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Abstract. We introduce a new data structuring paradigm in which operations can be performed
on a data structure not only in the present but also in the past. In this new paradigm, called
retroactive data structures, the historical sequence of operations performed on the data structure
is not fixed. The data structure allows arbitrary insertion and deletion of operations at arbitrary
times, subject only to consistency requirements. We initiate the study of retroactive data struc-
tures by formally defining the model and its variants. We prove that, unlike persistence, efficient
retroactivity is not always achievable. Thus, we present efficient retroactive data structures for
queues, doubly ended queues, priority queues, union-find, and decomposable search structures.

Categories and Subject Descriptors: E.1 [Data]: Data Structures; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Algorithms, Theory, Design, Performance
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1 Introduction

Suppose that we just discovered that an operation previously performed in a database
was erroneous (e.g., from a human mistake), and we need to change the operation.
In most existing systems, the only method to support these changes is to rollback
the state of the system to before the time in question and then re-execute all of the
operations from the modifications to the present. Such processing is wasteful, ineffi-
cient, and often unnecessary. In this article we introduce and develop the notion of
retroactive data structures, which are data structures that efficiently support mod-
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ifications to the historical sequence of operations performed on the structure. Such
modifications could take the form of retroactively inserting, deleting, or changing
one of the operations performed at a given time in the past on the data structure
in question.

After defining the model, we show that there is no general efficient transforma-
tion from nonretroactive structures into retroactive structures. We then turn to the
development of specific retroactive structures. For some classes of data structures
(commutative and invertible data structures, and data structures for decompos-
able search problems), we present general transformations to make data structures
efficiently retroactive. For other data structures where the dependency between
operations is stronger, efficient retroactivity requires the development of new tech-
niques. In particular, we present a retroactive heap that achieves optimal bounds.

1.1 Comparison to Persistence. The idea of retroactive data structures
is related at a high level to the classic notion of persistent data structures because
they both consider the notion of time, but otherwise they differ almost entirely.

A persistent data structure maintains several versions of a data structure, and
operations can be performed on one version to produce a new version. In its simplest
form, modifications can only be made to the last structure, thus creating a linear
relationship amongst the versions. In full persistence [Driscoll et al. 1989], an
operation can be performed on any past version to create a new version, thus
creating a tree structure of versions. Confluently persistent structures [Fiat and
Kaplan 2001] allow a new version to be created by merge-like operations on multiple
existing structures; thus the versions form a directed acyclic graph. The data
structuring techniques for persistence represent a substantial cost savings over the
näıve method of maintaining separate copies of all versions.

The key difference between persistent and retroactive data structures is that, in
persistent data structures, each version is treated as an unchangeable archive. Each
new version is dependent on the state of existing versions of the structure. However,
because existing versions are never changed, the dependence relationship between
two versions never changes. The user can view a past state of the structure, but
changes in the past state can only occur by forking off a new version from a past
state. Thus, the persistence paradigm is useful for maintaining archival versions of
a structure, but inappropriate for when changes must be made directly to the past
state of the structure.

In contrast, the retroactive model we define allows changes to be made directly
to previous versions. Because of the interdependence of versions, such a change can
radically affect the contents of all later versions. In effect we sever the relationship
between time as perceived by a data structure, and time as perceived by the user
of a data structure. Operations such as “Insert 42” now become “Insert at time 10
the operation ‘Insert 42’ ”.

1.2 Motivation. In a real-world environment, large systems processing many
transactions are commonplace. In such systems, there are many situations where
the need arises to alter the historical sequence of operations that were previously
performed on the system. We now suggest several applications where a retroactive
approach to data structures would help:
Transactions on Algorithms, Vol. V, No. N, Month 20YY.



Retroactive Data Structures · 3

Simple Error. Data was entered incorrectly. The data should be corrected and
all secondary effects of the data removed.

Security Breaches. Suppose some operations were discovered to have been ma-
liciously performed by an unauthorized user. It is particularly important in the
context of computer security not only to remove the malicious transactions, but
also to act as if the malicious operation never occurred. For example, if the in-
truder modified the password file, not only should we restore that file, but we
should also undo logins enabled by this modification.

Tainted Sources. In a situation where data enters a system from various auto-
mated devices, if one device is found to have malfunctioned, all of its transactions
are invalid over a period of time and must be retroactively removed. For example,
in a situation where many temperature readings from various weather stations are
reported to a central computer, if one weather station’s sensors are discovered to
be intermittently malfunctioning, we wish to remove all of the sensor readings from
the malfunctioning station because they are no longer reliable. Secondary effects
of the readings, such as averages, historical highs and lows, along with weather
predictions must be retroactively changed.

Disconnection. Continuing with the weather-station analogy of the previous para-
graph, suppose the transmission system for one weather station is damaged, but the
data is later recovered. We should then be able to retroactively enter the reports
from the weather station, and see the effects of the new data on, for example, the
current and past forecasts.

Online Protocols. In a standard client-server model, the server can be seen as
holding a data structure, and clients send update or query operations. When the
order of requests is important (e.g., Internet auctions), the users can send a times-
tamp along with their requests. In all fairness, the server should execute the oper-
ations in the order they were sent. If a request is delayed by the network, it should
be retroactively executed at the appropriate time in the past.

Settlements. In some cases it is mutually agreed upon by the parties involved to
change some past transaction and all of its effects. We cite one example of such a
settlement and describe how the traditional method of handing such settlements of-
ten fails in today’s systems. Suppose you have two charge cards from one company.
When a bill comes from one card, you pay the wrong account. Upon realizing the
mistake, you call customer service and reach a settlement in which the payment
is transferred into the correct account. Unfortunately, the next month, you are
charged a late fee for the late payment of the bill. You call customer service again,
and the late fee is removed as per the previous agreement. The next month, inter-
est from the (now removed) late fee appears on the bill. Once again you must call
customer service to fix the problem. This sequence of events is typical and results
from the system’s inability to retroactively change the destination of the payment.

Intentional Manipulation of the Past. In Orwell’s 1984 [1949], the protagonist’s
job was to change past editions of a newspaper to enable the government to effec-
tively control the past. “A number of the Times which might, because of changes
in political alignment, or mistaken prophecies uttered by Big Brother, have been
rewritten a dozen times still stood on the files bearing its original data, and no
other copy existed to contradict it.” [Orwell 1949, p. 37]

Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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While we may consider this to be inappropriate behavior for a government, in
many corporate settings, such behavior is commonplace. If the actions of an exec-
utive of the corporation are bringing negative publicity to a company, it may be
desirable to not only remove the executive from the company, but to purge the com-
panies past and present literature of references to this person, while maintaining
consistency amongst documents.

Version Control. Software such as Microsoft Word and CVS allow maintenance
of a version tree of documents. The software allows the user to look at historical
versions and to create new versions from them. When a mistake is discovered, it is
possible to rollback the documents involved to a previous version, and start again
from this version. However, in some situations, it would be useful if we could change
a previous version and then propagate these changes into future versions. For
example, suppose that there are many versions of documentation corresponding to
the many versions of a product, and all of these versions are available online for users
of the various versions. If an error is found in the documentation, we would like to be
able to change the error in the version where it was introduced, and have the change
automatically propagate into all of the documents containing the error (though
perhaps some later versions changed the erroneous text for other reasons, and thus
need not be changed). Although such changes could be propagated by brute-force
methods, a retroactive approach would be able to quickly make such changes, thus
leading to a new generation of generalized document life-cycle management tools.

Dynamization. Some static algorithms or data structures are constructed by per-
forming on some dynamic data structure a sequence of operations determined by the
input. For example, building the point-location data structure of Sarnak and Tarjan
[1986] consists of performing a sequence of insertions and deletions on a persistent
search tree. Specifically, the evolution of the search tree tracks the intersection
of the input with a vertical line that sweeps continuously from left to right; thus,
queries at a particular time in the persistent structure correspond to queries at a
particular horizontal coordinate. If we used full retroactivity instead of persistence,
we would have the ability to make changes to the search tree at arbitrary times,
which corresponds to dynamically changing the input that defined the sequence of
operations performed on the data structure. The best data structure for dynamic
planar point location [Goodrich and Tamassia 1991] uses O(log n log log n) amor-
tized time per query. Achieving dynamic planar point location in O(log n) time per
operation reduces to a problem in retroactive data structures, though this problem
is, so far, unsolved.1 More generally, retroactive data structures can help dynamize
static algorithms or data structures that use dynamic data structures.

1.3 Time is Not an Ordinary Dimension. One may think that the prob-
lem of retroactive data structures can be solved by adding one more dimension to

1This problem is indeed our original motivation for introducing the notion of retroactive data
structures. It is probably the same motivation that led Driscoll et al. [1989] to pose their open
problem: “(iii) Find a way to allow update operations that change many versions simultaneously.”
The particular case of modifying the versions corresponding to an interval of time (posed explicitly
as well) is equivalent to retroactivity if the operations have inverses (see Section 4). A similar idea
is suggested explicitly in Snoeyink’s survey on point location [1997, p. 566], where he asks “can
persistent data structures be made dynamic?”
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lifespan of element 2

lifespan of element 1

lifespan of element 3

lifespan of element 1

lifespan of element 4

lifespan of element 2

lifespan of element 3

lifespan of element 0

0 2 31

1 32 4

insert(1) insert(2) insert(3) insert(4)
delete−min

delete−min
delete−min

delete−min

delete−min
delete−min

delete−min
delete−min

insert(4)insert(3)insert(2)insert(1)insert(0)

time

lifespan of element 4

Insert(t=0,
  "insert(0)")

Fig. 1. A single insertion of an operation in a retroactive heap data structure (here, retroactively
inserting “insert(0)” at time t = 0) can change the outcome of every delete-min operation and the
lifespan of every element.

the structure under consideration. For example, in the case of a min-heap, it would
seem at first glance that we could create a two-dimensional variant of a heap, and
the problem would be solved. The idea is to assign the key values of items in the
heap to the y axis and use the x axis to represent time. In this representation, each
item in the heap is represented by a horizontal line segment. The left endpoint of
this segment represents the time at which an item is inserted into the heap and
the right endpoint represents when the item is removed. If the only operations
supported by the heap are insert() and delete-min(), then we have the additional
property that there are no points below the right endpoint of any segment because
only minimal items are removed from the heap. While this seems to be a clean
two-dimensional representation of a heap throughout time, retroactively adding
and removing an operation in the heap cannot simply be implemented by adding
or removing a line segment. In fact, the endpoints of all the segments could be
changed by inserting a single operation, as illustrated in Fig. 1.

Thus, while time can be drawn as a spatial dimension, this dimension is special in
that complicated dependencies may exist so that, when small changes are made to
some part of the diagram, changes may have to be made to the rest of the diagram.
Thus, traditional geometric and high-dimensional data structures cannot be used
directly to solve most retroactive data-structure problems. New techniques must
be introduced to create retroactive data structures, without explicitly storing every
state of the structure.

1.4 Outline. The rest of the article proceeds as follows. In Section 2, we
further develop the model of retroactive data structures and explore the possi-
ble variants on the model. Next, Section 3 considers some basic problems about
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retroactivity, proving separations among the model variations and proving that au-
tomatic efficient retroactivity is impossible in general. In Section 4, we present
two general transformations to construct an efficient retroactive version of a data
structure, one for commutative invertible operations and one for any decomposable
search problem. Finally, in Section 5, we discuss specific data structures for which
we propose to create efficient retroactive structures. Table I in Section 5 gives a
partial summary of the results obtained.

2 Definitions

In this section, we define the precise operations that we generally desire from a
retroactive data structure.

2.1 Partial Retroactivity. Any data structural problem can be reformu-
lated in the retroactive setting. In general, the data structure involves a sequence
of updates and queries made over time. We define the list U = [ut1 , . . . , utm ] of
updates performed on the data structure, where uti is the operation performed at
time ti, and t1 < t2 < · · · < tm. (We assume that there is at most one operation
performed at any given time).

The data structure is partially retroactive if, in addition to supporting updates
and queries on the “current state” of the data structure (present time), it supports
insertion and deletion of updates at past times as well. In other words, there are
two operations of interest:

(1) Insert(t, u): Insert into U a new update operation u at time t (assuming that
no operation already exists at time t).

(2) Delete(t): Delete the past update operation ut from the sequence U of updates
(assuming such an operation exists).

Thus, the retroactive versions of standard insert(x) and delete(x) operations are
Insert(t, “insert(x)”), Insert(t, “delete(x)”), and Delete(t), where t represents a
moment in time. For example, if ti−1 < t < ti, Insert(t, “insert(x)”) creates a
new operation u = insert(x), which inserts a specified element x, and modifies
history to suppose that operation u occurred between operations uti−1 and uti in
the past. Informally, we are traveling back in time to a prior state of the data
structure, introducing or preventing an update at that time, and then returning to
the present time.

All such retroactive changes on the operational history of the data structure po-
tentially affect all existing operations between the time of modification and the
present time. Particularly interesting is the (common) case in which local changes
propagate in effect to produce radically different perceived states of the data struc-
ture. The challenge is to realize these perceived differences extremely efficiently by
implicit representations.

2.2 Full Retroactivity. The definitions just presented capture only a par-
tial notion of retroactivity: the ability to insert or delete update operations in the
past, and to view the effects at the present time. Informally, we can travel back in
time to modify the past, but we cannot directly observe the past. A data structure
is fully retroactive if, in addition to allowing updates in the past, it can answer
Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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queries about the past. In some sense, this can be seen as making a partially
retroactive version of a persistent version of the original structure. Thus, the stan-
dard search(x) operation, which finds an element x in the data structure, becomes
Query(t, “search(x)”), which finds the element x in the state of the data structure
at time t.

2.3 Running Times. When expressing the running times of retroactive data
structures, we will use m for the total number of updates performed in the structure
(retroactive or not), r for the number of updates before which the retroactive oper-
ation is to be performed (i.e., tm−r < t ≤ tm−r+1), and n for the maximum number
of elements present in the structure at any single time. Most running times in this
article are expressed in terms of m, but in many cases, it is possible to improve the
data structures to express the running time of operations in terms of n and r, so
that retroactive operations performed at a time closer to the present are executed
faster.

2.4 Consistency. We assume that only valid retroactive operations are per-
formed. For example, in a retroactive dictionary, a delete(k) operation for a key k
must always appear after a corresponding insert(k) in the list U ; and in a retroac-
tive stack, the number of push() operations is always larger than the number of
pop() operations for any prefix of U . The retroactive data structures we describe
in this article will not check the validity of retroactive updates, but it is often easy
to create a data structure to verify the validity of a retroactive operation.

3 General Theory

The goal of this research is to design retroactive structures for abstract data types
with performance similar to their nonretroactive counterparts. This section consid-
ers some of the most general problems concerning when this is possible.

Unless stated otherwise, our data structures use the RAM model of compu-
tation (or Real RAM when real values are used), and sometimes work in the
pointer-machine model [Tarjan 1979] as well. Our lower bounds use the history-
dependent algebraic-computation-tree model [Frandsena et al. 2001] or the cell-
probe model [Yao 1981].

3.1 Automatic Retroactivity. A natural question in this area is the fol-
lowing: is there a general technique for converting any data structure in, for exam-
ple, the pointer-machine model into an efficient partially retroactive data structure?
Such a general technique would nicely complement existing methods for making
data structures persistent [Driscoll et al. 1989; Fiat and Kaplan 2001]. As described
in the Introduction, retroactivity is fundamentally different from persistence, and
known techniques do not apply.

One simple approach to this general problem is the rollback method. Here we store
as auxiliary information all changes to the data structure made by each operation
such that every change could be reversed. (For example, to enable rollback of a
memory-write operation, we store the value that was previously at the address.)
For operations in the present, the data structure proceeds as normal, modulo some
extra logging. When the user requests a retroactive change at a past time t with
tm−r < t < tm−r+1, the data structure rollsback all changes made by operations
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um, . . . , um−r+1, then applies the retroactive change as if it were the present, and
finally reperforms all operations um−r+1, . . . , um. Notice that these reperformances
may act differently from how the operations were performed before, depending
on the retroactive change. Because the changes made to the data structure are
bounded by the time taken by the operations, a straightforward analysis proves the
following theorem:

Theorem 1. Given any RAM data structure that performs a collection of oper-
ations each in T (n) worst-case time, there is a corresponding partially retroactive
data structure that supports the same operations in O(T (n)) time, and supports
retroactive versions of those operations in O(rT (n)) time.

The rollback method is widely used in database management systems (see e.g.
Ramakrishnan and Gehrke [2002]) and robust file systems for concurrency control
and crash recovery. It has also been studied in the data structures literature under
the name of unlimited undo or backtracking [Mannila and Ukkonen 1986; Westbrook
and Tarjan 1989].

Of course, this result, as well as its extension to operations with nonuniform
costs, is far too inefficient for applications where r can be n or even larger—the
total number m of operations performed on the data structure. A natural goal is
to reduce the dependence on r in the running time of retroactive operations. We
show that this is not possible in the history-dependent algebraic-computation-tree
model [Frandsena et al. 2001], a generalization of the algebraic-computation-tree
model in which nodes can branch based on any finite-arity arithmetic predicate and
in which the entire tree of an operation can depend on the branches in all previous
operations. As a result, all lower bounds in this model carry over to the real-RAM
model, straight-line-program model, and algebraic-computation-tree model, as well.
The result also applies to the integer-RAM model, which allows indirect addressing
into an array by computed values, and the generalized real-RAM model, which
allows any piecewise-continuous function as an atomic operation; see Frandsena
et al. [2001].

Theorem 2. There exists a data structure in the straight-line-program model
that supports updates and queries in O(1) time per operation, but any partially
retroactive data structure for the same operations requires Ω(r) time for either up-
dates or queries, both worst case and amortized, in the history-dependent algebraic-
computation-tree model, integer-RAM model, and generalized real-RAM model.

Proof. The data structure maintains two values X and Y , initially 0, and sup-
ports the updates addX(c) and addY(c), which add the value c to the value X or
Y , respectively, and mulXY(), which multiplies Y by X and stores the resulting
value in Y . Queries return the value of Y .

Consider the following sequence of m = 2n + 1 operations:

[addY(an), mulXY(), addY(an−1), mulXY(), . . . , mulXY(), addY(a0)].

At the end of the sequence, X = 0 and Y = 0. We then retroactively insert
the operation “addX(x)” at the very beginning of the sequence. The value of
Y is now a0 + a1x + a2x

2 + · · · + anxn, which is a polynomial of degree n in x
with arbitrary coefficients. Computation of that polynomial for a given value of x

Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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requires Ω(n) arithmetic operations over any infinite field, even if x is restricted to
come from any infinite subset of that field (e.g., the integers). This lower bound
holds regardless of time or space spent preprocessing the ai’s, in the worst case
in the history-dependent algebraic-computation-tree model [Frandsena et al. 2001].
(The special case of this lower bound for the straight-line-program model is known
as Motzkin’s Theorem [Strassen 1990].) The same result holds in the integer-RAM
and generalized real-RAM model [Frandsena et al. 2001]. Thus, the retroactive
insertion of the addX(x) operation, followed by a query in the present, requires
Ω(n) time. Because this retroactive modification and query can be repeated an
arbitrary number of times, and each modification–query pair has the same lower
bound, the lower bound also applies to amortized data structures.

A somewhat weaker lower bound also holds on the more powerful cell-probe
model. This lower bound also carries over to the word-RAM model with w-bit
words for any w ≥ log2 n, and to the pointer-machine model supporting arithmetic
(but not random access) on w-bit words.

Theorem 3. There exists a data structure supporting updates and queries in
O(1) time per operation in the word-RAM model, and in O(log n) time per operation
in the pointer-machine model, but any partially retroactive data structure for the
same operations requires Ω(

√
r/ log r) amortized time for either updates or queries

in the cell-probe model with cells consisting of at least log2 n bits.

Proof. The data structure maintains a vector of m = O(n) words w1, w2, . . . , wm,
initially 0, and supports updates of the form wi ← x and wi ← wj ◦ wk, for a
specified word value x, a specified operator ◦ of either addition or multiplication,
and specified i, j, k ∈ {1, 2, . . . ,m}. Queries return the value of wi for a specified
i ∈ {1, 2, . . . ,m}.

Using an O(n log n)-time O(n)-space Fast Fourier Transform algorithm for the
discrete Fourier transform and its inverse, we can construct a sequence of O(n log n)
updates so that, if we execute the sequence when the values of the first 2n words are
currently 〈v1, v2, . . . , v2n〉, then, after the sequence execution, the values v1, v2, . . . ,
v2n−1 of the first 2n−1 words form the convolution 〈v′1, v′2, . . . , v′2n−1〉 = 〈v1, v2, . . . ,
vn〉 ⊗ 〈vn+1, vn+2, . . . , v2n〉, namely, v′i =

∑
j+k=i vjvk. We start with this update

sequence as the retroactive operation sequence; the resulting first 2n−1 word values
are all 0. Then we retroactively add updates of the form wi ← x to before this
operation sequence (so r = Θ(n log n)), and make queries in the present about
values of the wi’s. The problem then becomes dynamic convolution as defined by
Frandsena et al. [2001], which has a lower bound of Ω(

√
n) in the cell-probe model.

The theorem follows because Ω(
√

n) = Ω(
√

r/ log r).

3.2 From Partial to Full Retroactivity. A natural question about
the two versions of retroactivity is whether partial retroactivity is indeed easier to
support than full retroactivity. In other words, is it easier to answer queries only
about the present? We first give a partial answer:

Theorem 4. In the cell-probe model, there exists a data structure supporting
partially retroactive updates in O(1) time, but fully retroactive queries of the past
require Ω(log n) time.

Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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Proof. The data structure is for the following problem: maintain a set of num-
bers subject to the update insert(c), which adds a number c to the set, and the
query sum() which reports the sum of all of the numbers. For this problem, the
only retroactive update operations are Insert(t, “insert(c)”) and Delete(t), whose
effects on queries about the present are to add or subtract a number to the current
aggregate. Thus, a simple data structure solves partially retroactive updates in
O(1) time per operation. In contrast, to support queries at arbitrary times, we
need both to remember the order of update operations and to support arbitrary
prefix sums. Thus, we obtain a lower bound of Ω(log n) in the cell-probe model by
a reduction from dynamic prefix sums [Pǎtraşcu and Demaine 2004].

On the other hand, we can show that it is always possible, at some cost, to
convert a partially retroactive data structure into a fully retroactive one:

Theorem 5. Any partially retroactive data structure in the pointer-machine
model with constant indegree, supporting T (m)-time retroactive updates and Q(m)-
time queries about the present, can be transformed into a fully retroactive data
structure with amortized O(

√
m T (m))-time retroactive updates and O(

√
m T (m)+

Q(m))-time fully retroactive queries using O(mT (m)) space.

Proof. We define
√

m checkpoints t1, . . . , t√m such that at most (3/2)
√

m oper-
ations have occurred between consecutive checkpoints, and maintain

√
m versions

of the partially retroactive data structure D1, . . . , D√
m, where the structure Di

only contains updates that occurred before time ti. We also store the entire se-
quence of updates. When a retroactive update is performed for time t, we perform
the update on all structures Di such that ti > t. When a retroactive query is made
at time t, we find the largest i such that t ≥ ti, and perform on Di all updates that
occurred between times ti and t, storing information about these updates for later
rollback as in Theorem 1. We then perform the query on the resulting structure.
Finally, we rollback the updates to restore the initial state of the structure Di.

Because the data structures Di have constant indegree, we can use persistent
data structures [Driscoll et al. 1989] to reduce the space usage. Given a sequence of
m operations, we perform the sequence on a fully persistent version of the partially
retroactive data structure, and keep a pointer Di to the version obtained after
the first i

√
m operations for i = 1, . . . ,

√
m. The retroactive updates branch off a

new version of the data structure for each modified Di. After
√

m/2 retroactive
updates have been performed, we rebuild the entire structure in time O(mT (m)),
adding an amortized cost of O(

√
mT (m)) per operation. This will ensure that

the number of updates between any two checkpoints is always between
√

m/2 and
3
√

m/2. The resulting data structure will have the claimed running times. The
fully persistent version of the partially retroactive data structure after a rebuild will
use at most O(mT (m)) space because it can use at most one unit of space for each
computational step. The data structure will perform at most

√
m/2 retroactive

updates between two rebuilds, each using at most O(
√

m T (m)) time and extra
space, and so the space used by the fully retroactive data structure will never
exceed O(mT (m)).
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4 Transformable Structures

In this section, we present some general transformations to make data structures
partially or fully retroactive for several easy classes of problems.

4.1 Commutative Operations. To highlight the difficult case of nonlocal
effects, we define the notion of commutative operations. A set of operation types is
commutative if the state of the data structure resulting from a sequence of opera-
tions is independent of the order of those operations.

If a data structure has a commutative set of operations, performing an operation
at any point in the past has the same effect as performing it in the present, so we
have the following lemma:

Lemma 1. Any data structure supporting a commutative set of operations allows
the retroactive insertion of operations in the past (and queries in the present) at no
additional asymptotic cost.

We say that a set of operations is invertible if, for every operation u, there is
another operation u′ that negates the effects of operation u, that is, the sequence
of operations [u, u′] doesn’t change the state of the data structure.

Lemma 2. Any data structure supporting a commutative and invertible set of
operations can be made partially retroactive at no additional asymptotic cost.

For example, a data structure for searchable dynamic partial sums [Raman et al.
2001] maintains an array A[1..n] of values, where sum(i) returns the sum of the first
i elements of the array, search(j) returns the smallest i such that sum(i) ≥ j, and
update(i, c) adds the value c to A[i]. The state of the data structure at the present
time is clearly independent of the order of update operations, so it is commutative.
Any operation update(i, c) is negated by the operation update(i,−c), so the updates
are also invertible, and so any data structure for searchable dynamic partial sums
is automatically partially retroactive.

An important class of commutative data structures are for searching problems.
The goal is to maintain a set S of objects under insertion and deletion operations,
so that we can efficiently answer queries Q(x, S) that ask some relation of a new
object x with the set S. Because a set S is by definition unordered, the set of
operations for a searching problem is commutative, given that the subsequence of
operations involving the same object always starts with an insertion and alternates
between insertions and deletions. As long as the retroactive updates do not violate
this consistency condition, we have the next lemma:

Lemma 3. Any data structure for a searching problem can be made partially
retroactive at no additional asymptotic cost.

For example, not only dictionary structures, but also dynamic convex hull or
planar width data structures, can be stated as searching problems and are thus
automatically partially retroactive. Note that these results can also be combined
with Theorem 5 to obtain fully retroactive data structures.

4.2 Decomposable Searching Problems. A searching problem maintains
a set S of objects subject to queries Q(x, S) that ask some relation of a new object
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x with the set S. We already saw in Lemma 3 that data structures for searching
problems are automatically partially retroactive. A searching problem is decom-
posable if there is a binary operator 2 computable in constant time such that
Q(x,A ∪ B) = 2(Q(x,A), Q(x,B)). Decomposable searching problems have been
studied extensively by Bentley and Saxe [1980]. In particular, they show how to
transform a static data structure for such a problem into an efficient dynamic one.
In this section, we show that data structures for decomposable searching problems
can also be made fully retroactive.

Theorem 6. Any data structure for a decomposable searching problem support-
ing insertions, deletions, and queries in time T (n) and space S(n) can be trans-
formed into a fully retroactive data structure with all operations taking time O(T (m))
if T (m) = Ω(nε) for some ε > 0, or O(T (m) log m) otherwise. The space used is
O(S(m) log m).

Proof. Every element that was ever inserted in the data structure can be rep-
resented by a segment on the timeline between its insertion time and deletion time
(or present time if it wasn’t deleted). We maintain a segment tree [Bentley 1977],
which is a balanced binary tree where the leaves correspond to the elementary inter-
vals between consecutive endpoints of the segments, and internal nodes correspond
to the union of the intervals of their children. Each segment is thus represented as
the union of O(log m) intervals, each represented by one node of the tree, and each
node of the tree will contain the set of segments it represents. For each node, we
maintain that set in a data structure supporting the desired queries. Each retroac-
tive update affects at most O(log m) of those data structures. Given a point t on
the timeline, the set of segments containing this point can be expressed as the union
of O(log m) sets from as many nodes. For a retroactive query Query(t, x), we query
x in each of the O(log m) sets and compose the global result using the 2 operator.
If T (m) = Ω(nε), then the query and update times for a retroactive operation form
a geometric progression and the total time is O(T (n)), otherwise, the total time is
O(T (m) log m).

For example, dictionaries, dynamic point location, and nearest-neighbor query
data structures solve decomposable searching problems and thus can be made fully
retroactive. Of course, in many cases, it will be possible to improve the fully retroac-
tive data structures obtained through the application of Theorem 6. For example,
any comparison-based dictionary where only exact search queries are performed
can be made fully retroactive by storing with each key the times at which it was
present in the structure. The resulting data structure will use O(m) space and all
operations can be performed in O(log m) time, a log m factor improvement in both
time and space over the straightforward application of Theorem 6.

In other cases, however, improving upon the structures obtained from Theorem 6
seems rather difficult, as, for example, with the dictionary problem allowing pre-
decessor and successor queries. Indeed, we can view it as a geometric problem in
which we maintain a set of horizontal line segments, where the y coordinate of
each line segment is the element’s key and the x extent of the line segment is the
element’s lifetime. A faster retroactive data structure would immediately result in
a faster data structure for dynamic planar point location for orthogonal regions,
Transactions on Algorithms, Vol. V, No. N, Month 20YY.
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which may also play a role in general dynamic planar point location. In fact, this
retroactive approach is hinted at as a research direction for dynamic planar point
location by Snoeyink [1997, p. 566].

5 Maintaining the Timeline

We showed in Section 3.1 that no general technique can turn every data structure
into an efficient retroactive counterpart. This suggests that in order to obtain
efficient data structures, we need to study different abstract data types separately.
In this section, we show how to construct retroactive data structures by maintaining
a structure on top of the sequence U of update operations (the timeline). Table I
gives a partial summary of our results.

Abstract Partially Fully
Data Type Retroactive Retroactive

dictionary (exact) O(log m) O(log m)
dictionary (successor) O(log m) O(log2 m)

queue O(1) O(log m)
stack O(log m) O(log m)
deque O(log m) O(log m)

union-find O(log m) O(log m)
priority queue O(log m) O(

√
m log m)

Table I. Running times for retroactive versions of a few common data structures. Here, m is the
number of operations.

In the following, we assume that the sequence U is maintained in a doubly linked
list, and that when a retroactive operation is performed at time t, a pointer to
the operation following time t in U is provided (e.g., such a pointer could have
been stored during a previous operation). In the case where the pointer is not
provided, it could easily be found in O(log m) time by maintaining a binary search
tree indexed by time on top of U .

5.1 Queues. A queue supports two update operations enqueue(x) and de-
queue(), and two query operations: front(), which returns the next element to be
dequeued; and back(), which returns the last element enqueued. Here we describe
two data structure, one partially and one fully retroactive, that thus support the
update operations Insert(t, “enqueue(x)”), Insert(t, “dequeue()”), Delete(t), as well
as queries, Query(t, “front()”), and Query(t, “back()”). The partially retroactive
data structure will only allow queries at the present time.

Lemma 4. There exists a partially retroactive queue data structure with all retroac-
tive updates and present-time queries taking O(1) time.

Proof. The data structure maintains the enqueue operations ordered by time
in a doubly linked list, and two pointers: B will point to the last enqueued element
in the sequence, and F to the next element to be dequeued. When an enqueue
is retroactively inserted, it is inserted into the list. Then, if it occurs before the
operation pointed to by F , we move that pointer to its predecessor. When an
enqueue is removed, we remove it from the list. Furthermore, if it occurs before the
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operation pointed by F , we move that pointer to its successor. When a dequeue,
retroactive or not, is performed, we move the front pointer to its successor, and
when a dequeue is removed, we move the front pointer to its predecessor. The
B pointer is only updated when we add an enqueue operation at the end of the
list. The front() and back() operations return the items pointed by F and B,
respectively.

Lemma 5. There exists a fully retroactive queue data structure with all retroac-
tive operations taking time O(log m) and present-time operations taking O(1) time.

Proof. We maintain two order-statistic trees Te and Td [Cormen et al. 2001,
Section 14.1]. The tree Te stores the enqueue(x) operations sorted by time, and
the Td stores the dequeue() operations sorted by time. The update operations can
then be implemented directly in time O(log m), where m is the size of the operation
sequence currently stored.

The Query(t, “front()”) operation is implemented by querying Td to determine
the number d of dequeue() operations performed at or before time t. The operation
then returns the item in Te with time rank d+1. The Query(t, “back()”) operation
uses te to determine the number e of enqueue() operations that were performed at
or before time t, and simply returns the item in Te with time rank e. Thus, both
queries can executed in time O(log m).

Using balanced search trees supporting updates in worst-case constant time [Fleis-
cher 1996], and by maintaining pointers into the trees to the current front and back
of the queues, updates and queries at the current time can be supported in O(1)
time.

5.2 Doubly Ended Queues. A doubly ended queue (deque) maintains a list
of elements and supports four update operations: pushL(x), popL() which inserts or
deletes an element at the left endpoint of the list, pushR(x), popR(), which inserts
or deletes an element at the right endpoint of the list, and two query operations
left() and right() that return the leftmost or rightmost element in the list. The
deque generalizes both the queue and stack.

Theorem 7. There exists a fully retroactive deque data structure with all retroac-
tive operations taking time O(log m) and present-time operations taking O(1) time.

Proof. In a standard implementation of a deque in an array A, we initialize
variables L = 1 and R = 0. Then a pushR(x) operation increments R and places
x in A[R], popR() decrements R, pushL(x) decrements L and places x in A[L],
and popL() increments L. The operation left() returns A[L] and operation right()
returns A[R].

In our retroactive implementation of a deque, we also maintain L and R: if we
maintain all pushR(x) and popR() operations in a linked list UR sorted by increasing
time and associate a weight of +1 to each pushR(x) operation and a weight of −1
to each popR(), then R at time t can be calculated as a weighted sum of a prefix
of the list up to time t. The same can be done for L, maintaining the list UL, and
reversing the weights.

The values of sums for all prefixes of UR can be maintained in the modified (a, b)-
tree of Fleischer [1996] with elements of the list as leaves. In every node of the tree,
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we store the sum r of UR values within the subtree rooted at that node. Thus the
sum of the r values of nodes hanging left of a path from the root to a leaf is the
sum of the prefix of UR up to that leaf. After inserting an element with weight c
in the list and in the tree, we set the r value in the leaf to c and walk along the
path to the root, adding c to the r of all right siblings along the path. Deletions
are processed symmetrically.

Finally, we have to describe how to extract A[i] from the data structure, where
i = R at time t. For this, we augment each node of the tree with two values
containing the minimum and maximum prefix sum values for all the leaves in its
subtree. Note that these values can also be maintained after insertions and deletions
by adding c to them whenever c is added to the r value of the same node, and
updating them if an insertion occurs in their subtree.

To find the contents of A[i] at time t, we find the last time t′ ≤ t when R had
value i. This can be done by finding the last operation in UR before time t, walking
up the tree, and walking back down the rightmost subtree for which i is between
the minimum and maximum values. The same is done for UL.

5.3 Union-Find. A union-find data structure [Tarjan 1975] maintains an
equivalence relation on a set S of distinct elements, that is, a partition of S into
disjoint subsets (i.e., equivalence classes). The operation create(a) creates a new
element a in S, with its own equivalence class, union(a, b) merges the two sets that
contain a and b, and find(a) returns a unique representative element for the class
of a. Note that the representative might be different after each update, so the only
use of find(a) is to determine whether multiple elements are in the same class. The
union-find structure can be made fully retroactive, but to simplify the discussion,
we replace the find(a) operation by a sameset(a, b) operation which determines
whether a and b are in the same equivalence class.

Theorem 8. There exists a fully retroactive union-sameset data structure sup-
porting all operations in O(log m) time.

Proof. The equivalence relation can be represented by a forest where each
equivalence class corresponds to a tree in the forest. The create(a) operation con-
structs a new tree in the forest with a unique node a, sameset(a, b) determines
whether the root of the trees of a and b are the same, and union(a, b) assumes that
a and b are not in the same tree, sets b as the root of the tree that contains it, and
creates an edge between a and b. Such a forest can be maintained in O(log m) time
per operation using the link-cut trees of Sleator and Tarjan [1983], which maintain
a forest and support the creation and deletion of nodes, edges, and the changing of
the root of a tree.

In order to support retroactive operations, we modify the aforementioned struc-
ture by adding to each edge the time at which it was created. The link-cut tree
structure also allows finding the maximum edge value on a path between two nodes.
To determine whether two nodes are in the same set at time t, we just have to verify
that the maximum edge time on the path from a to b is no larger than t.

5.4 Priority Queues. More sophisticated than queues, stacks, and deques
is the priority queue which supports operations: insert(k) which inserts an element
with key value k, delete-min() which deletes the element with smallest key, and
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the query find-min() which reports the current minimum-key element. The delete-
min() operation is particularly interesting here because of its dependence on all
operations in the past: which element gets deleted depends on the set of elements
when the operation is executed. More precisely, it is delete-min() that makes the
set of operations noncommutative.

Priority queues seem substantially more challenging than queues and stacks.
Fig. 1 shows an example of the major nonlocal effects caused by a minor modi-
fication to the past in a priority queue. In particular, in this example, the lifetime
of all elements change because of a single Insert(t, “insert(k)”) operation. Such cas-
cading effects need to be succinctly represented in order to avoid the cost inherent
to any explicit maintenance of element lifetimes.

Without loss of generality, we assume that all key values inserted in the structure
are distinct. Let tk denote the insertion time of key k, and let dk denote its deletion
time. Let Qt be the set of elements contained in the priority queue at time t, and let
Qnow be the set of elements in the queue at the present time. Let I≥t = {k | tk ≥ t}
be the set of keys inserted after time t, and let D≥t = {k /∈ Qnow | dk ≥ t} be the
set of keys deleted after time t.

In order to construct a retroactive priority queue, we need to learn more about
the structure of the problem. For this, we represent a sequence of updates by a
planar figure where the x axis represents time, and the y axis represents key values.
In this representation, each item k in the heap is represented by a horizontal line
segment. The left endpoint (tk, k) of this segment represents the time at which an
item is inserted into the heap and the right endpoint (dk, k) represents when the
item is removed. Similarly, a delete-min() operation is represented by a vertical ray
shooting from y = −∞ and stopping at the intersection with the horizontal segment
representing the element it deletes. Thus, insert(k) operations paired with their
corresponding delete-min() are together represented by upside-down “L” shapes,
and no two “L”s intersect, while elements still in the structure at the present time
(i.e., in Qnow) are represented by horizontal rays. See Fig. 2.

One obvious invariant of a priority queue data structure is that the number |Qnow|
of elements present in the queue is always equal to the number of inserts minus the
number of delete-min operations. Thus, when we add an operation u = “insert(k)”
at time t in the past, one element will have to be added in Qnow. There are two
possibilities: if the element k is not deleted between time t and the present, k can
just be added to Qnow. Otherwise, the element k is deleted by some operation
u′ = “delete-min()”, but then the element that was supposed to be deleted by u′

will stay in the structure a little longer until deleted by some other delete-min()
operation, and so on. So, the insertion of operation u causes a cascade of changes,
depicted in Fig. 3.

Lemma 6. After an operation Insert(t, “insert(k)”), the element to be inserted
in Qnow is

max(k, max
k′∈D≥t

k′).

Proof. As discussed earlier, the retroactive insertion will cause several elements
to extend the time during which they are present in the structure. Consider the
chain of keys k < k1 < k2 < · · · < k` whose life in the structure is extended. After
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Fig. 2. The “L” representation of a sequence of operations. Pairs of corresponding insert(k)
and delete-min() operations are represented by upside-down “L” shapes. Dotted vertical lines
represent bridges.

Fig. 3. The Insert(t, “insert(k)”) operation causes a cascade of changes of deletion times, and one
insertion in Qnow.

Transactions on Algorithms, Vol. V, No. N, Month 20YY.



18 · E. D. Demaine, J. Iacono and S. Langerman

Fig. 4. The Insert(t, “delete-min()”) operation causes a cascade of changes of deletion times, and
one deletion in Qnow.

the retroactive update, the extended pieces of horizontal segments are from (t, k)
to (dk1 , k), from (dki , ki) to (dki+1 , ki) for i = 1, . . . , `− 1, and finally from (dk`

, k`)
to (0, k`). They form a nondecreasing step function which, by construction, is not
properly intersected by any of the (updated) vertical rays. The key that will be
added to Qnow at the end of the retroactive update is k`. Suppose there is a key k̂
larger than k` in D≥t. This implies that (dk̂, k̂) is above every segment of the step
function. But then, the vertical ray from that point intersects the step function, a
contradiction. In the particular case where k is never deleted, the step function is
just one horizontal segment and the same argument holds.

Note that removing a delete-min() operation has the same effect as re-inserting
the element that was being deleted immediately after the time of the deletion. So
we have the following corollary:

Corollary 1. After an operation Delete(t), where the operation at time t is
“delete-min()”, the element to be inserted in Qnow is

max
k′∈D≥t

k′.

Because D≥t can change for many values of t each time an operation is performed,
it would be quite difficult to maintain explicitly. The next lemma will allow us to
avoid this task. We say that there is a bridge at time t if Qt ⊆ Qnow. Bridges are
displayed as dotted vertical lines in Fig. 2.

Lemma 7. Let t′ be the last bridge before t. Then

max
k′∈D≥t

k′ = max
k′∈I≥t′−Qnow

k′.

Proof. By definition of D≥t, any key k′ in D≥t is not in Qnow. If the same k′

was inserted before time t′, then k′ ∈ Qt′ , but this would contradict the fact that
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t′ is a bridge, and so k′ ∈ I≥t′ −Qnow. This shows that D≥t ⊆ I≥t′ −Qnow, and so

max
k′∈D≥t

k′ ≤ max
k′∈I≥t′−Qnow

k′.

Let k̂ = maxk′∈I≥t′−Qnow k′, and suppose k̂ > maxk′∈D≥t
k′. This implies that

k̂ /∈ D≥t, and so t′ < dk̂ < t. Because t′ was the last bridge before time t, dk̂
cannot be a bridge, and so there is another key k′′ ∈ Qdk̂

− Qnow ⊆ I≥t′ − Qnow,
and k′′ > k̂, otherwise k′′ would be deleted instead of k̂. But this contradicts that
k̂ was maximum.

We next study the effect of adding an operation u = “delete-min()” at time t in
the past. In this case, one element will have to be removed from Qnow. Again, this
operation will have a cascading effect: if it is not in Qnow, the key k that will be
deleted by operation u was supposed to be deleted by the operation u′ at time dk,
but as k is being deleted at time t by u, the operation u′ will delete the next key
up, and so on. See Fig. 4.

Lemma 8. After an operation Insert(t, “delete-min()”), the element to be re-
moved from Qnow is

min
k∈Qt′

k,

where t′ is the first bridge after time t.

Proof. Consider the chain of keys k1 < k2 < · · · < k` < k whose life in
the structure is shortened, with ki ∈ D≥t and k ∈ Qnow. After the retroactive
update, the shortened pieces of horizontal segments are from (t, k1) to (dk1 , k1),
from (dki−1 , ki) to (dki , ki) for i = 2, . . . , `, and finally from (dk`

, k) to (0, k). First,
it must be clear that there is a bridge at dk`

because there is no key smaller than k
in Qdk`

, and all keys larger than k in Qdk`
are also in Qnow because k ∈ Qnow. So

we just have to show that there is no bridge t′′ between times t and dk`
. For this

we observe that the shortened segments at times t′′ ∈ [t, dk`
) form a step function,

and that none of the keys ki corresponding to the steps are in Qnow, but they are
in Qt′′ .

Because removing an “insert(k)” operation from time t has the same effect as
adding a “delete-min()” operation directly before the time where it is deleted (if
that happens), we also have the next corollary:

Corollary 2. After an operation Delete(t) where the operation at time t is
ut = “insert(k)”, the element to be removed from Qnow is k if k ∈ Qnow; otherwise,
it is

min
k′∈Qt′

k′,

where t′ is the first bridge after time t.

Again, because we do not explicitly maintain Qt for all t, we ease the computation
by using that, if t′ is a bridge, then Qt′ = I≤t′ ∩Qnow.

Theorem 9. There exists a partially retroactive priority queue data structure
supporting retroactive updates in O(log m) time and supporting present-time queries
in O(1) time.
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Proof. The data structure maintains the history of all update operations in a
doubly linked list, and explicitly maintains the set Qnow in a binary search tree,
associating with each key a pointer to its insert operation in the linked list. After
each retroactive update, an element will be inserted or deleted in Qnow according
to the rules described in the preceding lemmas. In order to decide which element
to insert or delete, we need to be able to perform two types of operations:

(A) find the last bridge before t or the first bridge after t; and
(B) find the maximum key in I≥t′ −Qnow or the minimum key in I≤t′ ∩Qnow.

If we maintain the list of updates, assigning a weight of 0 to insert(k) operations
with k ∈ Qnow, +1 to insert(k) with k /∈ Qnow, and −1 to delete-min() operations,
every bridge corresponds to a prefix with sum 0. So, using the data structure used
in Theorem 7, we can answer queries of type A in O(log m) time. Because every
retroactive update adds or deletes at most one element from Qnow, only one weight
change has to be performed in the structure, which also takes O(log m) time.

If we maintain the list of insertions augmented by the modified (a, b)-tree of
Fleischer [1996], and store in each internal node the maximum of all keys in its
subtree which are absent in Qnow, we can easily find the maximum key in I≥t′−Qnow

in O(log m) time by walking down the tree. The minimum key in I≤t′ ∩Qnow can
also be maintained if we store in every internal node of the tree the minimum
of all keys in its subtree which are in Qnow. Those values can be maintained in
O(log m) time per retroactive update because each update changes at most one
element of Qnow.
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