
SEDA: An Architecture for Scalable,

Well-Conditioned Internet Services

Matt Welsh, David Culler, and Eric Brewer

UC Berkeley Computer Science Division
mdw@cs.berkeley.edu

http://www.cs.berkeley.edu/~mdw/proj/seda

SOSP’01, Lake Louise, Canada

1

Internet Services Today

Massive concurrency demands
• Yahoo: 1.2 billion+ pageviews/day

• AOL web caches: 10 billion hits/day

Load spikes are inevitable (the ‘‘Slashdot Effect’’)

• Peak load is orders of magnitude greater than average

• Traffic on September 11, 2001 overloaded many news sites

• Load spikes occur exactly when the service is most valuable!

. In this regime, overprovisioning is infeasible

Increasingly dynamic
• Days of the ‘‘static Web’’ are over

• Majority of services based on dynamic content:

. e-Commerce, stock trading, driving directions, etc.

• Service logic evolves rapidly

. Increases complexity of engineering and deployment

Matt Welsh, UC Berkeley 2

Problem Statement

Supporting massive concurrency is hard
• Threads/processes designed for timesharing

. High overheads and memory footprint

• Don’t scale to many thousands of tasks

Existing OS designs do not provide graceful management of load

• Standard OSs strive for maximum resource transparency

• Static resource containment is inflexible

. How to set a apriori resource limits for widely fluctuating loads?

• Load management demands a feedback loop

Dynamics of services exaggerate these problems

• Much work on performance/robustness for specific services

. e.g., Fast, event-driven Web servers

• As services become more dynamic, this engineering burden is excessive

• Replication alone does not solve the load management problem

Matt Welsh, UC Berkeley 3

Proposal: The Staged Event-Driven Architecture

SEDA: A new architecture for Internet services
• A general-purpose framework for high concurrency and load conditioning

• Decomposes applications into stages separated by queues

• Adopt a structured approach to event-driven concurrency

Enable load conditioning
• Event queues allow inspection of request streams

• Can perform prioritization or filtering during heavy load

Dynamic control for self-tuning resource management
• System observes application performance and tunes runtime parameters

• Apply control for graceful degradation

. Perform load shedding or degrade service under overload

Simplify task of building highly-concurrent services
• Decouple load management from service complexity

• Use of stages supports modularity, code reuse, debugging

• Dynamic control shields apps from complexity of resource management

Matt Welsh, UC Berkeley 4

Outline

• Problems with Threads and Event-Driven Concurrency

• The Staged Event-Driven Architecture

• SEDA Implementation

• Application Study: High-Performance HTTP Server

• Using Control for Overload Prevention

• Ongoing Work and Conclusions

Matt Welsh, UC Berkeley 5

Problems with Thread-Based Concurrency

dispatchernetwork dispatch

request 1

request 2

request 3

request 4

request N

networksend result

0

5000

10000

15000

20000

25000

1 4 16 64 256 1024

T
hr

ou
gh

pu
t,

ta
sk

s/
se

c

�

Number of threads

Throughput

(937 MHz x86, Linux 2.2.14, each thread reading 8KB file)

• High resource usage, context switch overhead, contended locks

• Too many threads → throughput meltdown, response time explosion

• Traditional solution: Bound total number of threads

. But, how do you determine the ideal number of threads?

• Regardless of performance, threads are fundamentally the wrong interface
. Request stream hidden within scheduler
. Transparency masks resource contention

Matt Welsh, UC Berkeley 6

Event-driven Concurrency

scheduler

network

disk

request FSM 1

request FSM 2

request FSM 3

request FSM 4

request FSM N

0

5000

10000

15000

20000

25000

30000

35000

1 32 1024 32768 1048576

T
hr

ou
gh

pu
t,

ta
sk

s/
se

c

�

Number of tasks in pipeline

Throughput

Small number of event-processing threads with many FSMs
• Yields efficent and scalable concurrency

• Many examples: Click router, Flash web server, TP Monitors, etc.

Difficult to engineer, modularize, and tune
• Little OS and tool support: ‘‘roll your own’’

• No performance/failure isolation between FSMs

• FSM code can never block (but page faults, garbage collection force a block)

Matt Welsh, UC Berkeley 7

Staged Event-Driven Architecture (SEDA)

request
HTTP

cache
miss

I/O
request

packet packet

cache hit

connection

file data

packet
parse

cache
check

handle
miss

send
response

file
I/O

write
packet

read
packet

connection
accept

Decompose service into stages separated by queues
• Each stage performs a subset of request processing

• Stages internally event-driven, typically nonblocking

• Queues introduce execution boundary for isolation and conditioning

Each stage contains a thread pool to drive stage execution
• However, threads are not exposed to applications

• Dynamic control grows/shrinks thread pools with demand

. Stages may block if necessary

Best of both threads and events:
• Programmability of threads with explicit flow of events

Matt Welsh, UC Berkeley 8

Queues for Control and Composition

Accept

Reject

?
Queues subject to admission control policy
• e.g., Thresholding, rate control, credit-based flow control

. Applications must expect enqueue failures!

• Block on full queue → backpressure

• Drop rejected events → load shedding

. May also take alternate action, e.g., degraded service

Queues introduce explicit execution boundary

• Threads may only execute within a single stage

• Performance isolation, modularity, independent load management

Profile

Explicit event delivery supports inspection

• Trace flow of events through application

• Monitor queue lengths to detect bottleneck

Matt Welsh, UC Berkeley 9

SEDA Thread Pool Controller

Event Handler

Thread Pool

Threshold

Observe

Adjust
>

Length

Size

0

40

80

120

160

200

200 400 600 800 1000 1200 1400 1600
0

5

10

15

20

Time (1 sec intervals)

Input queue length

Thread pool size

Goal: Determine ideal degree of concurrency for a stage
• Dynamically adjust number of threads allocated to each stage

• Avoid wasting threads when unneeded

Controller operation
• Observes input queue length, adds threads if over threshold

• Idle threads removed from pool

Matt Welsh, UC Berkeley 10

SEDA Batching Controller

Adjust

Observe

Event Handler

Thread Pool

Running Avg

Other Stages

>Batching
Factor

Rate

0

200

400

600

800

1000

1200

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

20

40

60

80

100

Time (100 ms intervals)

Stage output rate

Batching factor

Goal: Schedule for low response time and high throughput
• Batching factor: number of events consumed by each thread

• Large batching factor → more locality, higher throughput

• Small batching factor → lower response time

Attempt to find smallest batching factor with stable throughput
• Reduces batching factor when throughput high, increases when low

Matt Welsh, UC Berkeley 11

SEDA Prototype: Sandstorm

NBIO JAIO

Java Virtual Machine

Operating System

S
ystem

 M
an

ag
er

P
ro

filer
timer

application
stage

SSL/TLS
protocol

asynchronous
file I/O

Gnutella
protocol

HTTP
protocol

application
stage

application
stage

application
stage

asynchronous
sockets

Implemented in Java with nonblocking I/O interfaces
• Scalable network performance up to 10,000 clients per node

• Influenced design of JDK 1.4 java.nio APIs

Java viable as service construction language
• Built-in threading, automatic memory management, cross-platform

. Java-based SEDA Web server outperforms Apache and Flash

Matt Welsh, UC Berkeley 12

Haboob: A SEDA-Based Web Server

request
HTTP

cache
miss

I/O
request

packet packet

cache hit

connection

file data

packet
parse

cache
check

handle
miss

send
response

file
I/O

write
packet

read
packet

connection
accept

Measured static file load from SpecWEB99 benchmark
• Realisitic, industry-standard benchmark

• 1 to 1024 clients making repeated requests, think time 20ms

• Total fileset size is 3.31 GB ; page sizes range from 102 Bytes to 940 KB

Maintains memory cache of recently accessed pages (200 MB)
• Significant fraction of page accesses require disk I/O

Comparison with Apache and Flash
• Apache: Process-based concurrency, 150 processes

. Does not accept new TCP connections when all processes busy

• Flash (Vivek Pai, Princeton): Event-driven w/ 4 processes

. Accepts only 506 simultaneous connections due to fd limits

Matt Welsh, UC Berkeley 13

Haboob Throughput vs. Apache and Flash

0

20

40

60

80

100

120

140

160

180

200

220

240

1 2 4 8 16 32 64 128 256 512 1024

T
hr

ou
gh

pu
t,

M
B

it/
se

c

�

Number of clients

Throughput

Apache
Flash
SEDA

4-way Pentium III 500 MHz, Gigabit Ethernet, 2 GB RAM, Linux 2.2.14, IBM JDK 1.3

• SEDA throughput 10% higher than Apache and Flash (which are in C!)

. Some degradation due to Linux socket inefficiencies

• Apache accepts only 150 clients at once - no overload despite thread model

. But as we will see, this penalizes many clients

Matt Welsh, UC Berkeley 14

Response Time Distribution - 1024 Clients

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 100 1000 10000 100000

P
ro

b
[r

es
po

ns
e

tim
e

<
=

 x
]

Response time, msec

 Apache
(150 conns)

 Flash
(506 conns)

 SEDA
(1024 conns)

Long tail in Apache & Flash
due to TCP SYN backoff

Note log scale

SEDA Flash Apache
Mean RT 547 ms 665 ms 475 ms
Max RT 3.8 sec 37 sec 1.7 minutes

• SEDA yields predictable performance - Apache and Flash are very unfair
. ‘‘Unlucky’’ clients see long TCP retransmit backoff times
. Everyone is ‘‘unlucky’’: multiple HTTP requests to load one page!

Matt Welsh, UC Berkeley 15

Dynamic Control for Overload Prevention

Event Handler

Thread Pool

Response Time Target

Response

Modify

> Time

Threshold

Arashi: Web-based e-mail service
(Yahoo! Mail clone)
• Complex dynamic page generation, SSL encryption

• Mail stored in back-end MySQL database

• SEDA middle-tier conditions load on MySQL!

Adaptive admission control policy
to meet performance target
• Dynamically adjust queue thresholds

to maintain low response time

• Rejected clients sent friendly error message

. Could degrade service or redirect request instead

• Goal: 90th percentile response time of 1 sec

• Controller is ignorant of service logic

Performance with 128 clients:
90th percentile RT % requests rejected

No control 7.5 sec 0%
With overload control 0.978 sec 49%

Matt Welsh, UC Berkeley 16

Ongoing Work

Formalize control-theoretic approach to resource management
• Large body of prior work in control of physical systems

• Internet services highly nonlinear, difficult to derive models

• Adaptive and fuzzy control as possible approaches

Generalize load conditioning mechanisms
• Extend resource control to memory, other resources

• General-purpose system overload monitor

• Explore degradation vs. load-shedding tradeoff

Ongoing implementation and application work
• Gnutella packet router

. Peer-to-peer file sharing network

• Distributed, cluster-based SEDA (Berkeley Ninja Project)
. Event queues implemented as network pipes

• Berkeley OceanStore Project using SEDA as a base

. Global, secure file store and archival system

Matt Welsh, UC Berkeley 17

Summary

Support for massive concurrency requires new design techniques
• SEDA introduces service design as a network of stages

• Decouple load management from service complexity

• Expose request streams to applications for load conditioning

Observation and control as key to service design
• Dynamic control to keep stages within operating regime

• Controllers operate independent of application logic

• Bring body of work on control systems to bear on Internet services

Implications for OS and language design
• What would a ‘‘native’’ SEDA operating system look like?

• Language and tool support for event-driven computing

• SEDA opens up new questions in the service design space!

For more information, software, and (soon) my PhD thesis:

http://www.cs.berkeley.edu/~mdw/

Matt Welsh, UC Berkeley 18

Backup Slides Follow

Matt Welsh, UC Berkeley 19

Related Work

High-performance Web servers
• Many systems realizing the benefit of event-driven design

• [Flash, Harvest, Squid, JAWS, ...]
• Specific applications - no general-purpose framework

• Little work on load conditioning, event scheduling

StagedServer (Microsoft Research)
• Core design similar to SEDA

• Primarily concerned with cache locality

• Wavefront thread scheduler: last in, first out

Click Modular Router, Scout OS, Utah Janos

• Various systems making use of structured event queues

• Packet processing decomposed as stages

• Threads call through multiple stages

• Major goal is latency reduction

Matt Welsh, UC Berkeley 20

Related Work 2

Resource Containers [Banga]

• Similar to Scout ‘‘path’’ and Janos ‘‘flow’’

• Vertical resource management for data flows

• SEDA applies resource management at per-stage level

Scalable I/O and Event Delivery

• [ASHs, IO-Lite, fbufs, /dev/poll, FreeBSD kqueue, NT completion ports]
• Structure I/O system to scale with number of clients

• We build on this work

Large body of work on scheduling

• Interesting thread/event/task scheduling results

• e.g., Use of SRPT and SCF scheduling in Web servers [Crovella, Harchol-Balter]
• Alternate performance metrics [Bender]
• We plan to investigate their use within SEDA

Matt Welsh, UC Berkeley 21

How Complex is SEDA?

Code size and complexity
• Sandstorm runtime: 19934 LOC, 7871 NCSS

• 2566 NCSS for core runtime, 3023 NCSS for async I/O

• HTTP protocol library: 676 NCSS

• Haboob web server: 2607 NCSS

Some learning curve for event-driven programming
• Managing continuations, tracking events

• But, note that stages can block (for difficult code or lazy programmers)

Decomposition into stages helps greatly!

• Applications tend to map cleanly onto a pipeline of stages

• Each stage is a self-contained, well-conditioned module

• Typically little or no direct data sharing between stages

• Interposition of new stages is trivial

. We have found SEDA to be much simpler and easier to reason about
than other event-driven server frameworks

Matt Welsh, UC Berkeley 22

