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Abstract

In this paper, | describe first the background behind
the development of the original ARIES recvery
method, and its ggnificant impact on the
commercial world and the research community.
Next, | provide a brief introduction to the various
concurrency control and recvery methods in the
ARIES family of algorithms. Subsequently, | discuss
some of the recenit developments affeding the
transaction management area and what these mean
for the future. In ARIES, the mncept of repeating
history turned out to be an important paradigm. As |
examine where transaction management is headed
in the world of the internet, | observe history
repeating itself in the sense of requirements that
used to be mnsidered significant in the mainframe
world (e.g., performance avail ability and reli ahilit y)
now bewmming important requirements of the
broader information technology community as well .

1. Introduction

Transaction management is one of the most important
functionaliti es provided by a database management system
(DBMYS). Over the years, several techniques have been
developed to deal with the two most important aspeds of
transaction management, namely, concurrency control and
remvery (CC&R). The transaction abstraction with its
ACID (atomicity, consistency, isolation and durability)
properties [HaRe83] has been supported by DBMSs to let
users designate the scope of their atomic and isolated
database interactions. Over the last two decades, several
CC&R tedhniques have been developed and a small subset
of them have been implemented in products and prototypes
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In this paper, | describe the background behind the
invention of the ARIES (Algorithms for Recovery and
Isolation Exploiting Smantics) family of CC&R
algorithms, and the significant impact that these
algorithms have had on the research community and the
commercial world (sedion 2). In sedion 3, | briefly
summarize some of the ARIES algorithms and dscuss
their implementation status. This presentation also gives a
roadmap acrossthe numerous papers that focus on ARIES
and related work. The rest of this paper discusses me of
the recent developments in transaction processng and
distributed computing in general (sedion 4). Based on
these observations, | speallate on what is likely to happen
in the next few years (sedion 5).

2. Background and Impact

In the Starburst projea [HCLMW9(Q], which was garted in
the mid-80s at IBM’s Almaden Research Center as the R*
distributed DBMS projed [MoLO86] was ending, we
focussed on building a brand new relational DBMS with
extensihility as the primary ohjedive. Some of us treated
this new projed as a golden opportunity and dedded to
revisit many of the assumptions and conclusions of IBM’s
very influential System R RDBMS projed [CABGK8]] in
the area of transaction management. We also dedded to
learn from the acaumulated experiences with the I1BM
RDBMS products DB2/MVS [Hala84] and SQL/DS
[ChGY81]], which, by then, had undergone austomer usage
for afew years. In particular, we dedded to examine more
closdly the different approaches to database remvery
adopted by these products — write-ahead logging (WAL) in
DB2/MV S and shadow paging in SQL/DS.

While the System R researchers concluded [CABGK81]
that WAL is better than shadow paging, they did not
succeeal in producing a remvery method that supported
fine-granularity (e.g., reard level) locking while ill
alowing the flexible management of variable length
recmrds as in System R. This was the primary reason
behind DB2/MV S being released in 1984 with only a page
as the small est granularity of locking. Even though IBM’s
hierarchical DBMS IMS supyported record level locking



[GaKi85, Ober80, Ober98a, Ober98b, PeSt83], it was
unsatisfactory since it was doing very physical (e.g., byte-
range) logging and locking that resulted in inflexible
storage management and the need for frequent offline data
reorganizaions. We dedded to aim for the best of bah
worlds! Since most of us were not IBMers during the
System R days, we were ableto ook at the probdems with a
fresh perspedive.

At atime when the research community had wrongly come
to the cmnclusion that everything about CC&R was well
understood and that there was no need for any additional
work to be done, we had to be murageous to try to justify
spending time on examining not only the paltry
documentation but also the mde of System R, SQL/DS,
DB2/MVS and even IMS to try to understand everything
about how their CC&R worked. Finding significant design
bugs in System R ten years after the release of the product
verson of it (SQL/DS) was not considered, by some
coll eagues, to be a worthwhile exercise! In retrosped, such
investigations proved to be extremely educative, insightful
and invaluable. Almost all of the knowledge that we
gained through these investigations have been documented
extensively in the ARIES coll edion of papers cited here.

The original ARIES work, which was done in the mid-80s
and publicly documented in a research report form in 1989
[MHLP®?2], led to the establishment of the IBM Data
Base Tedwnology Ingtitute (DBTI). This umbrela
organizaion, which encompassed many database research
and product groups within IBM, gave us, the IBM
researchers, numerous opportunities to interact with
IBM’s DBMS customers and product devel opers. We were
able to learn from them about important unsolved
probems, and drawbacks of solutions and features
implemented in different DBMS products and prototypes.

The basic ARIES algorithm summarized in Sedion 3.2
has been extended by us and others in numerous ways. We
describe some of the etensions in the following
subsedions. Because of its generality and its extensive
flexibility, ARIES has been implemented not only in
DBMSs but also in persistent objed systems, remverable
file systems, messging and queuing systems, and
transaction-based operating systems. Various approaches
have been taken to formalize subsets of ARIES [Kuo96,
LoTu95 MaRa97]. Extensions to ARIES have been
proposed to exploit operation semantics [Bill a96], provide
high avail ability [BGHJ92] and support the dient-server
context [FZTCD92]. Smulation and analytical studies of
ARIES s performance have been done [JhKh92, VuDo9(].

Many of the algorithms simmarized in this paper have
been implemented to varying degrees in numerous
products and research prototypes like Starburst extensible
DBMS [HCLMW9(], OS2 Extended Edition Database

Manager [ChMy88], DB2/390 [JMNT97], DB2 UDB for
Unix, Windows and OS2, Encina transaction processng
monitor and recverable fil e system, Microsoft SQL Server
and NT file sysem, Gamma database machine
[DGSBH90], EXODUS extensible DBMS [FZTCD92],
Shore persistent ohjed system [CDFHM94], Paradise GIS
system, PREDATOR objed-relational DBMS, MQSeries
transactional messaging and queuing product [MoDi94],
SQL/DS [ChGY81], ADSTAR Distributed Storage
Manager (ADSM) [CaRH95], Lotus Domino/Notes R5
[Mohan99], QuickSilver distributed operating system
[CMSW93], and VM Shared Fil e System [SINC91]. There
are likely to be many other implementations about which |
am unaware.

ARIES has been covered in many database textbodks and
tutorials (e.g., [RaCh96, Ramak98, Weihl95]). A cursory
search on the web reveals that ARIES is being taught in
university courses at Austin, Ben Gurion, Berkeley,
Cornell, Duke, loannina, Maryland, Pittsburgh,
Rensslaer, Seoul, Stanford, Trier and Wisconsin. At
Cornell, based on earlier work at Wisconsin, a system
called Mars has been developed for educational purposes.
It is a recovery smulator that is used to explain and
explore ARIES. It includes visuali zation features.

IBM ohtained European patents [HLMP324] on the basic
ARIES remvery method. However, due to some fumbling
by lawyers, after many years it gave up on trying to get the
corresponding US patent! Subsequently, it let the
European patents also lapse. IBM did obtain in the US and
elsewhere patents on most of the other ARIES-related
locking and rewvery methods (for details, see
www.almaden.ibm.com/u/mohan/aries_papers.html).

3. The ARIES Family of Algorithms

This sdion summarizes me of the CC&R algorithms
that belong to the ARIES (Algorithms for Recovery and
Isolation Exploiting Semantics) family. These algorithms
support  very high concurrency via fine-granularity
locking, operation logging, efficient recovery, and flexible
storage and buffer management. They relate to nested
transactions, index management, hashing, cheap
techniques for reducing or eiminating locking while
guaranteeng consistency, fast restart rewmvery and
interactions between query processng and concurrency
control. Whil e the recmvery tedhniques are based on write-
ahead logging, many of the @ncurrency control techniques
that have been developed are applicable to systems using
other remvery methods also (e.g., shadow paging).

3.1 Remvery Methods

There are two general approaches to remvery: the write-
ahead loggng (WAL) approach [Gray78, MHLP3®2] and



the shadon-page tedcnique [GMBLL81, MHLP3?Z].
WAL is the recvery method of choice in most systems,
even though the shadow-page tedhnique of System R is
used in some systems, possbly in a limited form (e.g., for
managing long fields or BLOBs). In WAL systems, an
updated page is written back to the same disk location
from which it was read. That is, in-place updaing is done
on disk. The WAL protocol assrts that the log reards
representing changes to some data must aready be on
stable storage before the danged data is allowed to
replacethe previous version of that data on disk.

Each log record is asdgned, by the log manager, a unique
log sequence number (LSN) at the time the reoord is
written to the log. The LSNs are assgned in ascending
sequence Typically, they are the logical addresses of the
corresponding log reards [Crus84]. At times, version
numbers or timestamps are also used as LSNs [Borr84,
MOoNP9Q]. On finishing the logging of an update to a page,
in many systems whose recvery is based on WAL, the
LSN of thelog reaord corresponding to the latest upchte to
the page is placed in a field in the page header. Hence,
knowing the LSN of a page all ows the system to correlate
the state of the page with resped to those logged updites
relating to that page. That is, at the time of remvery, given
a log reoord, the LSN of the database page referenced in
the log record and the LSN of the log record can be
compared to determine unambiguously whether or not that
log record's upckte is already refleded in that page. The
buffer manager, in order to enforce the WAL protocol,
uses the LSN associated with a modified page to ensure
that the log has been forced to disk up to that LSN before
it writes that page to disk.

With the shadow-page technique, as it is implemented in
System R and SQL/DS, the first time a (logical) page is
modified after a chedpoint, a new physical page is
asciated with it on disk. Later, when the page (the
current version) is written to disk, it is written to the new
location. The old physical page (the shadow version)
asociated with the (logical) page is not discarded until the
next chedpoint. Restart recovery occurs from the shadaw
version of the page if a system failure should occur. With
shadow paging, chedkpoints tend to be very expensive and
disruptive. Thisis becuse a chedkpoint is taken only when
all activities in the data manager have been quiesced to an
action-consistent state. After quiescing, all the modified
pages in the buffer pod and the log are written to disk.
Then, the shadow version is discarded and the arrent
version is a'so made the new shadow version. As a result
of all these synchronous actions by the dedkpointing
process restart rewmvery aways happens from the
internally consistent, shadow version of the database.

Even when the shadow-page technique is used for
rewmvery, logging of updates is gill performed.
Commercially, the WAL approach has been much more
widely adopted than the shadow-page tedhnique. Very
detailed comparisons between the two methods are given
in [MHLP2]. In this paper, whenever | discussrecvery
methods, | asaume that it is based on WAL. The
concurrency protocols that | discuss are applicable also to
systems that use the shadow-page technique.

In the following, | summarize the origina ARIES
algorithm and its variants ARIES-RRH and ARIES/NT. |
also discussthe adaptation of ARIES for the shared disks
and client-server environments, and for the management
of semi-structured data in Lotus Domino/Notes.

3.2 ARIES

The aim of this ®dion isto provide a brief overview of the
original ARIES remvery method which was developed for
theflat (i.e., unnested) transaction model [MHLP 2.

3.2.1 Logging

Like other remvery methods, ARIES also guarantees the
atomicity and duability properties of transactions
[HaRe83]. In order to provide these guarantees, ARIES
kegpstrack of the dnanges made to the database by using a
log. It implements the WAL protocol. All updates to all
pages are logged. Changes to each page may be logged in
alogical fashion. That is, not every byte that was changed
on the page nedls to be logged. ARIES uses an LSN on
every database page to track the page's date. Every time a
page is updated and a log record is written, the LSN of the
log record is placed in the page LSN field of the updated
page. Tagging every page with an LSN allows ARIES to
predsdy track, for restart/media recovery purposes, the
state of a page with resped to logged updites for that page.

In addition to logging, on a per-affeded-page basis, update
activities performed duing forward (i.e, normal)
processng of transactions, ARIES also logs, typically
usng compensation log records (CLRs), updstes
performed duing pertial or total roll backs of transactions
during bath normal and restart undo processng. For
example, if the original log record (nonCLR) described the
deletion of record R10 on page P1, the CLR written during
the undo o that log record would describe the insertion of
R10 on P1. As aresult of writing CLRs and upditing the
page LSN field with the LSNs of the CLRs aso, as far as
recmvery is concerned, the state of a page is always viewed
as evolving forward, even when some original updates are
being undone.

ARIES allows the support of even semantically-rich lock
modes like increment/decement [BaRa87] that permit
multi ple transactions to update the same data concurrently.



This is the kind of feature that requires a recovery method
to (1) support operation logging (i.e., logging the quantity
by which a field's value was deaemented or incremented,
rather than logging the before and after values of the field
asin IMS), (2) avoid erroneous attempts to undo a redo
some actions unnecessarily by predsdy tracking the state
of a page using the LSN concept, and (3) write CLRs.

Unlike in earlier recovery methods, in ARIES, CLRs have
the property that they are redo-only log records. By
appropriate chaining of the CLRs to log records written
during forward processng, a bounded amount of logging
is ensured duing rollbacks, even in the face of repeated
failures during restart recovery or of nested rollbacks.
This is to be @ntrasted with what happens in IMS
[Pest83], which may undo the same nonCLR multiple
times, and in AS400 [CIC0o89], DB2/MVS V1 and
NonStop SQL, which, in addition to undoing the same
nonCLR multi ple times, may also undo CLRS one or more
times (see [MHLP®2] for examples). In the padt, these
have @used severe problemsin real-life situations.

When the undo o alog recrd causes a CLR to be written,
the CLR is made to point, via the UndoNxtLSN field of
the CLR, to the predecesor of the log recrd being
undone. The latter information is readily available since
every log reoord, including a CLR, contains a pointer
(PrevLSN) to the most recent preceding log record written
by the same transaction. Thus, during rollback, the
UndoNxtLSN field of the most recently written CLR keeps
track of the progress of rollback. It tells the system from
where to continue the rollback of the transaction, if a
system failure were to interrupt the cmpletion of the
rollback or if a nested roll back were to be performed. It lets
the system bypassthose log records that had already been
undone,

Since CLRs can describe what actions are actually
performed duing the undo o an origina action, the undo
action neal not be, in terms of which page(s) is affeded,
the exact inverse of the action that is being compensated
(i.e., logical undo is made posshble). This all ows very high
concurrency to be supported. For example, in a B*-treg a
key inserted on page 10 by one transaction may be moved
to page 20 by another transaction before the key insertion
is committed, as we permit in ARIESIM [Mohan95b,
MoLe92] (see [Mohan93a] for the description of
ARIES/LHS which aso exploits this feature). Now, if the
first transaction were to roll back, then the key will be
located on page 20 by retraversing the tree and deleted

1 A nested rollback is sid to have ocaurred if a partial rollback
were to be later followed by a total rollback or another partial
rollback whose point of termination is an earlier point in the
transaction than the point of termination of the first roll back.

from there. A CLR will be written to describe the key
deletion on page 20. This enables page-oriented redo,
which is very efficient, during restart and media recovery
[MHLPS22].

3.2.2 Restart Recovery

When restarting the transaction system after an abnormal
termination, rewvery processng in ARIES involves
making three pases (andysis, redo and undg over the
log. In order to make this processng efficient, periodically
during normal processng, ARIES takes chedpoints. The
chedpoint log records identify the transactions that are
active, their states, and the addresses of their most recently
written log records, and also the modified data (dirty data)
that is in the buffer pod. During restart remvery, ARIES
first scans the log from the last chedpoint to the end of
the log. During this analysis pass, information about dirty
data and transactions that were in progressat the time of
the dedkpoint is brought up to date as of the end of the
log. The analysis pass using the dirty data information,
determines the starting point (RedoL SN) for the log scan
of the immediately following redo pass The analysis pass
also determines the list of transactions to be rolled back in
the undo pass For each in-progresstransaction, the LSN
of the most recently written log record will also be
determined.

Next, during the redo pass, ARIES repeats history with
resped to those updates logged on stable storage but whose
effeds on the database pages did not get refleded on disk
before the system failure. This is done for the updates of
ALL transactions, including the updaes of those
transactions that had reither comnitted na reached the
in-dould state of two-phase commit by the time of the
crash (i.e., even the missng updites of the so-called loser
transactions are redone).

The process of repeating history essntially reestabli shes
the state of the database as of the time of the failure. A log
record's update is redone if the affeded page's page LSN
is less than the log record's LSN. The redo pass also
obtains the locks needed to proted the uncommitted
updates of those distributed transactions which will remain
in the in-doult (prepared) state [MoLO86] at the end of
restart remvery. In contrast, in the recvery methods of
System R [GMBLL81] and DB2 V1 [Crus34], only the
missng updites of terminated and in-doubt transactions
(the nonloser transactions) are redone during the redo
pass This is caled the selective redo paradigm. In
[MHLP®2], we show why this paradigm leads to
problems when fine-granularity (i.e., smaller than page-
granularity) locking isto be supported with WAL.

The next pass is the undo pass during which al |oser
transactions upcetes are rolled back, in reverse



chronological order, in a single swee of the log. This is
done by continually taking the maximum of the LSNs of
the next log record to be processd for each of the yet-to-
be-completely-undone loser transactions, until no loser
transaction remains to be undone. Unlike during the redo
pass during the undo pass (as well as during normal
undo), performing undos is not a conditional operation.
That is, ARIES does not compare the page LSN of the
affeded page to the LSN of the log record to dedde
whether or not to undo the update. Once a log record is
processd for a transaction, the next recrd to process for
that transaction is determined by lodking at the PrevL SN
or the UndoNxtLSN field of the recrd, depending on
whether it isanonCLR or a CLR, respedively.

3.2.3 Nested Top Actions

There are times when we would like some danges of a
transaction to be committed irrespedive of whether later
on the transaction as a whole @mmits or not. We do need
the atomicity property for these changes themselves. A few
of the many stuations where this is very useful are: for
performing page splits and page deletes in indexes
[Mohan95b, MoLe92], for relocating recrds in a hash-
based storage method [Mohan93a], and for allowing out-
of-current-transaction PUTs and GETSs in a transactional
messaging system [MoDi94]. ARIES supports this via the
concept of nested top actions (NTAS). The desired effed is
acoomplished by writing a dummy CLR at the end of the
NTA. The dummy CLR has as its UndoNxtLSN the LSN
of the most recet log record written by the airrent
transaction just before it started the NTA.. Thus, the
dummy CLR lets ARIES bypass the log reards of the
NTA if the transaction were to be rolled back after the
completion of the NTA..

ARIESS repeating history feature ensures that the NTA's
changes would be redone, if necessry, after a system
failure even though they may be tanges performed by a
loser transaction. If a system failure were to accur before
the dummy CLR is written, then the NTA will be undone
since the NTA's log records are written as undo-redo (as
opposed to redo-only) log remrds. This provides the
desired atomicity property for the NTA itself.

3.2.4 Concurrency Control

Whil e locks are acquired on data & the desired granularity
to asaure logical consistency of the accessed data, latches?
on pages are acquired bath during forward and undo

2 A latch is like asemaphore. Compared to a lock, acquiring and
releasing alatch is very cheg in terms of instructions executed
[MHLP2, Mohan90a, Mohan90H. Realers of a page aquire
a share (S) latch on the page before reading it, while updeters
acquire an exclusive (X) latch.

processng to asaure physical consistency of the data, when
a page is being examined. Deadlocks involving latches
alone, or latches and locks are avoided by ensuring that the
foll owing rules are obeyed:

1. Redricting the number of page latches held
simultaneoudly to 2 [MoHa%4].

2. Ordering the latches hierarchically and if they are
requested unconditionally then ordering the requests
to oley the hierarchy restriction.

3. Avoiding requesting a lock unconditionally while
holding a latch.

No locks have to be acquired during transaction roll back,
thereby preventing rolling back transactions from ever
getting involved in deadlocks (contrast this with what
happensin System R and R* [GMBLL 81, MoLO86]).

ARIES supports €ledive and deferred restart [Mohan93c],
fuzzy image @pies (archive dumps) and efficient media
recovery [MoNa93], and high-concurrency lock modes
(e.g., increment/deaement), which exploit the semantics
of the operations and which require the ability to do
operation logging. It is flexible with resped to the kinds of
buffer management policies (e.g., steal, no-force etc.
[HaRe83)]) that can be implemented and the dharacteristics
of the stored data. Efficient storage management can be
done for varying length ohjeds [MoHa94]. In the interest
of efficiency, page-oriented redos and, in the interest of
high concurrency, logical undos are supported.
Opportunities also exist for exploiting parall elism during
restart reovery. Algorithms for supporting the abowe
features are summarized in [MHLPS®2] and detailed in
the other cited papers. Algorithms for creating remote site
backups for recmvering from disasters are presented in
[MoTO93].

Even though CLRs have been written by many systems for
along time, [MHLP 2] was the first paper to explain the
rationale behind writing them, and to point out the
numerous advantages of writing them and not undoing
their updates. In [MHLP®2], besides presenting a new
recvery method, by way of motivation for our work, we
also describe some previously unpublished aspeds of
remvery in System R (e.g., how partia rollbacks are
handled). That paper also shows why the foll owing System
R paradigms for logging and remvery, which were based
on the shadow page technique, had to be changed in the
context of WAL.

* Sdediveredo

*  Undo passpreceling redo pass

* No logging of updates performed duing transaction
rollback (i.e., no writing of CLRS)

* No logging of index updates and space management
information changes



* No tracking of page state on page itsdlf to relate it to
logged updhtes (i.e., no LSNs on pages)

With our ARIES work, we also showed why it is very
important to consider concurrency control, recmvery and
storage management together to produce high concurrency
and high performance CC&R methods.

3.3 ARIESfor Shared Disks

With multiple omputer systems, there are two approaches
to providing scalability in DBMSs. One is the shared disks
(SD) architedure and the other is the shared nothing (SN)
architedure. SN has been implemented in Tandem’s
NonStop SQL, NCR's Teradata DBMS and IBM’s DB2
Parall e Edition. SD has been implemented in IBM’S IMS,
DEC's Rdb, Oracle and, more receatly, in IBM’s
DB2/390. The introduction of record level locking and
support for SD was done in the same release of DB2/390.
This necesstated enhancements to ARIES to deal with the
fact that multiple instances of DB2, each with its own
buffer pod, had concurrent read and write accesss to the
same set of data on the shared disks. To make matters even
more interesting, in addition to the shared dsks, as in
previous gstems, in the S/390 Parald Sysplex
environment, we also had to deal with a page-addressable
store (called Couding Facility) that is hared by the /390
machines running DB2 [IBM97].

As we designed for the SD environment, the hardware and
software environment that we had to deal with kept
changing: from centralized lock manager to distributed
lock manager, from spedal-purpose hardware to general-
purpose hardware running spedalized software, from a
software-only global lock manager to a hybrid lock
manager, and so on. Our papers [JMNT97, MoNa9l,
MoNa92a, MoNa92b, MoNPA(Q] document some of the
aternatives in this environment for locking, logging,
recvery, etc. What was implemented is described in
[JMNT97]. Each DB2 instance writes its log recrds to its
own local log, but the local logs are asynchronousy
merged for media remvery purposes [MoNa93]. The
fail ure posshiliti es here are much more omplex than in a
single system environment.

3.4 ARIES/CSA

In the typical client-server environment, as exemplified by
the objed-oriented DBMSs, the dient DBMS software
diredly operates on the database pages even though the
disks containing the database are managed by only the
server. The server ships the database pages to the dients
and handles global locking across clients. Clients might
cache pages across transaction commits. ARIES/CSA
(ARIES for the Client Server Architedure) [MoNa94]
supports such an environment. Here, the dients produce

log remrds when they perform their updates and send
them to the server at appropriate times. They generate
LSNs locally rather than letting the log manager assgn
them. The server manages the log dsk. It writes into a
single log the log remrds receved from the different
clients. In many such ways, the CS environment differs
from the SD environment of the last sedion in which the
sharing systems have a pee-pee relationship. While we
did not implement ARIES/CSA, a different version of
ARIES designed for the dient server environment has
been implemented in EXODUS [FZTCD92].

3.5 ARIESfor Semi-Structured Data

Sinceitsfirst release in 1989 long before the topic beame
fashionable in the database and web research communiti es,
Lotus Notes had been targeted for the management of
semi-structured data. A few years ago, Notes was enabled
for the internet. At that time, the product name was
changed so that Domino represents the server and Notes
the dient. Database functionality is almost identical in
Domino and Notes. Through the joint efforts of Lotus's
subsidiary Iris Associates and IBM Almaden's Dominotes
projed, one of the major features implemented in the latest
release (R5) of Lotus Domino/Notes is a traditional
DBMS-style, log-based recmvery scheme [Mohan99]. Since
Notes had not been designed originaly with this type of
recvery in mind, accomplishing this required significant
design work. Enhancements had to be made to ARIES to
deal with the fact that storage management in Notes is
donein an unconventional way, as described below.

A Notes database in its entirety is gored in a single
operating system file in a location and machine
architedure independent format. Some of the data
structures in the file are paginated while others are just
byte-streams. Over time, these data structures might also
be moved around in arbitrary ways. Since some of the data
structures might contain attachments like audio, video,
etc., logging had to be made optional at the data structure
level also. At the granularity of a database, logging can be
turned on or off by the user. Notes users also frequently
move or replicate databases by doing file mpying via the
operating system. This can cause a logged version of a
database to be overlaid with an older or newer version of
that database from another system. Accommodating all
these complications has required changes to the analysis
and redo passes of ARIES. For example, the modified
analysis pass gathers me etra information that is used
during the redo passto skip processng some log reards
whose LSNs might have normally been compared with
LSNs on corresponding database pages. In the future, we
will write a paper describing the resulting variant of
ARIES caled ARIESS (ARIES for Semi-Structured
Data).



3.6 ARIES-RRH

ARIES-RRH (Algorithm for Remvery and Isolation
Exploiting Smantics with Restricted Repeating d
History) [MoPi9]] is an enhanced version of the original
ARIES remvery method. The ARIES-RRH enhancements
relate to the amount of redo o updates that needs to be
performed at the time of system restart in order to kring
the database to a consistent state. They try to minimize the
extent of repeating of history that needs to be performed.

As described earlier, the repeating hstory paradigm of
ARIES includes redoing the missng updites of even those
transactions that are to be rolled back later in the undo
pass of restart. The latter may lead to some wasted work
being done. We illustrated in the ARIES paper why
repeating history was required to support fine-granularity
(eg., reword) locking. [MoPi91] further analyzed this
paradigm and proposed more dficient handling of redos,
espedally when the smallest granularity of locking is not
lessthan a page, by combining the paradigm of seledive
redo from DB2/MVS V1 [Crus84] with the original
ARIES algorithm. Even for data for which fine-granularity
locking is being done, it is not aways the @ase that all the
unapplied but logged changes need to ke redone. ARIES
RRH, which incorporates these dhanges, still retainsall the
good properties of ARIES - avoiding undo o CLRs, single
pass media rewmvery, NTAs, etc. The ARIES-RRH
enhancements dhould result in a reduction in the number
of 1/0s and in the amount of CPU processng duing the
redo and undo passs of restart. This dould improve the
avail ability of the system by allowing processng of new
transactions to begin earlier than with the origina ARIES
algorithm [Mohan93c].

ARIES-RRH requires that, for each page, all updites
logged at least up to the point of the most recent
committed® or in-dould upchte for that page be redone, if
those updates are not already present in the page. The
latter is as usual determined by comparing the LSN of the
page with the LSNs of the relevant log records. For data
for which page or coarser granularity of locking is being
used, this rule implies that all loser transactions logged
but missng updites nead not be redone, as was the @ase
with DB2 V1 [Crus84]. It turns out that following this rule
alone is not sufficient since some loser transaction might
have already been rolling back when a system failure
happened and as a result some CLRs might have been
written which survived the system failure. Some of the
pages affeded by those CLRS updates might not have been
written back to disk after those undos were performed.

% Conceptually, we trea a transaction which terminated after
rolling back completely as a transaction which performed a
partial roll back to its beginning and then committed.

Sincethose pages might have been written to disk after the
original updates (i.e, the ones which the CLRs
compensated) were performed on them, we need to ensure
that the corresponding CLRS updates are also redone, even
though they belong to a loser transaction and they may not
be followed by any nonloser transactions updates for the
affeded pages. To be able to figure out when such a
condition is true, given a CLR and the page affeded by it,
if the page's LSN is less than the CLR's LSN, then we
need to know if the page @mntains the original log record's
(nonCLR's) update. Comparing the UndoNxtLSN of the
CLR with the LSN of the page is not sufficient for this
purpose since the page LSN being geater than
UndoNxtLSN does not necessarily mean that the original
update is present in the page (see [MoPi91] for an
example). What is needed is the LSN of the origina
(nonCLR) log remrd. So, the mntents of a CLR are
enhanced to also include a field called UndonelL SN which
isthe LSN of the log record which the CLR compensated.

Now, the rule for handling a CLR can be stated as foll ows:
The update of a CLR must be redone if the LSN of the
affeded page is greater than a equd to the Undonel SN
of the CLR and is lessthanthe LSN of the CLR. It should
be noted that a rule like this was not needed in DB2 V1
since (1) DB2's remvery method performed the undo o
CLRsS wupdaes and (2) CLRs did not have the
UndoNxtLSN pointer and hence DB2 dd not bypass
processng of already undone nonCLR log reards.

Since with ARIES-RRH, history is not being completely
repeated, the handling of undos also needs to be danged
to be a condtiond one like in DB2 V1. That is, during
undo, when a nonCLR is encountered, the undo o that log
record's update should be performed only if the page's LSN
is greater than o equd to the log reamrd's LSN. A
surprising requirement is that, irrespedive of whether the
undo has to performed or not, a CLR must aways be
written asif the undo was performed (see[MoPi9]] for the
explanation of why thisisthe @ase).

With the flexibility offered via operation logging and the
support for semanticall y-rich modes of locking by ARIES
and ARIES-RRH, thisis the best that can be done in terms
of reducing the etent of repeating of history for loser
transactions updates. Of course, if only physical logging
and locking are supported (as in IMS), then the missng
updates of loser transactions for a given page that even
precele the updates of nonloser transactions for the same
page neel not be redone. ARIES-RRH does not
compromise on the original ARIES algorithm's properties
of never undoing a CLR's updates and never undoing the
same nonCLR's updates more than once [MoPi91] aso
explains the fundamental reasons behind why certain
existing reavery algorithms work corredly in the face of



fail ures during restart recovery or during media recvery.
The ARIES-RRH work has led to a better understanding of
the fundamental interactions between concurrency control
and recvery methods. So far ARIES-RRH has not been
implemented.

3.7 ARIES/NT

ARIES/NT (Algorithm for Remvery and Isolation
Exploiting Smartics for Nested Transactions) [RoMo89]
is an extenson of the ARIES algorithm which was
originally designed for the single-level transaction model.
ARIES/NT applies to a very general model of nested
transactions [HaRo87, HaRao93], which includes partial
rollbacks of subtransactions, upward and downward
inheritance of locks, and concurrent exeaution of ancestor
and descendent subtransactions. The adopted system
architedure encompas®s aspeds of distributed database
management al so.

We will briefly summarize here the extensions that were
made to the original ARIES remvery method to oltain
ARIES/NT. In bath ARIES and ARIES/NT, all log records
written by the same transaction are linked via a so-called
backward chain (BW-chain) using the PrevLSN pointers.
In addition, in ARIES/NT, the BW-chains of committed
subtransactions are linked to the BW-chains of their
parents to refled the transaction trees on the log. When a
subtransaction T commits, a c-comnitted log record,
which contains a pointer to the last recrd of T's BW-
chain, is written to the BW-chain of T's parent.
Consequently, the BW-chain of an in-progresstransaction
together with the dhains of its committed inferiors form a
tree structure, which is called the transaction's backward
chain tree (BWC-tree). Since the parent/child
relationships of committed subtransactions are stored on
the log, subtransactions can be forgotten after their
commit. The analysis pass neal not colled data éout
committed subtransactions, thereby simplifying recvery.

Because our very general model of nested transactions
allows upward and downward inheritance of locks, and
concurrent exeaution of ancestor and descendent
subtransactions, when a (sub)transaction is to be rolled
back, the actions of that (sub)transaction and its
(committed or active) inferiors must be rolled back in
reverse dhronological order. Like ARIES, ARIES/NT logs
updates performed during rollback by means of CLRs. A
CLR is aso used to kee track how much of a
(sub)transaction and its committed inferiors has aready
been rolled back, and how much more remains to be
undone. This is achieved by remrding in a CLR a set of
pointers, each of which points to the next log record to be
procesed in the BW-chain of the (sub)transaction or a
committed inferior during undo.

Asin ARIES, in ARIES/NT also, restart processng starts
with an analysis pass continues with a redo passand ends
with an undo pass Redo processng of ARIES/NT works
in exactly the same way as in ARIES, whil e the algorithms
of the analysis and undo passes have been modified to
support treestructured log contents. In ARIES/NT, the
UndoNxtLSN field of a CLR contains a set of log
addreses rather than a single LSN as in the origina
ARIES algorithm.

So far ARIESINT has not been implemented. Basic
features of ARIES/NT have been adapted in [Lomet92] to
support recovery in multi-level systems. [Dombr95]
presents modifications to ARIES/NT to support advanced
transactions.

3.8 Index Management

Even though concurrency in search structures (e.g., B*-tree
indexes) had been discussd frequently in the literature,
the problem of providing recmvery from transaction and
system failures when transactions consist of multiple
search structure operations receved very little attention
until the late 80s. [MoLe92], in its original research report
form, was the first paper to provide a comprehensive
treatment of concurrency control and remvery for index
management in transaction systems. [Mohan90a] was the
first paper to document in detail the System R key-value
locking agorithms and to explain the rationale behind
their design features. That paper also enhanced those
algorithms to vastly improve their concurrency and
performance daracteristics. In spite of these dforts and
publications by a few others (e.g., [L0Sa92]), index CC&R
are not well understood by the research community. They
are not taught sufficiently in database curses or discussed
enough in database textbodks.

In this sdion, | summarize the two agorithms,
ARIES/KKVL [Mohan90g] and ARIES/IM [MoLe92], that
we developed. A transaction may perform any number of
nonindex and index operations, including range scans.
Both serializeble (repeatable read) and, optionaly,
nonserializable (cursor stahility) exeautions of transactions
are supported. To present them, | asume a tree
architedure in which all the indexes on the data (e.g., a
relational table) contain only the key values and record
identifiers (RIDs) of recrds containing those key values.
TheRID of areard identifies the record's location in a set
of data pages. All the leaf pages of an index contain index
entries in the form of key-value,RID pairs. In most
systems, when a nonunique index contains dugdicate
instances of a key value, the key value is gored only once
in each leaf page where it appears. The single value is
foll owed by as many RIDs as would fit on that page.



In ARIES/KVL, the objed of locking is a key value,
whereas in ARIES/IM, it is the individual index entry.
This swould make a difference only in the @se of
nonunique indexes. Apart from that difference ARIESIM
does what is called data-only locking. That is, an index
entry islocked by locking the underlying data whose key is
the one in the index entry to be locked. This means that if
record locking is being done, then the lock will be on the
RID; with page locking, it will be on the pagelD part of
the RID. In contrast, in ARIES/KVL, the index locks are
different from the data locks. There are some performance
and concurrency tradeoffs involved in choosing between
these two approaches (see [Mohan95b, MoLe92] for
detailed comparisons). ARIES/KVL's index-specific key
value locking would be necessary where the records are
stored in the index itself and an index entry contains the
corresponding reard, instead of a RID, as in NonStop
SQL. It could also potentially lead to higher concurrency
compared to the data-only locking feature of ARIES/IM,
but with an increase in the locking overhead. It is posshle
to retain ARIES/IM's idea of locking individual index
entries and till perform index-spedfic locking by taking
the lock name as ohtained in the case of data-only locking
and prefixing that lock name with the index ID to make it
spedfic to this index entry, as explained in [Mohan95b,
MoLe92].

There are many problems involved in supporting
recmverable, concurrent modifications to an index tree
Some of the questions to be answered are:

1. How to log the danges to the index so that, during
recvery after a system failure, the missng updites
can be reapplied efficiently?

2. If an SMO (structure modification operation - page
split/ deletion operation) were to be in progress at the
time of a system fail ure and some of the dfeds of that
SMO had already been refleded in the disk version of
the database, how to ensure the restoration of the
structural consistency of the treeduring restart?

3. How to update index pages with minimal interference
to concurrent accessors of the tree?

4. If a transaction were to roll back after successully
completing an SMO, how to ensure that it does not
undo the SMO, sincedoing so might result in the loss
of some updates performed by other transactionsin the
intervening period to the pages affeded by the SMO?

5. How to deted that a key that had been inserted by a
transaction T1 in page P1 had been moved, by a
subsequent SMO by T2, to P2 so that if T1 wereto roll
back, then P2 is accessed and the key is del eted?

6. How to deted that a key that had been deleted by T1
from P1 no longer belongs on P1 but only on P2 dwe
to subsequent SMOs by other transactions, so that if

T1 were to roll back, then P2 is accesed and the key
isinserted in it?

7. How to avoid a deadlock involving a transaction that
is ralling back so that no spedal logic is needed to
handle a deadlock involving only rolling back
transactions?

8. How to support different granularities of locking and
what to designate as the objeds of locking?

9. How to lock the not found condition efficiently to
guaranteerepeatable read (i.e., the phartom problem -
see[EGLT76])?

10. How to guaranteethat in a unique index if a key value
were to be deleted by one transaction, then no aher
transaction is permitted to insert the same key value
before the former transaction commits?

11 How to let treetraversals go on even asan SMO isin
progress and dtill ensure that the traversing
transactions are able to recover if they run into the
effeds of the SMO that is gill i n progress?

3.8.1 ARIES/KVL

ARIES/KKVL (Algorithm for Remvery and Isolation
Exploiting S$mantics using KeyValue Locking)
[Mohan904] is a method for concurrency control in B*-tree
indexes. The ncurrent exeadtions permitted by the
locking protocols are @rred logging and rewvery are
made possble. ARIESKVL supports very high
concurrency during treetraversals, structure modifications,
and other operations. Unlikein System R, in ARIESIKVL,
when one transaction is waiting for a lock on a key value
in a given index page, reads and modifications of that page
by other transactions are allowed. Further, transactions
that are rolling back will never get into deadlocks.
ARIES/KVL's locking rules differ depending on whether
the index is a unique index or a nonunique index.
Compared to System R, ARIES/KVL, by also using for key
value locking the IX and SIX lock modes which were
intended originally for table level locking, is able to exploit
the semantics of the operations to improve @ncurrency.
These tedhniques are also applicable to the mncurrency
control of links-based storage and access s$ructures.

During a key lookup (Fetch) call, even if the requested key
value is not found, the next key value is locked to make
sure that the requested key does not suddenly appear (due
to an insert by another transaction) before the arrent
transaction terminates and prevent repeatable read from
being possble. For the protedion of the reader, if the value
being inserted in not already present in the index, then an
inserting transaction has to check via an instant lock call,
the lock on the next higher key value. Thus, a lock on a
key value is really a range lock on the range of keys
spanning the values from the preceding key value that is



currently present in the index to the locked key value. For
this range-locking protocol to work, the inserting
transaction must ched the lock on the next key \alue,
before it does the insert of a given key value. The mode of
Insert's next key value lock request must be such that it is
incompatible with the S lock acquired by Fetch.

Since the deletion of the only instance of a certain key
value would result in the key value disappearing from the
index, a way is neaded to communicate to readers (and
inserters in the @se of a unique index) the existence of an
uncommitted deletion of that key value. By convention,
under these @nditions, the deleting transaction acquires a
lock on the next key value. This is ancther reason why a
reader nedls to ched the next key value lock when Fetch
does not find the requested key value. The mode of
Delete's next key value lock request must be such that it is
incompatible with the S lock acquired by Fetch. Whereas
the next key lock during an insert is only a chedk (instant
lock), the one during deletion must be a lock which is held
until commit.

Some of our ARIES/KVL enhancements over the original
System R index concurrency control algorithms have been
implemented in SQL/DS and the VM Shared Fil e System.

3.8.2 ARIESIM

ARIESIM (Algorithm for Reoovery and Isolation
Exploiting Smartics for Index Management) [MoLe92] is
a method for controlli ng concurrency and logging changes
to index data stored in B'-trees. ARIES/IM's recmvery
features are based on ARIES. ARIES/IM supports very
high concurrency by

1. not locking theindex data per se(i.e., keys),

2. locking the underlying record data in data pages only
(eg., @ thereoord levd),

3. not acquiring commit duration locks on index pages
even during index structure modification operations
(SMOs) like page splits and page deletions,

allowing retrievals, inserts, and deletes to go
concurrently with even an SMO, and

5. optionally, supporting degree2 consistency of locking
(cursor stability).

Even if a transaction which performed an SMO were to
roll back, if all the dfeds of the SMO had been propagated
successully up the tree before the rollback is initiated,
then the SMO is not undone. This is acocomplished by
doing the foll owing:

1. Performing the SMO asan NTA.

2. If an insert requires a page split, al the actions
relating to that split (the leaf-level actions, the
propagation up the treeand the writing of the dummy
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CLR) are @mpleted before the insert which

necesstated the split i s performed.

3. If the deletion of a key necesstates a page deletion
(because the page became ampty), the key deletion is
first performed and logged and then al the actions
relating to that page deletion are cmpleted. The
dummy CLR will point to the key deletion log reaord.

If the transaction were to rollback after completing the
SMO, the dummy CLR lets it bypass the log remrds
relating to the SMO. At the same time, it is ensured that
the insert/del ete operation causing the SMO is undone, on
arollback.

To restore the structural consistency of the tree partially
completed SMOs are undone in a page-oriented fashion.
At the time of restart recmvery, no spedal processng is
performed to determine which indexes are structurally
inconsistent. There is no spedal handling of such indexes.

During restart, any necessary redos of the index changes
are always performed in a page-oriented fashion (i.e,
without traversing the index tred and, during normal
processng and restart, undos are performed in a page-
oriented fashion whenever possble. The protocols used
during normal processng are such that if a system failure
were to acaur any time, then, during the subsequent
restart, any incomplete SMO would be undone and thereby
the structural consistency of the tree would be restored,
before any necessary logical undo is attempted. This is
done without resorting to any spedal restart processng.

Most of the ARIES/IM features were first implemented in
the OS/2 Extended Edition Database Manager [ChMy8§],
which in itsfar enhanced form is now called DB2/UDB for
Windows, Unix and OS2. It was for that product that
ARIES/IM was designed originally. Since the @mncurrency
control  techniques of ARIES/IM have generd
applicability, some of those techniques have also been
incorporated in SQL/DS and the VM Shared File System
even though those systems are based on System R which
uses the shadow-page technique for recovery. ARIESIM
supports page-oriented media recovery for indexes - i.e,
dumps of indexes can be taken and when there is a
probem in reading a page (becuse, eg., a crash had
ocaurred when that page was being written [Mohan954]),
the page @n be loaded from the last dump and then, by
rolling forward using the log, the page an be brought up-
to-date. Details concerning media rewmvery, deferred
restart, etc. are presented in [MHLP322].

Since ARIES/IM is able to handle deletion of empty pages,
performing the merge of partially fill ed leaf pages requires
only simple extensions to aur method. ARIES/IM has been
extended and implemented to handle the shared disks
(data sharing, in the IMS terminology [PeSt83))



environment [JMNT97, MoNa91, MoNa92a, MoNa92b,
MOoNP9(Q], in which multi ple instances of DB2/390 access
and modify the same database. We have devel oped ways to
improve mncurrency even further by reducing the negative
implications of next index entry locking. This was done for
DB2/390by doing logical, rather than physical, deletion of
keys (see [Mohan90b] for an outline of our solution).
ARIES/IM and KV L ideas in conjunction with logical key
deletions have been adapted in [KOMH97] for use with a
generalized search tree (GiST). Adaptation of the
ARIES/IM and KVL ideas to a hierarchy of indexes in a
distributed database @ntext is presented in [ChM096].
The ncurrency control implications of using multiple
indexes in accesing a single tabl€e's recrds are presented
in [MHWC90, Mohan90b, Mcohan924].

3.9 ARIESILHS

Even though extendible hashing has been studied for a
long time, very littl e has been reported in the literature on
the @ncurrency control of multiple transactions
simultaneously accessng such structures. Whatever littl e
has appeared is usualy based on a very simplified notion
of atransaction. Generally, each transaction is assumed to
consist of only one action (insert, delete, or retrieval)
against the search structure.

The problems asociated with guaranteang serializability
beawme much more @mplicated when one mnsiders
transactions consisting of multiple actions. Some papers
deal with only extendible hashing, rather than the more
complicated linear hashing. In any case, none of the
papers deals with the problem of providing remvery from
transaction and system failures for a general model of
transactions with fine-granularity locking. Some of the
concurrent activities permitted by the algorithms in the
literature will cause inconsistencies when one nsiders
falures and rewmvery. The interactions between
concurrency control and logging (and recovery) with
multiaction transactions are quite subtle. ARIES/LHS
(ARIES for Linear Hashing with Sgparators) [Mohan933g]
deals with the @ncurrency control and reavery aspeds of
multi action transactions accessng dynamic hashing-based
storage structures.

Larson proposed a dynamic hashing algorithm called
Linear Hashing with Separators (LHS) that, given a
unique primary key value, uses a table in memory to allow
the retrieval of the @rresponding record in the file in one
page access to sewmndary storage [Lars88]. Larson
considers LHS to be the first practical method offering
one-access retrieval for large dynamic files. He did not
discuss the impact of concurrent operations by different
users, some of whom are reading the file whil e others are
performing operations like inserts, deletes, updaies, file
expansions or file antractions which can cause relocations
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of recmrds. ARIES/LHS is a method for controlling such
concurrent operations with fine-granularity (e.g., record)
locking, while guaranteeng serializability. ARIES/LHS
prevents rolli ng back transactions from getting involved in
deadlocks. It also includes rewmvery tedniques for
handling transaction and system failures, while alowing
multiple operations in each transaction. To provide high
concurrency and efficient recvery using write-ahead
logging, ARIESILHS exploits the power of the ARIES
recmvery method (e.g., the concept of NTAs and the ability
to support logical undos). The impact of the LHS storage
method on range queries and prefetching of data is
discused in [Mohan93a). ARIES/LHS handles varying
length records and updites of reords also. So far
ARIES/LHS has not been implemented.

3.10 Commit_L SN

Fine-granularity (e.g., recrd) locking is very helpful in
increasing the level of concurrency that can be supported
by reducing contention amongst transactions for accessto
data. The drawback of fine-granularity locking is that for
those transactions that accesslarge number of records, the
number of locks that neel to be acquired may increase
dramatically compared to the situation with, for example,
page locking. If, for those transactions which only nedl to
determine that some pieceof data isin the mmmitted state
the system could somehow avoid locking, then we @n
have the benefits of fine-granularity locking for
transactions which accessfew recrds and at the same time
avoid the drawbacks of such a locking granularity for
transactions that access numerous records for reading. A
method for avoiding locking is expeded to be useful very
often since in most databases, at any given time, most of
the dataisin the ommitted state.

The Commit_L SN method proposed in [Mohan90b] is one
such idea. It isanovel and simple method for determining
if a pieceof data isin the mmmitted state in a transaction
processng system. This method is a much cheaper
alternative to the locking approach used in the past for this
purpose. The method takes advantage of the LSN concept.
As described before, in transaction systems using WAL, an
LSN isrearded in each page of the database to relate the
state of the page to the log of update actions for that page.

The aux of the Commit_ LSN method is to use this LSN
information and information about the arrently active
update transactions to come to some ®nclusions about
whether or not all the data on a given page is in the
committed state, without resorting to locking. This is done
by comparing the page's LSN with the information about
the oldest updhte transaction till exeauting in the system.
The aucial fact that makes our method accomplish its
objedives is that no page with an LSN value that is less
than the LSN (cal it Commt LSN) of the



Begin_Transaction log recmrd of the oldest exeauting
update transaction could have any uncommitted data. The
Commit LSN method applies whether the lowest
granularity of locking is a page or something finer than
that (e.g., record).

This smple new method reduces locking and latching. In
addition, the method may also increase the level of
concurrency that could be supported. It also benefits
update transactions by reducing the st of fine-granularity
locking when contention is not present for data on a page.
Many non-trivial applications of this method are discused
in detal in [Mohan90b]. In order to apply the
Commit_LSN method, extensions have been proposed for
those systems in which (1) LSNs are not associated with
pages (AS400 SQL/DS, Sysem R), (2) LSNs are used
only partialy (IMS), and/or (3) not all ohjeds changes are
logged (AS/400, SQL/DS, System R).

The Commit LSN method's deps at the time of a page
accessare:

1. Find out Commit_LSN from the recovery manager or
access it in shared storage. Note that it is not
necessary for the transaction to oltain the latest value
of Commit_LSN before every page access as long as
it is done at least once before the first page access
Whil e an out of date Commit_L SN does not cause any
inconsistencies, it may increase the number of times
locks have to be obtained.

2. Latch the pagein share (S) mode.

3. If page LSN < Commit_LSN, then conclude that all
data on the page is in the mmmitted state; otherwise,
do locking as usual and determine whether data of
interest is committed or not.

Instead of having one global Commit_LSN that covers all
objeds, transactions can benefit further by computing an
objed-spedfic Commit_L SN that is pedfic to the ohjed
(eg., file or table) to be accesed. In this way, a long-
running updite transaction that acceses me other
objeds and keeps the global Commit LSN quite a bit in
the past will not unduly restrict the applicability of the
Commit_LSN method to the objed of interest.

The Commit_LSN concept has turned out to be very useful
in practice It has been fully implemented in DB2/390 and
partially in DB2/UDB for Windows, Unix and OS/2. Its
performance advantages have been espedally beneficial in
the shared dsks context of DB2/390. It has been exploited
for providing fast restart capabilities in [Mohan93(].
Processng of new transactions can be done even whil e the
redo and undo passes of restart recovery are in progress
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3.11 Query Processng and Locking Concerns

Traditionally, starting from the System R days, work on
query procesing has generally ignored considerations
relating to concurrency control in making query exeaition
choices during query optimizaion. Typically, concurrency
control related actions are taken by the data manager (the
RSS component in the @ase of System R) and the query
optimization related actions are taken by the upper parts of
the system (RDS component in the @ase of System R). In
[Mohan924], | have given numerous examples to ill ustrate
why it isimportant to consider locking related issies while
planning query exeautions. While it is osmetimes merely a
performance advantage to take such an integrated view, at
other times even the @rredness of query exeadtions
depends on such an approach. Some of the isaes to
consider are: isolation levels (repeatable read, dirty read,
cursor stability), access path seledion (table scan, index
scan, index AND/ORing [MHWC9Q]), Commit LSN
optimizaion [Mohan90b], locking ganularity (reaord,
page, table), and high concurrency as a query optimization
criterion. Our ideas are implemented in the DB2 family.

4. Transactionsin theInternet Age’

In the last few years, there have been many significant
developments in the transaction processng (TP) and
distributed computing (DC) areas. Many areas of
computing have influenced the recent trends in TP and
DC: client-server computing, database management,
obed-oriented programming, groupware, internet and
procesor architedures, to name a few. The energence of
the worldwide web and Java has also had a dramatic
influenceon TP and DC.

Opening up the information resources of enterprises to
customers and business partners for internet (web) access
has changed the data access patterns of the DBMSs and
file systems goring such information. This change has
dramatically increased the requirements on TP systems
with regard to attributes like availahility, reliability,
performance and ease of use. In this @nse, history is
repeating itselfl What used to be mnsidered high-end
requirements in the mntext of mainframe cmputing by
large enterprises are now beawming the requirements of
small and medium enterprises also when they choose to
web-enable their TP applications. Globalizaion and
mergers of enterprises are also important driving factors.

Permitting data access from heterogeneous hardware and
software environments has beame a necessty. Legacy TP
systems like CICS and IMS have been internet enabled.

* The slides of a long talk that expands on this ction can be
foundat www.al maden.ibm.com/u/mohan/tp_dc.pdf



Windows NT has had to provide support for IBM SNA
network protocols for distributed program to program
communication and two-phase @mmit of distributed
transactions involving mainframe and PC environments.
With web enablement, enterprises are now able to provide
better customer service and aso reduce ©sts by
eliminating cetain intermediaries (e.g., distributors, call
center operators) who are necessary in traditional ways of
doing business Network-centric computing is now a
reality and, to remain competitive, organizaions have to
adapt their information systems to support it. When an
enterprise’ s customers diredly interfaceto that enterprise’s
TP systems their performance and usability expedations
are more demanding than when they go through other
trained people (e.g., customer service representatives) in
that enterprise to get some services. Web-enabling a TP
application is not merely an issuie of purchasing the
appropriate web gateway software. Some basic aspeds of
the TP appli cation might have to be redesigned.

Eledronic mmerce (e-ccommerce) is taking off,
espedally with resped to husiness to husiness (B2B)
interactions more than business to consumer (B2C)
transactions. Of course, opening uptraditional TP systems
to doing full blown e-commerce which would potentially
involve performing multi ple database updates originating
from browsers as part of a single distributed transaction, as
opposed to anly information retrieval style accesses across
the web, requires addressng a number of isaues relating to
seaurity, client falures, payment systems, etc. Advanced
transaction models like sagas, flex transactions, etc.
[ElImag97 will have a key role to play. It is my belief that
product-level support for such concepts will finally appear
in the next few years in workflow management systems,
rather than as extensionsto traditional TP monitors.

While 2 tier distributed computing (client-server) was
quite popular a few years ago, of late, 3 tier computing
(caused by the addtion of some middeware software
running in a mid-tier machine) is being embraced more
widely. Enterprises have become disill usioned with the
difficulties and costs involved in redizing the often-
trumpeted major benefits (e.g., cost reductions) of client-
server computing with  exclusively  (non-mainframe)
Unix/PC-based servers. This has resulted in the resurgence
of the mainframe and the emergence of the cncept of
server consolidations. The latter refers to the replacement
of a large mlledion of Unix/PC servers with a cluster
consisting of a small number of CMOS-based, air-coded
mainframes like, for example, the IBM $390. IMS, CICS
and DB2 have been enhanced to support the shared disks
S390 cluster environment with valuable features like
workload balancing and single system image [IBM97].
Modifying those systems to support the dustered
environment, with a coupling facility (an intelli gent shared
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store with sophisticated capahiliti es) in the midst of the
sharing systems, has required the development of several
innovative solutions for problems relating to global lock
management, buffer coherency, logging, remvery and
performance [JMNT97].

Asynchronous program to program communication in the
form of transaction-based persistent messaging has become
quite popular. IBM's MQSeries, for example, is a very
succesgul product in this arena. MQSeries includes its
own non-DBMS-based persistent storage medhanism,
using an extended version of ARIES, for managing the
messges [MoDi94]. Oracle, on the other hand, has
recently introduced some messaging functionality direaly
in its RDBMS itself so that the messages are also managed
by the Oracle DBMS. Such an approach requires
enhancing the @ncurrency control protocols and isolation
level support of the DBMS to med the different
consistency and performance requirements of a
transactional messaging system. This is an area to which
the research community has not paid enough attention.
Concepts like publi sh-subscribe are airrently very popular
in the aommercial world and they deserve to be researched.

In general, TP and DC standardization activities have
beame more widespread. The belief (and hopel) is that
obea tedhnology is the right approach for improving
software productivity and for reusing/integrating existing
legacy TP applications by adding OO wrappers to those
applications. Recantly, many commercial implementations
of OMG's Objed Transaction Services (OTS) have bemme
available. It is not yet clear how widely and quickly such
products will be used in production TP applications and
what their performance daracteristics would be in
comparison with applications built using traditional,
procedural TP technologies. More recantly, OTS has been
extended to the Java world via Java Transaction Services
(JTS). Enterprise Java Beans have also been proposed as a
way of exploiting Java on the server side for building
component-based TP applications. Performance and
industrial-strength attributes like robustness are some of
the major concerns with resped to such technologies.

In the last few years there have many debates in the TP
and DC communities on the appropriate paradigms for
program to program communications, and the role of TP
monitors in the world of web servers and feature-rich
RDBMSs. Many performance-enhancing features like
support for threads which used to be present for a long
time only in TP monitors like CICS and IMS/DC have
now becmme widely available in RDBMSs like Oracle. TP
monitors have traditionally been deely involved in
application and data management. RDBMSs have gone
from managing only data to managing programs also (via
triggers, stored procedures, etc.). Web servers and some



CORBA Objed Request Brokers (ORBs) have also taken
on many of the attributes of TP monitors. We are seeng
the emergence of the so-called Application Srvers, which
are not too different from classcal TP monitors enhanced
with support for the web and, possbly, obed technol ogy.

Emergence of spedalized Online Analytical Processng
(OLAP) DBMSs like RedBrick and Arbar's ESBASE has
allowed huge data warehouses to be built and queried
efficiently. Many algorithms and tods have been
developed by vendors for extracting warehouse data from
operational TP systems. Spedalized indexes and massve
data handling features have been developed for use in
managing warehouse data. Only now researchers are
beginning to addressthese isales. In contrast to what the
research community focussed on with resped to repli cated
data dgorithms, log-based asynchronous replication has
been the more favored choice for implementation in
RDBMS products.

One of the significant devel opments of the last few yearsis
the widespread trend towards outsourcing of information
technology (IT) operations by organizaions whose @re
businessis not computer related (e.g., Kodak). Thisis the
result of (1) difficulties encountered by such organizations
in managing networks of heterogeneous g/stems and (2)
those organizations desire to reduce their IT costs by
letting computing professonals of companies like EDS
and IBM Global Servicesdo thejob. A related trend is that
many organizations have stopped developing their own TP
application software. Instead, they buy packaged
applications (e.g., for enterprise resource planning (ERP))
from vendors like SAP and PeopleSoft. The ERP vendors
have been causing some significant enhancements to be
made in the functionality of DBMSs that they rely on for
storing their data.

Many businesss are also reengineaing their supgdy chains
by integrating their applications with those of their
partners, supdiers and customersin order to improve their
operational costs and time to market. Much of this
integration is expeded to happen in the near future using
the internet rather than via private networks as was the
case in the past with eledronic data interchange (EDI).
Workflow management systems are expeded to play a big
role in this transformation of way of doing business

The industrial and academic research communities
working on TP and DC have not always focussed on the
problems that are of great interest in the @mmercial
world. This has led to some very innovative technology
being developed dredly by product devel opers themselves.

5. Conclusions

In this paper, | repeated first the history of the evolution of
the popuar ARIES family of concurrency control and
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remvery (CC&R) algorithms. | also discussed the
significant impact that those algorithms have had on the
research and commercial worlds. With a view towards
providing a roadmap acrossthe numerous related papers, |
provided a brief summary of most of the ARIES CC&R
algorithms. While some researchers might have ignored
certain aspeds of CC&R as being engineeaing work, rather
than science, by focussng on the details and dedding to
pay attention to the practical experiences from the past, we
were able to make some fundamental contributions to the
area of transaction management. We were lucky to be
working in an environment where this was possble.

| exped DBMSsto be enhanced in the future with features
that allow higher concurrency and improved data
avail ability to accommodate the demanding requirements
of the internet world. Parallelism will be eploited to
reduce the time taken to perform operations like data
backups, index build, etc. Systems will be designed to be
salf tuning and manageable by lessqualified people.
Transactions will be everywhere, in the least expeded
places in our daly lives. Designing systems with
industrial-strength attributes like performance rdiability
and avail ahility in mind from the beginning will be aucial
for such systemsto be successul in real-life usage. Most of
the related problems discussd in [Mohan93d have not
been addressed sufficiently so far by database researchers.

In this paper, | did not intend to do an exhaustive survey of
CC&R work in the research literature. Many papers have
been written in the last few years on application recovery,
semantics-based CC& R protocols (espedally in the objed-
oriented context), theories on an integrated view of
recmvery and concurrency control, sophisticated indexing
protocols using numerous lock modes, etc. As it is usually
the @se, most of the proposed algorithms have not been
implemented. Nor have the designs been spelt out in most
cases in enough detail for others to implement them
without the need for substantial additional design work.
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