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Recurrent Neural Networks (RNNs) offer fast inference on long sequences but are hard to optimize
and slow to train. Deep state-space models (SSMs) have recently been shown to perform remarkably
well on long sequence modeling tasks, and have the added benefits of fast parallelizable training and
RNN-like fast inference. However, while SSMs are superficially similar to RNNs, there are important
differences that make it unclear where their performance boost over RNNs comes from. In this paper,
we show that careful design of deep RNNs using standard signal propagation arguments can recover
the impressive performance of deep SSMs on long-range reasoning tasks, while also matching their
training speed. To achieve this, we analyze and ablate a series of changes to standard RNNs including
linearizing and diagonalizing the recurrence, using better parameterizations and initializations, and
ensuring proper normalization of the forward pass. Our results provide new insights on the origins
of the impressive performance of deep SSMs, while also introducing an RNN block called the Linear
Recurrent Unit that matches both their performance on the Long Range Arena benchmark and their
computational efficiency.

1. Introduction
Recurrent neural networks (RNNs) have played a central role since the early days of deep learning, and are
a natural choice when modelling sequential data (Elman, 1990; Hopfield, 1982; McCulloch and Pitts, 1943;
Rumelhart et al., 1985). However, while these networks have strong theoretical properties, such as Turing
completeness (Chung and Siegelmann, 2021; Kilian and Siegelmann, 1996), it is well-known that they can be
hard to train in practice. In particular, RNNs suffer from the vanishing and exploding gradient problem (Bengio
et al., 1994; Hochreiter, 1991; Pascanu et al., 2013), which makes it difficult for these models to learn about
the long-range dependencies in the data. Several techniques were developed that attempt to mitigate this
issue, including orthogonal/unitary RNNs (Arjovsky et al., 2016; Helfrich et al., 2018), and gating mechanisms
such as long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997) and gated recurrent units
(GRUs) (Cho et al., 2014a). Nonetheless, these models are still slow to optimize due to the inherently sequential
nature of their computation (Kalchbrenner et al., 2016), and are therefore hard to scale.
In recent years, Transformers (Vaswani et al., 2017) have gained increasing prominence for sequence modelling
tasks, achieving remarkable success in a wide range of applications (Brown et al., 2020; Dosovitskiy et al.,
2020; Jumper et al., 2021). Compared to RNNs, attention layers are easier to scale and parallelize during
training, and crucially they do not suffer from the vanishing gradient problem, since the interaction between
any two tokens in the sequence is modeled by direct edges in the network. A key issue with attention layers
however is that their computational and memory costs scale quadratically as 𝑂(𝐿2) with the sequence length 𝐿.
Transformers can therefore be especially expensive to deploy on long sequences. RNNs, which scale linearly
with the sequence length, are therefore typically faster than transformers at inference time even for modest
sequence lengths (Liu et al., 2019).
Motivated by these problems, Gu et al. (2021a) recently introduced the S4 model, a carefully designed deep
state-space model (SSM) achieving remarkable performance on tasks from the Long Range Arena (LRA) (Tay
et al., 2020), a benchmark explicitly designed to require very long-ranged reasoning. S4 is theoretically
principled and inspired by continuous-time linear SSMs; well-established components of modern control
systems. More importantly, the S4 layer and its variants (DSS, S4D, S5, etc) (Gu et al., 2022a; Gupta et al.,
2022a; Smith et al., 2022) overcome the 𝑂(𝐿2) bottleneck of attention layers by modeling interactions between
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Figure 1 | (Left) Deep Linear Recurrent Unit (LRU) architecture introduced in this paper, inspired by S4 (Gu et al.,
2021a). The model is a stack of LRU blocks, with nonlinear projections in between, and also uses skip connections
and normalization methods like batch/layer normalization. We expand on the details in §D and provide pseudocode
in §A. We also use the same architecture structure (Norm-Recurrence-GLU-Skip) for every variant of the recurrent
module in our study (tanh dense, linear dense, etc..). (Right) Summary of effects for the main steps outlined in the
introduction towards designing LRUs starting from tanh RNNs. Shown is the average performance (3 seeds) of the
recurrent module at each step on the Long Range Arena (LRA), compared to average performance of deep SSMs.
For all LRA tasks, we match the performance of deep SSMs like S4/S4D/S5 with LRUs. Detailed results in §3.

tokens using a hidden state (like RNNs) under proper discretization techniques. These models can be made
very efficient at inference time by simply unrolling the layer like an RNN. Futhermore, since SSMs are linear in
the temporal dimension, they are easily parallelizable during training, in contrast to the slow sequential nature
of training a typical RNN. This makes them very computationally efficient on long sequences.
While the S4 model is equivalent to an RNN during inference, it has a number of unique characteristics during
training. For example, S4 is parameterized as a discretization of a latent continuous-time system of differential
equations. S4 also uses specific initializations of the state matrices motivated from the theory of polynomial
projections (Gu et al., 2020). While these characteristics might seem to motivate the impressive performance of
these models, later works (Gu et al., 2022a; Gupta et al., 2022a,b; Smith et al., 2022) have suggested that the
specific initialization used by S4 is often not crucial for performance, and that the discretization rules which
achieve best performance may deviate from theory (Smith et al., 2022). It is therefore unclear what these
unique characteristics of the deep SSMs are doing mechanistically, and how they can be simplified.
Motivated by the striking similarities between RNNs and deep SSMs, and in an attempt to better understand
the underlying mechanism driving the performance of these models, we study the power and limitations of
RNNs when used as core components of deep architectures for long-range reasoning. Our main goal is to
answer the question:

“Can we match the performance and efficiency of deep continuous-time SSMs using deep RNNs?”

We give a positive answer to this question. We show that the performance boost provided by deep SSMs like S4
can also be achieved via a series of small changes to a vanilla deep RNN. With these changes, we can recover
the performance and efficiency of these deep SSMs on the Long Range Arena (LRA) benchmark (Tay et al.,
2020). We call this new RNN model the Linear Recurrent Unit (or LRU for short).

Main Steps. We outline here the main steps needed towards crafting performant and efficient RNN models.
Note while some of these observations have been made in prior works (see §B), we provide novel perspectives
and careful ablations leading to new insights. Each step presented in this paper unveils a specific property of
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recurrent networks, and showcases the challenges and best practices in training and initializing deep RNNs.

• Linear Recurrences. When replacing SSM layers in a deep architecture with vanilla RNN layers using tanh
or ReLU activations, the performance on Long Range Arena (LRA) drops significantly. Surprisingly, in §3.1
we find that simply removing the nonlinearities in the recurrence of the RNN (i.e., using linear recurrences)
gives a substantial boost in test accuracy. We motivate this effect in §E.1 by showing that stacking linear
RNN layers and nonlinear MLP blocks (Fig.1) can indeed model complex nonlinear sequence-to-sequence
maps without the need for nonlinearities in the recurrence. While dropping the nonlinearity does not seem
to harm expressivity, it leads to several advantages, from the ability to directly control how quickly the
gradients might vanish or explode, to allowing us to parallelize training. Our findings also partially motivate
the success of deep SSMs, where the recurrence is also linear.

• Complex Diagonal Recurrent Matrices. Dense linear RNN layers can be reparameterized to a complex
diagonal form without affecting the expressivity of the network or the features at initialization (§3.2).
Diagonal linear RNN layers additionally allow for a highly parallelizable unrolling of the recurrence using
parallel scans to substantially improve training speeds (Martin and Cundy, 2017). We validate that these
observations, which have been leveraged by prior SSMs (Gupta et al., 2022a; Smith et al., 2022), also
provide important efficiency improvements for linear RNN layers.

• Stable Exponential Parameterization. In §3.3 we show that using an exponential parameterization for the
diagonal recurrent matrix has important benefits. Crucially, this enables us to easily enforce stability during
training, which in turn allows us to modify the initialization distribution to facilitate long-range reasoning
and improve performance. Our results indicate that rather than the specific deterministic initializations
used by several recent SSMs, it is the eigenvalue distribution of the recurrent layer at initialization that
determines if the model can capture long-range reasoning.

• Normalization. In §3.4 we show that normalizing the hidden activations on the forward pass is important
when learning tasks with very long-range dependencies. With this final modification, our RNNs can match
the performance of deep SSMs on all tasks in the LRA benchmark. Connecting back to state-space models,
we show in §4 how our normalization can be linked to the discretization structure in S4.

We summarize the deep Linear Recurrent Unit (LRU) architecture used in this paper, and the effect of each of
the above steps on performance in Fig.1. We emphasize that the main purpose of our work is not to surpass
the performance of S4-based models, but rather to demonstrate that simple RNNs can also achieve strong
performance on long range reasoning tasks when properly initialized and parameterized. We believe the
insights derived in this paper can be useful to design future architectures, and to simplify existing ones.

2. Preliminaries
In this section, we compare the key architectural components (RNNs and SSMs) studied in this work, and also
describe our methodology and experimental setup. For a more thorough discussion or related architectures,
the reader can check our related work section §B.

2.1. Recap of recurrent block structures
We give an overview of the main architectural components considered in this paper, focusing on the major
difference between Vanilla RNNs and recent S4-like deep SSMs (Gu et al., 2021a, 2022a; Gupta et al., 2022a;
Smith et al., 2022).

RNN Layer. Let (𝑢1, 𝑢2, . . . , 𝑢𝐿) be a sequence of 𝐻in-dimensional inputs, which can be thought of as either
the result of intermediate layer computations (which keep the sequential structure) or as the initial input. An
RNN layer with 𝑁-dimensional hidden state computes a sequence of 𝐻out-dimensional outputs (𝑦1, 𝑦2, . . . , 𝑦𝐿)
through a recurrent computation1 using learnable parameters 𝐴 ∈ ℝ𝑁×𝑁 , 𝐵 ∈ ℝ𝑁×𝐻in , 𝐶 ∈ ℝ𝐻out×𝑁 , 𝐷 ∈ ℝ𝐻out×𝐻in :

𝑥𝑘 = 𝜎(𝐴𝑥𝑘−1 + 𝐵𝑢𝑘), 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘, (1)
1We do not use bias parameters as they can be incorporated into the MLP blocks preceding and following the RNN block. Classical RNNs

also included a nonlinearity on the output 𝑦𝑘 = 𝜎out (𝐶𝑥𝑘 + 𝑏) with 𝐷 = 0. Having 𝐷 ≠ 0 basically introduces a skip connection (standard in
modern architectures), and the 𝜎out can be thought of as part of the MLP following the RNN.
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starting from 𝑥0 = 0 ∈ ℝ𝑁 . 𝜎 here denotes a nonlinearity, often chosen to be a tanh or sigmoid activation. If 𝜎
is the identity function, then we say the RNN layer is linear.

S4-like recurrent layer. We present a simplified2 version of the S4 recurrence introduced in Gu et al. (2021a).
The input (𝑢0, 𝑢1, . . . , 𝑢𝐿−1) is now seen as the result of sampling a latent continuous-time signal 𝑢ct : ℝ≥0 → ℝ𝐻in

at multiples of a stepsize Δ > 0: i.e. 𝑢ct (Δ𝑘) := 𝑢𝑘 for all 𝑘 ∈ 0, . . . , 𝐿 − 1. The output sequence (𝑦0, 𝑦1, . . . , 𝑦𝐿−1)
is then sampled, again with stepsize Δ, from the signal 𝑦ct : ℝ≥0 → ℝ𝐻out computed by the following continuous-
time state-space model, initialized at 𝑥ct (0) = 0:

𝑑

𝑑𝑡
𝑥ct (𝑡) = 𝐴𝑥ct (𝑡) + 𝐵𝑢ct (𝑡),

𝑦ct (𝑡) = <
[
𝐶𝑥ct (𝑡)

] + 𝐷̃𝑢ct (𝑡), (2)

where<(𝑝) denotes the real part of a complex-valued vector 𝑝, 𝐴 = diag(𝑎) with 𝑎 ∈ ℂ𝑁 , 𝐵 ∈ ℂ𝑁×𝐻in , 𝐶 ∈ ℂ𝐻out×𝑁

and 𝐷̃ ∈ ℝ𝐻out×𝐻in . Ignoring the continuous-time nature of this model, the most striking differences compared
to Eq.(1) are that (a) the computation on the right-hand-side is linear in the hidden state and in the input,
and (b) most parameters are complex valued, with 𝐴 being diagonal. While 𝐵, 𝐶, 𝐷̃ follow complex random
or uniform initialization, the transition matrix 𝐴 is structured, i.e., initialized deterministically through HiPPO
theory (Gu et al., 2020) in diagonal form. Common choices (Gu et al., 2022a) are 𝑎𝑛 = −1

2 + 𝑖𝜋𝑛 (S4D-Lin) and
𝑎𝑛 = −1

2 + 𝑖 𝑁𝜋
( 𝑁
𝑛+1 − 1

) (S4D-Inv), for 𝑛 = 1, 2, . . . , 𝑁.
For training and inference, the continuous-time system in Eq.(2) is discretized at stepsize Δ through a high-
accuracy Zero-Order-Hold (ZOH) or Bilinear method. The ZOH method gives

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘, 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘, (3)

where 𝑥−1 = 0, 𝐴 = exp(Δ𝐴), 𝐵 = (𝐴− 𝐼)𝐴−1𝐵, 𝐶 = 𝐶 and 𝐷 = 𝐷̃, and exp denotes the matrix exponential. Under
the assumption that 𝑢ct is constant in between timestamps (which can be thought of as a modeling assumption),
this numerical integration is exact (Jacquot, 2019). Moreover, note that all these discretization operations can
be quickly performed element-wise since 𝐴 is diagonal.

Some key differences. It is worth pointing out a few structural and computational properties, to highlight
some crucial differences between RNNs and SSMs:
• Since Eq.(3) is linear, it can be efficiently parallelized until 𝑘 = 𝐿 − 1 using parallel scans (Martin and Cundy,

2017; Smith et al., 2022), unlike a nonlinear RNN where the computation has to be performed sequentially.
• While Eq.(3) is similar to the linear RNN computation, it is crucial to note that (a) 𝐴 and 𝐵 are parameterized

in a peculiar way, prescribed by discretization, and (b) these matrices share parameters; in particular Δ
affects both 𝐴 and 𝐵. These differences are critical as in SSMs learning is performed on the continuous-time
parameters 𝐴, 𝐵, 𝐶, 𝐷̃, Δ; hence parameterization choices directly affect optimization.

• Unlike vanilla RNNs, most SSMs use complex-valued diagonal recurrent matrices that are initialized deter-
ministically using HiPPO theory, and the literature attributes much of the success of SSMs to the specific
initialized used (Gu et al., 2021a, 2022b; Gupta et al., 2022a).

The points above motivate our investigation: in this paper we consider the same architecture as Gu et al.
(2021a, 2022a); Smith et al. (2022), but replace the SSM layer in the recurrent core by an RNN. We then study
which steps need to be taken to gradually retrieve S4-like performance on LRA (Tay et al., 2020) tasks. The
effectiveness of each of our steps is supported by empirical evidence and theoretical considerations, and leads
to the architecture presented in Fig.1.

2.2. Experimental setup
In this paper, we consider the Long Range Arena benchmark (Tay et al., 2020), a set of tasks designed to test
the ability of models to do long-range sequence modelling (except we use coloured images instead of grayscale
images for the sequential CIFAR-10 classification task). Transformers fail to perform well on most of these tasks,

2This version is most similar to S5 (Smith et al., 2022), but is here presented for ease of reasoning for a single discretization parameter
Δ, shared across input dimensions. For more details, see §B.
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while deep SSMs have shown remarkable performance on these tasks (Dao et al., 2022a; Gu et al., 2021a).
This makes it an appropriate benchmark to explore the long-range modelling capabilities of deep RNNs.
For all our experiments, we use a network of 6 layers with residual connections and layer/batch normaliza-
tion (Ba et al., 2016; Ioffe and Szegedy, 2015) similar to Gu et al. (2021a) (Fig.1), and we replace the SSM
layers with RNN layers, building up to our LRU recurrence in a sequence of steps (see §3). All experiments are
repeated three times, and we report the mean and standard error. Networks are trained using the AdamW
optimizer (Loshchilov and Hutter, 2017). We use a smaller learning rate and no weight decay on the recurrent
parameters, as suggested by Gu et al. (2021a); Steil (2004). We tune hyperparameters such as learning rates
for all models on a logarithmic grid for best accuracy. See §D for more details on our experimental setup.

3. Designing Performant Deep RNNs
In this section, we discuss the fundamental steps needed for designing RNNs to reach the impressive performance
of deep SSMs on the LRA benchmark. We present these steps, already outlined in the introduction, in logical
order, and support each claim with experimental evidence and theoretical considerations, expanded in §E.
We consider the architecture of Fig.1, where the recurrent computation is gradually modified starting from a
vanilla RNN. We start by showcasing the advantage of using linear recurrences in §3.1; then, in §3.2, we show
how to speed-up training and inference without affecting expressivity and initialization distribution. In §3.3,
we discuss how (and why) changing the parameterization and initialization distribution enables us to make the
RNN stable and improve long-range modeling. Finally, in §3.4, we finalize the LRU architecture by proposing a
normalization strategy for the hidden activations that results in a close match in performance with deep SSMs.

3.1. Linear RNN layers are performant
One of the main findings of our work is that linear RNN layers can be surprisingly expressive when coupled
with nonlinear MLP or GLU (Dauphin et al., 2017) blocks, outperforming tuned nonlinear RNN variants in
the same architecture. In Tb.1, we show that simply removing3 the nonlinearity, and therefore computing the
next state as 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘, is able to improve test accuracy on most LRA tasks. While the boost provided by
vanilla linear RNN blocks leads to performance which is still far behind S4 on some tasks (sCIFAR, PathFinder
and PathX), this first finding motivates us to drop nonlinearities in the recurrence for the rest of this paper. In
later sections, we leverage the linearity of the recurrence to significantly speed up training as well as derive
principled initialization and normalization principles to learn long-range dependencies. We note that, on the
Text and Retrieval tasks, performance using vanilla RNNs already matches performance of deep SSMs (see
Tb.3 for the performance of S4D/S5 on these tasks).

Recurrence sCIFAR ListOps Text Retrieval
RNN-ReLU 69.7 (0.2) 37.6 (8.0) 88.0 (0.1) 88.5 (0.1)
RNN-Tanh 69.9 (0.3) 43.9 (0.1) 87.2 (0.1) 88.9 (0.2)
RNN-Lin 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1)

Table 1 | The effect of removing the nonlinearity from the recurrent unit on test accuracy (§3.1). We show here
results only for the sCIFAR, ListOps, Text and Retrieval tasks in LRA as these models did not exceed random guessing
on PathFinder/PathX (further improvements in Tb.2 and 3). Performance of deep SSMs shown in Tb.3.

The empirical result in Tb.1 is surprising, since recurrent nonlinearities are believed to be a key component
for the success of RNNs — both in the theory and in practice (Erichson et al., 2021; Pascanu et al., 2013;
Siegelmann, 2012). Indeed, a strong property of single-layer sigmoidal and tanh RNNs is Turing completeness,
which cannot be achieved by the linear variant (Chung and Siegelmann, 2021). However, the architecture we
use (Fig.1) is deeper than a standard RNN and includes nonlinearies, placed position-wise after each RNN
block. In §E.1, we investigate how the expressivity and trainability of deep models is affected by recurrent

3All other settings in the recurrent block are kept the same as in the Vanilla RNN module of Haiku (Hennigan et al., 2020). That is,
all matrices have Glorot (Glorot and Bengio, 2010) initialization. The rest of the architecture is kept as in Fig.1, where the LRU block is
replaced by an RNN.
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nonlinearities. Leveraging a spectral analysis and Koopman operator theory (Koopman and Neumann, 1932),
we discuss how interleaving linear RNN layers with nonlinear feedforward blocks is sufficient to approximate
highly nonlinear systems. A key observation in our analysis is that position-wise nonlinearities effectively transfer
signal information to higher frequencies, enabling the system to go beyond linearity in the spectral domain and
increasing the layer capacity. To further strengthen our claim on the advantage of linear recurrences, in §E.2
we show that, while linear and nonlinear RNNs share an important class of approximating functionals (linear
operators, see Wang et al. (2022)), nonlinear activations can potentially slow down training.

3.2. Using complex diagonal recurrent matrices is efficient
We now show that we can significantly speed up training and inference for deep linear RNNs without losing
performance by using complex-valued diagonal recurrent matrices. While the idea of diagonalizing linear
systems for computational efficiency is a dominating feature of all deep SSMs since the introduction of DSS
by Gupta et al. (2022a), in this section we construct our diagonalized version to exactly match the initialization
spectrum (see §3.2.1) of the Glorot-initialized deep linear RNN in Tb.1. Our main purpose with this approach
is to disentangle the effects of initialization and diagonalization on performance (cf. Tb.2 and Tb.3).
We start in §3.2.1 by recalling some useful linear algebra elements, and then proceed in §3.2.2 with a discussion
on how to diagonalize the recurrence while preserving the eigenvalue spectrum at initialization.

3.2.1. Linear RNN eigendecomposition

The recurrence 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 can be unrolled easily using the assumption that 𝑥−1 = 0 ∈ ℝ𝑁 :

𝑥0 = 𝐵𝑢0, 𝑥1 = 𝐴𝐵𝑢0 + 𝐵𝑢1, 𝑥2 = 𝐴2𝐵𝑢0 + 𝐴𝐵𝑢1 + 𝐵𝑢2, . . . =⇒ 𝑥𝑘 =
𝑘−1∑︁
𝑗=0

𝐴 𝑗𝐵𝑢𝑘− 𝑗. (4)

Exponentiations of the matrix 𝐴 in the equation above are the source of the well-known vanishing/exploding
gradient issue in RNNs (Bengio et al., 1994; Pascanu et al., 2013). While in nonlinear RNNs the state 𝑥𝑘 is forced
to live on the compact image of the activation function, the hidden-state of our linear variant can potentially
explode or vanish exponentially as 𝑘 increases. This phenomenon can be better understood by leveraging
an eigenvalue (a.k.a. spectral) analysis: up to an arbitrarily small perturbation of the entries, every matrix
𝐴 ∈ ℝ𝑁×𝑁 is diagonalizable4 (Axler, 1997), i.e. one can write 𝐴 = 𝑃Λ𝑃−1, where 𝑃 ∈ ℂ𝑁×𝑁 is an invertible
matrix and Λ = diag(𝜆1, 𝜆2, . . . , 𝜆𝑁 ) ∈ ℂ𝑁×𝑁 . It is essential to note that, unlike the symmetric setting where
eigenvalues and eigenvectors are real, in the non-symmetric case5 one has to allow for complex entries to achieve
full equivalence. Plugging the decomposition 𝐴 = 𝑃Λ𝑃−1 into Eq.(4) and multiplying both sides by 𝑃−1, we get
𝑥𝑘 =

∑𝑘−1
𝑗=0 Λ 𝑗𝐵𝑢𝑘− 𝑗, where 𝑥𝑘 := 𝑃−1𝑥𝑘, 𝐵 := 𝑃−1𝐵. The output can then be computed as 𝑦𝑘 = <[𝐶𝑥𝑘] + 𝐷𝑢𝑘 ∈ ℝ𝐻 ,

where 𝐶 = 𝐶𝑃−1, and we take the real part of 𝐶𝑥𝑘. Therefore, instead of learning (𝐴, 𝐵, 𝐶, 𝐷), one can equivalently
learn (Λ, 𝐵, 𝐶, 𝐷), where Λ, 𝐵, 𝐶 are complex valued, and Λ is a diagonal matrix.

Are complex numbers really necessary? We adopt complex numbers since they provide a convenient and
compact representation of non-symmetric matrices in diagonal form. However this is not the only option – one
could work (almost) as efficiently using real numbers. We discuss how this can be achieved in §E.3.

Stability. Since 𝑥𝑘 =
∑𝑘−1

𝑗=0 Λ 𝑗𝐵𝑢𝑘− 𝑗, the norm of component 𝑗 of 𝑥 at timestamp 𝑘 evolves such that |𝑥𝑘, 𝑗 | =
𝑂( |𝑥𝑘, 𝑗 |) = 𝑂( |𝜆 𝑗 |𝑘). Therefore, a sufficient condition to ensure stability (i.e. 𝑥𝑘 does not explode) is therefore
|𝜆 𝑗 | < 1 for all 𝑗 (Gu et al., 2021a).

3.2.2. Learning in the diagonalized space

Learning recurrent linear systems in diagonal form provides substantial computational speedups both for
training and inference. For example, in our implementation of sCIFAR, we found diagonal linear RNNs to be
∼8 times faster to train than a dense RNN with ReLUs, matching the speed of our implementations of S4D
and S5. The main reasons for this computational benefit are that (a) taking powers of diagonal matrices is

4In other words, the set of non-diagonalizable matrices has measure zero, see e.g. Zhinan (2002) for a proof idea.
5Take e.g. 𝐴 = ( (0, 1) (−1, 0)). The solution to the standard eigenvalue equation gives 𝜆 = ±𝑖, where 𝑖 is the imaginary unit.
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Figure 2 | Eigenvalues of 𝐴 ∈ ℝ𝑁×𝑁 following Glorot initialization: each entry
of 𝐴 is sampled independently from a Gaussian with mean 0 and variance
1/𝑁. The eigenvalues are complex (𝐴 is not symmetric) and are represented
on the complex plane. The black circle is the unit disk {|𝑧 | = 1} ⊆ ℂ. The
limit behavior (uniform initialization) is predicted by Thm. 3.1.
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Figure 3 | Eigenvalues of a diago-
nal matrix 𝐴 with entries sampled
using Lemma 3.2. For 𝑟min = 0,
𝑟max = 1, the distribution coin-
cides with Glorot init. in the limit.

trivial (speeding up both training and inference), while exponentiating dense matrices is computationally
expensive, and (b) while nonlinear recurrences must be computed sequentially, unrolling a linear recurrence
can be parallelized using associative scans resulting in faster training (Gupta et al., 2022a; Smith et al., 2022).

Equivalent initialization. To disentangle the benefits of diagonal linear systems from the role of initialization,
we seek an initialization for the diagonal system which keeps the eigenvalue spectrum of the recurrence
unchanged when comparing our diagonal system with the dense linear RNN in §3.1, where 𝐴 followed Glorot
initialization. Fortunately, we can use a classical result from random matrix theory (Ginibre, 1965).
Theorem 3.1 (Strong circular law). Let 𝜇𝑁 be the empirical spectral measure of 𝐴𝑁 , where 𝐴𝑁 is a real 𝑁 × 𝑁
matrix with i.i.d. Gaussian entries, each with zero mean and variance 1/𝑁. Then, 𝜇𝑁 converges weakly almost
surely as 𝑁 →∞ to the uniform probability measure on {|𝑧 | ≤ 1} ⊆ ℂ.

The theorem above, illustrated in Fig.2, shows that under Glorot initialization the spectrum of 𝐴 is de-facto
sampled from the unit disk in ℂ. This result motivates the strong performance of linear RNNs in §3.1, since it
implies Glorot initialization provides an approximately stable initialization (see definition in §3.2.1).6 Moreover,
from Theorem 3.1, an equivalent spectral initialization follows for the diagonal system, which holds exactly
for the large width limit: Λ should be diagonal with entries sampled uniformly on the unit disk. Using the
definition of exponential of a complex number: exp(−𝜈+ 𝑖𝜃) := 𝑒−𝜈 (cos(𝜃) + 𝑖 sin(𝜃)), we adopt a simple scheme
for sampling uniformly on a ring in between circles with radii 𝑟min and 𝑟maxin ℂ.
Lemma 3.2. Let 𝑢1, 𝑢2 be independent uniform random variables on the interval [0, 1]. Let 0 ≤ 𝑟min ≤ 𝑟max ≤ 1.
Compute 𝜈 = −1

2 log
(
𝑢1 (𝑟2max − 𝑟2min) + 𝑟2min

)
and 𝜃 = 2𝜋𝑢2. Then exp(−𝜈 + 𝑖𝜃) is uniformly distributed on the ring

in ℂ between circles of radii 𝑟min and 𝑟max.

We recover the spectrum of Glorot-initialization (in the limit of infinite width) by setting 𝑟𝑚𝑖𝑛 = 0 and 𝑟𝑚𝑎𝑥 = 1
(we will explore tuning these hyper-parameters in §3.3). Tb.2 (first two rows) shows the results of learning deep
linear RNNs in complex diagonal form,7 where each diagonal entry of Λ is initialized uniformly on unit disk in
ℂ using Lemma 3.2 with [𝑟min, 𝑟max] = [0, 1]. In our experiments, 𝐵, 𝐶 (which we rename for convenience back
to 𝐵 and 𝐶) follow Glorot initialization for both real and imaginary parts (parameterized separately), with
halved variance in each component to preserve lengths on the input-output projections (Glorot and Bengio,
2010). Finally, after the SSM computation, the real part of the signal is kept and the imaginary discarded (as
in Gu et al. (2022a); Gupta et al. (2022a)).
Our results in Tb.2 show that diagonalizing the recurrence surprisingly improves accuracy on tasks like ListOps
and sCIFAR. More importantly, it drastically reduces training and inference time on all LRA tasks (see Tb.4 in
§C.1 for training speed comparisons), and makes the RNN just as fast to train as deep SSMs like S4D and S5.

6Later in training, the system is less likely to become unstable if the learning rate is small enough.
7To avoid issues with backpropagation on complex variables, each complex parameter in the network is stored and learned as a pair of

floats encoding real and imaginary parts.
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sCIFAR ListOps Pathfinder
Dense 𝐴 72.2 (0.2) 50.4 (0.2) %

Λ Real + Im 86.5 (0.1) 58.8 (0.3) %

Λ Exp 85.4 (0.7) 60.5 (0.3) 65.4 (9.0)
Λ Stable Exp 87.2 (0.4) 59.4 (0.3) 93.5 (0.5)
+ Ring Init 88.1 (0.0) 59.4 (0.3) 94.4 (0.3)

Table 2 | Test accuracy of a linear diagonal complex RNNs under different parametrizations of the transition
matrix (see §3.2). Performance directly improves the results in Tb.1, and showcases the advantage of exponen-
tial (polar) representation of Λ. In bold font is the best parametrization option for linear RNN blocks. Ring Init
denotes a changed initialization where 𝑟min and 𝑟max are tuned. Performance on the Text and Retrieval tasks is not
shown as linear RNNs already align with S4 results (c.f. Tb.1 with Tb.3). These models cannot solve PathX yet, and
requires normalizing the hidden activations and initializing the eigenvalues of Λ with small phase (see Tb.3).

3.3. Benefits of stable exponential parameterization
In §3.2 we showed that moving to complex diagonal recurrences is computationally efficient. However we
also observed that learning the diagonal model can be more unstable than learning the dense model in some
experiments. To learn long-range dependencies and avoid quickly vanishing gradients, eigenvalues in the
recurrence need to have magnitude close to 1 (Gu et al., 2022b; Gupta et al., 2022a); however, these eigenvalues
are also likely to make the system unstable during training. In this section, we show the benefits of a stable
parameterization of the RNN, and of tuning 𝑟min and 𝑟max (see Lemma 3.2).

Optimization under exponential parameterization. Lemma 3.2 suggests a natural parameterization of the
diagonalized RNN as Λ = diag(exp(−𝜈 + 𝑖𝜃)) with 𝜈 ∈ ℝ𝑁 and 𝜃 ∈ ℝ𝑁 as the learnable parameters (instead
of the real and imaginary parts of Λ). As we explain in §E.2 leveraging an easy-to-visualize 2-dimensional
example (see Fig.8), this choice decouples magnitude and oscillation frequencies, making optimization with
Adam easier. The positive effects of this exponential parametrization, which resembles some features of ZOH
discretization (see §2 and §4) and notably takes the performance of PathFinder above random chance, can be
observed in the third row of Tb.2.

Enforcing stability. An important benefit of the exponential parameterization is that it makes it simple to
enforce stability on the eigenvalues. To see this, note that at initialization, |𝜆 𝑗 | = | exp(−𝜈 𝑗) | ≤ 1 since 𝜈 𝑗 > 0.
Therefore, to preserve stability during training, we can use an exponential or another positive nonlinearity:
𝜆 𝑗 := exp(− exp(𝜈log𝑗 ) + 𝑖𝜃 𝑗), where 𝜈log ∈ ℝ𝑁 is the parameter we optimize, and we set 𝜈log𝑗 := log(𝜈) at
initialization. Note that a similar idea is used in deep SSMs (Gu et al., 2021a) in the context of discretization.
We choose an exponential non-linearity over a simple ReLU nonlinearity to increase granularity around |𝜆 | = 1,
achieved at 𝜈log = −∞ (while |𝜆 | = 0 is achieved at 𝜈log = ∞). Stable parameterization helps on most LRA tasks.
In the fourth row of Tb.2, we show its effects on sCIFAR, ListOps and Pathfinder. We observe the most drastic
improvement on Pathfinder, one of the harder long-range dependency tasks in LRA, where performance now
reaches above 93%.
The benefits of the stable parameterization becomes more apparent when we explore the idea of initializing
the eigenvalues of Λ on a ring closer to the unit disk (increasing 𝑟min closer to 1 in Lemma 3.2) to bias the
network towards longer-range interactions and avoid vanishing gradients. Indeed, as discussed in detail in Gu
et al. (2022b); Gupta et al. (2022a), for reasonings requiring consideration of interactions between distant
tokens, eigenvalues in the recurrence need to have magnitude close to 1. Otherwise, as clear from the diagonal
version of Eq.(4), when taking powers of eigenvalues close to the origin, the signal from past tokens quickly
dies out (see §3.2.1). As we show in the last row of Tb.5 in §C, without enforcing stability, performance starts
to degrade as we increase 𝑟max past 0.9 in the sCIFAR task. With stability enforced, we can increase 𝑟max up to
0.99 and improve performance. We see similar benefits on the other tasks where we sweep different values of
𝑟min and 𝑟max (Tbs.7 & 8 have more details). Finally, note that while here we explore changing the magnitude
of the eigenvalues of Λ, in §3.4 we also show the benefits of initializing the eigenvalues to have a small phase
to learn more global patterns, useful for particularly long-range reasoning tasks.
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sCIFAR ListOps Text Retrieval Pathfinder PathX
LRU 89.0 (0.1) 60.2 (0.8) 89.4 (0.1) 89.9 (0.1) 95.1 (0.1) 94.2 (0.4)
S4D (our reprod.) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)
S5 (our reprod.) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)
S4 (paper results) 91.1 59.6 86.8 90.9 94.2 96.4
S4D-LegS (paper results) 89.9 60.5 86.2 89.5 93.1 91.9
S5 (paper results) 90.1 62.2 89.3 91.4 95.3 98.6

Table 3 | Performance after adding the 𝛾 normalization to the diagonal RNN with stable exponential parameter-
ization and initialization on the ring (see §3.4). For PathX, we additionally use a smaller eigenvalue phase at
initialization. We name this architecture LRU. We sweep 𝑟min and 𝑟max for setting the initialization distribution
and the learning rate. We also report results from S4/S4D/S5 (along with reproductions in our own pipeline with
similar hyperparameter sweeps as our RNN models). LRU reaches similar performance as these deep SSMs on all
LRA tasks.

3.4. Additional considerations for long-range reasoning tasks
Up to this point, our model did not succeed in learning PathX — the hardest dataset in our benchmark, with a
sequence length of 16𝑘 tokens. In this section, we discuss the additional modifications we need to make to
improve our model’s ability to learn very long-range dependencies and finalize our LRU model.

Normalization. In §3.3, we initialized the eigenvalues of Λ close to the unit disk for better performance on
long-range tasks. However, we observed that as we moved 𝑟min and 𝑟max closer to 1, the training loss also started
to blow up at initialization (see Fig.5). In this section, we first present a result explaining this phenomenon,
before deriving a practical normalization scheme for the hidden activations to tackle this problem and further
improve performance.
Proposition 3.3 (Forward-pass blow-up). Let Λ be diagonal with eigenvalues sampled uniformly on the ring in
ℂ between circles of radii 𝑟min < 𝑟max < 1. Then, under constant or white-noise input and Glorot input projection,
we have that the squared norm of the state 𝑥𝑘 converges as 𝑘→∞ to the following quantity.

𝔼[‖𝑥∞‖22] =
1

𝑟2max − 𝑟2min
log

(
1 − 𝑟2min
1 − 𝑟2max

)
𝔼[‖𝐵𝑢‖22].

This result has the following intuitive form if 𝑟min = 𝑟max = 𝑟: if we initialize 𝜌-close to the unit disk, the
forward pass blows up by a factor 1/𝜌 (since the contributions from previous states take longer to decay): let
𝜖 = 𝑟2max − 𝑟2min and 𝜌 = 1 − 𝑟2max, then:

lim
𝜖→0

𝔼[‖𝑥∞‖22]
𝔼[‖𝐵𝑢‖22]

= lim
𝜖→0

[1
𝜖
log

(
1 + 𝜖

𝜌

)]
= lim

𝜖→0

[1
𝜖

(
𝜖

𝜌
+ 𝑂(𝜖2)

)]
=
1
𝜌
=

1
1 − 𝑟2

. (5)

Towards the derivation of an effective normalization scheme for the forward pass, we present a simplified
derivation of the 1/𝜌 gain formula for the one-dimensional setting under white-noise input8: let Λ = 𝜆 ∈ ℂ,
and 𝐵 = 1. Let 𝑝∗ denote the conjugate of 𝑝 ∈ ℂ, we have that |𝑝|2 = 𝑝∗𝑝 and in expectation over the input,
using Eq.(4) and the fact that 𝔼[𝑢𝑘−𝑖𝑢𝑘− 𝑗] = 0 for 𝑖 ≠ 𝑗:

𝔼|𝑥𝑘 |2 =

(
𝑘−1∑︁
𝑖=0

𝜆 𝑖𝔼[𝑢𝑘−𝑖]
) ©­«

𝑘−1∑︁
𝑗=0

𝜆 𝑗𝔼[𝑢𝑘− 𝑗]ª®¬
∗

=
𝑘−1∑︁
𝑖, 𝑗=0

𝜆 𝑖 (𝜆 𝑗)∗𝔼[𝑢𝑘−𝑖𝑢𝑘− 𝑗] =
𝑘−1∑︁
𝑖=0
|𝜆 |2𝑖 ∞→ 1

1 − |𝜆 |2 . (6)

Since the formula above holds for every Euclidean direction in our recurrence (Λ is diagonal), we can add a
normalization parameter that is initialized element-wise. Additionally, note that as 𝜆 approaches 1, 1 − |𝜆 |2

8We use the random input assumption for our normalization scheme as we found it to work well in practice.
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PathFinder

PathX

Figure 4 | Evolution of 𝑥 ∈ ℝ3 under impulse input 𝑢 = (1, 0, 0, . . . , 0) ∈ ℝ16𝑘. Plotted in different colors are the
3 components of 𝑥. Λ has parameters 𝜈 𝑗 = 0.00005 and 𝜃 𝑗 sampled uniformly in [0, 2𝜋] or with small phase
[0, 𝜋/50]. For small sequences, such as 𝐿 = 1024 (PathFinder, sCIFAR), [0, 2𝜋] produces kernels with acceptable
overall number of oscillations: information about 𝑢0 is recalled only a few times in the overall state history. Instead,
for high 𝐿, the range of the imaginary part at initialization has to be smaller to obtain a similar effect.
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Figure 5 | Effect of normalization and using a small phase at initialization on the PathX task. For each setting,
we show mean and standard errors over three independent runs for 100k iterations. Without normalization, the
model presents higher loss values at initialization and quickly converges to a suboptimal value, where train and test
accuracy are both at random chance. Adding normalization helps: the train loss is lower at initialization, and the
optimizer is able to escape the suboptimal region and train accuracy also increases. Interestingly, this model still
fails to generalize at all. Finally, reducing initialization phase (i.e. tuning the range of 𝜃) dramatically improves
convergence on the training set, while also generalizing to the test set.

approaches 0, making further adaptations with SGD of this parameter hard. Therefore, we use normalization
parameter 𝛾log ∈ ℝ𝑁 , initialized element-wise as 𝛾log𝑖 ← log(

√︁
1 − |𝜆 𝑖 |2),9 and modify the recurrence as:

𝑥𝑘 = Λ𝑥𝑘−1 + exp(𝛾log) � (𝐵𝑢𝑘), (7)

where � denotes the element-wise product. The 𝛾 parameter allows the RNN to adaptively scale the input fed
into the corresponding eigendirection. We found the 𝛾 normalization to consistently improve performance on
tasks that benefit from initializing close to the unit disk, such as sCIFAR and Pathfinder, as shown in Tb.3.

Reducing Eigenvalue Phase at Initialization. In the context of the diagonalized recurrence, we have Λ =
diag(exp(− exp(𝜈log) +𝜃)), where 𝜈log ∈ ℝ𝑁 is the vector of log eigenvalue magnitudes and 𝜃 ∈ ℝ𝑁 the vector of
eigenvalue phases. While 𝜈log encodes the distance to the origin, 𝜃 is the angle from the vector 1 + 0𝑖. For long
sequences, initializing uniformly 𝜃 ∼ [0, 2𝜋] implies that most state entries will exhibit an overall large number
of oscillations at initialization, see upper panel in Fig.4. Equivalently, in this setting, most state dimensions
are the result of convolutions10 capturing an average of local oscillation patterns. This behavior is independent
from the ability of capturing long-range dependencies (controlled by 𝜈log), but pertains to the nature of the
information stored by the RNN. Therefore, we claim that initializing Λ with uniform phase on long sequence
data inherently biases the network towards learning spurious features in the input sequence. The model cannot
recover from this suboptimal initialization: we indeed observe that, for our best to far model on PathX, the

9We also tried setting 𝛾𝑖 to
√︁
1 − |𝜆 𝑖 |2 in each training iteration, and found it to work similarly in practice to a trainable 𝛾.

10See (Gu et al., 2022a) for a discussion of kernel perspectives.
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training loss after a few iterations converges to a highly suboptimal minimizer which leads to random chance
test performance (see Fig.5). To fix this issue, we found it sufficient to restrict the range of 𝜃 to a thin slice
around 0, biasing the model towards learning more global features. Since the optimal values of 𝜃 are small, we
parameterize the phase logarithmically: 𝜃 = exp(𝜃log), where 𝜃log is optimized, to aid optimization.
Restricting the range of the phase at initialization to be [0, 𝜋/10], our LRU achieved 94.2% on PathX, aligning
with state-of-the-art deep SSMs. We did not explore using a smaller phase at initialization for the other LRA
tasks, although we believe this might further improve performance on other tasks as well. Note that using both
𝛾 normalization and restricting the eigenvalue phase at initialization were crucial to solving PathX. We were
unable to learn when using restricted phase at initialization without also introducing 𝛾 normalization.
With all the components of §3 taken together, we name this new model the Linear Recurrent Unit (or LRU for
short). It provides a flexible, interpretable, and principled framework for initializing and learning deep RNNs
efficiently, and matches performance and efficiency of deep SSMs across all LRA tasks as shown in Tb.3.

4. Insights on S4 and Variants
We believe our ablations in §3 explain the underlying mechanisms driving the success of deep SSMs. Hence,
to conclude the paper, in this section, we inspect in detail the main similarities and differences between our
LRU model and diagonal SSMs, and elaborate a few insights. As in §2, to avoid technicalities, we provide
a simplified discussion capturing the main features of models stemming from the original S4 paper. For a
comparison of different models, we defer the reader to §B.
As detailed in §2, diagonal SSMs (DSS, S4D, S5) are instantiated and parameterized through discretization
of a latent continuous-time model ¤𝑥ct (𝑡) = 𝐴𝑥ct (𝑡) + 𝐵𝑢ct (𝑡), where 𝐴 = diag(𝑎) is initialized with complex
entries, often prescribed or inspired by HiPPO theory (Gu et al., 2020). Zero-Order-Hold (ZOH) discretization
with stepsize Δ leads to the recurrence 𝑥𝑘 = exp(Δ𝐴)𝑥𝑘−1 + (exp(Δ𝐴) − 𝐼)𝐴−1𝐵𝑢𝑘. This formula, while arguably
complex compared to our Eq.(7), relates to it as outlined in the next paragraphs.

Matrix exponentials make training easier. The exponential in the ZOH formula is due to exact integration
of ¤𝑥ct (𝑡) = 𝐴𝑥ct (𝑡), which leads to 𝑥ct (Δ𝑘) = exp(Δ𝐴)𝑥ct (Δ(𝑘 − 1)). In addition, to enforce stability, in models
inspired by S4 the real part of 𝐴 is often fed into a positive nonlinearity, as we also do in §3.3. From our results
§3.3 and our discussion on optimization advantages (see also §E.2), we claim that the power of exponential
parameterization is not necessarily attributable to accurate integration (which is not present in our system),
but is more fundamentally rooted in a magnitude-phase decoupling on the recurrence (this makes training
with Adam easier, see Fig.8), as well as in the overall advantage of learning in diagonalized space (see Tb.2).
We also note that stabilizing the recurrence by adding a nonlinearity was beneficial also in our experiments,
although this is not prescribed by the theory underlying S4.

Structured initialization is not necessary. While Gu et al. (2022a); Gupta et al. (2022b); Smith et al.
(2022) also discuss initializations for 𝐴 deviating from the HiPPO structure (see §2 and §B), to the best of
our knowledge we are the first to show that simple uniform initialization on a slice of the unit disk, combined
with proper normalization, is able to also solve the hardest task in LRA: PathX.11 We also show (Tb.2) that
uniform initialization on the disk, which is simply the diagonalized version of Glorot initialization (Thm. 3.1),
is sufficient to achieve performance close to more complex deep state-space models on the remaining LRA
tasks. Our results ultimately suggest that HiPPO theory, while fundamental for the development of this field,
should not be thought of as the main source of S4 success.

Discretization changes initialization spectrum. For simplicity, let us restrict our attention to S4D-Lin, for
which 𝐴 = diag(𝑎) with 𝑎𝑛 = −1

2 + 𝑖𝜋𝑛, yielding a diagonal transition matrix with elements (i.e. eigenvalues)
initialized at exp(−Δ/2 + 𝑖𝜋Δ𝑛). Under typical choices e.g. Δ = 1𝑒−3, 𝑁 = 128, the SSM eigenvalues have
magnitude exp(−Δ/2) ≈ 0.9995, and phase 𝜃 = 𝜋Δ𝑛

∼∈ [0, 𝜋/8] — i.e. initialization is performed on a ring12
close to the unit circle in ℂ, with restricted phase connected to the eigenvalues magnitude. As is clear from

11Among the models in (Gu et al., 2022a), only S4D-inv and S4D-LegS (options heavily inspired by the HiPPO theory) perform beyond
random guessing on PathX. In S5, the skew-symmetric component of the HiPPO matrix is used for initialization.

12For all diagonal SSMs, Δ is actually a vector initialized in the range [Δmin, Δmax ]. This interval can be directly mapped through the
exponential map to a ring in complex space (see Lemma 3.2).
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the results in §3.3 and §3.4, linking the eigenvalues phase and magnitude is not necessary to achieve good
performance: indeed, as it can be seen in Tb.3, test accuracy on the Long Range Arena (except PathX) can be
recovered by using a more natural magnitude-independent initialization on the complete ring. As we discussed
in §3.4, changing the initialization phase to a small range around 0 can be motivated by first principles, yet is
only needed for extremely long sequences: this modification is already hard-coded in S4, where choosing a
small Δ also shrinks the phase.13 However, our results clearly show that connecting real and imaginary parts
during training through the Δ parameter is not necessary to achieve good performance, even on PathX.

Discretization performs normalization. Themost striking visual difference between ours and ZOH-discretized
S4 recurrence is in the matrix multiplier for 𝑢𝑘: (exp(Δ𝐴) − 𝐼)𝐴−1𝐵. After conducting experiments on S4D, we
found that simply replacing this multiplier with its first-order expansion in Δ, i.e. Δ𝐵, yields a close match in
performance. For input dimension 𝐻 = 1 and unit 𝐵 ∈ ℝ𝑁×1 (to keep reasoning simple), the corresponding
recurrence is 𝑥𝑘 = exp(Δ𝑎) + Δ1𝑁𝑢𝑘. Elementwise unrolling of this recurrence – without the Δ in front of 𝑢 –
yields |𝑥𝑘,𝑖 | ≤

∑𝑘−1
𝑗=0 | exp(Δ𝑎𝑖) | 𝑗𝑢𝑘− 𝑗,𝑖, which in the limit 𝑘→∞ gives 𝑂(Δ−1). Therefore, the Δ multiplier in front

of 𝐵 effectively scales the recurrence to avoid blow-ups — similar to our 𝛾 normalization factor.

Parameter sharing is not necessary. As a result of discretization, the Δ parameter multiplying both 𝐴 and 𝐵
couples the recurrence formula with the input projection during training. In our S4 ablations, we found that
decoupling these in two separate parameters — keeping the same initialization to guarantee no blow-ups (see
last paragraph) — does not decrease performance, suggesting that the ODE discretization viewpoint (which
induces parameter sharing) is not necessary to achieve S4 performance.
From this discussion, we conclude that the success of (diagonal) state-space models is attributable to the
use of linear recurrences and complex diagonal exponential matrices, combined with the normalization and
initialization induced by discretization. On the other hand, other artifacts of discretization such as parameter
sharing or the continuous-time interpretation do not necessarily contribute to its performance.

5. Conclusion
In this paper, we introduce a new RNN layer called the Linear Recurrent Unit or LRU and show how it can be
effectively and efficiently used as core layers of deep sequence models. We provide theoretical insights and
extensive ablations on a series of step-by-step modifications of a vanilla RNN—linearization, diagonalization,
stable exponential parameterization and normalization—that substantially improve performance, especially on
tasks requiring long range reasoning. While our recurrence shares similarities with modern deep SSMs, our
design does not rely on discretization of a latent continous-time system or on structured transition matrices.
Instead our improvements directly follow from initialization and forward pass analysis arguments standard in
the deep learning community, starting from a Glorot-initialized RNNs. Our final model matches the performance
of modern deep state-space models (e.g. S4 or S5) on all LRA tasks.
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13This is a useful effect of having a latent continuous-time model: choosing eigenvalues close to the unit circle (i.e. small Δ) changes
the oscillation frequencies in the discretized system.
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Supplementary Materials
A. Simplified Implementation of the Linear Recurrent Unit
We present here a simplified JAX implementation (Bradbury et al., 2018) of the Linear Recurrent Unit (LRU).
The state of the LRU is driven by the input (𝑢𝑘)𝐿𝑘=1 of sequence length 𝐿 according to the following formula (and
efficiently parallelized using an associative scan): 𝑥𝑘 = Λ𝑥𝑘−1 + exp(𝛾log) � (𝐵𝑢𝑘), and the output is computed
at each timestamp 𝑘 as follows: 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘. In our code, 𝐵, 𝐶 follow Glorot initialization, with 𝐵 scaled
additionally by a factor 2 to account for halving the state variance by taking the real part of the output projection.
𝐷 is random 𝐻-dimensional and mutiplies elementwise each 𝑢𝑘, where 𝑘 is the timestamp. Λ is initialized with
the help of Lemma 3.2, with phase potentially restricted to a thin slice (see §3.4).
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Supplementary Materials
A. Simplified Implementation of the Linear Recurrent Unit
We present here a simplified JAX implementation (Bradbury et al., 2018) of the Linear Recurrent Unit (LRU).
The state of the LRU is driven by the input (C9)!9=1 of sequence length ! according to the following formula (and
e�ciently parallelized using an associative scan): F9 = ⇤F9�1 + exp(Wlog) � (⌫C9), and the output is computed
at each timestamp 9 as follows: G9 = ⇠F9 + ⇡C9. In our code, ⌫, ⇠ follow Glorot initialization, with ⌫ scaled
additionally by a factor 2 to account for halving the state variance by taking the real part of the output projection.
⇡ is random �-dimensional and mutiplies elementwise each C9, where 9 is the timestamp. ⇤ is initialized with
the help of Lemma 3.2, with phase potentially restricted to a thin slice (see §3.4).

1 import jax
2 import jax.numpy as jnp
3 import numpy as np
4 parallel_scan = jax.lax.associative_scan
5
6 def forward(lru_parameters, input_sequence):
7 """Forward pass of the LRU layer. Output y and input_sequence are of shape (L, H)."""
8
9 # All LRU parameters

10 nu_log, theta_log, B_re, B_im, C_re, C_im, D, gamma_log = lru_parameters
11
12 # Materializing the diagonal of Lambda and projections
13 Lambda = jnp.exp(-jnp.exp(nu_log) + 1j*jnp.exp(theta_log))
14 B_norm = (B_re + 1j*B_im) * jnp.expand_dims(jnp.exp(gamma_log), axis=-1)
15 C = C_re + 1j*C_im
16
17 # Running the LRU + output projection
18 # For details on parallel scan, check discussion in Smith et al (2022).
19 Lambda_elements = jnp.repeat(Lambda[None, ...], input_sequence.shape[0], axis=0)
20 Bu_elements = jax.vmap(lambda u: B_norm @ u)(input_sequence)
21 elements = (Lambda_elements, Bu_elements)
22 _, inner_states = parallel_scan(binary_operator_diag, elements) # all x_k
23 y = jax.vmap(lambda x, u: (C @ x).real + D * u)(inner_states, input_sequence)
24
25 return y
26
27 def init_lru_parameters(N, H, r_min=0, r_max=1, max_phase=6.28):
28 """Initialize parameters of the LRU layer."""
29
30 # N: state dimension, H: model dimension
31 # Initialization of Lambda is complex valued distributed uniformly on ring
32 # between r_min and r_max, with phase in [0, max_phase].
33 u1 = np.random.uniform(size = (N,))
34 u2 = np.random.uniform(size = (N,))
35 nu_log = np.log(-0.5*np.log(u1*(r_max**2-r_min**2) + r_min**2))
36 theta_log = np.log(max_phase*u2)
37
38 # Glorot initialized Input/Output projection matrices
39 B_re = np.random.normal(size=(N,H))/np.sqrt(2*H)
40 B_im = np.random.normal(size=(N,H))/np.sqrt(2*H)
41 C_re = np.random.normal(size=(H,N))/np.sqrt(N)
42 C_im = np.random.normal(size=(H,N))/np.sqrt(N)
43 D = np.random.normal(size=(H,))
44
45 # Normalization factor
46 diag_lambda = np.exp(-np.exp(nu_log) + 1j*np.exp(theta_log))
47 gamma_log = np.log(np.sqrt(1-np.abs(diag_lambda)**2))
48
49 return nu_log, theta_log, B_re, B_im, C_re, C_im, D, gamma_log
50
51 def binary_operator_diag(element_i, element_j):
52 # Binary operator for parallel scan of linear recurrence.
53 a_i, bu_i = element_i
54 a_j, bu_j = element_j
55 return a_j * a_i, a_j * bu_i + bu_j
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B. Related works
We first discuss standard RNN-based approaches for sequence-to-sequence modeling, and then provide a
historical overview on the progress of the literature stemming from the S4 paper (Gu et al., 2021a).

Recurrent neural networks (RNNs). Before the rise of transformers (Vaswani et al., 2017), RNNs were
widely used in various applications of natural language processing tasks such as language modeling (Mikolov
et al., 2010), machine translation (Cho et al., 2014b) and text summarization (Nallapati et al., 2016). The
modern RNN structure (see Eq.1) is mainly attributed to the works of Rumelhart et al. (1985). However,
it is possible to see the Hopfield Networks as a particular form of RNN (Hopfield, 1982). Modern RNN
formulations are also often related to the Elman Networks (Elman, 1990). The issue of vanishing or exploding
gradients, as described by Bengio et al. (1994); Pascanu et al. (2013), is one barrier to training Recurrent
Neural Networks (RNNs) with gradient descent. This problem limits the ability of RNNs to learn, especially on
tasks with long input sequences. One of the critical contributions to the success of RNNs was the introduction of
gating mechanisms such as the Long Short-Term Memory (LSTM) proposed by the Hochreiter and Schmidhuber
(1997). LSTMs address the vanishing gradients problem by introducing input, output, and forget gates, which
enable the network to selectively remember or forget information from previous time steps. Another popular
variant of gated RNNs is the Gated Recurrent Unit (GRU) (Cho et al., 2014b) which simplifies the LSTM
architecture by merging input and forget gates into a single update gate.

Mitigating the vanishing gradient problem with orthogonal and unitary RNNs. Recently, Arjovsky et al.
(2016) introduced unitary evolution RNNs (uRNN), where eigenvalues in the RNN transition matrix (see Eq. (1))
are restricted to live on the unit circle. The induced map driving the hidden state evolution, therefore, mixes
state components taking into account new inputs — but the signal from past timestamps is not exponentially
vanishing/exploding as in the vanilla RNN case (see discussion on stability in §3.2.1). This idea is powerful but
introduces two problems: (1) choosing unitary transitions restricts the function approximation class, and (2)
training unitary matrices is expensive since a projection on the Stiefel manifold is required at each gradient
step. To resolve the second issue, many works devoted attention to carefully designed reparameterization of the
transition matrix as e.g., with the product of simpler matrices (Arjovsky et al., 2016), Givens rotations (Jing et al.,
2017), Householder reflections (Mhammedi et al., 2017), or as exponentials of skew-symmetric matrices (Hyland
and Rätsch, 2017; Lezcano-Casado and Martınez-Rubio, 2019). The approximation capacity of these models is
discussed and improved in (Wisdom et al., 2016). A further step in designing efficient orthogonal RNNs is
provided by Helfrich et al. (2018), who parametrized skew-symmetric matrix using the Cayley transforms,
resulting in a fully real parameter space. Other works which proposed conceptually different solutions to
mitigate the vanishing gradient problem include combinations with rectified linear units (Le et al., 2015),
Lipschitz RNNs (Erichson et al., 2021), and approaches based on dilated convolutions to increase context
size (Bai et al., 2018; Oord et al., 2016)

Deep state-space models (SSMs), a historical overview. Inspired by interesting approaches involving
continuous-time representation for recurrent neural networks (Voelker et al., 2019), Gu et al. (2020) recently
provided an alternative view on the vanishing gradient problem: one can design linear continuous-time state-
space models (SSMs), of the form ¤𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢(𝑡) where the state 𝑥 (𝑡) ∈ ℝ𝑁 is guaranteed to compress all
relevant (under a certain metric) information about previously observed (one-dimensional) inputs 𝑢( [0, 𝑡]).
For instance, by using specific pair of matrices (𝐴 ∈ ℝ𝑁×𝑁 , 𝐵 ∈ ℝ𝑁×1), one can discretize the continuous-time
SSM above using a stable, accurate integrator (e.g., bilinear or zero-order-hold) and retrieve the hidden state
𝑥 (𝑡), which contains the coefficients for the best 𝑁-th degree polynomial approximation to 𝑢( [0, 𝑡]). The idea
of Gu et al. (2020) was to then use the resulting discretized structured (i.e., using structured HiPPO matrices)
state-space model as a starting for the design and initialization of a novel gated RNN.
Later, Gu et al. (2021a) scaled up this idea into a deep architecture, where a collection (one for each input
dimension) of discretized continuous-time structured SSM was placed at each layer as a substitute14 for the
attention block, in an attempt to mitigate the 𝑂(𝐿2) issue in transformers and provide a theoretically principled
component for sequence-to-sequence modeling. The model reached state-of-the-art on the Long Range Arena
benchmark (Tay et al., 2020), effectively showcasing the power of discretized linear recurrences using structured

14This idea is also leveraged in FNet (Lee-Thorp et al., 2021), where the attention mechanism is replaced with a simpler linear
token-mixing strategy.
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transition matrices. Notably, the resulting model, named S4, uses a convenient and stable representation of
the HiPPO transition, which is initialized using a normal + low-rank matrix and then learned efficiently in
diagonal + low-rank form using fast Fourier transforms (FFTs) and Cauchy kernels.
In the months following the publication of S4, Gupta et al. (2022a) noticed that most of S4 performance can be
retrieved by only considering the diagonal component of the HiPPO matrix, and therefore showed the power
of discretized diagonal structured continuous-time state space models. This architecture is known as DSS.
As the interest of the community was rising, with first applications of DSS and S4 in language (Mehta et al.,
2022), vision (Nguyen et al., 2022) and audio (Goel et al., 2022), Gu et al. (2022a) further simplified DSS
providing a diagonal form (S4D) with theoretical guarantees in the infinite width setting. Notably Gu et al.
(2022a) showed that, to retrieve most performance of S4, one can simply initialize the transition matrix 𝐴
in diagonal form, with entries 𝑎𝑛 = −1

2 + 𝑖𝜋𝑛 (S4D-Lin) or 𝑎𝑛 = −1
2 + 𝑖 𝑁𝜋

( 𝑁
𝑛+1 − 1

) (S4D-Inv). Our interest in
S4-like models spiked at this point since the findings of Gu et al. (2022a) suggest that, given the effectiveness
of such simplified versions of 𝐴, the root of S4 success might be attributable to more fundamental effects are
orthogonal to the HiPPO theory.
Shortly after, Smith et al. (2022) found that one can also depart from the formal one-dimensional discretization
structure of S4, rooted in the HiPPO theory, and considered a simplified version where all input dimensions are
efficiently and simultaneously processed using parallel scans (Martin and Cundy, 2017) — not separately like
in S4, S4D, and DSS. This model (named S5) set a new state-of-the art on PathX, the hardest task in the Long
Range Arena, and provides further evidence for a conceptually simpler motivation for the performance of deep
state-space models. Indeed, as already mentioned, S5 is not precisely the discretization of a latent continuous-
time SSM, yet still includes parameters like discretization stepsizes that have an ambiguous interpretation in
this context15, suggesting further investigations are needed.
At the same time, a few interesting works developed novel variants of the S4 architecture. Liquid S4 used the
original (non-diagonal) S4 formulation combined with liquid time-constant networks (Hasani et al., 2021,
2022). Similar to DSS, S4D, and S5,Mega also simplified S4 to a diagonal SSM (Ma et al., 2022) while showing
additionally that restricting the diagonal 𝐴 to real numbers – giving it an exponential moving average (EMA)
interpretation – can still work well when combined with attention and a gated block design. Another intriguing
view was provided by the SGConv model (Li et al., 2022a), which leverages the convolutional interpretation of
SSMs (Gu et al., 2021b) to design a purely filter-based version of S4, with no latent continuous-time model or
need for discretization.
The discretization viewpoint also attracted the interest of Gupta et al. (2022b), concurrent to this work, who
pointed out that, after numerical integration, diagonal state-space models and linear RNNs share the same
function approximation class. Gupta et al. (2022b) then introduced DLR, most closely related to DSS and S4D
(each input is processed independently at each layer) but where the discretization stepsize Δ is absorbed into
the continuous-time transition matrix 𝐴 (see §2). Their focus was on a new set of synthetic long-range tasks
with strong supervision (e.g. segmentation), while ours is on the established Long Range Arena benchmark.
To conclude, we point the reader to interesting recent applications of models inspired by the S4 architecture.
In addition to earlier applications in NLP (Mehta et al., 2022), more sophisticated architectures based on S4
recently showed great promise in language modeling (Dao et al., 2022b; Ma et al., 2022). Specifically, Dao
et al. (2022b) designed a new generative language model, H3, that outperforms GPT-Neo-2.7B with SSMs,
augmented with two attention layers. Besides language, deep state-space models were also found successful
for long video/audio understanding and generation tasks (Goel et al., 2022; Islam and Bertasius, 2022; Nguyen
et al., 2022), and have attracted interest in biology (Bordin et al., 2022) and time series forecasting (Zhou
et al., 2022).

15One can still view S5 as a discretized version of a continuous-time SSM. However, this requires adjusting the input projection matrix.
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C. Additional experimental results
C.1. Training speedups
In Tb.4, we show training speed comparisons of the LRU with a regular RNN with tanh activations, as well as
with the S4D and S5 models. As we elaborate in §2.2, for the LRU, we closely followed the optimal model sizes
of the S5 model. Consequently, we also see similar training speeds as the S5 model on all tasks.

Model sCIFAR ListOps Text Retrieval Pathfinder PathX
Tanh RNN 2.0 1.1 0.5 0.5 2.1 0.14
LRU 15.9 (8x) 2.1 (1.9x) 14.7 (29x) 5.7 (11.4x) 15.5 (7.4x) 2.4 (17x)
S4D (our reproduction) 13.5 2.2 10.6 3.0 24.5 2.6
S5 (our reproduction) 15.9 2.2 14.4 5.7 15.6 2.3

Table 4 | Speeds (steps/sec) during training on a A100 GPU. We also show the speedup of the LRU over the tanh
RNN for each task. The batch size used for each task is specified in Tb.9.

C.2. Effect of stability and normalization
In this section, we explore further the effect of introducing stability during training (§3.3), as well as introducing
the 𝛾 normalization factor as shown in Eq.(7). To do this, we consider the sCIFAR experiment where we sweep
over different settings of 𝑟max and 𝑟min to see the effect when initializing closer to the unit disk. We keep
the learning rate fixed at 0.004 for these experiments, which we found to be optimal when initializing with
𝑟max = 1.0 and 𝑟min = 0.0 under a stable exponential parameterization.
We show our results in Tb.5. In the first table Tb.5(A), we show results with our baseline where we use the
exponential parameterization described in §3.3. We see that under this setting, the optimal performance is
achieved when 𝑟max = 𝑟min − 0.9, and performance degrades as 𝑟max is increased beyond 0.9.
In Tb.5(B) we show results after enforcing stability. We now notice that for each 𝑟min, the optimal performance
is achieved by a higher 𝑟max than before, i.e., training is more when initializing closer to the unit disk. Our
optimal performance in this setting is achieved using 𝑟min = 0.0 and 𝑟max = 0.99. Note that even in this setting,
performance can sometimes degrade when moving to even higher 𝑟max.
Finally, in Tb.5(C) we also incorporate the 𝛾 normalization factor, and we now notice no degradation in
performance even when 𝑟max = 0.999. We found training to be more stable in this setting, and our best result
of 89.0% performance is also obtained in this setting, with 𝑟min = 0.9 and 𝑟max = 0.999.
These ablations further motivate the benefits of enforcing stability and using the normalization parameter for
better performance and more stable training, particularly when required to learn very long-range dependencies.

C.3. Expanded tables
Below we show our full results on the Long Range Arena, expanding on Tables 1, 2, and 3 in the main paper.
The tables are presented in logical order: in Table 6, we show that vanilla (dense) RNNs profit from dropping
recurrent nonlinearities when used in the context of the architecture in Fig. 1. Next, in Table 7 we diagonalize
our linear RNN model from §3.1 and show how different parametrization for the diagonal elements affect
performance. For all the rows in Table 7, initialization of the diagonal RNN was performed uniform on the disk,
to match the random Glorot initialization of our dense version (Thm. 3.1).
Further, the last row in Table 7 shows the positive effects of changing initialization distribution to a thin ring
close to the circle boundary — effectively enabling long-range reasoning through mitigation of vanishing
gradients. Our settings for the ring are reported on the first row of Table 8. Finally, the second row of this table
shows the improvements that can be achieved by including model normalization (Eq. (7)), which closes the
accuracy gap with deep SSMs.
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𝑟max
𝑟min 0 0.5 0.9

0.9 87.6 (0.4) 87.8 (0.1) 87.9 (0.2)
0.99 83.8 (0.9) 85.8 (1.2) 81.9 (3.8)
0.999 83.9 (0.2) 84.8 (0.4) 84.8 (0.8)

(a) No stability.

𝑟max
𝑟min 0 0.5 0.9

0.9 86.2 (0.2) 86.6 (0.3) 87.3 (0.1)
0.99 87.8 (0.2) 87.7 (0.1) 88.1 (0.0)
0.999 87.4 (0.2) 87.4 (0.1) 87.5 (0.4)

(b) With stability.

𝑟max
𝑟min 0 0.5 0.9

0.9 86.4 (0.1) 86.5 (0.1) 88.3 (0.1)
0.99 88.1 (0.1) 88.4 (0.1) 89.0 (0.2)
0.999 88.1 (0.1) 88.6 (0.0) 89.0 (0.1)

(c) With 𝛾 normalization.

Table 5 | Effect of stability and normalization and different 𝑟min and 𝑟max values on test accuracy for the sCIFAR10
task. Both stability and normalization allow for initializing eigenvalues closer to the unit disk, resulting in improved
performance.

Recurrence sCIFAR ListOps Text Retrieval Pathfinder PathX
RNN-Lin 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) % %

RNN-ReLU 69.7 (0.2) 37.6 (8.0) 88.0 (0.1) 88.5 (0.1) % %

RNN-Tanh 69.9 (0.3) 43.9 (0.1) 87.2 (0.1) 88.9 (0.2) % %

S4D (our reproduction) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)
S5 (our reproduction) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)
S4 (paper results) 91.1 59.6 86.8 90.9 94.2 96.4
S4D-LegS (paper results) 89.9 60.5 86.2 89.5 93.1 91.9
S5 (paper results) 90.1 62.2 89.3 91.4 95.3 98.6

Table 6 | Placing a Vanilla RNN as recurrent core in the architecture of Fig. 1. Shown is the effect of removing the
RNN non-linearity on test accuracy (§3.1).

D. Detailed experimental setup
In this section, we describe our experimental details.

D.1. Architecture
We consider the standard S4 architecture of Gu et al. (2021a) and replace the S4 layers with RNN layers or
with S5 (Smith et al., 2022) or S4D (Gu et al., 2022a) layers for our baselines. We give an overview of the
architecture used in Fig.1. The input is first encoded into 𝐻 features, followed by a stack of residual blocks.
For all our experiments, we use networks with a depth of 6 residual blocks. Each residual block consists of
identity skip connection, and the residual path containing a normalization layer (in our case, we always use
batch normalization in our experiments), followed by the RNN/SSM block. While using the “post-norm” option
of adding the normalization layer after the skip and residual branches typically improves performance, we stick
to this design due to this architecture being more scalable in general (De and Smith, 2020).
Each RNN/SSM block first contains the recurrent layer as described in Eqs.(1) and (3) in §2. This is followed
by a mixing layer. For all experiments except PathX, we use the GLU activation function (Dauphin et al., 2017)
with dropout as the mixing layer, similar to Gu et al. (2021a). For PathX, we instead use a GLU activation
function without one additional linear transform; the same as used by Smith et al. (2022) for their experiments.
We use bidirectional models for our experiments on PathFinder and PathX, using a similar setup as Gu et al.
(2021a), and use unidirectional models for the rest of our experiments.
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sCIFAR ListOps Text Retrieval Pathfinder PathX
Dense 𝐴 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) % %

Λ Real + Im 86.5 (0.1) 58.8 (0.3) 87.4 (0.3) 87.8 (0.5) % %

Λ Exp 85.4 (0.7) 60.5 (0.3) 86.5 (0.4) 89.4 (0.1) 65.4 (9.0) %

Λ Stable Exp 87.2 (0.4) 59.4 (0.3) 87.6 (0.3) 89.1 (0.2) 93.5 (0.5) %

+ Ring Init 88.1 (0.0) 59.4 (0.3) 89.4 (0.1) 90.1 (0.1) 94.4 (0.3) %

S4D (our reproduction) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)
S5 (our reproduction) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)
S4 (paper results) 91.1 59.6 86.8 90.9 94.2 96.4
S4D-LegS (paper results) 89.9 60.5 86.2 89.5 93.1 91.9
S5 (paper results) 90.1 62.2 89.3 91.4 95.3 98.6

Table 7 | Test accuracy of a linear diagonal complex RNNs under different parameterizations of the transition
matrix (see §3.2). Performance directly improves the results in Tb. 1, and showcases the advantage of exponen-
tial (polar) representation of Λ. In bold font is the best parameterization option for linear RNN blocks. Ring Init
denotes a changed initialization where 𝑟min and 𝑟max are tuned. Performance and Text and Retrieval task already
aligns with S4 results in the dense setting (c.f. Tb.1 with Tb. 3). No model with able to solve PathX, which requires
normalization (see Tb.3).

sCIFAR ListOps Text Retrieval Pathfinder PathX
Linear Dense RNN 72.2 (0.2) 50.4 (0.2) 89.1 (0.1) 89.1 (0.1) % %

Diagonal Complex RNN 86.5 (0.1) 58.8 (0.3) 87.4 (0.3) 87.8 (0.5) % %

Stable Exp Param w/ Ring Init 88.1 (0.0) 59.4 (0.3) 89.4 (0.1) 90.1 (0.1) 94.4 (0.3) %

[𝑟min, 𝑟max ] [0.9, 0.99] [0.0, 1.0] [0.0, 0.9] [0.5, 0.9] [0.9, 0.999]
+𝛾 Normalization (LRU) 89.0 (0.1) 60.2 (0.8) 89.4 (0.1) 89.9 (0.1) 95.1 (0.1) 94.2 (0.4)
[𝑟min, 𝑟max ] [0.9, 0.999] [0.0, 0.99] [0.5, 0.9] [0.5, 0.9] [0.9, 0.999] [0.999, 0.9999]

S4D (our reproduction) 91.5 (0.2) 60.2 (0.3) 86.4 (0.0) 89.5 (0.0) 94.2 (0.3) 97.5 (0.0)
S5 (our reproduction) 88.8 (0.1) 58.5 (0.3) 86.2 (0.1) 88.9 (0.0) 95.7 (0.1) 96.0 (0.1)
S4 (paper results) 91.1 59.6 86.8 90.9 94.2 96.4
S4D-LegS (paper results) 89.9 60.5 86.2 89.5 93.1 91.9
S5 (paper results) 90.1 62.2 89.3 91.4 95.3 98.6

Table 8 | Effects of normalization on linear diagonal RNNs with stable exponential parameterization (see §3.4). In
bold is our best performing model, and we report the closely matching deep SSM results below. Tunings for our
rings are also reported. Results showcase the advantage of taking initialization close to the unit circle under proper
𝛾 normalization. For PathX, we initialize eigenvalues to have a phase range of [0, 𝜋/10], for all other tasks we use
a range of [0, 2𝜋] (see §3.4).

D.2. General experimental details
We use AdamW as our optimizer (Loshchilov and Hutter, 2017). We use warmup for the learning rate, where
we start from a value of 10−7 and increase the learning rate linearly up a specified value for the first 10% of
training. This is followed by cosine annealing for the rest of training down to a value of 10−7.
We used a smaller learning rate for the RNN/SSM parameters 𝐴 and 𝐵. When using normalization in our RNNs,
we also used a smaller learning rate on the normalization parameter 𝛾. For our S5 and S4D baselines, we
used a smaller learning rate for the discretization step size Δ. This smaller learning rate was determined by
multiplying the base learning rate by a factor < 1 (See Tb.9 for the learning rate factor used for each task).
We use weight decay for all parameters except the RNN/SSM parameters 𝐴 and 𝐵 (and 𝛾 and Δ when applicable).
All experiments were carried out on accelerated hardware A100 GPUs.

D.3. Hyperparameters
We closely followed the hyperparameter settings of the S5 model Smith et al. (2022) for all our experiments,
with minimal additional tuning. For our S5 baseline, we tuned the model dimension 𝐻 and state dimension 𝑁,
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Task Depth 𝐻 𝑁 Iterations Batch size LR factor Weight Decay Dropout
sCIFAR 6 512 384 180k 50 0.25 0.05 0.1
ListOps 6 128 256 80k 32 0.5 0.05 0.0
Text 6 256 192 50k 32 0.1 0.05 0.1
Retrieval 6 128 256 100k 64 0.5 0.05 0.1
PathFinder 6 192 256 500k 64 0.25 0.05 0.0
PathX 6 128 256 250k 32 0.25 0.05 0.0

Table 9 | List of all the hyper-parameters used for each task for the LRU model.

and used the optimal values for the LRU model as well. For the S4D baseline, we also tuned 𝐻 and 𝑁. For all
our experiments, we tuned the base learning rate on a logarithmic grid of 2 to choose the optimal learning rate.
We present the hyperparameters we used for each LRU experiment in Tb.9.

D.4. Tasks
We use the 6 tasks in the Long Range Arena benchmark for our experiments (Tay et al., 2020), with the only
difference being we use colored sCIFAR images instead of the grayscale sCIFAR images used in LRA.

E. Theoretical insights
We provide here theoretical groundings for some observations made in §3. We start by showing in §E.1 that,
when interleaved with MLP blocks, stacked linear RNNs can model highly nonlinear dynamical systems. We
provide two separate views that justify our findings: in §E.1.1, we provide a spectral explanation, while in
§E.1.2 we present a function-space prespective. Our results, combined with the observation that nonlinear
RNNs are difficult to optimize (§E.2), provide a justification for the results in Tb. 1. Next, motivated by the
results in Tb. 3 we in discuss in the same section optimization of linear RNN blocks, and show that exponential
reparameterization can accelerate training.

E.1. Expressivity of linear RNN stacks
In our sequence-to-sequence setting, it is a natural to seek models which (at least in the width limit) are
able to map inputs 𝑢 to outputs 𝑦 (last layer) using a flexible nonlinear transition map 𝑇 learned from data.
Mathematically, a fully-expressive causal model should be able to approximate 𝑦𝑘 = 𝑇 (𝑢𝑘, 𝑢𝑘−1, . . . , 𝑢1), where 𝑇
is an arbitrary nonlinear map.

E.1.1. Spectral perspective

We show in this section how interleaving linear RNNs with MLPs in a deep architecture provides a flexible and
modular recipe for the approximation of nonlinear transition maps.

Spectral limitations of linear RNNs. It is a standard result (Li et al., 2022b) that linear RNNs can approximate
any shift-invariant linear map 𝑇. In continuous-time, on the spectral domain, this property is easier to study:
let 𝑌 (𝜔) and 𝑈 (𝜔) be the Fourier transforms for two continuous-time signals 𝑢, 𝑦 : ℝ → ℝ. If there exists a
function 𝐻 : ℝ→ ℝ such that 𝑌 (𝜔) = 𝐻 (𝜔)𝑈 (𝜔), then this can be approximated by a continuous-time linear
RNN ¤𝑥 = 𝐴𝑥 + 𝐵𝑢 for some coefficients 𝐴 ∈ ℝ𝑁×𝑁 , 𝐵 ∈ ℝ𝑁×1, and the approximation can be made arbitrarily
accurate as 𝑁 →∞. However, one thing a linear RNN cannot do is store information under frequencies which
are not present in the input signal: if the input is a sine wave of a certain frequency, the output will be a scaled
and shifted sine wave of the same frequency.

Spectral effects of interleaving with MLPs. In our architecture (Fig.1) an activation function, as well as a
linear position-wise layer, is placed right after each RNN output. As can be seen in Fig. 6, this operation causes
spectral leakage: information gets copied over different frequency components.
The behavior shown in Fig. 6 can be characterized exactly:
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Figure 6 | ReLU nonlinearity leaks information from the original signal to higher frequencies, as shown formally in
Prop. E.1.

Proposition E.1 (Spectral effect of ReLU). Let 𝑢 : ℝ→ ℝ be a continuous-time signal. Let 𝑃𝑖 be the 𝑖-th region
activated by the ReLU applied to 𝑢, and let us write 𝑃𝑖 = [𝑝𝑖 − 𝐿𝑖, 𝑝𝑖 + 𝐿𝑖]. Then

FReLU(𝑢) = F𝑢 (𝜔) ★
[∑︁

𝑖

2𝐿𝑖𝑒−𝑖𝜔𝑝𝑖sinc(𝜔𝐿𝑖)
]
. (8)

where F denotes the Fourier transform, ★ the convolution operation and sinc(𝑥) := sin(𝑥)/𝑥.

This result is simple to parse: the Fourier transform of a ReLU activated signal is equal to the Fourier transform
before the ReLU, convolved with a kernel which transports information to higher frequencies — an operation
which is impossible for linear RNNs, even as the width increases. As such, introducing an MLP completes
the list of requirements for approximations of a nonlinear transition map: frequencies can be scaled
up and down arbitrarily by the RNN, and can then be translated in the space using the ReLU. As depth
increases, these operations can be combined in a modular fashion, leading to highly nonlinear dynamics using
easy-to-learn linear blocks, interleaved with simple activations.
To conclude, we provide a proof for the proposition above.

Proof. Recall that multiplications in the time domain are convolutions in the frequency domain.
𝑢1 (𝑡) · 𝑢2 (𝑡) = F −1𝑈1 (𝑡) · F −1𝑈2 (𝑡) (9)

=

(∫ ∞

−∞
𝑈1 (𝜈)𝑒𝑖𝜈𝑡𝑑𝜈

)
·
(∫ ∞

−∞
𝑈2 (𝜉)𝑒𝑖𝜉𝑡𝑑𝜉

)
(10)

=
∫ ∞

−∞
𝑈1 (𝜈)

(∫ ∞

−∞
𝑈2 (𝜉)𝑒𝑖(𝜉+𝜈)𝑡𝑑𝜉

)
𝑑𝜈 (11)

=
∫ ∞

−∞
𝑈1 (𝜈)

(∫ ∞

−∞
𝑈2 (𝜔 − 𝜈)𝑒𝑖𝜔𝑡𝑑𝜔

)
𝑑𝜈 (12)

=
∫ ∞

−∞

(∫ ∞

−∞
𝑈1 (𝜈)𝑈2 (𝜔 − 𝜈)𝑑𝜈

)
𝑒𝑖𝜔𝑡𝑑𝜔 (13)

= F −1𝑈1★𝑈2 (𝑡). (14)

Let now 𝑢1 = 𝑢 and 𝑢2 = 𝜒(𝑢1 > 0), then 𝑢1 · 𝑢2 = ReLU(𝑢). Next, let 𝑃𝑖 be the 𝑖-th region activated by the ReLU,
and let us write 𝑃𝑖 = [𝑝𝑖 − 𝐿𝑖, 𝑝𝑖 + 𝐿𝑖]. We can write 𝜒(𝑢1 > 0) = ∑

𝑖 𝜒[𝑝𝑖−𝐿𝑖,𝑝𝑖+𝐿𝑖 ] .
Recall now the following basic properties:

1. F𝑥 (𝑡−𝑡0) (𝜔) = 𝑒−𝑖𝜔𝑡0F𝑥 (𝑡) (𝜔).
2. The Fourier transform of a rectangular pulse between −𝜏 and 𝜏 is 2𝜏 · sinc(𝜔𝜏), where sinc(𝑥) = sin(𝑥)/𝑥.

Therefore, we have
F𝜒[𝑝𝑖−𝐿𝑖 ,𝑝𝑖+𝐿𝑖 ] (𝜔) = 𝑒−𝑖𝜔𝑝𝑖F𝜒[−𝐿𝑖 ,𝐿𝑖 ] (𝜔) = 2𝐿𝑖𝑒−𝑖𝜔𝑝𝑖sinc(𝜔𝐿𝑖). (15)
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This concludes the proof:

FReLU(𝑢) = 𝑈 ★

[∑︁
𝑖

2𝐿𝑖𝑒−𝑖𝜔𝑝𝑖sinc(𝜔𝐿𝑖)
]
. (16)

�

E.1.2. Insights from Koopman operator theory

We show how Koopman operator theory (Koopman and Neumann, 1932), combined with recent advances in
dynamic mode decomposition (Kutz et al., 2016; Schmid, 2010; Williams et al., 2015), can provide a solid
theoretical foundation for understanding the class of functions that can be approximated by linear RNNs,
interleaved with MLPs. Our notation and results are based on Korda and Mezić (2018); Mauroy et al. (2020).

Basic theory. Consider a discrete-time nonlinear dynamical system 𝑥𝑘+1 = 𝑆(𝑥𝑘), where 𝑆 : ℝ𝑛 → ℝ𝑛 is a
sufficiently regular map. The Koopman operator K𝑆 for the dynamical system 𝑆 prescribes the evolution of any
observable (measurement) 𝑓 : ℝ𝑛 → ℂ:

(K𝑆 𝑓 ) (𝑥) := 𝑓 (𝑆(𝑥)). (17)
For instance, let us consider 𝑛 = 1 and the observable 𝑓 (𝑥) = sin(𝑥): the Koopman operator is the map that
takes sin(·) K𝑆↦→ sin(𝑆(·)), i.e. advances the measurement 𝑓 one step forward in time.
The crucial property of the Koopman operator is that it is linear and bounded (Mauroy et al., 2020): let 𝑓1, 𝑓2
be two observables, then

K𝑆 (𝛼 𝑓1 + 𝛽 𝑓2) (𝑥) = (𝛼 𝑓1 + 𝛽 𝑓2) (𝑆(𝑥)) (18)
= 𝛼 𝑓1 (𝑆(𝑥)) + 𝛽 𝑓2 (𝑆(𝑥)) (19)
= 𝛼(K𝑆 𝑓1) (𝑥) + 𝛽(K𝑆 𝑓2) (𝑥). (20)

If 𝑆 is regular enough, i.e. if the Hilbert space of observables can be chosen such that K only has point spectrum,
then the spectral theory of bounded linear operators in Hilbert spaces implies that K𝑆 is diagonalizable — i.e.
any observable 𝑓 can be expanded in terms of eigenfunctions of K𝑆, where the Koopman acts linearly. We
recall the definition: 𝜙𝜆 : ℂ𝑛 → ℂ is an eigenfunction of K𝑆 with eigenvalue 𝜆 ∈ ℂ if K𝑆𝜙𝜆 = 𝜆𝜙𝜆 — i.e if the
system measured on 𝜙 evolves linearly. Since the eigenfunctions of K𝑆 form a basis for 𝐿2, for any observable
𝑓 : ℂ𝑛 → ℂ, there exist complex numbers 𝜈1, 𝜈2, · · · such that one can write (Mauroy and Mezić, 2016)

K𝑆 𝑓 (𝑥) = K𝑆
©­«
∞∑︁
𝑗=1

𝜈 𝑗𝜙 𝑗
ª®¬ (𝑥) =

∞∑︁
𝑗=1

𝜆𝑘𝜈 𝑗𝜙 𝑗 (𝑥). (21)

Since also the identity measurement map 𝑥 ↦→ 𝑥 can be decomposed into eigenfunctions of K𝑆 coordinate-wise,
we have the following: assuming 𝑥𝑘+1 = 𝑆(𝑥𝑘), with 𝑥 ∈ ℝ𝑛, for any 𝑘 ∈ ℕ we have

𝑥𝑘 = 𝑉Λ𝑘Φ(𝑥0), (22)

where, with slight abuse of notation, Φ : ℝ𝑛 → ℂ∞ is a vector of functions with the 𝑗 coordinate defined as
(Φ) 𝑗 := 𝑥 ↦→ 𝜙 𝑗 (𝑥), and 𝑉 ∈ ℂ𝑛×∞ (often named the Koopman modes matrix) is the infinite dimensional matrix
such that, for the observable 𝑓𝑖 : 𝑥 ↦→ 𝑥𝑖, one has 𝑓𝑖 (𝑥) =

∑∞
𝑗=1 𝑉𝑖 𝑗𝜙 𝑗 (𝑥).

Basic Theory Summary. In essence, Koopman operator theory, provides the following guarantee: any suf-
ficiently regular nonlinear autonomous dynamical system can be made linear under a high-dimensional
nonlinear blow-up of the state-space. Sounds familiar? This is exactly what a wide MLP + Linear RNN
can do. Moreover, to take the system back to the original coordinate system, one just needs a linear projection
with matrix 𝑉. In practice, for identification and diagnosis of nonlinear systems (e.g. in machanical engineering),
this approach is used in a truncated version, where the finite class of dominant eigenfunctions is constructed
by using the dynamic mode decomposition (DMD) algorithm from Hermite Polynomials (Kaiser et al., 2021;
Schmid, 2010).
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Extension to nonlinear systems with inputs. Several options exist for extending Koopman operator theory
to systems with inputs (Kaiser et al., 2021; Korda and Mezić, 2020; Proctor et al., 2018; Surana, 2016). Here,
we briefly outline the approach of (Korda and Mezić, 2020). Let 𝑆 : ℝ𝑛×ℝ𝑚 → ℝ𝑛 be a nonlinear function which
evolves the state of the system as 𝑥𝑘+1 = 𝑆(𝑥𝑘, 𝑢𝑘), where (𝑢𝑘)∞𝑘=1 ∈ �2 (ℝ𝑚) is the input sequence. We wish to
take this nonlinear dynamical system with inputs to linear form in the infinite-dimensional space of observables
𝑓 of the form ℝ𝑛 × �2 (ℝ𝑚) → ℂ. Let L denote the left shift operator 𝑢 = (𝑢0, 𝑢1, . . . ) ↦→ L(𝑢) = (𝑢1, 𝑢2, . . . ),
then one can define the Koopman operator for any observable 𝑓 as follows:

K𝑆 𝑓 (𝑥, 𝑢) = 𝑓 (𝑆(𝑥, 𝑢0),L(𝑢)). (23)

This operator is again linear and bounded for regular enough 𝑆 (Korda and Mezić, 2020) — hence the analysis
in the autonomous setting carries out also in this case. In particular, using the notation in the last paragraph:

𝑥𝑘 = 𝑉Λ𝑘
(𝑥,𝑢)Φ(𝑥0, 𝑢), (24)

where Λ(𝑥,𝑢) is a diagonal complex infinite-dimensional matrix which contains the eigenvalues corresponding
to the eigenfunctions of the extended state Φ(𝑥0, 𝑢).

Implication for deep RNNs. In essence, Koopman operator theory, provides the following guarantee: any
regular nonlinear dynamical system is representable by a linear RNN after proper nonlinear reparameterization of
the inputs— which can be performed by an MLP. While we believe this connection is conceptually solid and
gives substantial insights into our architecture, a quantitative discussion would require substantial technical
efforts perhaps linked to recent contributions from the statistical learning community (Kostic et al., 2022).

E.2. Optimization of recurrent blocks
In this subsection we back-up some of our claims about optimization of linear RNNs with experimental findings
on toy examples. Our purpose is to confirm validity of our intuition outside the deep learning setting, without
architecture-dependent confounders: i.e on vanilla RNNs with one layer.

Recurrent nonlinearities slow down gradient descent. In §3 and §E.1 we showed how linear RNNs can be
used as elementary recurrent blocks for the purpose of modeling complex nonlinear dynamics when stacked in
deep architectures. Similarly, the results in (Li et al., 2022a) indicate that, to achieve S4 performance, one
can equivalently replace the recurrent core with a collection of convolutions parametrized by filters. While
a single-layer level, a (dense) RNNs (Eq.1) with tanh or sigmoid activation can express convolutions with
filters (Wang et al., 2022), the results in Tb. 1 (and Fig. 1(a) in Wang et al. (2022)) indicate an advantage on
test accuracy from dropping such nonlinearities in the recurrence — i.e. of making the RNN linear. Motivated
by this, in Fig. 7 we consider the problem of learning a single one-dimensional convolution kernel with a single
layer RNN, and compare performance of linear and tanh activations. The sequence length in this problem was
100, and our data consists in 32 input-output one-dimensional trajectories, where the output is the result of a
convolution with the kernel of elements ℎ𝑘 := 1

10 exp(−0.015 · 𝑘) cos(0.04 · 𝑘)2, which induces moderate-length
dependencies in the data (see bump in the kernel in Figure 7 at 𝑘 = 70). The 32 input sequences are generated
sampling random 𝑎, 𝑐 parameters on a range and have form sin(0.05 · 𝑎 · 𝑘) cos(0.05 · 𝑐 · 𝑘)2. Outputs are
generated by convolving each input by ℎ. Learning is performed using the Adam optimizer (Kingma and Ba,
2014) with standard momentum parameters.
Interestingly, already on this simple task, linear RNNs outperforms the tanh variant even after careful tuning of
the stepsize. While the input-output map the system had to approximate is linear (i.e. a convolution), this result
still indicates that on deep architectures, where the MLPs interleaving RNNs can quickly perform position-wise
nonlinearities lifting the function approximation class (see §E.1), linear RNNs are preferrable.

Benefits of exponential parameterization. Our experimental results in §3.3 indicete that linear RNN cores
can be more effectively learned under exponential parameterization of the eiganvalues: 𝜆 = exp(−𝜈 + 𝑖𝜃).
To understand the reason behind this phenomenon, we go back at the classical (hard) problem of learning
powers (Bengio et al., 1994), crucially linked with linear RNN models (see Eq. (4)). For a specific planted
solution 𝜆∗ = 𝜆∗𝑟 + 𝑖𝜆∗𝑖 = exp(−𝜈∗ + 𝑖𝜃∗), we consider the problem of minimizing the loss 𝐿(𝜆) = 1

2 |𝜆𝑘 − (𝜆∗)𝑘 |2,
where 𝑘 = 100 and 𝜆 is generated from two real parameters following standard ( real + imaginary) or
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Figure 7 | Learning with Adam a one-dimensional convolution with a length-100 kernel using a single-layer RNNs
with linear or tanh recurrent activations and 100-dimensional hidden state. Initialization is performed using
Glorot on all quantities for both options. For all learning rates in our grid, the linear variant is faster to converge.
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Figure 8 | Exponential parametrization helps when learning a single complex eigenvalue 𝜆∗ = exp(−𝜈∗ + 𝑖𝜃∗),
exponentiated 100 times. As 𝜆∗ gets close to the purely imaginary setting 𝜃∗ = 𝜋/2, the geometry of the loss
landscape under standard real+imaginary parametrization becomes suboptimal for the Adam optimizer, which
works best in the axis-aligned setting (exponential parametrization). In the plot, the square denotes initialization ,
while the star denotes the solution after 500 iterations.

exponential parameterization. Note that in this paragraph 𝜆∗ ∈ ℂ denotes the solution, not the complex
conjugate of 𝜆. In Fig. 8, we show that as the target phase 𝜃∗ approaches 𝜋/2 (i.e. 𝜆∗ gets close to the
imaginary axis), standard parameterization slows down learning, as the corresponding landscape gets non-axis-
aligned — a feature that does not match well the inner workings of the Adam optimizer16, which is a diagonal
preconditioner (Kingma and Ba, 2014). Instead, under exponential parameterization, the effects of phase and
magnitude parameters on the powers of 𝜆 are more efficiently decouped: for example, while the real part of
𝜆𝑘 is simply exp(−𝑘𝜈) using exponential parameterization, if standard parameterization is used, Re [

𝜆𝑘
] is a

function of both 𝜆𝑟 and 𝜆 𝑖. We noticed that the performance difference gets most pronounced when the system
has to learn how to “turn”: i.e. the initialization magnitude is correct, but the position on the complex plane
is not (this is the precise setting for Figure 8): while for standard parameterization changing the phase 𝜃∗

requires a careful balance between real and imaginary components, for exponential parameterization gradients
are fully aligned with the phase parameter. This makes the learning more flexible, a feature which we observed
necessary in our experiments on the Long Range Arena, see §3.3 and Tb.2.

E.3. On alternatives to using complex numbers
In this subsection, we show how to derive the canonical real form for a non-symmetric real-valued matrix 𝐴,
which we assume to be diagonalizable in the complex domain (always true up to arbitrary small perturbation
of the entries (Axler, 1997)). This derivation is classical and can be found in many textbooks under the context
of real Jordan form (more general), see e.g. Weintraub (2009). Here, we present a simplified discussion.
After diagonalizing 𝐴, we retrieve a set of purely real eigenvalues (each with multiplicity 1 up to vanishing
perturbations) with corresponding real eigenvectors, and pairs of complex conjugate eigenvalues, with corre-
sponding complex conjugate eigenvectors.

16For this problem, vanilla gradient descent cannot be effectively used as the landscape is highly non-convex, with challenging curvature
vanishing as |𝜆 | approaces 0.
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We recall a proof for the facts above: let ∗ denote the elementwise complex conjugate of any complex quantity.
This operation clearly commutes with multiplication. If 𝜆 ∈ ℂ is an eigenvalue of 𝐴 ∈ ℝ𝑁×𝑁 with eigenvector
𝑣 ∈ ℂ𝑁 , then since 𝐴 is real-valued we have 𝐴𝑣∗ = (𝐴∗𝑣)∗ = (𝐴𝑣)∗ = (𝜆𝑣)∗ = 𝜆∗𝑣∗. Hence, 𝜆∗ is an eigenvalue
with eigenvector 𝑣∗. This also shows that there always does exist a real eigenvector corresponding to each real
eigenvalue: let 𝑣 ∈ ℂ𝑁 be a complex eivengvector with real eigenvalue 𝜆, then 𝑣 + 𝑣∗ ∈ ℝ𝑁 is an eigenvector
with eigenvalue 𝜆 since, again using the fact that 𝐴 is real, 𝐴(𝑣 + 𝑣∗) = 𝐴𝑣 + 𝐴𝑣∗ = 𝐴𝑣 + (𝐴𝑣)∗ = 𝜆 (𝑣 + 𝑣∗) .
The action of 𝐴 on its real eigenvectors (with real eigenvalues) is trivial and analogous to the symmetric case —
this corresponds to a diagonal entry in the diagonalized version of 𝐴. For the subspaces spanned by complex
eigenvalues, the discussion is more interesting: let 𝜆, 𝜆∗ be a pair of conjugate eigenvalues with corresponding
eigenvectors 𝑣, 𝑣∗. Collect 𝑣, 𝑣∗ in a 𝑁 × 2 matrix 𝑉, then

𝐴𝑉 = 𝑉

(
𝜆 0
0 𝜆∗

)
=: 𝑉Λ (25)

Let us now choose a different real basis for the columns of 𝑉, the real and imaginary parts of 𝑣: 𝑉 = [Re(𝑣), Im(𝑣)].
Note that this is a basis, since 𝑣, 𝑣∗ are linearly independent and can be both written as (complex-weighted)
linear combination of real and imaginary parts of 𝑣. Now note that

𝐴 · Re(𝑣) = 1
2 𝐴(𝑣 + 𝑣∗)

=
1
2 (𝜆𝑣 + 𝜆

∗𝑣∗)
= Re(𝜆𝑣)
= Re [(Re(𝜆) + 𝑖Im(𝜆)) (Re(𝑣) + 𝑖Im(𝑣))]
= Re(𝜆)Re(𝑣) − Im(𝜆)Im(𝑣).

Similarly,

𝐴 · Im(𝑣) = 1
2 𝐴(𝑣 − 𝑣∗)

=
1
2 (𝜆𝑣 − 𝜆∗𝑣∗)

= Im(𝜆𝑣)
= Im [(Re(𝜆) + 𝑖Im(𝜆)) (Re(𝑣) + 𝑖Im(𝑣))]
= Re(𝜆)Im(𝑣) + Im(𝜆)Re(𝑣).

This shows that the action of 𝐴 on the new real basis 𝑉 is of simple form:

𝐴𝑉 = 𝑉

(Re(𝜆) −Im(𝜆)
Im(𝜆) Re(𝜆)

)
=: 𝑉Λ̃ (26)

This discussion shows that there exist a simple invertible change of basis (from 𝑉 to 𝑉 for all pairs of conjugate
eigenvalues) which makes takes the system back to a simple decomposition in the real domain, both in terms of
eigenvalues and eigenvectors — one simply has to replace all diagonal blocks of form Λ with 2 × 2 matrices Λ̃.
The careful reader might recognize that, in the resulting system, matrix multiplication for the 2 × 2 blocks
is algebraically equivalent to multiplication of the corresponding complex numbers. Hence, while complex
numbers are not per-se needed to find a simple representation of non-symmetric matrices, they are convenient
to work with since the matrix in Eq. (26) is structured: has 4 entries but can be represented using just two —
real and imaginary parts, exactly what a complex number stores in memory.
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F. Proofs
In this section we provide proofs for the propositions listed in the main paper.

F.1. Proof of Lemma 3.2
We provide here a proof for the following sampling lemma.
Lemma 3.2. Let 𝑢1, 𝑢2 be independent uniform random variables on the interval [0, 1]. Let 0 ≤ 𝑟min ≤ 𝑟max ≤ 1.
Compute 𝜈 = −1

2 log
(
𝑢1 (𝑟2max − 𝑟2min) + 𝑟2min

)
and 𝜃 = 2𝜋𝑢2. Then exp(−𝜈 + 𝑖𝜃) is uniformly distributed on the ring

in ℂ between circles of radii 𝑟min and 𝑟max.

Proof. First, note that one can sample phase and magnitude independently by symmetry of the target distribu-
tion. Phase sampling can trivially performed through scaling a uniform distribution.
Next, we consider sampling the magnitude. The area of the ring in between 𝑟min and 𝑟max is 𝜋(𝑟2max − 𝑟2min),
while the cumulative distribution function for the radius distribution is such that 𝐹𝑟 (𝑟min) = 0, 𝐹𝑟 (𝑟max) = 1 and
for 𝑟 ∈ [𝑟min, 𝑟max] we therefore have

𝐹(𝑟) = 𝑟2 − 𝑟2min
𝑟2max − 𝑟2min

. (27)

Under parametrization of 𝑟 using the exponential, 𝑟 = 𝑒−𝜈, one gets

𝐹(𝑟) = 𝑒−2𝜈 − 𝑟2min
𝑟2max − 𝑟2min

. (28)

Finally, we use the inverse sampling theorem (see e.g. Vogel (2002)): one can sample 𝜈 using the formula
𝜈 = 𝐹−1 (𝑢), where 𝑢 is uniform on [0, 1]. By setting

𝑢 =
𝑒−2𝜈 − 𝑟2min
𝑟2max − 𝑟2min

, (29)

we get
𝑒−2𝜈 = (𝑟2max − 𝑟2min)𝑢 + 𝑟2min, (30)

from which follows that 𝜈 = −1
2 log((𝑟2max − 𝑟2min)𝑢 + 𝑟2min). �

F.2. Proof of Proposition 3.3
Validity of this proposition is verified numerically in Figure 9.
Proposition 3.3 (Forward-pass blow-up). Let Λ be diagonal with eigenvalues sampled uniformly on the ring in
ℂ between circles of radii 𝑟min < 𝑟max < 1. Then, under constant or white-noise input and Glorot input projection,
we have that the squared norm of the state 𝑥𝑘 converges as 𝑘→∞ to the following quantity.

𝔼[‖𝑥∞‖22] =
1

𝑟2max − 𝑟2min
log

(
1 − 𝑟2min
1 − 𝑟2max

)
𝔼[‖𝐵𝑢‖22].

Proof. Assume first (most difficult case) that 𝑢𝑘 is constant, i.e. such that 𝐵𝑢𝑘 =: 𝑢 for all 𝑘. Then,

‖𝑥∞‖22 =
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑢∗𝑘−𝑚 (Λ𝑚)∗ Λ𝑛𝑢𝑘−𝑛 (31)

= 𝑢∗
[ ∞∑︁
𝑛=1

∞∑︁
𝑚=1
(Λ𝑚)∗ Λ𝑛

]
𝑢. (32)
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Figure 9 | Numerical simulation for gain formula derived in Proposition 3.3. Here we chose 𝑁 = 500, 𝐿 =
10𝑘 (sequence length) and plotted statistics for 10 runs with boxplot indicating median and (5,95) percentile.
Indicated in blue line is our prediction. The formula holds both for constant and random input, yet we notice that
it is more accurate in the random input setting.

Note that Λ = diag(𝜆1, . . . , 𝜆𝑁 ) is diagonal with equally distributed entries on the disk between radii 𝑟min and
𝑟max. One can then sample a generic entry 𝜆 using the change of variables formula for probabilities (Jeffreys,
1998) as follows (see also Lemma 3.2):

𝜆 = 𝑟
1
2 𝑒𝑖2𝜋𝜃, 𝑟 ∼ U[𝑟2min, 𝑟

2
max], 𝜃 ∼ U[0, 1], (33)

Where crucially 𝑟 and 𝜃 are independent. Let 𝕋 (𝑟min, 𝑟max) = {𝜆 ∈ ℂ : |𝜆 | ∈ [𝑟min, 𝑟max]}. We need to study the
following quantity:

𝔼𝜆∼𝕋 (𝑟min,𝑟max)

[ ∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝜆𝑛 (𝜆𝑚)∗
]
= 𝔼𝑟,𝜃

[ ∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑟
1
2 (𝑛+𝑚) 𝑒𝑖2𝜋(𝑛−𝑚)𝜃

]
(34)

=
∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝔼𝑟

[
𝑟
1
2 (𝑛+𝑚)

]
𝔼𝜃

[
𝑒𝑖2𝜋(𝑛−𝑚)𝜃

]
(35)

The expectation w.r.t 𝜃 is non-zero only if 𝑛 = 𝑚, therefore

𝔼𝜆∼𝕋 (𝑟min,𝑟max)

[ ∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝜆𝑛 (𝜆𝑚)∗
]
=
∞∑︁
𝑛=1

𝔼𝑟 [𝑟𝑛] (36)

= 𝔼𝑟

[ ∞∑︁
𝑛=1

𝑟𝑛

]
(37)

= 𝔼𝑟

[ 1
1 − 𝑟

]
(38)

=
1

𝑟2max − 𝑟2min

∫ 𝑟2max

𝑟2min

1
1 − 𝑟

𝑑𝑟 (39)

=
1

𝑟2max − 𝑟2min
(− log( |1 − 𝑟2max |) + log( |1 − 𝑟2min |)) (40)

=
1

𝑟2max − 𝑟2min
log

(
1 − 𝑟2min
1 − 𝑟2max

)
. (41)

The white noise input case is simpler. Let us start from ‖𝑥∞‖22 =
∑∞

𝑛=1
∑∞

𝑚=1 𝑢
∗
𝑘−𝑚 (𝐴𝑚)∗ 𝐴𝑛𝑢𝑘−𝑛. Now, we can

retrieve the single sum by the fact that 𝐴 is diagonal and 𝔼[𝑢∗𝑘−𝑚𝑢𝑘−𝑛] = 0 for 𝑚 ≠ 𝑛. The rest of the proof is
identical, and presented in the main paper for the one-simensional setting. �
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