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Abstract

Binary tools such as disassemblers, just-in-time com-

pilers, and executable code rewriters need to have

an explicit representation of how machine instruc-

tions are encoded. Unfortunately, writing encodings

for an entire instruction set by hand is both tedious

and error-prone. We describe derive, a tool that

extracts bit-level instruction encoding information

from assemblers. The user provides derive with

assembly-level information about various instruc-

tions. Derive automatically reverse-engineers the

encodings for those instructions from an assembler

by feeding it permutations of instructions and an-

alyzing the resulting machine code. Derive solves

the entire MIPS, SPARC, Alpha, and PowerPC in-

struction sets, and almost all of the ARM and x86

instruction sets. Its output consists of C declarations

that can be used by binary tools. To demonstrate

the utility of derive, we have built a code emitter

generator that takes derive's output and produces

C macros for code emission, which we have then used

to rewrite a Java JIT backend.

1 Introduction

Binary tools such as assemblers, debuggers, disas-

semblers, dynamic code generation systems [3, 8,

10, 15, 18], just-in-time compilers [4, 7, 12], and

executable code rewriters [14, 21, 24] need to con-

tain a representation of how machine instructions

are encoded. For example, a JIT needs to know that

the x86 instruction addl %ecx, %ebx corresponds

to the bits 0x01cb (formed by a bitwise OR of the

addl opcode 0x01c0 with 0x8 for the %ecx argument

and 0x3 for the %ebx argument). Unfortunately,

specifying instruction encodings with current tools

requires looking up and detailing the o�sets, sizes,

and values of many instruction �elds. Unsurpris-

ingly, this process is both error-prone and tedious,

especially for CISC machines such as the x86.

Currently, system builders must transcribe in-

A short version of this paper that only described the de-

rive solver appeared in the proceedings of the DYNAMO
2000 workshop [6].

struction encodings from an architecture reference

manual. We have built a tool called derive that

eliminates the need to specify many of the bit-level

details of instruction layout. The user supplies de-

rive with an assembly-level description of an in-

struction set: instruction names and operand types

(registers, immediates, or labels). Derive outputs

a description of how each instruction is encoded,

which is given in the form of C structure declara-

tions. The user does not specify binary-level details

such as operand widths, operand o�sets, opcode val-

ues, and register value encodings. As a result, the

potential for misspeci�cation by the user is less than

that with other tools.

Derive is based on a simple observation: virtu-

ally all architectures for which a programmer needs

binary encodings will already have programs (assem-

blers) that contain this information. Therefore, we

should be able to extract the information from the

assembler, which is what derive does. At a high

level, derive does so by feeding permutations of

each instruction to the system's assembler, and do-

ing equation solving on the assembler's output to

determine how the instruction is encoded (its op-

code and its operand encodings). The derive imple-

mentation solves the entire MIPS, SPARC, Alpha,

and PowerPC instruction sets. It handles most of

the ARM and x86 instruction sets: it does not yet

handle some instructions, such as those with non-

continuous �elds.

Derive produces C data structure declarations

that describe how an instruction set is encoded. It

would not be diÆcult to produce declarations in

other languages. These declarations can be used by

tools that interpret or manipulate binaries. As an

example, we have built a code emitter generator that

takes the reverse-engineered declarations and gener-

ates C macros for fast code emission. To demon-

strate the utility of these tools, we have rewritten

Ka�e's [25] JIT compiler to use these macros. Using

our automatically generated code emitters reduced

the size of the Ka�e backend description by 40%.

On a side note, derive can be viewed as an as-

sembler tester. Because of how it reverse-engineers

instructions, it can quickly �nd di�erences between



what an architecture manual says, and what an as-

sembler actually implements.

In Section 2 we discuss related work: Collberg's

compiler-reverse-engineering system and the New

Jersey Machine-Code Toolkit. Section 3 describes

our assumptions about instruction set encodings,

and explains how derive works. Section 4 discusses

the code emitter generator that we have built on top

of derive. Section 5 summarizes our conclusions

and describes our future work. Appendix A gives a

complete input speci�cation of the MIPS instruction

set for derive.

2 Related Work

The most important precedent to derive is Coll-

berg's work on reverse-engineering compilers [1].

Collberg's system does a \reverse interpretation" to

infer what assembly instructions should be used to

implement a high-level language. It runs pieces of

mutated assembly code to see how the semantics of

the instructions changes. His work is aimed at build-

ing automatically retargeting compilers, where the

descriptions of the semantics of assembly instruc-

tions are used to automatically retarget the BEG

back-end generator [5].

Derive is complementary to Collberg's work.

Derive computes information that can be used to

bypass the assembler, which is important for build-

ing JITs and binary manipulation tools. Derive

addresses a simpler problem domain than Collberg's

system, since it reverse-engineers a syntax trans-

formation and not a semantic transformation. On

the other hand, our problem domain is much more

tractable: it takes on the order of minutes to hours

for derive to reverse-engineer an instruction set's

encoding, whereas Collberg's system takes days to

reverse-engineer an instruction set's semantics.
The work whose goals most closely match derive

is the New Jersey Machine-Code Toolkit (NJT) [20].
The NJT automatically generates routines to manip-
ulate machine-code from user speci�cations written
in a language called SLED. SLED speci�cations are
exact descriptions of instruction layout, written at
several levels of abstraction. At the lowest level of
description, SLED \�elds" are used to describe in-
struction bit�elds. For example, the description of
the SPARC instruction �elds in SLED reads as fol-
lows [19]:

inst 0:31 op 30:31 disp30 0:29 rd 25:29

op2 22:24 imm22 0:21 a 29:29 cond 25:28

disp22 0:21 op3 19:24 rs1 14:18 i 13:13

asi 5:12 rs2 0:4 simm13 0:12 opf 5:13

Derive could be used to eliminate the �eld level

of speci�cation in NJT speci�cations. Users of

derive need only worry about an interface that

is at the level of assembly language (the level at

which NJT's \constructors" are written). Removing

such extra levels of detail eliminates some potential

sources of speci�cation error.

The authors of NJT use the assembler to do test-

ing of speci�ed encodings [9], by choosing random

values from within the space of encodings. We turn

the process around and use the assembler to derive

encodings. Because a user of NJT speci�es the vari-

ous classes of encodings, the NJT speci�cation tester

does not need to search as much of the encoding

space as derive does.

NJT supports several features that derive does

not, such as support for relocation. For targets such

as JITs, which are our primary interest, relocation is

not an issue. As another example, NJT can handle

synthetic assembly instructions cleanly. The current

implementation of derive does not yet handle com-

plex synthetic instructions well; however, we could

easily layer a tool that described synthetic instruc-

tions on top of derive.

3 Implementation

Derive takes a high-level description of an instruc-

tion set and an assembler, and generates C header

�les that describe the instruction set. Figure 1 illus-

trates the tool chain for derive. idc is described

in Section 3.1; the solver is described in Section 3.2;

and the code emitter generator is described in Sec-

tion 4.

Derive extracts the encoding of each instruction

by sampling a small number of possible input sets.

We assume each instruction takes a �xed number of

�elds as operands. We assume that �elds have three

types: registers, immediates, and labels/jump tar-

gets. Registers are a (usually small) set of textual

names; immediates are integer values that can range

over a large set of possibilities (e.g., on the x86, some

instruction take several 32-bit immediates); and la-

bels are symbolic instruction addresses. These as-

sumptions are suÆcient to describe the instruction

sets for which we have written speci�cations (which

cover a wide range of modern ISAs).

We make the following assumptions about instruc-

tion encodings:

1. Assembly encodings are stateless transforma-

tions. That is, a particular instruction always

has the same encoding. In addition, assem-

bling two correct instructions together gives the

same results as concatenating the results of as-
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Figure 1: An example tool chain that uses derive. We have built the tools that are in double boxes.

sembling them separately. To satisfy this as-

sumption, assemblers must be prevented from

adding, removing, or reordering instructions; in

general, the user must provide derive with the

appropriate assembly directives. This assump-

tion lets us batch together the assembly of many

instructions into one �le, which reduces solving

time by a large constant. For example, on our

machine (a dual-processor 600 MHz Pentium

III), we can assemble 2000 instructions in just

about twice as much time as we can assemble

one instruction|process creation and �le I/O

dominate the cost of assembly.

2. We assume that the validity and encoding of a

value in a �eld does not depend on the value of

any other �eld. We can thus compute a �eld's

encoding by enumerating every legal value for

it while holding all other �elds constant. This

assumption allows us to solve for each �eld sepa-

rately. Some instructions in certain instruction

sets (such as the ARM) do not satisfy this as-

sumption, in which case derive must do a more

expensive search.

3. The �eld for an n-bit immediate whose high bit

is set is independent of the low bits of the im-

mediate. That is, constants between 2n�1 and

2n�1 can all be encoded in the same instruction

�eld. This assumption lets us solve for imme-

diate �elds more quickly; otherwise, our solver

would have to enumerate all legal operand val-

ues.

4. Immediates are encoded with \simple" trans-

formations. \Simple" means that an immedi-

ate's value can have leading or trailing zeros re-

moved, constants subtracted from it, or leading

one bits added (for sign extension). If derive

detects a complex transformation that it can-

not represent (such as the scale factor in x86

memory instructions, which is encoded as the

logarithm of the scale factor), it immediately

stops and tells the user, who can provide de-

rive with the transformation explicitly. Our

implementation currently makes the assump-

tion that negative immediates are encoded us-

ing twos-complement; this assumption could be

changed fairly easily.

3.1 Specifying Instructions

The front end to derive, idc, translates assembly-

level instruction set descriptions into the intermedi-

ate form that derive uses. idc is about 900 lines

of lex and yacc code. Users describe instructions

with a yacc-like description that contains a list of

instructions to generate and a format description

that describes the assembly syntax and the operand

types. Note that the formats are grouped by assem-

bly syntax, not by encoding class; we believe that

the former is far more readable, as it expresses logi-

cal relationships rather than encoding relationships.
The description of SPARC ALU instructions reads

as follows. Note that the �eld-level information nec-
essary with NJT does not have to be speci�ed by the
user.

iregs = ( %g0, %g1, %g2, %g3, %g4, %g5, %g6,

%g7, %o0, %o1, %o2, %o3, %o4, %o5, %o6, %o7,

%l0, %l1, %l2, %l3, %l4, %l5, %l6, %l7, %i0,

%i1, %i2, %i3, %i4, %i5, %i6, %i7 );

and, andcc, andn, andncc, or, orcc, orn, orncc,

xor, xorcc, xnor, xnorcc, sll, srl, sra, add,

addcc, addx, addxcc, taddcc, taddcctv, sub,

subcc, subx, subxcc, tsubcc, tsubcctv, mulscc,



umul, smul, umulcc, smulcc, udiv, sdiv, udivcc,

sdivcc, save, restore

--> &op& r_1:iregs, r_2:iregs, r_dest:iregs

| &op& r_1:iregs, imm, r_dest:iregs ;

The production describes the assembler syntax and

the types of the operands for multiple instructions.

It states that there are register{register and register{

immediate forms of all of the instructions listed.

The placeholder &op& indicates where the instruc-

tion name appears. The operand speci�cation says

that the formatting substring ``r 1:iregs'' is re-

placed by members of the list of registers iregs.

Several conventions apply: register �eld names begin

with r, a jump target has the unique name &label&,

and an immediate �eld is any other �eld.

3.2 The Solvers

Derive is composed of three solvers, each special-

ized to derive a speci�c operand type: the regis-

ter solver solves for register �elds/operands, the im-

mediate solver solves for immediate �elds, and the

jump solver solves for jump target �elds. Each solver

uses the assembler to compute instruction encod-

ings. Derive emits code into an assembler �le, runs

the assembler, and �nds the code in the resulting

executable. Derive tests for any di�erence in endi-

anness between the target and the solving architec-

tures, and appropriately swaps bytes in the object

code before doing any solving.

To demarcate the machine code in the executable,

derive explicitly emits fenceposts around the code

using assembler data directives. Our fenceposts are

a randomly chosen sequence of bytes. It is unlikely

that derive emits a sequence of instructions that

match the fencepost, since it does not exhaustively

search the set of instructions: we only search the

entire space of values for register �elds, and not for

immediate and jump �elds. Although we do not

currently do so, a simple way to detect and avoid

fencepost con
icts would be to solve each instruction

twice with di�erent fencepost values.

Derive represents instruction encodings as an

opcode mask and an arbitrary number of operand

�elds. The opcode mask contains the bitmask of 1's

that must be set in an instruction to specify a given

opcode. Register �elds are speci�ed as a sequence of

masks, one for each legal register value; immediates

and label �elds are represented as a size, an o�set,

and a simple transform.

The solvers all work in the same basic manner.

Each one locates a �eld and determines its size by

emitting one instruction for each legal operand value

of that �eld (while holding all other �elds' values

and %g7 , %g6 , %g0; 0x8009 0xc006

and %g7 , %g6 , %g1; 0x8209 0xc006

and %g7 , %g6 , %g2; 0x8409 0xc006

and %g7 , %g6 , %g3; 0x8609 0xc006

and %g7 , %g6 , %g4; 0x8809 0xc006

and %g7 , %g6 , %g5; 0x8a09 0xc006

and %g7 , %g6 , %g6; 0x8c09 0xc006

and %g7 , %g6 , %g7; 0x8e09 0xc006

and %g7 , %g6 , %o0; 0x9009 0xc006

and %g7 , %g6 , %o1; 0x9209 0xc006

and %g7 , %g6 , %o2; 0x9409 0xc006

and %g7 , %g6 , %o3; 0x9609 0xc006

and %g7 , %g6 , %o4; 0x9809 0xc006

and %g7 , %g6 , %o5; 0x9a09 0xc006

and %g7 , %g6 , %o6; 0x9c09 0xc006

and %g7 , %g6 , %o7; 0x9e09 0xc006

and %g7 , %g6 , %l0; 0xa009 0xc006

...

Figure 2: The assembly that derive generates to

solve for the last register �eld of the SPARC add in-

struction, and the resulting binary instructions that

it analyzes.

�xed) and �nding all bits that change in the binary

encoding. Figure 2 illustrates this process for the

last operand of the SPARC and instruction. Those

bits that change belong to the �eld. Its o�set is

given by the lowest changing bit; its size by the dif-

ference between its lowest and highest bit. A speci�c

operand's value exactly equals the value of these bits

when it is used. All other bits belong to other �elds,

or to the opcode mask.

As each solver is run, the opcode mask is re�ned.

That is, each solver \claims" bits for various �elds.

After all �elds have been solved for, the opcode mask

is set to the remaining unclaimed bits (i.e., those

that are set to 1 in every emitted instruction).

We make one general assembler-dependent as-

sumption, which is that the assembler will produce

errors \when expected." For example, we assume

that assemblers will return an error when illegal reg-

isters are used in an instruction, or when constants

are too large. Derive �nds the sizes of immediate

�elds by testing larger and larger immediates, and

it expects that the assembler will eventually return

an error message.

Unfortunately, assemblers do not always report er-

rors when they should. Gas shows some unexpected

behavior, in that it will accept some positive con-

stants that are too large for signed �elds (for ex-

ample, for a 16-bit signed �eld it accepts constants

between 32768 and 65535). In general, we try to re-



move such dependencies by checking the generated

code: Derive gets around this particular bug by

making sure that each constant value examined ac-

tually results in a di�erent instruction.

3.2.1 Register Solver

The register solver is derive's most basic solver,

and is called by the other solvers. It has two tasks.

First, it computes an instruction's opcode mask with

respect to the register �elds. The opcode mask con-

sists of all of the bits that are not used by the reg-

ister �elds. Second, it �nds both the location and

size of each \register" operand �eld, along with the

bitmask that must be set to specify a given operand

value. A register operand is any operand for which

the client enumerates the possible textual values.

The register solver works in the following manner

for a particular register �eld:

1. Iterate over all legal registers in the �eld. For

each register, create a copy of the instruction

format string. Replace the operand with the

register value, and all other operands with some

legal values. Emit the instructions and read

them back into a bu�er inst.

2. While iterating over each register value, incre-
mentally reduce the opcode mask by ANDing it
with each binary instruction:

op_mask = ~0;

foreach r in registers

op_mask &= inst[r];

This process will leave the mask with 1's in ev-

ery bit that has a 1 set for all instruction in-

stances.

3. Examine the emitted instruction stream, and

look for all bits that change between 0 and 1.

Such bits belong to the current �eld, since all

other operand values were �xed, and all values

for the �eld were enumerated.

To �nd these bits, bitwise AND each instruction
with the complement of the opcode mask and
logically summing the result:

field = 0;

foreach r in registers

field |= (inst[r] & ~op_mask);

At the end, the fieldmask has a 1 set for every

bit in the �eld. The size of the �eld is bounded

by the most and least signi�cant bits set in this

computed mask. The �eld's o�set is given by

its least signi�cant bit.

4. To derive the 1's that must be set to encode
each register for the current �eld, iterate again
over all legal registers, and bitwise AND each
instruction with the computed �eld mask:

foreach r in registers

fmask[r] = inst[r] & field;

We have implemented two main extensions to this

simple scheme. First, on some architectures, a spe-

ci�c register value can change the actual instruction

encoding. For example, on the x86, di�erent instruc-

tion forms are used when the %eax register is used

as an operand. The solver detects such discontinu-

ities by checking that all instances of an instruction

are of the same length. That is, when it emits the

sequence of instructions (as shown in Figure 2), it

checks that the number of instruction bytes emitted

equals the number of instructions multiplied by the

size of one instruction. If it does not, it solves for the

register values independently, and emits multiple in-

struction speci�cations: each speci�cation identi�es

which speci�c register values it corresponds to.

Second, the solver allows users to supply regis-
ter operand lists that contain illegal values, which it
automatically culls. This syntax is useful for situa-
tions where instructions only accept subsets of pos-
sible register values. For example, the SPARC ar-
chitecture supports 
oating-point instructions that
take di�erent combinations of registers, depend-
ing on whether the inputs and outputs are single-,
double-, or quad-precision. Specifying exactly which
operands are legal would increase the size of the
SPARC speci�cation by about 40%, and would also
increase the probability of error. Instead, clients can
state that every 
oating-point instruction takes any

oating-point register as an operand:

fregs = ( %f0, %f1, %f2, %f3, %f4, %f5, %f6,

%f7, %f8, %f9, %f10, %f11, %f12, %f13, %f14,

%f15, %f16, %f17, %f18, %f19, %f20, %f21,

%f22, %f23, %f24, %f25, %f26, %f27, %f28,

%f29, %f30, %f31 );

fadds, fsubs, fmuls, fdivs, faddd, fsubd,

fmuld, fdivd, faddq, fsubq, fmulq, fdivq,

fsmuld, fdmulq

--> &op& r_1:fregs, r_2:fregs, r_3:fregs;

Derive automatically eliminates \bad" registers by

�rst randomly selecting operand values until it �nds

a sequence that the assembler accepts. It then �nds

all legal values for a �eld by trying all of its val-

ues while holding the others operands �xed to legal

values.



3.2.2 Immediate Solver

The immediate solver computes the width and po-

sition of each immediate �eld, and also any trans-

formation of the values in immediate �elds. The

immediate solver is called after the jump solver, if

there are relative jump targets; it is used directly

to solve for absolute jump targets (since those are

just transformed immediate values). We explain it

before the jump solver, because its behavior is closer

to that of the register solver.

The main di�erence between this solver and the

register solver is that it is impractical to enumerate

all legal values for an immediate operand: an n-

bit immediate �eld would require 2n permutations.

Register �elds tend to be small (on the order of 5

bits for modern architectures), whereas immediate

�elds can be substantially larger. As a result, we

solve for each bit size of the immediate �eld, rather

than each possible value.

The solver �rst �nds an immediate �eld's size by

iterating upwards from 1 bit, 2 bits, etc., until the

assembler refuses to assemble the instruction. It

then iterates down from the maximum number of

bits (call it n) and solves for each immediate size.

The immediate solver works in the following man-

ner for each bit size m:

1. Choose a random m�1 bit value and create two
m-bit constants, v0 and v1, by setting v0 to the
value and v1 to its complement. Then set the
mth bit in both v0 and v1:

x = (1 << (m - 1));

# randomize low m-1 bits

v0 = random() % x;

# v1 complements those bits

v1 = ~v0 % x;

# set mth bit in v0 and v1

v0 = v0 | x;

v1 = v1 | x;

By emitting instructions with these two con-
stants, we force the low m�1 bits of the imme-
diate �elds to have complementary bit values,
while all other bits remain constant. Next, cre-
ate two instructions, the �rst with the immedi-
ate operand replaced with v0, the second with
v1. Use the the register solver to derive the
register �eld encodings for these two similar-
looking instructions.

# copy instruction

inst0 = inst1 = inst;

# replace immediate operand with v0

rewrite(inst0.fmt, op.field_name, v0);

# replace immediate operand with v1

rewrite(inst1.fmt, op.field_name, v1);

# solve each copy

register_solve(s0, inst0);

register_solve(s1, inst1);

The two speci�cations s0 and s1 should have

the same register masks, and the same size in

bytes. The only di�erence between the two

should be the opcode masks computed by the

register solver, which will di�er by exactly the

bits that di�er in v0 and v1.

2. Find the immediate �eld by �rst XORing the
two opcode masks. Since only the lower m� 1
bits of the �eld di�er, this action sets 1's exactly
in the location of these bits and 0s everywhere
else; we add the mth bit in explicitly (note that
we assume that this bit is contiguous with the
rest of the �eld). The least signi�cant bit gives
the �eld's o�set. Re�ne the opcode mask by
removing all �eld bits from it.

# set the low m-1 bits in field

field_bits = s0.op_mask ^ s1.op_mask;

# find least significant bit

field_offset = lsb(field_bits);

# add back mth field bit

field_bits |= 1 << (m + field_offset - 1);

# fix opcode mask

s0.op_mask = s0.op_mask & ~field_bits;

3. Check the value of the �eld against the value of

the encoded �eld to see if any simple transfor-

mations are used. such as a shift to the right

by a small constant.

4. Check to see if a previous encoding matches

this one. Since we work our way down from

larger-valued immediates to smaller-valued im-

mediates, we may have already discovered the

encoding for the �eld. For example, a SPARC

13-bit signed immediate �eld encodes all signed

values between 1 bit and 13 bits. In contrast,

on the x86 4-byte memory displacements are en-

coded di�erently than 2-byte memory displace-

ments.

If we have already found an encoding, the cur-

rent encoding is ignored; otherwise, it is added

to the list of derived encodings. We must eval-

uate the encoding for each immediate size, be-

cause some instruction encodings on certain ar-

chitectures (x86) vary with the size of the im-

mediate provided.

Our actual solver is more general than this sketch,

and handles instructions with an arbitrary number

of immediate operands. For instructions with more



than one immediate operand, any variable-length

immediate �elds are not independent of each other|

the length of one will a�ect the position of any oth-

ers. Therefore, derive cannot solve for immediate

�elds separately.

The current implementation has two limitations.

First, it assumes that every immediate value that �ts

in a given �eld is legal: that is, there are no \holes"

in the value space for an immediate �eld. This re-

striction is not a real problem. Second, it does not

handle immediates that are encoded as multiple non-

contiguous bit ranges. It should not be diÆcult to

extend derive to handle such immediates.

3.2.3 Jump Solver

The jump solver derives the encoding for relative

jump target �elds (labels). Jumps can be classi�ed

in two ways: (1) relative vs. absolute jumps and (2)

jumps that take immediates vs. those that only take

labels. The jump solver �nds encodings for rela-

tive jumps that take labels as operands. Jumps that

accept immediate operands are handled by invoking

the immediate solver. Absolute jumps that only take

labels do not seem to occur in practice.

The di�erence between the jump solver and the

immediate solver is that the jump solver must gen-

erates values (labels) di�erently. To set all bits in

an n-bit immediate �eld, the immediate solver can

emit the immediate directly; the jump solver may

have to place a label about n instructions away. As

a result, it would be impractical to solve for large

o�sets directly. We assume that backwards jumps

are encoded using twos-complement, so that we can

solve for the sizes of o�sets.

Derive computes whether a jump is absolute or

relative by emitting two consecutive jumps to the

same target and comparing the emitted code values.

Absolute jumps will have identical bits, since both

instructions encode the same target address. Rel-

ative jumps will di�er, since they are di�erent dis-

tances from the target and thus will have di�erent

o�set values.

Given an instruction that is a relative jump, the

solver must �nd the jump target �eld's width and

o�set in the instruction, starting point (how many

bytes a jump of 0 bytes actually jumps from the

jump instruction), and minimum jump size. The

target address of the jump is target = start +

encoded �eld� jump size.

1. Find the minimum jump size by emitting jumps

of 1, 2, . . . bytes until the jump �eld changes.

2. Find the starting point for the jump (the place-

ment of the label that results in an o�set of 0).

The starting point is found by searching for a

label placement that results in an instruction i,

where ORing against i is the identity function.

In other words, emit jumps to di�erent labels

around the jump, and OR each of the jumps

against the others to �nd one whose o�set �eld

must be all 0's.

3. Find the label's o�set in the instruction by emit-

ting a forward jump just past the starting point

for the jump. These two instructions will di�er

by a single bit, which is the lowest bit in the

target �eld.

4. Find the label's size in the instruction by emit-

ting a negative-o�set label. Assuming that rela-

tive jumps are encoded using twos-complement

(or even ones-complement), this label sets the

high bit of the label. We assume that the la-

bel is contiguous in the instruction, and that it

consists of the bits between the label's high and

low bits.

5. Finally, determine how the jump distance is

encoded by referencing labels at known o�sets

and comparing the �eld's value to these loca-

tions. We check for the following transforma-

tions: subtraction by a constant, truncation of

trailing zeros, or having leading bits truncated.

For example, truncation of trailing zeros from

a byte o�set happens in SPARC jump instruc-

tions, since instructions are word-aligned.

Like the other solvers, the jump solver assumes that

label �elds are contiguous. It would be challenging

to deal with non-contiguous label �elds, because of

the need to generate labels at large distances from

jumps.

3.3 User Extensions

Some instruction sets (such as the ARM) do not sat-

isfy all of the assumptions we have described. In

addition, incorrect assemblers can provide bad in-

formation to derive. We give the user mechanisms

to address these problems: the user can inform de-

rive of complex immediate encodings, tell it when

register �eld values may depend on each other, and

provide explicit �eld widths when necessary. Table 1

lists the cases where we have needed to use these

mechanisms.
The following description fragment shows how a

user can specify complex encodings. The user pro-
vides C code that translates between the value that
is mapped into the immediate �eld and the input



Violated Assumption Architecture Instruction Class

Fields values ARM Register pre-/post-indexed addressing modes

are independent Base and index registers must di�er

PowerPC Load multiple instructions

Address register must not be a target

PowerPC Update instructions

Base register must not equal target register

Simple transforms x86 Scale factor in memory addressing

Scale is encoded as a log

SPARC Sethi argument must have 10 low zero bits

ARM Certain addressing modes expect o�set�4

Table 1: Exceptions that we have found to our encoding model. Derive's hooks let clients easily extend its

model to handle these cases. For �elds that depend on each other, users annotate dependent registers in their

speci�cation, and supply a function that takes a list of symbolic register names and returns TRUE i� they

are a legal combination. Users add missing transformations by providing a function that takes an immediate

and returns the transformed value, and annotating immediates that use this encoding in the speci�cation.

that the assembler expects. In this example, the x86
instruction encodes the logarithm of the scale factor
that is given to the assembler. (This example could
also be handled by making the scale factor a register
type and enumerating the possible scale values.)

%f
unsigned pow2(unsigned x) f return 1 << x; g
%g

ops_2_mem --> &op& r_1:regs,

disp(base:regs, index:index_regs, scale:pow2);

The following example shows how a user provides

information about non-independent �elds. For the

PowerPC instructions mentioned, the base register

ra must not be the same as the target register rd.

%f
bool update_disp(char *args[])

f
char *rd = args[0], *ra = args[1];

if (!strcmp(ra, "r0") || !strcmp(ra, rd))

return FALSE;

else return TRUE;

g
%g

lbzu, lhzu, lhau, lwzu -->

&op&:update_disp R_d:regs, disp(R_a:regs);

Finally, Derive provides hooks that enable the
user to overcome some assembler bugs that we have
encountered. For example, GNU as allows the
SPARC V9 ticc instruction to take an immediate
that is too large. Derive reports that �elds over-
lap, and the user can explicitly tell derive the �eld
width of 7 bits as follows:

Processor Run time Description length

(minutes) (lines)

Alpha 6.3 104

ARM �43. 227

MIPS 2.5 81

PowerPC 4.8 186

SPARC 4.8 97

x86 �240. 221

x86-ka�e 4.9 106

Table 2: The time it takes derive to run through each

architecture, and how long our architecture descrip-

tions are. x86-ka�e is the subset of x86 we needed to

retarget Ka�e's JIT to use derive-generated emit-

ters.

tgu, tleu, tcc, tcs, tpos, tneg, tvc, tvs

--> &op& r_c:cc, imm::7;

3.4 Using derive

Table 2 summarizes the times it takes for derive

to run on several instruction sets, and also shows

the length of derive's speci�cations. As the num-

ber of architectures in the table shows, derive's as-

sumptions survive well under use. The assumptions

in our model make derive reasonably fast. ARM

is slow because some of its instruction addressing

modes violate the independence assumption. As a

result, solving those instructions takes an inordi-

nate amount of time, because derive must check all

combinations of register values. x86 is slow because

of the large number of instructions and addressing



modes, as well as the special encodings for certain

registers. The subset of the x86 ISA necessary to

retarget the Ka�e JVM's [25] JIT was small enough

to run quickly.

While using derive to reverse-engineer several in-

struction sets, we have come across several errors

or inconsistencies in gas and various architectural

manuals. The following list describes these errors

and inconsistencies, and demonstrates that derive's

reverse-engineering methodology can also be viewed

as a useful testing methodology.

� GNU as does not assemble the Alpha wh64 in-

struction.

� GNU as does not handle the Alpha round-

ing/trapping modes of 
oating-point sqrt in-

structions.

� GNU as on MIPS silently truncates the top bits

of absolute addresses larger than 28 bits.

� GNU as does not quite handle setting the user

mode bit in ARM addressing mode 4 correctly.

� GNU as accepts immediates that are too large

for SPARC ticc instructions.

� GNU as often accepts n-bit positive values for

n-bit signed immediate operands.

� \See MIPS Run" [22], Table 8.6, is incorrect for

mtc1 and dtc1.

� In the ARM manual [13], addressing mode 3 of

register pre-/post-indexed instructions do not

have the same listed restrictions as those same

instructions in addressing mode 2, although gas

enforces those restrictions.

� The Alpha manual [2] description of the cvtst

(IEEE conversion) instruction seems incorrect,

because it lists the /s suÆx (a VAX rounding

mode) as an option.

4 Using Derive's Output

An important motivation behind building derive

was our desire to avoid hand-specifying the x86 in-

struction set. This distaste was an important rea-

son why we have not retargeted two of our JIT sys-

tems [7, 8] to the x86, despite repeated requests.

One use of derive-generated speci�cations is to

generate code emitters from them. We have writ-

ten an emitter generator that processes instruction

speci�cations and generates C procedures or macros

that can emit instructions into a code bu�er. Fig-

ure 3 shows the structure declaration for derive's

output. Figure 4 shows a sample speci�cation that

derive generates for the MIPS break instruction,

which causes a breakpoint. Each instruction speci�-

cation is transformed into a function or macro whose

arguments are an index into the code bu�er and the

registers, immediates, or labels that are operands

for that instruction. The choice of macros allows

the compiler to propagate constants if parameters,

such as register values, are known at compile-time.

The following example shows the macro generated
for the x86 addl instruction, and how it is used:

#define E_addl_rr_1(_code, rf, rt) do f\
register unsigned short _0 = (0xc001\

| ((((rf)) << 11))\

| ((((rt)) << 8)));\

*(unsigned short*)((char *)_code) = _0;\

_code = (void *)((char *)_code + 2);\

g while(0)

/* emit "addl %ecx, %ebx" in code_buffer */

E_addl_rr_1(code_buffer, REGecx, REGebx);

With simple heuristics, we are able to generate

code automatically that in most cases is as eÆ-

cient and readable as the code a human would write.

There are two challenges in generating eÆcient emit-

ter code. First, we try to keep the number of arith-

metic and bit shift operations on the instruction's

operands small. Second, we try to minimize the

number of stores to the code bu�er. For architec-

tures with constant instruction lengths, such as all

RISC architectures, our generated emitters incur one

memory write per instruction generated.

Operands to an instruction are not always known

when the instruction is generated. Dynamic code

generators, for example, do not know the value of

a forward-referenced label. Such a label must be

patched later by a simple linker, once the actual

value of the operand becomes known. Derive al-

lows instruction operands to be marked so that they

are not used in the emitter macro. Instead, the emit-

ter generator generates an additional macro that can

be called to �ll in the operand. Derive clients can

build their own linkers on top of this mechanism.

Our emitter generator can emit extra debugging

information. First, our emitter generator is able to

generate emitters that check the validity of their ar-

guments. This feature is useful to catch bugs as

early as possible during dynamic code generation.

In addition, the generator can also produce emitters

that print a textual description of each instruction

generated during dynamic code generation.



struct inst_spec f

char *inst; /* instruction name */

char *fmt; /* assembly format */

unsigned short n_ops; /* operand count */

unsigned nbytes; /* instruction size */

char *namesuffix; /* suffix used by emitter generator */

unsigned char op_mask[MAX_BYTES]; /* opcode mask */

struct operand f

char *sym_op; /* symbolic name of operand */

enum op_type f REG, IMMED, LBL_R, LBL_A g type; /* operand type */

t_type encoding; /* is immediate transformed? */

unsigned lo; /* lowest legal value of field */

unsigned nbits; /* number of bits in field */

unsigned mask[MAX_REGS]; /* field mask */

int offset; /* offset in instruction */

sign_type signed_field; /* signed or unsigned field? */

int relative_offset; /* where relative jumps start

from: offset from end of jump */

int wants_ref; /* generate a separate emitter

to set this field */

g ops[MAX_OPS];

g;

Figure 3: The C encoding description that derive outputs. It includes the instruction, formatting string

used to generate the instruction, the instruction mask, and a list of operand speci�cations. t type is an

enum that represents some simple transformations on immediates. The output of derive could be modi�ed

for use with other languages.

f "break", /* instruction name */

"&op& imm", /* assembly format */

1, /* operand count */

4, /* instruction size */

"", /* suffix used by emitter generator */

f 0xd, 0x0, 0x0, 0x0, g, /* opcode mask */

f f "imm", /* name of operand */

IMMED, /* type of operand */

IDENT, /* operand transformation */

0, /* lowest legal value */

10, /* number of bits */

f 0 g, /* field mask */

16, /* offset in instruction */

I_UNSIGNED, /* unsigned */

0, /* ignored for non-jumps */

0 /* do not generate an extra emitter */

g,

g

Figure 4: derive-generated speci�cation for the MIPS break instruction.



The emitters are also useful as a means of test-

ing derive. For each instruction, we generate the

emitter and a test program that invokes it with a

given subset of parameters. The instruction en-

codings generated by the emitter function are then

compared to the output generated by the target as-

sembler. This procedure allows us to test derive

without actually running code on the target plat-

form. derive's emitter generator can cross-compile

between architectures whose endiannesses match.

To demonstrate that our tools work, we have re-

targeted Ka�e's [25] x86 JIT backend to use auto-

matically generated emitters from just a subset of

the x86 ISA. We reduced the number of lines in the

backend description from 2,084 to 1,267. We also

discovered that the original coders missed shorter in-

struction encodings in one case. Retargeting the JIT

took approximately one day, which indicates that

the emitter functions generated by derive are us-

able in real applications.

Derive-generated emitters can be used in several

other ways to support dynamic code generation. For

example, they can be used to support back end con-

struction for general-purpose dynamic code genera-

tion systems such as vcode [8] and ccg [17]. These

systems provide assembly-like interfaces to C for dy-

namic code generation, and need encoding informa-

tion to actually generate code. Derive could also be

used to compute templates for application-speci�c

systems such as DPF [7]. Templates can be speci-

�ed in terms of symbolic instruction sequences, fed

to derive to get the corresponding binary encoders,

and then reincorporated into the system.

5 Conclusions

The derive system reverse-engineers instruction en-

codings from the system assembler. Users need only

give assembly-level information about the instruc-

tions for which they want encodings, and not low-

level information about bit�eld layout. Derive suc-

cessfully reverse-engineers instruction encodings on

the SPARC, MIPS, Alpha, ARM, PowerPC, and

x86. In the last case, it handles variable-sized in-

structions, large instructions (16 bytes), multiple in-

struction encodings determined by operand size, and

other CISC features. As a proof of its utility, we have

built a code emitter generator on top of derive.

We plan to extend derive's techniques to reverse-

engineer object code �le formats, including debug-

ging and linkage information. Such information will

enable us to build a set of reverse-engineered tools,

including versions of ATOM [21], dynamic linking li-

braries [11], object-level sandboxers [23], executable

optimizers, and linkers. Builders of such tools are

plagued by the need to repeatedly reimplement func-

tionality contained in existing software. For some

systems, it is too expensive to call existing programs:

dynamic code generation systems cannot a�ord the

time to call an assembler. In other cases, the soft-

ware has an inappropriate form and must be rewrit-

ten from scratch. For example, one common \trick"

that commercial companies use to discourage third-

party vendors is to have proprietary symbol table

layouts, which change on every software release [16].

The cost of manually reverse-engineering these for-

mats has forced some implementors to avoid object-

level modi�cations, in spite of the strong advantages

for such an approach.

The source code for the current version of de-

rive is freely available at the following URL: http:

//www.cs.utah.edu/~wilson/derive.tar.gz.
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A MIPS description

%f
char *directive = ".set noreorder\n.set nomacro\n"

".set noat\n";

%g

regs = ( $0, $1, $2, $3, $4, $5, $6, $7, $8, $9,

$10, $11, $12, $13, $14, $15, $16, $17,

$18, $19, $20, $21, $22, $23, $24, $25,

$26, $27, $28, $29, $30, $31 );

fregs = ( $f0, $f1, $f2, $f3, $f4, $f5, $f6, $f7,

$f8, $f9, $f10, $f11, $f12, $f13, $f14,

$f15, $f16, $f17, $f18, $f19, $f20,

$f21, $f22, $f24, $f25, $f26, $f27, $f28,

$f29, $f30, $f31 );

fcond = ( $fcc0, $fcc1, $fcc2, $fcc3, $fcc4, $fcc5,

$fcc6, $fcc7 );

nop, sync, tlbr, tlbwi, tlbwr, tlbp, eret --> &op&;

movf, movt --> &op& r_d:regs, r_s:regs, r_c:fcond;

jr, jalr, mfhi, mthi, mflo, mtlo --> &op& r_s:regs;

jalr, tge, tgeu, tlt, tltu, teq, tne, mfc0, dmfc0,

cfc0, mtc0, dmtc0, ctc0, cfc1, mtc1, mfc2, cfc2,

mtc2, ctc2, mult, multu, dmult, dmultu

--> &op& r_d:regs, r_s:regs;

sll, sra, srl, dsll, dsrl, dsra, dsll32, dsrl32,

dsra32 --> &op& r_d:regs, r_w:regs, imm;

sllv, srlv, srav, movz, movn, dsllv, dsrlv,

dsrav, add, addu, sub, subu, and, or, xor, nor,

slt, sltu, dadd, daddu, dsub, dsubu

--> &op& r_d:regs, r_w:regs, r_s:regs;

// MIPS assemblers use "div" as a macro

// this syntax is how the real hardware

// instructions of the same names can be generated

div, divu, ddiv, ddivu

--> &op& " $0", r_w:regs, r_s:regs;

break, syscall --> &op& imm;

j, jal --> &op& &label&;

bltz, bgez, bltzl, bgezl, bltzal, bgezal, bltzall,

bgezall, bnezl, blezl, bgtzl, blez, bgtz

--> &op& r_s:regs, &ref& &label&;

tgei, tgeiu, tlti, tltiu, teqi, tnei

--> &op& r_s:regs, imm;

beq, bne, beql, bnel

--> &op& r_s:regs, r_t:regs, &label&;

addi, addiu, slti, sltiu, andi, ori, xori, lui

--> &op& r_d:regs, &ref& imm;

daddi, daddiu --> &op& r_d:regs, r_w:regs, &ref& imm;

// we can define this form once and use it

// in different places (denoted by a single arrow)

branch -> &op& &label&;

branchc -> &op& r_s:fcond, &label&;

// these are coprocessor branches

bc0f, bc0t, bc0fl, bc0tl, bc2f, bc2t, bc2fl,

bc2tl: branch;

// these instructions come in two flavors

bc1f, bc1t, bc1fl, bc1tl: branch, branchc;

add.s, add.d, sub.s, sub.d, mul.s, mul.d, div.s,

div.d --> &op& r_d:fregs, r_w:fregs, r_s:fregs;

mfc1, dmfc1, dmtc1, ctc1

--> &op& r_t:regs, r_s:fregs;

sqrt.s, sqrt.d, abs.s, abs.d, mov.s, mov.d,

neg.s, neg.d, round.l.s, round.l.d, trunc.l.s,

trunc.l.d, ceil.l.s, ceil.l.d, floor.l.s,

floor.l.d, round.w.s, round.w.d, trunc.w.s,

trunc.w.d, ceil.w.s, ceil.w.d, floor.w.s,

floor.w.d, recip.s, recip.d, rsqrt.s, rsqrt.d,

cvt.s.d, cvt.s.w, cvt.s.l, cvt.d.s, cvt.d.w,

cvt.d.l, cvt.w.s, cvt.w.d, cvt.l.s, cvt.l.d

--> &op& r_d:fregs, r_s:fregs;

movf.s, movt.s, movf.d, movt.d

--> &op& r_d:fregs, r_w:fregs, r_s:fcond;

movz.s, movz.d, movn.s, movn.d

--> &op& r_d:fregs, r_w:fregs, r_s:regs;

c.f.s, c.f.d, c.un.s, c.un.d, c.eq.s, c.eq.d,

c.ueq.s, c.ueq.d, c.olt.s, c.olt.d, c.ult.s,

c.ult.d, c.ole.s, c.ole.d, c.ule.s, c.ule.d,

c.sf.s, c.sf.d, c.seq.s, c.seq.d, c.ngl.s,

c.ngl.d, c.lt.s, c.lt.d, c.nge.s, c.nge.d,

c.le.s, c.le.d, c.ngt.s, c.ngt.d

--> &op& r_d:fcond, r_w:fregs, r_s:fregs;

// the assembler expects parentheses

lwxc1, ldxc1, swxc1, sdxc1

--> &op& r_d:fregs, r_w:regs ( r_s:regs );

// prefetch instructions with hints

pref --> &op& r_h:hints, imm ( r_w:regs );

prefx --> &op& r_h:hints, r_w:regs ( r_s:regs );

hints = ( 0, 1, 4, 5, 6, 7 );

madd.s, madd.d, msub.s, msub.d, nmadd.s, nmadd.d,

nmsub.s, nmsub.d

--> &op& r_d:fregs, r_r:fregs, r_s:fregs, r_t:fregs;

ldl, ldr, lb, lh, lwl, lw, lbu, lhu, lwr, lwu, sb,

sh, swl, sw, sdl, sdr, swr, ll, lwc2, lld, ldc2, ld,

sc, swc2, scd, sdc2, sd

--> &op& r_d:regs, &ref& imm (r_w:regs);

l.s, l.d, s.s, swc1, s.d, sdc1

--> &op& r_d:fregs, imm (r_w:regs);

cache --> &op& r_d:cache_ops, imm (r_w:regs);

cache_ops = ( 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 13, 15, 16, 17, 18, 19, 20, 21,

23, 24, 25, 27, 30, 31 );


