set of log
addresses rather than a single LSN as in the original
ARIES algorithm.

So far ARIES/NT has not been implemented. Basic
features of ARIES/NT have been adapted in [Lomet92] to
support recovery in multi -level systems. [Dombr95]
presents modifications to ARIES/NT to support advanced
transactions.

3.8 Index Management

Even though concurrency in search structures (e.g., B+-tree
indexes) had been discussed frequently in the literature,
the problem of providing recovery from transaction and
system failures when transactions consist of multiple
search structure operations received very littl e attention
until the late 80s. [MoLe92], in its original research report
form, was the first paper to provide a comprehensive
treatment of concurrency control and recovery for index
management in transaction systems. [Mohan90a] was the
first paper to document in detail the System R key-value
locking algorithms and to explain the rationale behind
their design features. That paper also enhanced those
algorithms to vastly improve their concurrency and
performance characteristics. In spite of these efforts and
publications by a few others (e.g., [LoSa92]), index CC&R
are not well understood by the research community. They
are not taught suff iciently in database courses or discussed
enough in database textbooks.

In this section, I summarize the two algorithms,
ARIES/KVL [Mohan90a] and ARIES/IM [MoLe92], that
we developed. A transaction may perform any number of
nonindex and index operations, including range scans.
Both seriali zable (repeatable read) and, optionally,
nonseriali zable (cursor stabilit y) executions of transactions
are supported. To present them, I assume a tree
architecture in which all the indexes on the data (e.g., a
relational table) contain only the key values and record
identifiers (RIDs) of records containing those key values.
The RID of a record identifies the record's location in a set
of data pages. All the leaf pages of an index contain index
entries in the form of key-value,RID pairs. In most
systems, when a nonunique index contains duplicate
instances of a key value, the key value is stored only once
in each leaf page where it appears. The single value is
followed by as many RIDs as would fit on that page.
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In ARIES/KVL, the object of locking is a key value,
whereas in ARIES/IM, it is the individual index entry.
This should make a difference only in the case of
nonunique indexes. Apart from that difference, ARIES/IM
does what is called data-only locking. That is, an index
entry is locked by locking the underlying data whose key is
the one in the index entry to be locked. This means that if
record locking is being done, then the lock will be on the
RID; with page locking, it will be on the pageID part of
the RID. In contrast, in ARIES/KVL, the index locks are
different from the data locks. There are some performance
and concurrency tradeoffs involved in choosing between
these two approaches (see [Mohan95b, MoLe92] for
detailed comparisons). ARIES/KVL's index-specific key
value locking would be necessary where the records are
stored in the index itself and an index entry contains the
corresponding record, instead of a RID, as in NonStop
SQL. It could also potentiall y lead to higher concurrency
compared to the data-only locking feature of ARIES/IM,
but with an increase in the locking overhead. It is possible
to retain ARIES/IM's idea of locking individual index
entries and still perform index-specific locking by taking
the lock name as obtained in the case of data-only locking
and prefixing that lock name with the index ID to make it
specific to this index entry, as explained in [Mohan95b,
MoLe92].

There are many problems involved in supporting
recoverable, concurrent modifications to an index tree.
Some of the questions to be answered are:

1. How to log the changes to the index so that, during
recovery after a system failure, the missing updates
can be reapplied eff iciently?

2. If an SMO (structure modification operation - page
split/deletion operation) were to be in progress at the
time of a system failure and some of the effects of that
SMO had already been reflected in the disk version of
the database, how to ensure the restoration of the
structural consistency of the tree during restart?

3. How to update index pages with minimal interference
to concurrent accessors of the tree?

4. If a transaction were to roll back after successfull y
completing an SMO, how to ensure that it does not
undo the SMO, since doing so might result in the loss
of some updates performed by other transactions in the
intervening period to the pages affected by the SMO?

5. How to detect that a key that had been inserted by a
transaction T1 in page P1 had been moved, by a
subsequent SMO by T2, to P2 so that if T1 were to roll
back, then P2 is accessed and the key is deleted?

6. How to detect that a key that had been deleted by T1
from P1 no longer belongs on P1 but only on P2 due
to subsequent SMOs by other transactions, so that if

T1 were to roll back, then P2 is accessed and the key
is inserted in it?

7. How to avoid a deadlock involving a transaction that
is rolli ng back so that no special logic is needed to
handle a deadlock involving only rolli ng back
transactions?

8. How to support different granularities of locking and
what to designate as the objects of locking?

9. How to lock the not found condition eff iciently to
guarantee repeatable read (i.e., the phantom problem -
see [EGLT76])?

10. How to guarantee that in a unique index if a key value
were to be deleted by one transaction, then no other
transaction is permitted to insert the same key value
before the former transaction commits?

11. How to let tree traversals go on even as an SMO is in
progress and still ensure that the traversing
transactions are able to recover if they run into the
effects of the SMO that is still i n progress?

3.8.1 ARIES/KVL

ARIES/KVL (Algorithm for Recovery and Isolation
Exploiting Semantics using Key-Value Locking)
[Mohan90a] is a method for concurrency control in B+-tree
indexes. The concurrent executions permitted by the
locking protocols are correct logging and recovery are
made possible. ARIES/KVL supports very high
concurrency during tree traversals, structure modifications,
and other operations. Unlike in System R, in ARIES/KVL,
when one transaction is waiting for a lock on a key value
in a given index page, reads and modifications of that page
by other transactions are allowed. Further, transactions
that are rolli ng back will never get into deadlocks.
ARIES/KVL's locking rules differ depending on whether
the index is a unique index or a nonunique index.
Compared to System R, ARIES/KVL, by also using for key
value locking the IX and SIX lock modes which were
intended originall y for table level locking, is able to exploit
the semantics of the operations to improve concurrency.
These techniques are also applicable to the concurrency
control of links-based storage and access structures.

During a key lookup (Fetch) call , even if the requested key
value is not found, the next key value is locked to make
sure that the requested key does not suddenly appear (due
to an insert by another transaction) before the current
transaction terminates and prevent repeatable read from
being possible. For the protection of the reader, if the value
being inserted in not already present in the index, then an
inserting transaction has to check, via an instant lock call ,
the lock on the next higher key value. Thus, a lock on a
key value is reall y a range lock on the range of keys
spanning the values from the preceding key value that is
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currently present in the index to the locked key value. For
this range-locking protocol to work, the inserting
transaction must check the lock on the next key value,
before it does the insert of a given key value. The mode of
Insert's next key value lock request must be such that it is
incompatible with the S lock acquired by Fetch.

Since the deletion of the only instance of a certain key
value would result in the key value disappearing from the
index, a way is needed to communicate to readers (and
inserters in the case of a unique index) the existence of an
uncommitted deletion of that key value. By convention,
under these conditions, the deleting transaction acquires a
lock on the next key value. This is another reason why a
reader needs to check the next key value lock when Fetch
does not find the requested key value. The mode of
Delete's next key value lock request must be such that it is
incompatible with the S lock acquired by Fetch. Whereas
the next key lock during an insert is only a check (instant
lock), the one during deletion must be a lock which is held
until commit.

Some of our ARIES/KVL enhancements over the original
System R index concurrency control algorithms have been
implemented in SQL/DS and the VM Shared File System.

3.8.2 ARIES/IM

ARIES/IM (Algorithm for Recovery and Isolation
Exploiting Semantics for Index Management) [MoLe92] is
a method for controlli ng concurrency and logging changes
to index data stored in B+-trees. ARIES/IM's recovery
features are based on ARIES. ARIES/IM supports very
high concurrency by

1. not locking the index data per se (i.e., keys),

2. locking the underlying record data in data pages only
(e.g., at the record level),

3. not acquiring commit duration locks on index pages
even during index structure modification operations
(SMOs) li ke page split s and page deletions,

4. allowing retrievals, inserts, and deletes to go on
concurrently with even an SMO, and

5. optionally, supporting degree 2 consistency of locking
(cursor stabilit y).

Even if a transaction which performed an SMO were to
roll back, if all the effects of the SMO had been propagated
successfull y up the tree before the rollback is initiated,
then the SMO is not undone. This is accomplished by
doing the following:

1. Performing the SMO as an NTA.

2. If an insert requires a page split , all the actions
relating to that split (the leaf-level actions, the
propagation up the tree and the writing of the dummy

CLR) are completed before the insert which
necessitated the split i s performed.

3. If the deletion of a key necessitates a page deletion
(because the page became empty), the key deletion is
first performed and logged and then all the actions
relating to that page deletion are completed. The
dummy CLR will point to the key deletion log record.

If the transaction were to rollback after completing the
SMO, the dummy CLR lets it bypass the log records
relating to the SMO. At the same time, it is ensured that
the insert/delete operation causing the SMO is undone, on
a rollback.

To restore the structural consistency of the tree, partiall y
completed SMOs are undone in a page-oriented fashion.
At the time of restart recovery, no special processing is
performed to determine which indexes are structurall y
inconsistent. There is no special handling of such indexes.

During restart, any necessary redos of the index changes
are always performed in a page-oriented fashion (i.e.,
without traversing the index tree) and, during normal
processing and restart, undos are performed in a page-
oriented fashion whenever possible. The protocols used
during normal processing are such that if a system failure
were to occur any time, then, during the subsequent
restart, any incomplete SMO would be undone and thereby
the structural consistency of the tree would be restored,
before any necessary logical undo is attempted. This is
done without resorting to any special restart processing.

Most of the ARIES/IM features were first implemented in
the OS/2 Extended Edition Database Manager [ChMy88],
which in its far enhanced form is now called DB2/UDB for
Windows, Unix and OS/2. It was for that product that
ARIES/IM was designed originall y. Since the concurrency
control techniques of ARIES/IM have general
applicabilit y, some of those techniques have also been
incorporated in SQL/DS and the VM Shared File System
even though those systems are based on System R which
uses the shadow-page technique for recovery. ARIES/IM
supports page-oriented media recovery for indexes - i.e.,
dumps of indexes can be taken and when there is a
problem in reading a page (because, e.g., a crash had
occurred when that page was being written [Mohan95a]),
the page can be loaded from the last dump and then, by
rolli ng forward using the log, the page can be brought up-
to-date. Detail s concerning media recovery, deferred
restart, etc. are presented in [MHLPS92].

Since ARIES/IM is able to handle deletion of empty pages,
performing the merge of partiall y fill ed leaf pages requires
only simple extensions to our method. ARIES/IM has been
extended and implemented to handle the shared disks
(data sharing, in the IMS terminology [PeSt83])
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environment [JMNT97, MoNa91, MoNa92a, MoNa92b,
MoNP90], in which multiple instances of DB2/390 access
and modify the same database. We have developed ways to
improve concurrency even further by reducing the negative
implications of next index entry locking. This was done for
DB2/390 by doing logical, rather than physical, deletion of
keys (see [Mohan90b] for an outline of our solution).
ARIES/IM and KVL ideas in conjunction with logical key
deletions have been adapted in [KoMH97] for use with a
generali zed search tree (GiST). Adaptation of the
ARIES/IM and KVL ideas to a hierarchy of indexes in a
distributed database context is presented in [ChMo96].
The concurrency control implications of using multiple
indexes in accessing a single table's records are presented
in [MHWC90, Mohan90b, Mohan92a].

3.9 ARIES/LHS

Even though extendible hashing has been studied for a
long time, very littl e has been reported in the literature on
the concurrency control of multiple transactions
simultaneously accessing such structures. Whatever littl e
has appeared is usually based on a very simpli fied notion
of a transaction. Generall y, each transaction is assumed to
consist of only one action (insert, delete, or retrieval)
against the search structure.

The problems associated with guaranteeing seriali zabilit y
become much more complicated when one considers
transactions consisting of multiple actions. Some papers
deal with only extendible hashing, rather than the more
complicated linear hashing. In any case, none of the
papers deals with the problem of providing recovery from
transaction and system failures for a general model of
transactions with fine-granularity locking. Some of the
concurrent activities permitted by the algorithms in the
literature will cause inconsistencies when one considers
failures and recovery. The interactions between
concurrency control and logging (and recovery) with
multiaction transactions are quite subtle. ARIES/LHS
(ARIES for Linear Hashing with Separators) [Mohan93a]
deals with the concurrency control and recovery aspects of
multiaction transactions accessing dynamic hashing-based
storage structures.

Larson proposed a dynamic hashing algorithm called
Linear Hashing with Separators (LHS) that, given a
unique primary key value, uses a table in memory to allow
the retrieval of the corresponding record in the file in one
page access to secondary storage [Lars88]. Larson
considers LHS to be the first practical method offering
one-access retrieval for large dynamic files. He did not
discuss the impact of concurrent operations by different
users, some of whom are reading the file while others are
performing operations li ke inserts, deletes, updates, file
expansions or file contractions which can cause relocations

of records. ARIES/LHS is a method for controlli ng such
concurrent operations with fine-granularity (e.g., record)
locking, while guaranteeing seriali zabilit y. ARIES/LHS
prevents rolli ng back transactions from getting involved in
deadlocks. It also includes recovery techniques for
handling transaction and system failures, while allowing
multiple operations in each transaction. To provide high
concurrency and eff icient recovery using write-ahead
logging, ARIES/LHS exploits the power of the ARIES
recovery method (e.g., the concept of NTAs and the abilit y
to support logical undos). The impact of the LHS storage
method on range queries and prefetching of data is
discussed in [Mohan93a]. ARIES/LHS handles varying
length records and updates of records also. So far
ARIES/LHS has not been implemented.

3.10 Commit_LSN

Fine-granularity (e.g., record) locking is very helpful in
increasing the level of concurrency that can be supported
by reducing contention amongst transactions for access to
data. The drawback of fine-granularity locking is that for
those transactions that access large number of records, the
number of locks that need to be acquired may increase
dramaticall y compared to the situation with, for example,
page locking. If, for those transactions which only need to
determine that some piece of data is in the committed state
the system could somehow avoid locking, then we can
have the benefits of fine-granularity locking for
transactions which access few records and at the same time
avoid the drawbacks of such a locking granularity for
transactions that access numerous records for reading. A
method for avoiding locking is expected to be useful very
often since in most databases, at any given time, most of
the data is in the committed state.

The Commit_LSN method proposed in [Mohan90b] is one
such idea. It is a novel and simple method for determining
if a piece of data is in the committed state in a transaction
processing system. This method is a much cheaper
alternative to the locking approach used in the past for this
purpose. The method takes advantage of the LSN concept.
As described before, in transaction systems using WAL, an
LSN is recorded in each page of the database to relate the
state of the page to the log of update actions for that page.

The crux of the Commit_LSN method is to use this LSN
information and information about the currently active
update transactions to come to some conclusions about
whether or not all the data on a given page is in the
committed state, without resorting to locking. This is done
by comparing the page's LSN with the information about
the oldest update transaction still executing in the system.
The crucial fact that makes our method accomplish its
objectives is that no page with an LSN value that is less
than the LSN (call it Commit_LSN) of the
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Begin_Transaction log record of the oldest executing
update transaction could have any uncommitted data. The
Commit_LSN method applies whether the lowest
granularity of locking is a page or something finer than
that (e.g., record).

This simple new method reduces locking and latching. In
addition, the method may also increase the level of
concurrency that could be supported. It also benefits
update transactions by reducing the cost of fine-granularity
locking when contention is not present for data on a page.
Many non-trivial applications of this method are discussed
in detail i n [Mohan90b]. In order to apply the
Commit_LSN method, extensions have been proposed for
those systems in which (1) LSNs are not associated with
pages (AS/400, SQL/DS, System R), (2) LSNs are used
only partiall y (IMS), and/or (3) not all objects' changes are
logged (AS/400, SQL/DS, System R).

The Commit_LSN method's steps at the time of a page
access are:

1. Find out Commit_LSN from the recovery manager or
access it in shared storage. Note that it is not
necessary for the transaction to obtain the latest value
of Commit_LSN before every page access, as long as
it is done at least once before the first page access.
While an out of date Commit_LSN does not cause any
inconsistencies, it may increase the number of times
locks have to be obtained.

2. Latch the page in share (S) mode.

3. If page_LSN < Commit_LSN, then conclude that all
data on the page is in the committed state; otherwise,
do locking as usual and determine whether data of
interest is committed or not.

Instead of having one global Commit_LSN that covers all
objects, transactions can benefit further by computing an
object-specific Commit_LSN that is specific to the object
(e.g., fil e or table) to be accessed. In this way, a long-
running update transaction that accesses some other
objects and keeps the global Commit_LSN quite a bit in
the past will not unduly restrict the applicabilit y of the
Commit_LSN method to the object of interest.

The Commit_LSN concept has turned out to be very useful
in practice. It has been full y implemented in DB2/390 and
partiall y in DB2/UDB for Windows, Unix and OS/2. Its
performance advantages have been especiall y beneficial in
the shared disks context of DB2/390. It has been exploited
for providing fast restart capabiliti es in [Mohan93c].
Processing of new transactions can be done even while the
redo and undo passes of restart recovery are in progress.

3.11 Query Processing and Locking Concerns

Traditionally, starting from the System R days, work on
query processing has generall y ignored considerations
relating to concurrency control in making query execution
choices during query optimization. Typicall y, concurrency
control related actions are taken by the data manager (the
RSS component in the case of System R) and the query
optimization related actions are taken by the upper parts of
the system (RDS component in the case of System R). In
[Mohan92a], I have given numerous examples to ill ustrate
why it is important to consider locking related issues while
planning query executions. While it is sometimes merely a
performance advantage to take such an integrated view, at
other times even the correctness of query executions
depends on such an approach. Some of the issues to
consider are: isolation levels (repeatable read, dirty read,
cursor stabilit y), access path selection (table scan, index
scan, index AND/ORing [MHWC90]), Commit_LSN
optimization [Mohan90b], locking granularity (record,
page, table), and high concurrency as a query optimization
criterion. Our ideas are implemented in the DB2 family.

4. Transactions in the Internet Age4

In the last few years, there have been many significant
developments in the transaction processing (TP) and
distributed computing (DC) areas. Many areas of
computing have influenced the recent trends in TP and
DC: client-server computing, database management,
object-oriented programming, groupware, internet and
processor architectures, to name a few. The emergence of
the worldwide web and Java has also had a dramatic
influence on TP and DC.

Opening up the information resources of enterprises to
customers and business partners for internet (web) access
has changed the data access patterns of the DBMSs and
file systems storing such information. This change has
dramaticall y increased the requirements on TP systems
with regard to attributes li ke availabilit y, reliabilit y,
performance and ease of use. In this sense, history is
repeating itself! What used to be considered high-end
requirements in the context of mainframe computing by
large enterprises are now becoming the requirements of
small and medium enterprises also when they choose to
web-enable their TP applications. Globalization and
mergers of enterprises are also important driving factors.

Permitting data access from heterogeneous hardware and
software environments has become a necessity. Legacy TP
systems li ke CICS and IMS have been internet enabled.

                                                       
4 The slides of a long talk that expands on this section can be

found at www.almaden.ibm.com/u/mohan/tp_dc.pdf
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Windows NT has had to provide support for IBM SNA
network protocols for distributed program to program
communication and two-phase commit of distributed
transactions involving mainframe and PC environments.
With web enablement, enterprises are now able to provide
better customer service and also reduce costs by
eliminating certain intermediaries (e.g., distributors, call
center operators) who are necessary in traditional ways of
doing business. Network-centric computing is now a
realit y and, to remain competiti ve, organizations have to
adapt their information systems to support it. When an
enterprise’s customers directly interface to that enterprise’s
TP systems their performance and usabilit y expectations
are more demanding than when they go through other
trained people (e.g., customer service representatives) in
that enterprise to get some services. Web-enabling a TP
application is not merely an issue of purchasing the
appropriate web gateway software. Some basic aspects of
the TP application might have to be redesigned.

Electronic commerce (e-commerce) is taking off,
especiall y with respect to business to business (B2B)
interactions more than business to consumer (B2C)
transactions. Of course, opening up traditional TP systems
to doing full blown e-commerce, which would potentiall y
involve performing  multiple database updates originating
from browsers as part of a single distributed transaction, as
opposed to only information retrieval style accesses across
the web, requires addressing a number of issues relating to
security, client failures, payment systems, etc. Advanced
transaction models li ke sagas, flex transactions, etc.
[Elmag92] will have a key role to play. It is my belief that
product-level support for such concepts will finall y appear
in the next few years in workflow management systems,
rather than as extensions to traditional TP monitors.

While 2 tier distributed computing (client-server) was
quite popular a few years ago, of late, 3 tier computing
(caused by the addition of some middleware software
running in a mid-tier machine) is being embraced more
widely. Enterprises have become disill usioned with the
diff iculties and costs involved in reali zing the often-
trumpeted major benefits (e.g., cost reductions) of client-
server computing with exclusively (non-mainframe)
Unix/PC-based servers. This has resulted in the resurgence
of the mainframe and the emergence of the concept of
server consolidations. The latter refers to the replacement
of a large collection of Unix/PC servers with a cluster
consisting of a small number of CMOS-based, air-cooled
mainframes li ke, for example, the IBM S/390. IMS, CICS
and DB2 have been enhanced to support the shared disks
S/390 cluster environment with valuable features li ke
workload balancing and single system image [IBM97].
Modifying those systems to support the clustered
environment, with a coupling facilit y (an intelli gent shared

store with sophisticated capabiliti es) in the midst of the
sharing systems, has required the development of several
innovative solutions for problems relating to global lock
management, buffer coherency, logging, recovery and
performance [JMNT97].

Asynchronous program to program communication in the
form of transaction-based persistent messaging has become
quite popular. IBM's MQSeries, for example, is a very
successful product in this arena. MQSeries includes its
own non-DBMS-based persistent storage mechanism,
using an extended version of ARIES, for managing the
messages [MoDi94]. Oracle, on the other hand, has
recently introduced some messaging functionalit y directly
in its RDBMS itself so that the messages are also managed
by the Oracle DBMS. Such an approach requires
enhancing the concurrency control protocols and isolation
level support of the DBMS to meet the different
consistency and performance requirements of a
transactional messaging system. This is an area to which
the research community has not paid enough attention.
Concepts li ke publish-subscribe are currently very popular
in the commercial world and they deserve to be researched.

In general, TP and DC standardization activities have
become more widespread. The belief (and hope!) is that
object technology is the right approach for improving
software productivity and for reusing/integrating existing
legacy TP applications by adding OO wrappers to those
applications. Recently, many commercial implementations
of OMG's Object Transaction Services (OTS) have become
available. It is not yet clear how widely and quickly such
products will be used in production TP applications and
what their performance characteristics would be in
comparison with applications built using traditional,
procedural TP technologies. More recently, OTS has been
extended to the Java world via Java Transaction Services
(JTS). Enterprise Java Beans have also been proposed as a
way of exploiting Java on the server side for building
component-based TP applications. Performance and
industrial-strength attributes li ke robustness are some of
the major concerns with respect to such technologies.

In the last few years there have many debates in the TP
and DC communities on the appropriate paradigms for
program to program communications, and the role of TP
monitors in the world of web servers and feature-rich
RDBMSs. Many performance-enhancing features li ke
support for threads which used to be present for a long
time only in TP monitors li ke CICS and IMS/DC have
now become widely available in RDBMSs li ke Oracle. TP
monitors have traditionally been deeply involved in
application and data management. RDBMSs have gone
from managing only data to managing programs also (via
triggers, stored procedures, etc.). Web servers and some
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CORBA Object Request Brokers (ORBs) have also taken
on many of the attributes of TP monitors. We are seeing
the emergence of the so-called Application Servers, which
are not too different from classical TP monitors enhanced
with support for the web and, possibly, object technology.

Emergence of speciali zed Online Analytical Processing
(OLAP) DBMSs li ke RedBrick and Arbor's ESSBASE has
allowed huge data warehouses to be built and queried
eff iciently. Many algorithms and tools have been
developed by vendors for extracting warehouse data from
operational TP systems. Speciali zed indexes and massive
data handling features have been developed for use in
managing warehouse data. Only now researchers are
beginning to address these issues. In contrast to what the
research community focussed on with respect to repli cated
data algorithms, log-based asynchronous repli cation has
been the more favored choice for implementation in
RDBMS products.

One of the significant developments of the last few years is
the widespread trend towards outsourcing of information
technology (IT) operations by organizations whose core
business is not computer related (e.g., Kodak). This is the
result of (1) diff iculties encountered by such organizations
in managing networks of heterogeneous systems and (2)
those organizations' desire to reduce their IT costs by
letting computing professionals of companies li ke EDS
and IBM Global Services do the job. A related trend is that
many organizations have stopped developing their own TP
application software. Instead, they buy packaged
applications (e.g., for enterprise resource planning (ERP))
from vendors li ke SAP and PeopleSoft. The ERP vendors
have been causing some significant enhancements to be
made in the functionalit y of DBMSs that they rely on for
storing their data.

Many businesses are also reengineering their supply chains
by integrating their applications with those of their
partners, suppliers and customers in order to improve their
operational costs and time to market. Much of this
integration is expected to happen in the near future using
the internet rather than via private networks as was the
case in the past with electronic data interchange (EDI).
Workflow management systems are expected to play a big
role in this transformation of way of doing business.

The industrial and academic research communities
working on TP and DC have not always focussed on the
problems that are of great interest in the commercial
world. This has led to some very innovative technology
being developed directly by product developers themselves.

5. Conclusions

In this paper, I repeated first the history of the evolution of
the popular ARIES family of concurrency control and

recovery (CC&R) algorithms. I also discussed the
significant impact that those algorithms have had on the
research and commercial worlds. With a view towards
providing a roadmap across the numerous related papers, I
provided a brief summary of most of the ARIES CC&R
algorithms. While some researchers might have ignored
certain aspects of CC&R as being engineering work, rather
than science, by focussing on the detail s and deciding to
pay attention to the practical experiences from the past, we
were able to make some fundamental contributions to the
area of transaction management. We were lucky to be
working in an environment where this was possible.

I expect DBMSs to be enhanced in the future with features
that allow higher concurrency and improved data
availabilit y to accommodate the demanding requirements
of the internet world. Paralleli sm will be exploited to
reduce the time taken to perform operations li ke data
backups, index build, etc. Systems will be designed to be
self tuning and manageable by less-quali fied people.
Transactions will be everywhere, in the least expected
places in our dail y li ves. Designing systems with
industrial-strength attributes li ke performance, reliabilit y
and availabilit y in mind from the beginning will be crucial
for such systems to be successful in real-li fe usage. Most of
the related problems discussed in [Mohan93d] have not
been addressed suff iciently so far by database researchers.

In this paper, I did not intend to do an exhaustive survey of
CC&R work in the research literature. Many papers have
been written in the last few years on application recovery,
semantics-based CC&R protocols (especiall y in the object-
oriented context), theories on an integrated view of
recovery and concurrency control, sophisticated indexing
protocols using numerous lock modes, etc. As it is usually
the case, most of the proposed algorithms have not been
implemented. Nor have the designs been spelt out in most
cases in enough detail for others to implement them
without the need for substantial additional design work.
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