Ring O to Ring -1
Attacks

HYPER-V IPC INTERNALS

SYSCAN 2015 ALEX IONESCU
@AIONESCU

WHO AM |?

Chief Architect at CrowdStrike, a security startup

Previously worked at Apple on iOS Core Platform Team

Co-author of Windows Internals 5t and 6 Editions

Reverse engineering NT since 2000 — main kernel developer of ReactOS
Instructor of worldwide Windows Internals classes

Conference speaking:
o SyScan 2015-2012
o NoSuchCon 2014-2013, Breakpoint 2012
o Recon 2014-2010, 2006
o Blackhat 2015, 2013, 2008

For more info, see www.alex-ionescu.com

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

http://www.alex-ionescu.com/

WHAT THIS TALK IS ABOUT

The Microsoft Hypervisor (Hyper-V/Viridian) was introduced almost a
decade ago
o QOriginally for Server only, it now ships on Clients too

° Powers not just Windows, but Azure and Xbox One too

Very few internal details on it have ever emerged

Ironically, Microsoft had the best details for it back in the WinHEC days
o [ref: Brandon Baker, Maryrita Steinhour]

Some external researchers have looked at it
°© MS11-047, MS13-092
o [ref: ENRW / Matthias Luft & Felix Wilhelm]
o “Any hypervisor is not a new security layer; it’s a new place to find bugs.”

Nobody has talked about how to interface with it (just fuzzing for bugs)

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

TWO BUGS. IN. A. DECADE

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

WHAT THIS TALK IS ALSO ABOUT

-Azure 0 Days/ Unicorns

’ I i ’

Providing helpful direction on how to interface/play/mess with Hyper-V
> For research and learning purposes
> Please don’t be an idiot and productize/ship any of this

Unfortunately, interacting with Hyper-V requires some knowledge of
Windows driver development

> And, especially, PnP Driver Development ®

o PnP Driver Development Sucks. Seriously. But it’'s OK. WE HAVE MEMES.

And of course, a few interesting bugs/security issues

A few brief notes on the future of Hyper-V in Windows 10

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

OUTLINE

Hyper-V Architecture in 10 minutes or less eryrourmeney-back

° VMM Type 1 and Type 2
o Qverall Architecture / VMBus / VMWP / VSC
o Partitions, Synthetic Interrupt Controller (SynIC), Overlay Pages

Programming With Hyper-V
o Hypervisor Top Level Functional Specification Documentation
o Hypervisor Development Kit (HDK) Headers, WinHv and Vid Library
o Hypercalls
o |[PC Ports (Events, Messages, Monitors)

Windows PnP Driver Development int0-minutes-ortess
Demo Time

QA & Wrap-up

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hyper-V Architecture
TELL MEMORE

L <

VMM Types

Type-2 VMM: Host OS runs Virtual Machine, which runs guest
environments

° .NET CLR, Java VM

Hybrid VMM: Host OS runs with Virtual Machine, which runs guest
environments

> VMWare, QEMU, Virtual PC

Type-1 VMM: Virtual Machine runs on barebones hardware, which runs
Host OS and guest environments

Hosted virtualization Hypervisor virtualization
Guest 1 Guest 2 Guest 1 Guest 2
Host OS VMM* VMM**
Hardware Hardware

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hyper-V Core Boot

The Hyper-V Core is composed of the hypervisor kernel, loader, boot
driver and debugger transport

> Hvloader.exe/efi (Windows 8+) — Hypervisor Loader

o

Hvix64.exe — VMX Hypervisor Kernel

o

Hvax64.exe — SVM Hypervisor Kernel

o

Kdhvcom.dll — Hypervisor Kernel Debugger Transport Library

o

Hvservice.sys (Windows 7: hvboot.sys) — Hypervisor Boot Driver

Before Windows 8, an early boot driver (hvboot.sys) parsed boot
options to look for the hypervisor settings

° hvboot!HbHvLaunchHypervisor uses the BAL to launch Hvix64.exe or
Hvax64.exe based on detected platform type

In Windows 8+, the Boot Loader (Winload.exe/efi) calls
OslArchHypervisorSetup to check for BCD Options

o Calls HvlpLaunchHvLoader as needed, which loads Hvloader.efi/exe

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Partitions

Each VM Instance, or unit of isolation, is called a partition

The core virtualization stack runs in the root partition, which has full
access to hardware
o However, the root partition also runs virtualized!

The Hyper-V Management Services on the root partition create child
partitions as needed

Partitions communicate to the hypervisor kernel by using hypercalls
o Similar to system calls, but with call-specific ACLs

Partitions can be
> Root/Parent Partitions (Windows)

> Enlightened Child Partitions (Windows or Linux)
> Unenlightened Child Partitions (37 party OS or legacy Linux)

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hyper-V Architecture

Hyper-V High Level Architecture

Root Partition Enlightened Enlightened Unenlightened
Windows Linux Child Partition
VMWES Child Partition Child Partition
YMMS | WMI User Applications User Applications User Applications
v
Linux
VSps VID VSCs/ICs VSCs/ICs
v v v v
Ijo WinHw I/0 WinHwv /o LinuxHw
Stack Stack Stack
L L L Kernel
Drivers Drivers Drivers
L J L 3 L4
vMBus ¢ > yMBus .| VMBus
. + 4 | . . L .
L 4 l ¥ l l
Yev
Hypervisor Hypercalls MSRs APIC Scheduler Address Management Partition Manager
Processors

Memory Source: Microsoft © TechNet

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hyper-V Devices

Child partitions can have access to hardware by using Virtual Devices

Virtual Devices (Vdevs) are implemented as a pair:

> Virtualization Service Consumers (VSCs), which run on the child and redirect
device requests

° Virtualization Service Providers (VSPs), which run on the root partition and
handle device access requests from children partitions

Communication is done through the Virtual Machine Bus (VMBus)
° Manages “channels” between different root and children partitions

Sometimes called ICs (Integration Components) or Synthetic Devices
o “Enlightened 1/O” is yet another term

For legacy devices (Serial Port, etc), emulated devices are used instead
> No quick path

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Enlightened /0O

Parent partition

Child partitions

VM worker process Applications
User mode
................................. JI---------_-----------_. [——
Kernel mode i Windows file system
1 |
i Volume
: |
: Virtualization service E Partition
Disk | provider (vsP) | i l
i Disk
]
1 |
" Fast path filter (VSC)
StorPort : ,
StorPort 1 I
miniport ' .
! Virtualization service | 1SCSlprt
' client (VSC)
: I
VMBus

Windows hypervisor

Hardware

Source: Microsoft © TechNet

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Virtualization Infrastructure Driver

The VID is the main “glue” in the kernel responsible for connecting the
Virtual Machine Management Services (VMMS) with the Hyper-V Kernel

° Lives in a driver called Vid.sys

VID uses the Hypercall interface in order to send management
commands to the hypervisor, such as

o Partition suspend/resume

> VP add/remove and policies
° Dynamic memory

o Partition create/delete

> Device visibility

VID is also in charge of MMIO emulation for HAL-type drivers
o Also emulates ROMs

User-mode side Vid.dll loads in Vmms.exe/Vmwp.exe and uses IOCTLs

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

CPU Management

Root partition will assign certain logical processors to certain children
partitions
o These processors are now called VPs or virtual processors

The same logical processor on the root partition can be shared among
multiple children partitions

o A scheduler determines and distributes workloads across the different
partitions

The root partition can install intercepts associated to certain events on
the children partitions
> |/O Port Access, MSR Access, Exceptions, CPUID, GPA Access

Hyper-V will suspend the virtual processor and send the root partition a
message

Root partition processes the message and must resume the VP

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Memory Management

Memory in Hyper-V is separated into three types
o GVA — Guest Virtual Address (VA in the Child Partition)
o GPA — Guest Physical Address (PA in the Child Partition)
o SPA — System Physical Address (PA in the Root Partition)

Using SLAT/Nested Page Tables, Hyper-V can map GVA->SPA

0x41404

NtWriteFile —0x80841404

0x910B4

N/

NV

GVAs » GPAs » SPAs

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

GPA Space

On the root partition, GPA and SPA are identity mapped
> Pages cannot be unmapped, but different access rights can be set

GPA can be in 3 states
> Mapped (GPA->SPA mapping exists)
o Unmapped (GPA->SPA mapping does not exist)
° Inaccessible (GPA is not valid for access)

Most unmapped GPA pages in the root partition are accessible
° Provides ability to access MMIO devices
° But some are not — for example, Local APIC is owned by the Hyper-V kernel

Unmapped GPA access causes message to root partition

Overlay GPA is used for “virtual” data structures such as hypercall page and
statistics page, which are shared among all partitions

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Virtual Interrupt Control

The hypervisor virtualizes the local APIC and extends it into a Synthetic
Interrupt Controller (SynIC)

External and Internal Interrupts delivered to VPs are virtualized using 16
local vector tables known as SINTO-SINT15 (SINTX)

Internal interrupts are generated when a VP writes to the APIC Interrupt
Command Register (ICR)

External interrupts are generated when a physical device generates an
interrupt or the hypervisor has to deliver an internal timer or trace
message

SynICis also involved in inter-partition communication when using
o Message Flags

° Messages
o Monitored Notifications

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hypercall Interface

Allows code running under Hyper-V to call into the Hyper-V Kernel

o Either for management tasks, such as creating new partitions, getting tracing,
debugging, and statistics information, installing intercepts, ...

o Or for inter-partition communication using ports

o Or for providing enlightenments for the guest OS
o Such as optimizing TLB Flushing or Spinlock Waiting

Hypercalls can be “simple” or “repeat”
o Simple calls perform a single operation with fixed-size input

o Rep calls perform repeated operations based on a starting index and count

Three calling conventions:
o Pass arguments in in/out data structure

o Pass arguments in x64 integer registers
o Pass arguments in x64 XMM vector registers

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hypercalls

Hypercalls can only be done by code running at Ring O

o Internally, vmcall instruction is used, but Hyper-V kernel will generate #UD
exception if CPL is not O

Hypercalls return HV_STATUS return values, which are documented
o RDX:RAX used on x64

Hypercalls must return within 50 microseconds back to the partition

> Rep calls cannot guarantee this, therefore use hypercall continuations to resume
execution after timeout

> Simple calls almost always complete in time, other than a few exceptions

Input and output must be sent in aligned GPA addresses that do not straddle
over a page

Microsoft provides a C interface to hypercalls, abstracting these details

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Programming With Hyper-V

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Programming With Hyper-V
YOUR CHALLENGE

1S ACGEPTED

Hyper-V Documentation

Microsoft has actually done an outstanding job documenting the Hyper-V
hypervisor and related infrastructure

Hyper-V has better documentation than the kernel

Return Values
1498 HuSlanalEvent Description i
The HvSignalEvent hypercall signals an event in a partition that owns the port associated with P SEIsEs AT
specified connection. The event is signaled by setting a bit within the SIEF page of one of the receive partition’s HV_STATUS ACCESS_DENIED The caller's partition does not possess the
Wrapper Interface processors. | SignalEvents privilege.
HV_STATUS The caller specifies a relative flag number. The actual SIEF bit number is calculated by th HV_STATUS_INVALID_CONNECTION_ID ' The specified connection ID is invalid
HvSignalEvent i i i i i
g — HVECONNECI’ION_ID T — hypervisor by adding the specified flag number to the base flag number associated with tl HV_STATUSINVALID_PORT ID The port associled with the specified
i ction has been deleted.
_;1n UINT16 FlagNumber Input Parameters connection has been delete
. - . The port associated with the specified
Native Intr Connectionld specifies the ID of the connection. connection belongs to a partition that is
ative Interface . S not in the “active” state.
ElagNumber, specifies the relative index of the event flag that the caller wants to setw
HySanalEvent target SIEF area. This number is relative to the base flag number associated with the The port associated with the specified
ction is not an "event" .
Call Code = 0x005D Output Parameters connection is not an "event" type por
i HV_STATUS_INVALID_PARAMETER The specified flag number is greater than
® Input Parameter Header None. o equal to the port's flag count.
0 Conneclionid Flaghumber Rsvdz Restrictions HV_STATUS_INVALID_VP_INDEX The target VP no longer exists or there are
4 b 2 b 2 by ", .)) R no available VPs to which the message
(4 bytes) (2bytes) (2 bytes) s The partition that is the target of the coannection must be in the “active” state. can be posted.

HV_STATUS_INVALID_SYNIC_STATE The target VP's SyniC is disabled and
cannot accept signaled events. For ports
targeted at HV_ANY_VP, this indicates
that the SynIC of all of the partition’s VPs
are disabled.

The target VP's SIEF page is disabled.
For ports targeted at HV_ANY_VP, this
indicates that the SIEF page of all of the
partition's VPs are disabled.

The target SINTx is masked.

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Top Level Functional Specification

Hypervisor Top-Level Functional
Specification: Windows Server 2012 R2

August B_3013 Reloased Vorsian 4 a

Abstract

s s the toplevel (TLFS) of n
isibda bahavior, The tha goals of the project and the high-
el bypenvise chiecture

T specicrionis prvded undr e cmaot Open Spaciicton Promis. Fo s delsis on the ot

Open . please refer o bilg

have paterts, patant ivplraﬂws radare copye. o s talncipropety s o coveing subfctatir
rescly uanishing of thase

et 850 o e You s Febnie o s Pk, s ame. cops . of o SIECT OBy

Copyright Information

This d s provided “as-s” kfommation and vi this document. including URL and ather Intemet
Web sile references. may change vithoul nolice

‘Some examples depicted herein e provided for lustation anly snd are ficitious. N resl assocition or connection
is intendied or should ba infemad.

s docienenddoe ol gyt oy gl gt o ekl pogersy by Mo prodic Vou
may copy ami se s document for your nleml, referenc

€ 2013 Microsoft. Al sights. reserved

Microsaft, Windows, Windews and Windows Vista rademarks
of Microsoft Corporation in the ww States andior other courtriss.

AN other trademarks are property of thelf respective owners.

54 PaRmmon DEsTRUCTION
141 Partifion Finafization

Contents 24 Futilon findleaton

4.2 Partifion Deletion

e

1 INTRODUCTION

543 Partition Destruction
11 SPECIFICATION STYLE
P 55 PARIMON EMMERATION
12 INIERFACE REQUREMENTS AND GOALS
56 PARTION MANAGEMENT INTERFACES
13 RESERVED VALUES
661 HvCreatePartition
BASIC DATA TYPES, CONCEPTS AND NOTATION T
Wrapper intertace
21 SMPLE SCALAR TYPES et
S — Matwe Infertace
22 HyeERcAL STATUS Cope
Descriphon
23 MEORY TYpes 562 HulnitializePartition
24 STRUCTURES. ENUMERATIONS AND BIT FELDS Wrapoes Interface
25 Enoeaness Nabve interloce
26 PONIER NaumG COWENDON 563 HuFinalizePartiion
3 FEATURE AND INTERFACE DISCOVERY 64 HvDelatePartition
31 INTERFACE MECHAMISMS 65 HCatPath
HYPERVISOR DISCOVERY
32 Leere 46 HvSatPartitionProperty
33 SIANDARD HYPERVSOR CPUID LEAVES

34 MICROSOFT HYPERVISOR CPUID LEAVES
35 VeRsionnG

8 REPORTING THE GUEST OS IDENTITY
361 Encoding the Guest O identity MSR for Open Source Operating Systems
4 HYPERCALL INTERFACE
41 HypER RVEW
42 HYPERCALL CLASSES
a3 HYPERCALL CONTMUATION

:
g
H
E
]
:

61 OuERVEW

44 HYPERCALL ATOMICITY AND ORDERING e

45 LEGAL HYPERCALL ENVIRONMENTS stem Resel
ALicHM System Power States
6 ALGNMENT REQUREMENTS stem Power States

HYPERCALL INPUTS
Extended Fast Hypercalls]

Boot-Time Herdwere Properties

HyPERCALL OUTPUTS 1

HyYPERCALL DETALS. are information 3
perameters, refer o Chapler 22,

HYPERCALL RESTRICTIONS 622 Disc Hardhware

Rool Partifion Hardware Properties
63 HARDWARE MANAGEMENT DATA TYPES
631 Logicsl Processors
32 Processor Power States
Power Stale MSRs
Power Stalz Configuration Regster
Power State Trigger Register

11 HYPERCAIL STATUS CODES

4111 Oufput Parameter Validity on Failed Hypercalls
4112 Ordenng of Errar Conditions
4113 Comman Hypercall Status Codes
412 ESTABUSHNG THE HYPERCALL INTERFACE
§ PARTITION MANAGEMENT
51 Ovenvew
52 P MAMAGEMENT DT TP

»

633 Logical Processor Run Time
821 Partition IDs 634 Global Run Time
522 Partition Properties 5 System Resel MSR
523 Partition Privil 64 HARDWARE MANAGEMENT INTERFACES
824 Partition Creation Fags 41 HvGetl ogicalProcessorRunTima
25 Partition State

525 642 HvParkedVirtualProcessors
826 Partition Vitual TLE Count 643 HvAGULOGiCaIFrocessor

427 Partition Processor Vendor 644 HvRemovelogicalProcessor
528 Parlition Processor Fealures 645 HeQueryNumaDistance

529 Parlition Processor XSAVE Fealures 646 HvSetlogicalProcessarFroperty

5210 Partiion Cache Line Flush Size Wrapoer Interface
5211 Partition Compatitility Mode Matwe Intestace
53 PARTMON CREATION Descriplion

COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

BIPrOCesSorPr

E
1R

w
Native Interface

648 HvCallMapDevicelnierupt
Viapper intertace
Mative Inferface

649 HvCalUnMapDevicelnferrupt
6410 HvCallAttachDevice
6411 HvCallDetachDevice

6412 HvCallEnterSlsepState

6413 HvCallProparoForSiean

6414 HvCalPrepareFortiibomate
6415 HvQueryAssociatod psFortica
RESOURCE MANAGEMENT

GUEST PHYSICAL ADDRESS SPACES
81 OVERVIEW

811 GPA Space

812 Page Access Rights

813 GPA Overlay Pages
GPA DATA TypES

223 Imercapt Access T
ted Feature Coda:

F

3 INTERCEPTINTERFACES

31 Hvinstailmercept

4 INTERCEPT MESSAGES AND MESSAGE FORMATS

1 OveRvIEW

1011 Virtual Processor Indices

1012 Virtusl Processor Registers
1013 Virtusl Processor States

1014 Virtual Processar Idle Sloap State

TLFS 4.0a

Latest version released last year covers Windows 8.1 and Server 2012 R2

TLFS describes internals of the hypervisor, as well as handling of virtual
memory, scheduling, IPC, event logging, debugging, processor management,
intercepts, and more

(Almost) all hypercalls are documented, with full parameter and structure
definitions

Designed to allow 37 party OS vendors to interoperate with the hypervisor
and create their own “enlightenments” for faster virtualization

Also covers CPUID and MSRs specific to the hypervisor

http://download.microsoft.com/download/A/B/4/AB43A34E-BDD0-4FA6-
BDEF-
79EEF16E880B/Hypervisor%20Top%20Level%20Functional%20Specification%
20v4.0.docx

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

http://download.microsoft.com/download/A/B/4/AB43A34E-BDD0-4FA6-BDEF-79EEF16E880B/Hypervisor Top Level Functional Specification v4.0.docx

More like TL;DR 4.0a

[FINISHED READING'210 PI l PERVISOF

)| [}
\

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Hyper-V Development

To develop for Hyper-V, one needs three key pieces:
o Hypervisor Guest Development Kit (HVGDK.H) and HyperCall Headers (WINHV.H)

> HVGDK is the entire technical specification provided in header format

> WinHv headers provide an interface to the hypercalls by using standard Windows Driver API

° Virtualization Infrastructure Driver Headers (VID.H, VIDDEFS.H)

o Allows registration of intercepts, partition management, and state transition resilience

o Import Libraries (WINHV.LIB, VID.LIB)
> Allows linking with the WinHyv driver to access the hypercall interface, and with Vid.sys/Vid.dll

Vista Windows Driver Kit (Build 6000) ships with the HYGDK/WINHV headers
o But not the libraries to link with!

VID is considered undocumented and not meant to be interfaced with

o Because of this, even with the HVGDK, programming the hypervisor is potentially
dangerous, as there is no notification/management for sleep/resume/migration
operations that can happen to a partition

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Missing Libraries

Wannabe Hyper-V Developer:

“This is remarkably silly. Microsoft has published the interfaces but
not the .lib file and developers with good intentions are off doing
miserable hackery in order to get their stuff working, as they have no
other choice.”

Hyper-V Architect:

“Yup. | agree completely. The published interfaces will disappear in
the next documentation drop. Since there is not really anything you
could build with them that will work end-to-end, publishing them
doesn't help anyone.”

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

HVGDK Removed in WDK 7+
IETHEIDOCS/ARE INCOMPLETE

WHATIEWEREMOVE THE

But still present in Singularity...

LARITY

TEEGENEISOTNIE

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Obtaining the Required Bits

For the HVGDK, you can use Singularity:
o https://singularity.svn.codeplex.com/svn/base/Windows/Inc/hvgdk.h

> Vid headers are also there (but we won’t cover Vid programming now)

However, this is becoming out-of-date. The more recent (but differently
factored) headers are available in the Linux Integration Services

o https://github.com/LIS/LIS3.5
o HvStatus.h, HvTypes.h, Hv.h, HvHcApi.h HvVpApi.h, etc...

For WinHV Headers, you’ll need to find an old version of the WDK
° May be available on MSDN

How to get the Hypercall Library? Make your own!
o Use dumpbin to dump exports to .def file
° Link a .lib file based on the .def file
o Won’t work on x86 due to decorations: you’ll need a stub .c file to compile

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

https://singularity.svn.codeplex.com/svn/base/Windows/Inc/hvgdk.h
https://github.com/LIS/LIS3.5

Changes in Windows 7+

”

The virtualization stack in Windows 7 has been split to separate “root
partition stack components from “child” components

° For example, VMBus is now VMBus.sys and VMBusr.sys
° The same has happened to WinHV: WinHvr.sys, WinHv.sys

This means you can no longer create a single driver that auto-detects
the type of partition it’s in
o Can’t link to two separate import libraries with functions having the same
name

° You’ll need winhvr.lib and winhv.lib, and separate drivers

Also, be wary of APl changes between one version of WinHV and the
next
> Windows 7 Port APIs now have a NUMA Node Requirement parameter

o Windows 10 SynIC APIs now expect a group affinity (GROUP_AFFINITY)

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Inter-Partition Communication

Events
o Represented as a single bit flag

> Array of 2048 bit flags is provided for each SynlIC, covering 1/16" of the SIEF Page
o Sender signals an event, which ORs the bit and sends an interrupt if not cleared

Messages
o Represented as an arbitrary byte array of up to 256 bytes

o}

Array of 256 byte buffers is provided for each SynIC, covering 1/16t of SIM Page

o}

Sender posts a message, which is added to a queue and sends an interrupt
> Sender acknowledges by writing to End-Of-Message (EOM) MSR or by APIC End-Of-Interrupt (EOI)

o}

Hypervisor will re-deliver message if not handled within a few milliseconds

(o]

Guaranteed ordering if all delivery is within the same VP

Monitored Notifications
o See TL;DR 4.1

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Creatl

861
862
863
864
865
866
867
868
869
878
871
872
873
874
875
876
877
878
879
880
881
882
883
884

4/12/2015

-+ «HV_PORT_INFO-portInfo;
- +HV_PORT_ID-portld;
<o -NTSTATUS - status;
L---status-:-winHvAllocatePortId(NULL,-&portId);
= ----if-(NT_SUCCESS(status))
. e {
-------- portInfo.PortType:-=-HvPortTypeEvent;
-------- portInfo.EventPortInfo.BaseFlagNumber:=
-------- portInfo.EventPortInfo.FlagCount-=-32;
-------- portInfo.EventPortInfo.TargetSint-=-VMBUS_MESSAGE_SINT;
-------- portInfo.EventPortInfo.TargetVp-=-HV_ANY_VP;
-------- portInfo.EventPortInfo.RsvdZ: =
-------- status-=-WinHvCreatePort (OwnerPartition,
................................. KeGetCurrentNodeNumber(),
................................. portld,
................................. Connectlonpa r‘tltlon
................................. &portInfo);
EEEEEEEE if- (INT_SUCCESS(status))
........ {
------------ WinHvFreePortId(portId);
RERASA }
.. }

COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Connecting to a Port

4/12/2015

914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933

+ +NTSTATUS - status;

- -HV_CONNECTION_INFO-connectInfo;
- +HV_CONNECTION ID-connectionId;
- +HV_PORT_ID-portld;

--connectInfo.PortType-=-HvPortTypeEvent;
- -connectInfo.EventConnectionInfo.RsvdZ-=-0;

- -connectionld-=-portld;

- -status-=-WinHvConnectPort(RootPartitionld,

.............................. KeﬁetCuppentNQdeNumbeF()J
.............................. CDﬁﬂECtiOﬂId,
.............................. ChildPartitionId,
.............................. portId,
.............................. &connectInfo);
— =+ -1if- (INT_SUCCESS(status))
-]
)

COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Sending and Receiving Events

WinHV maps the per-VP SynlC event page using an overlay page

Sender uses HvSignalEvent, which sets corresponding flag bit

Receiver calls WinHV to receive address of flags for given SynlC

SIEF Page

Receiver

Port

SINTO Events 2048 flags

SINT1 Events 2048 flags

Sender

Connection

E Partitions

Hypervisor

SINT15 Events 2048 flags

4/12/2015

COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Interrupt sent to receiver
Acknowledged by clearing bit

Receiver Handling an Event

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

BOOLEAN
HyperIsr-(
In-PKINTERRUPT-InterruptObject,
In-PDEVICE_EXTENSION-DevExt
{
+++-ULONG-1i, -setBit;
+«PHV_SYNIC _EVENT_FLAGS_PAGE-eventFlagsPage;

- -DbgPrintEx(77, -8, - "Interrupt: -%p-Index: -%x-CPU: -%d\n",
--------------- InterruptObject, -DevExt->SynIcIndex, - KeGetCurrentProcessorIndex());

- -eventFlagsPage - =-WinHvGetSintEventFlags(DevExt->SynIcIndex);

~-+--for-(i-=:@-;-1-<-RTL_NUMBER_OF(eventFlagsPage->SintEventFlags->Flags32); -i++)
..{
SR while- (BitScanForward(&setBit, -eventFlagsPage->SintEventFlags->Flags32[i])-!=-8)
........ {

------------ DbgPrintEx(77, @, - "Event: -%d-received\n", - setBit);
------------ InterlockedBitTestAndReset(&eventFlagsPage->SintEventFlags->Flags32[i], -setBit);

-« - -return-TRUE;
¥

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Sending Messages

WinHV maps the per-VP SynIC message page with an overlay

Sender uses HvPostMessage, which copies into a per-receiver buffer and
gueues the message

Message header contains type, payload size, port ID and connection ID

Receiver Sender
SIM Page Port Connection
SINTO Messages 256 bytes VP
SINT1 Messages 256 bytes Message
Partitions
SINT15 Messages | 256 bytes I
Message Buffers Hypervisor
Bu usy
Bu usy Interrupt sent to receiver
Buffer 3 L Acknowledged by EOM write

4/12/2015 el il - Ruffer 1nv— Frea

Receiver Handling a Message

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4/12/2015

{
=+« -ANSI_STRING-ansiString;
- -DbgPrintEx(77, -0,
--------------- "Received-Message-Type: -%x\n\tFrom-Partition: -%x, -on-port-%x\n",
--------------- DevExt->MessagePage->Header.MessageType,
--------------- DevExt->MessagePage->Header.Sender,
--------------- DevExt->MessagePage->Header.Port);
- -ansiString.Length-=-DevExt->MessagePage->Header.PayloadSize;
- -ansiString.MaximumLength-=-DevExt->MessagePage->Header.PayloadSize;
- -ansiString.Buffer-=- (PCHAR)DevExt->MessagePage->Payload;
- -DbgPrintEx(77, -0, - "String: -%Z\n", -&ansiString);
- -DevExt->MessagePage->Header.MessageType-=-HvMessageTypeNone;
- -MemoryBarrier();
==+ -if-(DevExt->MessagePage->Header.MessageFlags.MessagePending)
|
-------- __writemsr(HV_X64_MSR_EOM, -©);
i }
**return-TRUE;
}

COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Recelving Hyper-V Interrupts

Windows PnP Driver Development

BRACENOUR

A
A /

B e 'memegenerator.net

Two Types of Windows Drivers

When people write windows drivers, they are generally of two types:
° Legacy non-Plug-and-Play Drivers (also called kernel modules)
o Hardware Plug-and-Play Drivers (also called WDM drivers, or WDF drivers)

Although both of these run in the kernel and have full Ring O rights,
there are important internal differences in how they are handled

> PnP Drivers are expected to handle certain I/O operations from the kernel’s
Plug and Play Manager (called PIRPs)

o PnP Drivers receive a bus-enumerated device node (DEVICE_NODE) structure
> This ties them to hardware and the bus specific enumeration protocol

° PnP Drivers are allowed to request, filter, and translate resources

° They can register and handle interrupts
> They can create DMA Adapter Objects and perform DMA operations on the system

o PnP Drivers have access to additional Windows Kernel APIs

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

PnP-Driver-Only Windows APIs

loReportTargetDeviceChange(Asynchronous)

lo(Get/Register)Devicelnteface
loOpenDeviceRegistryKey
lo(Synchronous)invalidateDeviceRelations
loRequestDeviceEject(Ex)
loinvalidateDeviceState
loGetDmaAdapter
loGetDevicelnstanceName
lo(Get/Set)DevicePropertyData

loConnectinterrupt

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Getting Started with Drivers...

v N0 HELP

memegenerator.net

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

What makes you PnP?

Internally, what the kernel really considers as a PnP Driver is a driver
that has a device node (and without the
DNF_LEGACY_RESOURCE_DEVICENODE flag set)

° This type of driver is called a “PDQO”, or Physical Device Object
° |t directly manages a hardware device

So how can we become a PDO?

o Clearly this is needed for a virtual device like VMBus which needs to receive
interrupts

It turns out that this is a highly guarded process, with a “standard” way
of doing things

o Causes a very visible contract to exist between user, hardware, and kernel

o Requires writing an INF file, becoming a root bus enumerated driver, etc...

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

2) make a root enumerated bus driver that dynamically creates child devices,

Hmmmm. .. How about using a root enumerated device then? Same approach exactly as
I previously described, just not a filter.

Doron Holan

oo @microsoft.com

Virtual PNP Device

A root enumerated device is what you want

1. Write root enumerated virtual bus driver, something with at least the
following entry points populated in the driver entry like the sample shows from

DDK:

COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

4/12/2015

Root Bus Enumerated Drivers

SAY "WRITEA'ROOT BUS ENUMERATED
DRIVER™

e

It's also *much* better to do it in WDF if at ALL possible. Writing a simple
KMDF bus driver is a BREEZE. Writing a WDM bus driver pretty much sucks. Even

Doron Holan

Xooax@microsoft.com

WDM - Toaster - Driverentry() is called by NtWriteFile. Why?

Don't waste your time with the wdm version, just use the kmdf version. There is
never a reason to use wdm to write a bus driver again. As for NtWriteFile in the

One solution for the OP might be to create a simple KMDF bus driver, that was
installed root enumerated, which then can add or remove children as desired.

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Kernel Mode Driver Framework

I'DONTWANTTO

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED. 49

Writing a “Software” PnP Driver

It turns out that since NT 4 didn’t actually have Plug-n-Play, there was a
completely different way of accessing hardware resources

o There were no “PDOs” back then

Each driver ran on its own, scanned the bus, found what it needed, and
claimed it from the operating system

> loAssignResources
° HalGetInterruptVector
o Other APIs which are all now marked as “deprecated/legacy/dontuse”

Windows 2000’s WDM/PnP model broke all these legacy drivers since
they didn’t have a PDO

Windows introduced some legacy APIs for backward compatibility:
o loReportDetectedDevice
° loReportResourceForDetection

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

loReportDetectedDevice

LET MY PDO GO

Claiming APIC/MSI Interrupts...

With those APIs, we can now take our software driver, become a PDO,
follow all the right PnP procedures, and register our interrupt!

o Not so fast

> |n order to get the right to request an interrupt, the IRQ/GSIV resource must
be associated with our PDO

We can “fake” an interrupt resource by using the
loReportResourceForDetection API...

o But this sets an internal flag and doesn’t populate an undocumented registry
key in the HARDWARE hive...

> When we later try to connect to the interrupt, the ACPI IRQ Arbiter sees that,
and refuses our attempt

> Because APIC/MSI-X interrupts are modern — why would a “legacy” driver need to claim them?

Repeated OSR posts from experts all claim you need an INF file...
° Or a root-bus-enumerated driver using KMDF

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

INF Files Require Manual Install

AM I THE ONLY ONE AROUND

 dhandhe
S

memegenerator.net

4/12/2015 53

Unless... There’s Another Way
WHALIF‘I.TG[II

loAssignResources

864 -+ -requirementsList.InterfaceType-=-InterfaceTypeUndefined;

865 -+ --requirementsList.BusNumber-=-8;

866 -+ :.requirementslList.SlotNumber-=-8;

867

868 -+ -interruptDescriptor.Type-=-CmResourceTypeInterrupt;

869 - -+ -interruptDescriptor.Flags-=-CM_RESOURCE_INTERRUPT_LATCHED- |

870 | cererriiaiiiisi it CM_RESOURCE_INTERRUPT_MESSAGE: |

B71 | rrrrrmrrrmres it CM_RESOURCE_INTERRUPT_POLICY_INCLUDED;

872 - - --interruptDescriptor.ShareDisposition-=-CmResourceShareDeviceExclusive;

873 -+ - -interruptDescriptor.Option-=:0;

874

875 - - --interruptDescriptor.u.Interrupt.MinimumVector-=-CM_RESOURCE_INTERRUPT_MESSAGE_TOKEN;
876 -+ +-interruptDescriptor.u.Interrupt.MaximumVector:=:CM_RESOURCE_INTERRUPT_MESSAGE_TOKEN;
877 -+ -interruptDescriptor.u.Interrupt.AffinityPolicy-=-IrqPolicyAllProcessorsInMachine;
878 -+ -interruptDescriptor.u.Interrupt.PriorityPolicy-=-IrqPrioritylow;

879 - - --interruptDescriptor.u.Interrupt.TargetedProcessors-=-KeQueryActiveProcessors();
880

881 - -resourcelList.Count-=-1;

882 -+ -pesourcelist.Revision-=-1;

883 -+ -pesourcelList.Version-=-1;

884 ----resourcelList.Descriptors[®]-=-interruptDescriptor;

885

886 -+ -requirementslList.Alternativelists-=-1;

887 -+ - -requirementsList.ListSize-=-sizeof(requirementslList);

888 ----requirementslList.List[@]-=-resourcelList;

889

898 -+ -status-=-IoAssignResources(RegistryPath,

891 NULL 3

F- 1=) B I e DFiVEr‘DbjECt,

893 | rrrersiieasiisiiiisiaa et NULL,

F-1= Y N e T T &pequirementsListJ

F- 1= L B T e L &allocResour‘ceList);

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Problem with Assigned Resources

Now that you’ve assigned resources, you “own” them and you can go
ahead and claim them

But, due to hardware architecture reasons, the resources that a device
sees and the underlying hardware resources are not always the same

° Windows implements a “translation” and “arbitration” process to resolve
these issues

o The ultimate point of this is that the loConnectinterrupt call expects to
receive the final, translated & assigned resources

o While loAssignRessources only provides an intermediate step

Real Plug-and-Play drivers will receive the final copy of these resources
in a special PIRP called IRP_MN_START_DEVICE

o But self-reported “fake” PDOs do not receive IRP_MN_START _DEVICE...
° ... until at the next reboot!

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

| want IRP. MN START DEVICE

STOPTRYINGTOMAKE
IRPAMN STARTZ DEVICE HAPPEN

ITSINOTGOING T0

HAPPEN

memegeneratoriet

4/12/2015 57

Forcing IRP_MIN_START DEVICE

This last hurdle is solved by reading a wonderful blog post from one of
the principal Microsoft developers in the PnP World

° “How to test PnP state changes in your driver”

Requires usage of the lo/nvalidateDeviceState API
> Which we can call because we are a PDO now!

This sends another PIRP: IRP_MN_QUERY_PNP_DEVICE_STATE

o QOur response to this, with certain flags, will force one of the desired PIRPs to
occur

|Desired PnP IRP Flags |
IRP_MN_QUERY_STOP_DEVICE		PNP_DEVICE_FAILED	PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED
IRP_MN_SURPRISE_REMOVAL		PNE_DEVICE_REMOVED or PNP_DEVICE_FAILED	
RP_MN_START DEVICE	[PNP_DEVICE_RESOURCE_REQUIREMENTS_CHANGED		
For IRP_MMN_QUERY_REMOVE_DEVICE to be sent, you must call IcRequestDeviceEject (). | am pretty sure

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

Fake PDOs can Register Interrupts!
PATCHGUARD/BYPASSES)

4

\memege 'uw IEY

CHILD->ROOT MESSAGE DEMO

ROOT->CHILD EVENT DEMO

IDON'T ALWAYS SIGNAL
- EVENTS

Y

:

i
X
.
&

;
BUT WHEN 1 DO, I PICK THE
WRONG SINT

enerator.ne

4/12/2015

61

Interesting Hyper-V Behaviors

Overlay pages are allocated as executable and at easy to guess
virtual/physical locations

o Significantly increases attack surface risk if there is a bug in message passing,
for example

> Fixed in Windows 10 Build 10041

VMCALL instruction is at fixed, executable address (by design).
° Interesting for ROP

No real validation of port/connection IDs is done
o Can “free” a port ID even when it’s in use

° Can “free” more port IDs than allocated, causing unsigned overflow, and
confusion in the future allocation (massive amount of port IDs is allocated)

Undocumented hypercalls exist, which can generate memory dumps,
turn off the hypervisor, and more

o Reverse-engineer the hvix64.exe binary to find these
> Most are also visible in WinHV.sys

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

The Future

Hyper-V will be heavily used in Windows 10 to provide increased
platform security and isolation

Pass-the-hash attacks will be mitigated with the introduction of Virtual
Trust Levels / Virtual Secure Machine (VTL/VSM)

o Secure Kernel Mode (SKM) and Isolated User Mode (IUM) will provide
security boundary even against Root Partition Ring O Attackers

o Other ‘trustlets’ may be written over time to also isolate in the same way

Rumors are that Docker-type applications will also use Hyper-V
o Part of codenamed “Pico” APIs in the kernel (SKM runs as a PicoProcess)
° May be called “Chambers”?

Look for a talk on this at a future conference

Full whitepaper will be upcoming in a new Phrack issue (yes, Phrack!)

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

QUESTIONS?

SEE YOU AT THE NEXT SYSCAN
MARCH 2016 SWISSOTEL MERCHANT COURT
#SYSCAN1G

4/12/2015 COPYRIGHT 2015 ALEX IONESCU. ALL RIGHTS RESERVED.

