The SPARC Architecture Manual

Version 9

SPARC International, Inc.

San Jose, California

David L. Weaver / Tom Germond
Editors

SAV0O9R1459912

PTR Prentice Hall, Englewood Cliffs, New Jersey 07632

SPARCP is a registered trademark of SPARC International, Inc.
The SPARC logo is a registered trademark of SPARC International, Inc.

UNIX® is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1994 SPARC International, Inc.

Published by PTR Prentice Hall
Prentice-Hall, Inc.

A Paramount Communications Company
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, contact:

Corporate Sales Department
PTR Prentice Hall

113 Sylvan Avenue
Englewood Cliffs, NJ 07632

Phone: (201) 592-2863
Fax: (201) 592-2249

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the
prior permission of the copyright owners.

Restricted rights legend: use, duplication, or disclosure by the U. S. Government is subject to
restrictions set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer
Software clause @FARS 52.227-7013 and in similar clauses in B4R andNASA FAR Sup-
plement.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-825001-4

PRENTICEHALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICEHALL CANADA INC., Toronto

PRENTICE-HALL HISPANOAMERICANA, S.A.,Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTERASIA PTE. LTD., Singapore
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

oo [T i o] o I PO P PP PP PP
0.1 SPARC .. —————————————————————————————
0.2 Processor Needs for the 90s and Beyondcoooviiiiiiiiiiiiiiiinieeeeeee,
0.3 SPARC-V9: A Robust RISC for the Next Centurycoevvvivveieeennn.

0.3.1 64-bit Data and AdAreSSEScccvvvuririuniiiiiiieeeeeeeeeeeeeeeeeeeennnnns
0.3.2 Improved System Performanceccccceevveeiiiiiiiiiiiiieeiiiiiiieens
0.3.3 Advanced Optimizing Compilerscccccvvriirviiriiiiiiiiieee e
0.3.4 Advanced Superscalar ProCESSOISuuiiiiiiieieeeeeeneeeeeeeenennnnnns
0.3.5 Advanced Operating SYStEMSccceeeieiiiiiiiiiiiiiiiiiiiee e
0.3.6 FaUlt TOIBraNCEecuuiiiiiiiiiiiiiiiieee s
0.3.7 Fast Traps and Context SWItChINGccccceeerriiiiiiiiiiiiiiiinee,
0.3.8 Big- and Little-Endian Byte Ordersccccvvvveiiivvvviniinneennn.
0.4 SUMIMATY ettt e et e et e e e e e e et e e e et e e e et e e e et e e eanan s

Editors’ Notes
Acknowledgments
Personal Notes

1 Overview
Notes About this Book

11

1.2

2 Definitions

Contents

1.1.1 AUAIENCE .oeeiiiiee e e e e
1.1.2 WhHEre t0 Startcouoeiieiiieie e e
1.1.3 LOF0] 0111] K= RSSO
1.14 Editorial ConventionSccooiiiiiiiiiieee e
The SPARC-VI ArchiteCturecoooeiiiiiiiiiee e
1.2.1 FRALUIES ..eeeii e
1.2.2 ALHDULES ..o e
1.2.3 System COMPONENTS ...covuniiiiiiieeiiir e eaans
1.2.4 Binary CompatibDilitycccoeemimiiiiiiii
1.25 Architectural Definitioncoooviiiiiiiiie e,
1.2.6 SPARC-V9 ComplianCeccoovvviiiiiiiiiiiiiiie e e e eee e

3 Architectural Overview

3.1

3.2

SPARC-V9 Processor

Floating-Point Unit (FPU)ooiiiiiiiee

3.1.1 Integer Unit (IV)
3.1.2

Instructions

3.2.1 Memory Access

3.3

Data Formats

3.2.2
3.2.3
3.24
3.2.5
3.2.6
3.2.7

Privileged Registers

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

Registers

5.1
51.1
5.1.2
5.1.3
514
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

5.2
5.2.1
5.2.2
5.2.3
5.24
5.2.5

Arithmetic/Logical/Shift Instructions
Control Transferccooveeeeiiieiiann.

State ReQISIEr ACCESScciveiieeeiiviiceie et

Floating-Point Operate
Conditional Movecccccvvvvvennnnnnn.
Register Window Management

General PurposeRegisters

Special Registersccoceeeeeeinnnnne.

Signed Integer Byte
Signed Integer Halfword
Signed Integer Word
Signed Integer Double
Signed Extended Integer
Unsigned Integer Byte
Unsigned Integer Halfword
Unsigned Integer Word
Unsigned Integer Double
Unsigned Extended Integer
Tagged Word
Floating-Point Single Precision
Floating-Point Double Precision
Floating-Point Quad Precision

Nonprivileged Registers

IU Control/Status RegiStersccccveviiiiiiiiiiiiieeiiiee e
Floating-Point REQISIEISuvviiiiiiiieei e

Condition Codes Register (CCR)

Floating-Point Registers State (FPRS) Registerccc.......

Floating-Point State Register (FSR)

Address Space Identifier Register (ASI)cccccvvviviiiiiiiiinnnnnn.

TICK Register (TICK) ...cooeeevvvinnnnnnnn.

Processor State Register (PSTATE)
Trap Level Register (TL)
Processor Interrupt Level (PIL)

Trap Program Counter (TPC)

Trap Next Program Counter (TNPC)

19
19
20
20
20
20
21

23
23
24
24
24
24
24
24
25
25
25
25
25
26
26

29
30
30
34
35
36
40
42
43
50
50
51
51
54
54
55
55

6

526 Trap State (TSTATE) oottt

5.2.7 Trap Type Register (TT) ..o
5.2.8 Trap Base Address (TBA)uuueciiiiiiiieeeeeeeeeeeeeeeeee e
5.2.9 Version Register (VER)ooovviiiiiiiiiiieeeee e
5.2.10 Register-Window State RegiStersceveieiiiiiniieeeeeieeeeeeee,
5.2.11 Ancillary State Registers (ASRS)ccceeeeeeiiiiiiieeeeieee e
5.2.12 Floating-Point Deferred-Trap Queue (FQ)cccccvrrrrrrerrerennnn.
5.2.13 1U Deferred-Trap QUEBUEccoeeiiieieiiiiiiiiieeeiiiti e
1S L1 S
6.1 INSErUCLION EXECULIONuviiiiiiii e
6.2 INSErUCION FOrMALS ...oooeiiiieee e
6.2.1 INStruction FieldSoovviiiiiiiiie e
6.3 INSLrUCLION CAtEQOIIESiiiieiee e
6.3.1 Memory AcCess INSIIUCLIONScccovvvviiiiieicee e
6.3.2 Memory Synchronization InStructionscccccvvivviiinenne.
6.3.3 Integer Arithmetic INStrUCtIONScoooeeiiiiiii e
6.3.4 Control-Transfer Instructions (CTIS)cccceevviieeieeeeiiiiieeieiiiinn,
6.3.5 Conditional Move INStrUCLIONScccevvviiiiiiiiiiiiieeeeeeeeeeeeees
6.3.6 Register Window Management INStructionsccccoeeeeeeee.
6.3.7 State RegiStEr ACCESSovvveiiiiiiiiiiiie et
6.3.8 Privileged RegiSter ACCESScccceviriiiiiiiiiiiiiiieaeeee e e
6.3.9 Floating-Point Operate (FPop) Instructionscccceeveennee
6.3.10 Implementation-Dependent INStructionsccccceeeeeeeeeeeennnn.
6.3.11 Reserved Opcodes and Instruction Fieldscccccoevvieeeeennnn.
6.4 Register Window Managementcoooiiieiiee i
6.4.1 Register Window State Definitionccccceeeeeviiiiiiveiiiiiinnnnn.
6.4.2 Register WINAOW TrapsSceeeeeiiiiiiiiieaiaiiiieieieeiiieeeeeeeeeee
I = L PP
4% R © AV = V1
7.2 Processor States, Normal and Special Trapscccoeevveevviiiiiiiceecieiieeen,
7.2.1 RED _Stat@ ..oovniiiiiieiie e
7.2.2 EITOr_STAte ..o
AR T I = 1o J O (=To o [ST
7.3.1 PreCISE TraPS ...cceeeeeeeeiiiiiiiiiiiiee e e e e e e e e e e e e e ee et e e e e e e e e aaaaaaees
7.3.2 Deferred TrapS ...ccccccuurriiiiiiiiieieee e
7.3.3 DS U] o] (] o TR I =1 o L PP
7.3.4 RESEE TTaPS oeviiiiiiiee et
7.3.5 Uses of the Trap Categori€scccccuururrrrmiiiiiiiieeeeeeeeeeeaeee e
7.4 Trap CONIOl ..o e e

56
56
57
57
58
60
61
61

63
63
63
66
68
69
76
76
77
80
82
84
84
84
85
85
85
85

89
89
90
90
94
94
95
95
96
97
97
99

7.4.1 PIL CONIIOl et e e eaans 99

7.4.2 TEMCONOl oo 100
7.5 Trap-Table Entry AdAreSSEScoovvviiiiiiiiiiiiiii e 100
7.5.1 Trap Table Organizationcccccceceiiiiiiiiiiiiii 101
7.5.2 Trap TYPE (TT) oo 101
7.5.3 Trap PrioritieSccooiiiieeieecce e 104
7.6 Trap PrOCESSING ..oeeeiiiiiiiiiiieiei ittt e e 105
7.6.1 Normal Trap ProCessSiNgcooeeveviiuuiuimiiiiiaiieee e e eeeeeeeeeeieeennnens 106
7.6.2 Special Trap ProCeSSIiNgcccovvveeiuiruriiiiiiiiiieeeeeeeeeeeeeeeesanennnnnnnns 108
7.7 Exception and Interrupt DeSCIPONScccvvviviiiiiiiiiiiiieeeee e 113
MEMOIY MOUEIS ... e e e e e e e e e e e e e e e eeenannne 119
8.1 oo 11 o 1o o SR UPPPPOTRS 119
8.2 Memory, Real Memory, and 1/O LOCAtIONSccoovvveeiiiiriiiniiiiaaeeennn. 120
8.3 Addressing and Alternate AJdress SPacCESeeeiiiiieeeeeeeeeeeeeeeeeeninnnns 121
8.4 The SPARC-V9 Memory Modelcccccuiiiiiiiiiiiiiiiieieeeeeeee e 123
8.4.1 The SPARC-V9 Program Execution Modelcccccceeeennennn. 123
8.4.2 The Processor/Memory Interface Modelcccoevvieininnnnns 125
8.4.3 The MEMBAR INSIIUCHIONccovviviiiiiiiiiiieie e e 126
8.44 MEMOIY MOUEIS ...eeeeiiiiiie e 128
8.4.5 MOUE CONMIOIuviiiiiiiiiiiiiiiiieee e 129
8.4.6 Hardware Primitives for Mutual Exclusionccccoeevennnee. 130
8.4.7 Synchronizing Instruction and Data Memoryccccceeeeenen. 131
Instruction Definitions (NOrMatiVe)coooiiiiiiiiiiiiiii e 133
AL OVEIVIBW ..ttt e e e e e e e e e e e e e e e ettt n e e e e e e e e eaeeees 133
A2 AOA oo 137
A.3 Branch on Integer Register with Prediction (BPr)ccccccccciiiiiinnnnnn. 138
A.4 Branch on Floating-Point Condition Codes (FBfcC)cccooeevvviiinnnnnnen. 140
A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) ... 143
A.6 Branch on Integer Condition Codes (BICC)uuvviiiiiiiiiiiiiieiiiiiiiiiiis 146
A.7 Branch on Integer Condition Codes with Prediction (BPccC)................... 148
A8 Call BN LINK oeiiiiiiiiiiiieeeee ettt 151
A9 ComPpPare and SWAPooooiiiiiiiiiiiiiii e 152
A.10 Divide (64-bit / 32-Dit) ...cccooiiiiii 154
A.11 DONE and RETRY ..ottt 157
A.12 Floating-Point Add and SUubtractccccooviiiiiiiiiiiie e 158
A.13 Floating-Point COMPAIEccuuiiiiiiiiiii e 159
A.14 Convert Floating-Point to INtegerooovvvviiiiiiiiiiieee e 161
A.15 Convert Between Floating-Point Formatscccccciiiiiiiiiiiiieieeeeen. 162
A.16 Convert Integer to Floating-Pointccooooriiiiiiiiiiii e, 163

A.17
A.18
A.19
A.20
A.21
A.22
A.23
A.24
A.25
A.26
A.27
A.28
A.29
A.30
A.31
A.32
A.33
A.34
A.35
A.36
A.37
A.38
A.39
A.40
A4l
A.42

A.43
A.44
A.45
A.46
A.47
A.48
A.49
A.50
A51
A.52
A.53
A.54

Floating-PoiNt MOVEooiiiii e 164
Floating-Point Multiply and Divide ... 165
Floating-Point Square ROOt ..o 166
Flush INStruction MEMOTYooooiiiiiiiiiiii e 167
Flush Register WINAOWSoooiiiiiiiiiiiiiiiie e 169
[llegal INStrUCION TraP ..ococeeeeieeeeeeeeeee e 170
Implementation-Dependent INSrUCHIONScoovvviiiriiiiiiiniiiieiiee 171
JUMP AN LINK .. 172
Load Floating-PoOiNtcccooiiiiiiiiiiiies e 173
Load Floating-Point from Alternate Spaceccccccvvvviiiiiiiiiieiiieeeeenn. 176
(o F=To B [1 =To = SRS UPPPPPPTTTPUPPRTR 178
Load Integer from Alternate Spaceccccevvviviveiiiiiiiiiiiee e, 180
Load-Store Unsigned BYLEoooiiiiiiiiiiiiiiiie e 182
Load-Store Unsigned Byte to Alternate Spaceccccevvvviiieeeveeiinnennn. 183
(oo [or=1 @) 01T = U1 o] o 1SS 184
MEMOIY BAITIEI ..ottt 186
Move Floating-Point Register on Condition (FMOVCC)eevvienennnn. 188
Move F-P Register on Integer Register Condition (FMOVI) 192
Move Integer Register on Condition (MOVCC)ccooevviiiiiiiiiiiiiiinnee, 194
Move Integer Register on Register Condition (MOVR)cccoeeeeee. 198
Multiply and Divide (64-bit)ccoovviiiiiiieiccce e 199
MUILIPIY (B2-DIt) eveeieiieiieeeieeeee e 200
MURIPLY STEP e 202
[N\ [o @] o1=T > 1o o SRS 204
POPUIAtION COUNL ...t 205
PrefetCh DAtaeeeeiieee e 206
A.42.1 PrefetCh Variants ... 207
A.42.2 General COMMENTSiiiiii e e e e e e e 209
Read Privileged REQISIENc.ccoviiiiiii e 211
Read State REQISIEccoviiiiieeeec e e e e e e e 214
RETURN L.ttt e s e e e e e e e e e aaaeaaaeaeaeeaaannns 216
SAVE and RESTOREouutiiiiiiiiiiiiiiieeeee e a e e e e 217
SAVED and RESTOREDcuuuiiiiiiiiiiiiiiiiiiieeee e 219
SETHI e e e e e e e e e e 220
0] 31| 1 TR 221
Software-Initiated RESELuuuiiiiiiiiiiiiiiiiiei e 223
Y (o] (3N = = 1 4 = U 224
Store Floating-Point ... 225
Store Floating-Point into Alternate Spaceccccceeevviieeeeeeeeiieveeeeiiiiiiens 227
SEOTE INTEYET ..t 229

A.55 Store Integer into Alternate SPacCecccccciviiiiiiiiiiiiiee e 231
ADE6 SUDIIACT et 233
A.57 Swap Register With MEMOIYoovviiiiiiiiiieie e 234
A.58 Swap Register with Alternate Space MEemOorycccccvvviiiiieeiiiiiieeeeneen. 235
A.59 Tagged Add ... 237
A.60 Tagged SUDLIACTuuueiiiii i 238
A.61 Trap on Integer Condition Codes (TCC)covvvvvviiiiiiiiiiiiiiiieerieeeee e 240
A.62 Write Privileged ReQISIErccouviiiiiiiiiiiii e 242
A.63 Write State ReQISIEr oo 244
IEEE Std 754-1985 Requirements for SPARC-V9 (Normative)................. 247
B.1 Traps INhiDit RESUILSccccoiiiiiiiicee e 247
B.2 NaN Operand and Result Definitionscccccoeeeriiiiiiiiiiiiiiiiiieeeeee 248
B.2.1 Untrapped Result in Different Format from Operands 248
B.2.2 Untrapped Result in Same Format as Operands 248
B.3 Trapped Underflow Definition (UFM = 1)cccviiiiiiiiiiiiiiiiniiiis 249
B.4 Untrapped Underflow Definition (UFM = 0)ccooiiiiiiiiiiiiiiiiiiiiiiiiiiennns 249
B.5 Integer Overflow Definitionoovvviiiiiiiiiiiiii e 250
B.6 Floating-Point Nonstandard Mode ... 250
SPARC-V9 Implementation Dependencies (Normative).............cccceeeeeeeee. 251
C.1 Definition of an Implementation Dependencycccoevviiiiiviiivnnnnnnne. 251
C.2 Hardware CharacteriStiCSccooiiiiiiiiiiiiiiiiiiiiiiiiie e e e eeeeeeaeeee 251
C.3 Implementation Dependency Categori€sccccvvevrvvvvriiiiiiiieeeeeeeeeeeen, 252
C.4 List of Implementation DependencCiesooovviiiiiiiiiiiiiiiiiiiieeeeeeee e 252
Formal Specification of the Memory Models (Normative)............c..cceeeee. 261
D.1 Processors and MEMOTYcooouiiiiiiiiiiiiiiiiiti et e e e e 261
D.2 An Overview of the Memory Model Specificationcccceveeeeeeeennn. 262
D.3 Memory TranSaACLONSccoeviuiiiiiiiiiiiiee e e e e e e e e eeeeee et e e e e e e e eaeeeens 263
D.3.1 Memory TranSacCliONSccooeiiiiiiiiiiiiiiiiiiieeee e 263
D.3.2 Program OFUEIuuuuuuiiiiaaee e eee e eeeeeeeiitiin s e e e e e e e eeeeeeeenee 263
D.3.3 Dependence OFUEIuuuceiiiiiieeeeeeeeeeeeeeeeeesr e a e e e e e e e e eees 264
D.3.4 MEMOIY OFUEI ...uuiiiiiiiiiiiiieiiee et 265
D.4 Specification of Relaxed Memory Order (RMO)cccoeeiiiiviiiiiiniiennnnn, 265
D.4.1 Value AtOMICILYccceeeeeiieeieeeeeece e 265
D.4.2 StOre AtOMICILY ...coooiiiiiiiiiiiiiiiiii et 266
D.4.3 Atomic Memory TranSactionScccovveiiiiieeriiiiiiie e, 266
D.4.4 Memory Order CONSLraNtSceeiiiiieeeeeeieeeeeeeeein e 266
D.4.5 Value of Memory TranSactioNScccceeeeeeeeiiiieieeeeeeannnnnnnnnns 266

D.4.6 Termination of Memory Transactionscccooeevvvviiiieeeeennn. 267

D.4.7 Flush Memory TranSactionccooviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 267
D.5 Specification of Partial Store Order (PSO)uvveeiiiiiiiiiieiiiiieeeeeeiiiiiees 267
D.6 Specification of Total Store Order (TSO)covvvvveiiiiiiiiiiee e, 267
D.7 Examples Of Program EXECULIONSccooeviiiiiiiiiiiiiiiiiiiiiiieeceeeee e 267
D.7.1 Observation of Store AtOMICILYccooveeiireeieiiiiieeieeiiiiiiin 267
D.7.2 Dekker's Algorithmccccooiiiiiiiiiiiiiec e 269
D.7.3 Indirection Through ProCessorsccccccooiiiiieiiiiiiiiiiiins 269
D.7.4 PSSO BENAVIOFoouiiiiiiiiiiiie e 270
D.7.5 Application to COMPIIEIScceeiiiiiieieiiiieeeeeerr e 271
D.7.6 Verifying Memory Modelscccccumiiiiiiiiiiiiee 272
Opcode Maps (NOIMALIVE)........uuuuueiiiiiiieeeeeeeeee e e e e e e e e e e e e eeeeeeeeanesnanans 273
O Y= V= PRSP 273
E.2 TabBIES e 273
SPARC-V9 MMU Requirements (Informative)ccccccoeviiiiiiiiiiiiiiiiinnee, 281
Ot R [011 0 Yo [T 1 [o TP 281
F.LL1 DefiNitiONS ettt 281
A © Y V= PSPPI 281
F.3 The Processor-MMU INtErface ... 282
F.3.1 Information the MMU Expects from the Processor 283
F.3.2 Attributes the MMU Associates with Each Mapping 284
F.3.3 Information the MMU Sends to the Processorcccccceennn. 284
F.4 Components of the SPARC-V9 MMU Architectureccccceeeeeenneene, 285
F.4.1 Virtual-to-Physical Address Translationcccccccceeeeinninnnnn, 285
F.4.2 Memory ProteCHIONuuuuiiiiiiiieee e 286
F.4.3 Prefetch and Non-Faulting Load Violationcccceeeeeennn. 286
F.A. A CONEXES et e et e aeees 286
F.4.5 Fault Status and Fault ADAressooovviiiiiiiiiiiiiiiiee e 287
F.4.6 Referenced and Modified StatiStiCScoevveviiiiiviivinnnnnn. 288
F.5 RED_State PrOCESSINGeeeiiiiiiiiieiiiiiiieiisiii ittt e e e e 288
F.6 Virtual Address AlIASINGccoouuiiiiiiiiiiiiie e 288
F.7 MMU Demap OPErationcccuuuuuiuuiiiiiiiiiieeeeeeeeeeeeeeeeesiannnnn e e e aeeaaaes 288
F.8 SPARC-V9 Systems without an MMUcccuiiiiiiiiiiiiis 289
Suggested Assembly Language Syntax (Informative)..............ccccovvvvvvnnnnnns 291
(70 R Lo = 11 0] o 0 £ o U 291
G.1.1 RegiSter NAMESovuiiiiiiiiiiii e 291
G.1.2 Special Symbol Namescccccceeeeiiiiiiiiiere e 292
G.1.3 ValUBS e 294
G.1i4 LADEIS e 295

G.1.5 Other Operand SYNAXcuuueieiiieiiiiiiiiiiiiiieeeee e 295

G.1.6 COMMENLS ..oeiiiiiiiiii et e e e e e e nra e 296
G.2 SYNAX DESIGN ..ot a e e e a e 296
G.3 SyNthetiC INSIIUCTIONSuiiiiiiiiiiiiiiiiie e 297
H Software Considerations (Informative)ccccceeeiiiiiiiiieiiiiiiee, 301
H.1 Nonprivileged SOftWArecooooiiiiiiiiiiiiiiie et 301
[T O A o L= o | 1 (=] £SO UTTR 301
H.1.2 Leaf-Procedure Optimizationccccccceviiriiiiiiiiiiiiciiccee e 304
H.1.3 Example Code for a Procedure Callccvviiiiiiiiiniiiiinnnnn. 306
H.1.4 Register Allocation within a Windowcccooevvivviiiiiinnnnns 307
H.1.5 Other Register-Window-Usage Modelscccccovvvvvvniciinnnnn. 308
H.1.6 Self-Modifying COOEoooiiiiiiiitiiiee e 308
H.1.7 Thread Managementccccooooiiiiiiiiiiiiiieieeiii e 309
H.1.8 Minimizing Branch LatenCyccceeeeiiiiiiiiieeeeeeeeeeeeeeeeiiiinnns 309
H.1.9 PrefetCh oo 310
H.1.10 Nonfaulting Loadcccooiiiiiiiiiiiiieeicre e 313
H.2 SUPEIVISOr SOftWAIEccoiiiiiiieeecce e 315
H.2.1 Trap HaNdliNGcoooiiieee e 315
H.2.2 Example Code for Spill Handlercouiiiiiiiiie 316
H.2.3 Client-Server Model ... 316
H.2.4 User Trap Handlerscccouuiiiiiiiiiiiiiiiei e 317
| Extending the SPARC-V9 Architecture (Informative)ccccccvvvvvinciinnnnn. 321
1.1 Addition of SPARC-V9 EXIENSIONS ...ceevvvviiiiiiiiiaaieeeeeeeeeeeeeeeeeeeeinnnns 321
1.1.1 Read/Write Ancillary State Registers (ASRS)ccccoveeveeeieienne. 321
1.1.2 Implementation-Dependent and Reserved Opcodes 321
J Programming With the Memory Models (Informative)ccccoeeiiiinnnen. 323
J.1l MeMOry OPEIAtiONScccoviiiiiiiiiiiiiie aeeeeees 323
J.2 Memory Model SEIECHIONoooiiiiiiiiii e 324
J.3 Processors and PrOCESSESuuuiiiiiiieieeeiie ettt e e e e e e e e e e eeeeeeeeees 324
J.4 Higher-Level Programming Languages and Memory Models 325
J.5 Portability And Recommended Programming Stylecccccvvvviiieeeee. 325
J.6 SPIN LOCKS et e e aaae 327
J.7 Producer-Consumer Relationshipiiiiiiiiiiieeeeeeen 327
J.8 Process SWItCh SEQUENCEooviiiiiiiiii e 329
J.9 Dekker's AlQOritNMcoooiiiii e 330
B 0 O B @ To [N = (o 11 o P 330
J. 11 Fetch_and _Add ... 333

J.12 Barrier SYNChronizationccccoiviiiiiiiiieiiiiie e 333

J.13 Linked List Insertion and Deletionccccoevvviiiiiiiiiiiiiiiiiee e
J.14 Communicating With [/O DEVICESccoeviiiiiiiiiiiiiiieeeiiiiiieee e
J.14.1 /O Registers With Side EffeCtsccovveeieiiiiiiiiiiiieeei,
J.14.2 The Control and Status Register (CSR)ccccceeviiiiienniiiiiinnns
J.14.3 The DESCHPION evveiiiiiieie ettt
J.14.4 Lock-Controlled Access to a Device Registerccceeeeeennn..

K Changes From SPARC-V8 to SPARC-V9 (Informative)ccccceeeeeeeeeeennn. 339
S O I = o N 1 o o = SRR
K.2 Data FOIMMALSuoiiiiiiiiiiie et a s
K.3 Little-ENdian SUPPOITeuuiieiiiiiieeee et e e e eeeeeneeees
[0 1] (=] £ ESPSUSPSR
K.5 Alternate SPAcCE ACCESSccoiiiiiiiiiiiiiiiieieieie ettt e e e
K.6 Little-Endian Byte Ordercoooiiiiiiiiiiiiiiiiiee e
K.7 INSTIUCHION SELE ...ttt e
K.8 MemMOry MOAELuuuiiiiiiiiieiie e

(211] oTe] =1 o]) /2R
General REfEIENCEScoooieeeeeeeee e e e e e e e e e e e e e e e eeeeeeennnnnnns
Memory Model REFEIENCESuuueiiiiii e
g (=1 {1 (]] T SRR

00 [PP

Introduction

Welcome to SPARC-V9, the most significant change to the SPARC architecture since it was
announced in 1987. SPARC-V9 extends the addresses of SPARC to 64 bits and adds a number of
new instructions and other enhancements to the architécture.

SPARC-V?9, like its predecessor SPARC-V8, is a microprocessor specification created by the
SPARC Architecture Committee of SPARC International. SPARC-V9 is not a specific chip; it is

an architectural specification that can be implemented as a microprocessor by anyone securing a
license from SPARC International.

SPARC International is a consortium of computer makers, with membership open to any company
in the world. Executive member companies each designate one voting member to participate on
the SPARC Architecture Committee. Over the past several years, the architecture committee has
been hard at work designing the next generation of the SPARC architecture.

Typically, microprocessors are designed and implemented in secret by a single company. Then the
company spends succeeding years defending its proprietary rights in court against its competitors.
With SPARC, it is our intention to make it easy for anyone to design and implement to this archi-
tectural specification. Several SPARC-V9 implementations are already underway, and we expect
many more companies to design systems around this microprocessor standard in the coming
years.

0.1 SPARC

SPARC stands for &calableProcessoARChitecture. SPARC has been implemented in proces-
sors used in a range of computers from laptops to supercomputers. SPARC International member
companies have implemented over a dozen different compatible microprocessors since SPARC
was first announced—more than any other microprocessor family with this level of binary com-
patibility. As a result, SPARC today boasts over 8000 compatible software application programs.
SPARC-V9 maintains upwards binary compatibility for application software, which is a very
important feature.

Throughout the past six years, the SPARC architecture has served our needs well. But at the same
time, VLSI technology, compiler techniques and users’ needs have changed. The time is right to
upgrade SPARC for the coming decade.

0.2 Processor Needs for the 90s and Beyond

The design of Reduced Instruction Set Processors (RISC) began in earnest in the early 1980s.
Early RISC processors typically were characterized by a load-store architecture, single instruc-
tion-per-cycle execution, and 32-bit addressing. The instruction set architecture of these early

1.For a complete list of changes between SPARC-V8 and SPARC-V9, see Appendix K.

RISC chips was well matched to the level of computer optimization available in the early 1980s,
and provided a minimal interface for the UNIX™ operating system.

The computer industry has grown significantly in the last decade. Computer users need more for
the 1990s than these early RISCs provided; they demand more powerful systems today, and yet
they continue to want their systems to have good performance growth and compatibility into the
future.The applications of the future—highly interactive and distributed across multiple plat-
forms—uwill require larger address spaces and more sophisticated operating system interfaces.
Tomorrow’s architectures must provide better support for multiprocessors, lightweight threads,
and object oriented programming. Modern computer systems must also perform more reliably
than in the past.

It is interesting to observe the evolution of RISC architectures. Without sufficient instruction
encoding, some microprocessors have been unable to provide for either larger address spaces or
new instruction functionality. Others have provided 64-bit addressing, but still have not changed
much from the RISCs of the 1980s. Fortunately, SPARC'’s designers had sufficient foresight to
allow for all of the changes we felt were needed to keep SPARC a viable architecture for the long
term.

0.3 SPARC-V9: A Robust RISC for the Next Century

SPARC-V9 is a robust RISC architecture that will remain competitive well into the next century.
The SPARC-V9 architecture delivers on this promise by enhancing SPARC-V8 to provide explicit
support for:

— 64-bit virtual addresses and 64-bit integer data

— Improved system performance

— Advanced optimizing compilers

— Superscalar implementations

— Advanced operating systems

— Fault tolerance

— Extremely fast trap handling and context switching

— Big- and little-endian byte orders

0.3.1 64-bit Data and Addresses

SPARC-V9 directly supports 64-bit virtual addresses and integer data sizes up to 64 bits. All
SPARC-V8 integer registers have been extended from 32 to 64 bits. There are also several new
instructions that explicitly manipulate 64-bit values. For example, 64-bit integer values can be
loaded and stored directly with the LDX and STX instructions.

Despite these changes, 64-bit SPARC-V9 microprocessors will be able to execute programs com-
piled for 32-bit SPARC-V8 processors. The principles of two’s complement arithmetic made

upward compatibility straightforward to accomplish. Arithmetic operations, for example, speci-
fied arithmetic on registers, independent of the length of the register. The low order 32-bits of
arithmetic operations will continue to generate the same values they did on SPARC-V8 proces-
sors. Since SPARC-V8 programs paid attention to only the low order 32-bits, these programs will
execute compatibly. Compatibility for SPARC-V9 was accomplished by making sure that all pre-
viously existing instructions continued to generate exactly the same result in the low order 32-bits
of registers. In some cases this meant adding new instructions to operate on 64-bit values. For
example, shift instructions now have an additional 64-bit form.

In order to take advantage of SPARC-V9's extended addressing and advanced capabilities,
SPARC-V8 programs must be recompiled. SPARC-V9 compilers will take full advantage of the
new features of the architecture, extending the addressing range and providing access to all of the
added functionality.

0.3.2 Improved System Performance

Performance is one of the biggest concerns for both computer users and manufacturers. We've
changed some basic things in the architecture to allow SPARC-V9 systems to achieve higher per-
formance. The new architecture contains 16 additional double-precision floating-point registers,
bringing the total to 32. These additional registers reduce memory traffic, allowing programs to
run faster. The new floating-point registers are also addressable as eight quad-precision registers.
SPARC-V9's support for a 128-bit quad floating-point format is unique for microprocessors.

SPARC-V9 supports four floating-point condition code registers, where SPARC-V8 supported
only one. SPARC-V9 processors can provide more parallelism for a Superscalar machine by
launching several instructions at a time. With only one condition code register, instructions would
have a serial dependence waiting for the single condition code register to be updated. The new
floating-point condition code registers allow SPARC-V9 processors to initiate up to four floating-
point compares simultaneously.

We've also extended the instruction set to increase performance by adding:
— 64-bit integer multiply and divide instructions.
— Load and store floating-point quadword instructions.

— Software settable branch prediction, which gives the hardware a greater probability of
keeping the processor pipeline full.

— Branches on register value, which eliminate the need to execute a compare instruction.
This provides the appearance of multiple integer condition codes, eliminating a potential
bottleneck and creating similar possibilities for parallelism in integer calculations that we
obtained from multiple floating-point condition codes.

— Conditional move instructions, which allow many branches to be eliminated.

0.3.3 Advanced Optimizing Compilers

We expect to see many new optimizing compilers in the coming decade, and we have included
features in SPARC-V9 that these compilers will be able to use to provide higher performance.
SPARC-V9 software can explicitly prefetch data and instructions, thus reducing the memory
latency, so a program need not wait as long for its code or data. If compilers generate code to
prefetch code and data far enough in advance, the data can be available as soon as the program
needs to use it, reducing cache miss penalties and pipeline stalls.

SPARC-V9 has support for loading data not aligned on “natural” boundaries. Because of the way
the FORTRAN language is specified, compilers often cannot determine whether double-precision
floating-point data is aligned on doubleword boundaries in memory. In many RISC architectures,
FORTRAN compilers generate two single-precision loads instead of one double-precision load.
This can be a severe performance bottleneck. SPARC-V9 allows the compiler to always use the
most efficient load and store instructions. On those rare occasions when the data is not aligned,
the underlying architecture provides for a fast trap to return the requested data, without the
encumbrances of providing unaligned accesses directly in the memory system hardware. This net
effect is higher performance on many FORTRAN programs.

SPARC-V9 also supports non-faulting loads, which allow compilers to move load instructions
ahead of conditional control structures that guard their use. The semantics of non-faulting loads
are the same as for other loads, except when a nonrecoverable fault such as an address-out-of-
range error occurs. These faults are ignored, and hardware and system software cooperate to make
the load appear to complete normally, returning a zero result. This optimization is particularly
useful when optimizing for superscalar processors. Consider this C program fragment:

if (p!= NULL)x = *p+y;

With non-faulting loads, the load ¢p can be moved up by the compiler to before the check for

p '= NULL , allowing overlapped execution. A normal load on many processors would cause the
program to be aborted if this optimization was performed pwehsNULL The effect is equiva-

lent to this transformation:

temp_register = *p;
if (p!= NULL)x = temp_register +vy;

Imagine a superscalar processor that could execute four instructions per cycle, but only one of
which could be a load or store. In a loop of eight instructions containing two loads, it might turn
out that without this transformation it would not be possible to schedule either of the loads in the
first group of four instructions. In this case a third or possibly fourth clock cycle might be neces-
sary for each loop iteration instead of the minimal two cycles. Improving opportunities for better
instruction scheduling could have made a factor of two difference in performance for this exam-
ple. Good instruction scheduling is critical.

Alias detection is a particularly difficult problem for compilers. If a compiler cannot tell whether
two pointers might point to the same value in memory, then it is not at liberty to move loads up
past previous store instructions. This can create a difficult instruction scheduling bottleneck.
SPARC-V9 contains specific instructions to enable the hardware to detect pointer aliases, and
offers the compiler a simple solution to this difficult problem. Two pointers can be compared and

the results of this comparison stored in an integer register. The FMOVRZ instruction, for exam-
ple, will conditionally move a floating-point register based on the result of this prior test. This
instruction can be used to correct aliasing problems and allow load instructions to be moved up
past stores. As with the previous example, this can make a significant difference in overall pro-
gram performance.

Finally, we've added a TICK register, which is incremented once per machine cycle. This register
can be read by a user program to make simple and accurate measurements of program perfor-
mance.

0.3.4 Advanced Superscalar Processors

SPARC-V9 includes support for advanced Superscalar processor designs. CPU designers are
learning to execute more instructions per cycle every year with new pipelines. Two to three
instructions at a time is becoming commonplace. We eventually expect to be able to execute eight
to sixteen instructions at a time with the SPARC architecture. To accomplish this, we've made
enhancements to provide better support for Superscalar execution.

Many of these changes were driven by the experience gained from implementing Texas Instru-
ments’ SuperSPARC and Ross Technologies’ HyperSPARC, both Superscalar chips. SPARC’s
simple-to-decode, fixed-length instructions, and separate integer and floating-point units lend
themselves to Superscalar technology.

In addition, SPARC-V9 provides more floating-point registers, support for non-faulting loads,
multiple condition codes, branch prediction, and branches on integer register contents. All of
these features allow for more parallelism within the processor. For the memory system, we've
added a sophisticated memory barrier instruction, which allows system programmers to specify
the minimum synchronization needed to ensure correct operation.

0.3.5 Advanced Operating Systems

The operating system interface has been completely redesigned in SPARC-V9 to better support
operating systems of the 1990s. There are new privileged registers and a new structure to those
registers, which makes it much simpler to access important control information in the machine.
Remember, the change in the operating system interface has no effect on application software;
user-level programs do not see these changes, and thus, are binary compatible without recompila-
tion.

Several changes were made to support the new microkernel style of operating system design.
Nested trap levels allow more modular structuring of code, and are more efficient as well.
SPARC-V9 provides improved support for lightweight threads and faster context switching than
was possible in previous SPARC architectures. We've accomplished this by making register win-
dows more flexible than they were in earlier SPARC processors, allowing the kernel to provide a
separate register bank to each running process. Thus, the processor can perform a context switch
with essentially no overhead. The new register window implementation also provides better sup-
port for object-oriented operating systems by speeding up interprocess communication across dif-
ferent domains. There is a mechanism to provide efficient server access to client address spaces

using user address space identifiers. The definition of a nucleus address space allows the operating
system to exist in a different address space than that of the user program.

Earlier SPARC implementations supported multiprocessors; now we've added support for very
large-scale multiprocessors, including a memory barrier instruction and a new memory model we
call relaxed memory order (RMO). These features allow SPARC-V9 CPUs to schedule memory
operations to achieve high performance, while still doing the synchronization and locking opera-
tions needed for shared-memory multiprocessing.

Finally we've added architectural support that helps the operating system provide “clean” register
windows to its processes. A clean window is guaranteed to contain zeroes initially, and only data
or addresses generated by the process during its lifetime. This makes it easier to implement a
secure operating system, which must provide absolute isolation between its processes.

0.3.6 Fault Tolerance

Most existing microprocessor architectures do not provide explicit support for reliability and
fault-tolerance. You might build a reliable and fault-tolerant machine without explicit support, but
providing it saves a lot of work, and the machine will cost less in the long run.

We've incorporated a number of features in SPARC-V9 to address these shortcomings. First,
we've added a compare-and-swap instruction. This instruction has well-known fault-tolerant fea-
tures and is also an efficient way to do multiprocessor synchronization.

We've also added support for multiple levels of nested traps, which allow systems to recover
gracefully from various kinds of faults, and to contain more efficient trap handlers. Nested traps
are described in the next section.

Finally, we've added a special new processor state called RED_state, sh@edet,Error and

Debug state. It fully defines the expected behavior when the system is faced with catastrophic
errors, and during reset processing when it is returning to service. This level of robustness is
required to build fault-tolerant systems.

0.3.7 Fast Traps and Context Switching

We have also worked hard to provide very fast traps and context switching in SPARC-V9. We
have re-architected the trap entry mechanism to transfer control into the trap handlers very
quickly. We've also added eight new registers called “alternate globals,” so the trap handler has a
fresh register set to use immediately upon entry; the software need not store registers before it can
begin to do its work. This allows very fast instruction emulation and very short interrupt response
times.

We have also added support for multiple levels of nested traps. It is very useful for the machine to
allow a trap handler to generate a trap. SPARC-V8 trap handlers were not allowed to cause
another trap. With support for nested traps, we have seen some trap handlers reduced from one
hundred instructions to less than twenty. Obviously, this creates a big performance improvement,
but it also allows a much simpler operating system design.

We've also found a way to reduce the number of registers saved and restored between process
executions, which provides faster context switching. The architecture provides separate dirty bits
for the original (lower) and the new (upper) floating-point registers. If a program has not modified
any register in one of the sets, there is no need to save that set during a context switch.

0.3.8 Big- and Little-Endian Byte Orders

Finally, we have provided support for data created on little-endian processors such as the 80x86
family. The architecture allows both user and supervisor code to explicitly access data in little-
endian byte order. It is also possible to change the default byte order to little-endian in user mode
only, in supervisor mode only, or in both. This allows SPARC-V9 to support mixed byte order
systems.

0.4 Summary

As you can see, SPARC-V9 is a significant advance over its predecessors. We have provided 64-
bit data and addressing, support for fault tolerance, fast context switching, support for advanced
compiler optimizations, efficient design for Superscalar processors, and a clean structure for mod-
ern operating systems. And we've done it all with 100% upwards binary compatibility for applica-
tion programs. We believe that this is a significant achievement.

In the future, we envision superior SPARC-V9 implementations providing high performance, stel-
lar reliability, and excellent cost efficiency—just what computer users are asking for. SPARC has
been the RISC leader for the last five years. With the changes we have made in SPARC-V9, we
expect it to remain the RISC leader well into the next century.

Speaking for the Committee members, we sincerely hope that you profit from our work.

— David R. Ditzel
Chairman, SPARC Architecture Committee

Editors’ Notes

Acknowledgments

The members of SPARC International’s Architecture Committee devoted a great deal of time over
a period of three years designing the SPARC-V9 architecture. As of Summer 1993, the committee
membership was: Dennis Allison, Hisashige Ando, Jack Benkual, Joel Boney (vice-chair), David
Ditzel (chair), Hisakazu Edamatsu, Kees Mage, Steve Krueger, Craig Nelson, Chris Thomson,
David Weaver, and Winfried Wilcke.

Joel Boney wrote the original “V9 Delta Documents” that supplied much of the new material for
this specification.

Others who have made significant contributions to SPARC-V9 include Greg Blanck, Jeff Brough-
ton (former vice-chair), David Chase, Steve Chessin, Bob Cmelik, David Dill, Kourosh Gharac-
horloo, David Hough, Bill Joy, Ed Kelly, Steve Kleiman, Jaspal Kohli, Les Kohn, Shing Kong,
Paul Loewenstein, Guillermo “Matute” Maturana, Mike McCammon, Bob Montoye, Chuck
Narad, Andreas Nowatzyk, Seungjoon Park, David Patterson, Mike Powell, John Platko, Steve
Richardson, Robert Setzer, Pradeep Sindhu, George Taylor, Marc Tremblay, Rudolf Usselmann, J.
J. Whelan, Malcolm Wing, and Robert Yung.

Joel Boney, Dennis Allison, Steve Chessin, and Steve Muchnick deserve distinction as “Ace”
reviewers. They performed meticulous reviews, eliminating countless bugs in the specification.

Our thanks to all of the above people for their support, critiques, and contributions to this book
over the last three years!

Personal Notes

Three years — that’s a long time to be in labor! It is with a great deal of pride (and frankly, relief!)
that | see this book go to print.

The SPARC Architecture Committee comprised roughly a dozen people, all top computer archi-
tects in the industry, from diverse companies. Yet — and this was the most incredible part of the
whole process — this group was able to set aside personal egos and individual company interests,
and work not just as a committee, but as a réedm. This kind of cooperation and synergy
doesn’'t happen every day. Years from now, I'll look back at this work and still be proud to have
been a part of this group, and of what we created. . . . “Way to go, gang — we done good!”

Special kudos are due Tom Germond, whose expertise and sharp eye for detail were instrumental
in preparing this book. He fearlessly performed a complex but accurate conversion of this specifi-
cation from one document-preparation system to a wildly different one. Tom made countless
improvements to the specification’s substance and style, and tenaciously followed numerous open
technical issues through to resolution. This book would simply not have been the same without
him. Thanks for being there, Tom.

— David Weaver, Editor

Well, it's three o’clock in the morning and I'm in the middle of yet another SPARC-V9 all-
nighter. | haven't lost this much sleep since my firstborn was first born. But | must say, it's been
great fun bringing this baby to life.

My deepest gratitude to every member of our team, and a tiny extra measure of thanks to a special
few. To Joel Boney for his generous and unwavering support. To Dennis Allison for his constant
striving for excellence and clarity. To Steve Muchnick for his astonishing mastery of the details.
To Steve Chessin for always going to the heart of the issues. And to Jane Bonnell, our editor at
Prentice-Hall, for helping us turn a technical specification into a real book.

And finally,warm thanks to Dave Weaver, a good friend and an easy person to work for. You cre-
ated the opportunity for me to join the team, and you got me through the rough times with all
those great movie-and-hot-tub parties. Until next time....

— Tom Germond, Co-editor

1 Overview

This specification defines a 64-bit architecture called SPARC-V9, which is upward-compatible
with the existing 32-bit SPARC-V8 microprocessor architecture. This specification includes, but
is not limited to, the definition of the instruction set, register model, data types, instruction
opcodes, trap model, and memory model.

1.1 Notes About this Book

1.1.1 Audience

Audiences for this specification include implementors of the architecture, students of computer
architecture, and developers of SPARC-V9 system software (simulators, compilers, debuggers,
and operating systems, for example). Software developers who need to write SPARC-V9 software
in assembly language will also find this information useful.

1.1.2 Where to Start

If you are new to the SPARC architecture, read Chapter 2 and Chapter 3 for an overview, then
look into the subsequent chapters and appendixes for more details in areas of interest to you.

If you are already familiar with SPARC-V8, you will want to review the list of changes in Appen-
dix K, “Changes From SPARC-V8 to SPARC-V9.” For additional detail, review the following
chapters:

— Chapter 5, “Registers,” for a description of the register set.

— Chapter 6, “Instructions,” for a description of the new instructions.

— Chapter 7, “Traps,” for a description of the trap model.

— Chapter 8, “Memory Models,” for a description of the memory models.

— Appendix A, “Instruction Definitions,” for descriptions of new or changed instructions.

1.1.3 Contents
The manual contains these chapters:

— Chapter 1, “Overview,” describes the background, design philosophy, and high-level fea-
tures of the architecture.

— Chapter 2, “Definitions,” defines some of the terms used in the specification.

— Chapter 3, “Architectural Overview,” is an overview of the architecture: its organization,
instruction set, and trap model.

— Chapter 4, “Data Formats,” describes the supported data types.

— Chapter 5, “Registers,” describes the register set.

— Chapter 6, “Instructions,” describes the instruction set.
— Chapter 7, “Traps,” describes the trap model.
— Chapter 8, “Memory Models,” describes the memory models.

These appendixes follow the chapters:

— Appendix A, “Instruction Definitions,” contains definitions of all SPARC-V9 instructions,
including tables showing the recommended assembly language syntax for each instruc-
tion.

— Appendix B, “IEEE Std 754-1985 Requirements for SPARC-V9,” contains information
about the SPARC-V9 implementation of the IEEE 754 floating-point standard.

— Appendix C, “SPARC-V9 Implementation Dependencies,” contains information about
features that may differ among conforming implementations.

— Appendix D, “Formal Specification of the Memory Models,” contains a formal description
of the memory models.

— Appendix E, “Opcode Maps,” contains tables detailing the encoding of all opcodes.

— Appendix F, “SPARC-V9 MMU Requirements,” describes the requirements that SPARC-
V9 imposes on Memory Management Units.

— Appendix G, “Suggested Assembly Language Syntax,” defines the syntactic conventions
used in the appendixes for the suggested SPARC-V9 assembly language. It also lists syn-
thetic instructions that may be supported by SPARC-V9 assemblers for the convenience of
assembly language programmers.

— Appendix H, “Software Considerations,” contains general SPARC-V9 software consider-
ations.

— Appendix |, “Extending the SPARC-V9 Architecture,” contains information on how an
implementation can extend the instruction set or register set.

— Appendix J, “Programming With the Memory Models,” contains information on program-
ming with the SPARC-V9 memory models.

— Appendix K, “Changes From SPARC-V8 to SPARC-V9,” describes the differences
between SPARC-V8 and SPARC-V9.

A bibliography and an index complete the book.

114

Editorial Conventions

1.1.4.1 Fonts and Notational Conventions

Fonts are used as follows:

Italic font is used for register names, instruction fields, and read-only register fields. For
example: “Thasl field contains....”

Typewriter font is used for literals and for software examples.

Bold font is used for emphasis and the first time a word is defined. For examplae*A
cise trapis induced....”

UPPER CASE items are acronyms, instruction names, or writable register fields. Some
common acronyms appear in the glossary in Chapter 2. Note that names of some instruc-
tions contain both upper- and lower-case letters.

ltalic sans serif font is used for exception and trap names. For example, “The
privileged_action exception....”

Underbar characters join words in register, register field, exception, and trap names. Note
that such words can be split across lines at the underbar without an intervening hyphen.
For example: “This is true whenever the integer_condition_code field....”

Reduced-size foris used in informational notes. See 1.1.4.4, “Informational Notes.”

The following notational conventions are used:

Square brackets ‘[] indicate a numbered register in a register file. For example: “r[0]
contains....”

Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit numbers within
a field. For example: “Bits FSR<29:28> and FSR<12> are....”

Curly braces { }' are used to indicate textual substitution. For example, the string
“ASI_PRIMARY{ LITTLE}" expands to ‘AS|I_PRIMARY” and
“AS|I PRIMARY_LITTLE".

The[] symbol designates concatenation of bit vectors. A conjroa the left side of an
assignment separates quantities that are concatenated for the purpose of assignment. For
example, if X, Y, and Z are 1-bit vectors, and the 2-bit vector T equglthih

X,Y,2) « 0[] T
resultsin X=0,Y=1,and Z=1.

1.1.4.2 Implementation Dependencies

Definitions of SPARC-V9 architecture implementation dependencies are indicated by the notation
“IMPL. DEP. #nn: Some descriptive text.” The numbernn is used to enumerate the dependencies in
Appendix C, “SPARC-V9 Implementation Dependencies.” References to SPARC-V9 implemen-

tation dependencies are indicated by the notation “(impl. dep).#Appendix C lists the page
number on which each definition and reference occurs.

1.1.4.3 Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated. Numbers
in other bases are followed by a numeric subscript indicating their base (for examplg, 1001
FFFF 000Q,). Long binary and hex numbers within the text have spaces inserted every four char-
acters to improve readability. Within C or assembly language examples, numbers may be pre-
ceded by “Ox” to indicate base-16 (hexadecimal) notation (for exanxgteooo).

1.1.4.4 Informational Notes

This manual provides several different types of information in notes; the information appears in a
reduced-size fontThe following are illustrations of the various note types:

Programming Note:
These contain incidental information about programming using the SPARC-V9 architecture.

Implementation Note:
These contain information that may be specific to an implementation or may differ in different implementa-
tions.

Compatibility Note:
These contain information about features of SPARC-V9 that may not be compatible with SPARC-V8 imple-
mentations.

1.2 The SPARC-V9 Architecture

1.2.1 Features
SPARC-V9 includes the following principal features:
— A linear address space with 64-bit addressing.

— Few and simple instruction formats: All instructions are 32 bits wide, and are aligned on
32-bit boundaries in memory. Only load and store instructions access memory and per-
form 1/O.

— Few addressing modes: A memory address is given as either “register + register” or “reg-
ister + immediate.”

— Triadic register addresses: Most computational instructions operate on two register oper-
ands or one register and a constant, and place the result in a third register.

— A large windowed register file: At any one instant, a program sees 8 global integer regis-
ters plus a 24-register window of a larger register file. The windowed registers can be used
as a cache of procedure arguments, local values, and return addresses.

— Floating-point: The architecture provides an IEEE 754-compatible floating-point instruc-
tion set, operating on a separate register file that provides 32 single-precision (32-bit), 32
double-precision (64-bit), 16 quad-precision (128-bit) registers, or a mixture thereof.

— Fast trap handlers: Traps are vectored through a table.

— Multiprocessor synchronization instructions: One instruction performs an atomic read-
then-set-memory operation; another performs an atomic exchange-register-with-memory
operation; another compares the contents of a register with a value in memory and
exchanges memory with the contents of another register if the comparison was equal; two
others are used to synchronize the order of shared memory operations as observed by pro-
Cessors.

— Predicted branches: The branch with prediction instructions allow the compiler or assem-
bly language programmer to give the hardware a hint about whether a branch will be
taken.

— Branch elimination instructions: Several instructions can be used to eliminate branches
altogether (e.g., move on condition). Eliminating branches increases performance in
superscalar and superpipelined implementations.

— Hardware trap stack: A hardware trap stack is provided to allow nested traps. It contains
all of the machine state necessary to return to the previous trap level. The trap stack makes
the handling of faults and error conditions simpler, faster, and safer.

— Relaxed memory order (RMO) model: This weak memory model allows the hardware to
schedule memory accesses in almost any order, as long as the program computes the cor-
rect result.

1.2.2 Attributes

SPARC-V9 is a CPUnstruction set architecture (ISA) derived from SPARC-V8; both architec-
tures come from a reduced instruction set computer (RISC) lineage. As architectures, SPARC-V9
and SPARC-V8 allow for a spectrum of chip and sysiemlementations at a variety of price/
performance points for a range of applications, including scientific/engineering, programming,
real-time, and commercial.

1.2.2.1 Design Goals

SPARC-V9 is designed to be a target for optimizing compilers and high-performance hardware
implementations. SPARC-V9 implementations provide exceptionally high execution rates and
short time-to-market development schedules.

1.2.2.2 Register Windows

SPARC-V9 is derived from SPARC, which was formulated at Sun Microsystems in 1985. SPARC
is based on the RISC | and Il designs engineered at the University of California at Berkeley from
1980 through 1982. SPARC'’s “register window” architecture, pioneered in the UC Berkeley

designs, allows for straightforward, high-performance compilers and a significant reduction in
memory load/store instructions over other RISCs, particularly for large application programs. For
languages such as C++, where object-oriented programming is dominant, register windows result
in an even greater reduction in instructions executed.

Note that supervisor software, not user programs, manages the register windows. The supervisor
can save a minimum number of registers (approximately 24) during a context switch, thereby
optimizing context-switch latency.

One major difference between SPARC-V9 and the Berkeley RISC | and Il is that SPARC-V9 pro-
vides greater flexibility to a compiler in its assignment of registers to program variables. SPARC-
V9 is more flexible because register window management is not tied to procedure call and return
instructions, as it is on the Berkeley machines. Instead, separate instructions (SAVE and
RESTORE) provide register window management. The management of register windows by priv-
ileged software is very different too, as discussed in Appendix H, “Software Considerations.”

1.2.3 System Components

The architecture allows for a spectrum of input/output (I/O), memory-management unit (MMU),

and cache system subarchitectures. SPARC-V9 assumes that these elements are best defined by
the specific requirements of particular systems. Note that they are invisible to nearly all user pro-
grams, and the interfaces to them can be limited to localized modules in an associated operating
system.

1.2.3.1 Reference MMU

The SPARC-V9 ISA does not mandate a single MMU design for all system implementations.
Rather, designers are free to use the MMU that is most appropriate for their application, or no
MMU at all, if they wish. Appendix F, “SPARC-V9 MMU Requirements,” discusses the bound-
ary conditions that a SPARC-V9 MMU is expected to satisfy.

1.2.3.2 Privileged Software

SPARC-V9 does not assume that all implementations must execute identical privileged software.
Thus, certain traits of an implementation that are visible to privileged software can be tailored to
the requirements of the system. For example, SPARC-V9 allows for implementations with differ-

ent instruction concurrency and different trap hardware.

1.2.4 Binary Compatibility

The most important SPARC-V9 architectural mandate is binary compatibility of nonprivileged
programs across implementations. Binaries executed in nonprivileged mode should behave identi-
cally on all SPARC-V9 systems when those systems are running an operating system known to
provide a standard execution environment. One example of such a standard environment is the
SPARC-V9 Application Binary Interface (ABI).

Although different SPARC-V9 systems may execute nonprivileged programs at different rates,
they will generate the same results, as long as they are run under the same memory model. See
Chapter 8, “Memory Models,” for more information.

Additionally, SPARC-V9 is designed to be binary upward-compatible from SPARC-V8 for appli-
cations running in nonprivileged mode that conform to the SPARC-V8 ABI.

1.2.5 Architectural Definition

The SPARC Version 9 Architecture is defined by the chapters and normative appendixes of this
document. A correct implementation of the architecture interprets a program strictly according to
the rules and algorithms specified in the chapters and normative appendixes. Only two classes of
deviations are permitted:

(1) Certain elements of the architecture are defined to be implementation-dependent. These
elements include registers and operations that may vary from implementation to imple-
mentation, and are explicitly identified in this document using the notatioRL" DEP.

#NN: Some descriptive text” Appendix C, “SPARC-V9 Implementation Dependencies,”
describes each of these references.

(2) Functional extensions are permitted, insofar as they do not change the behavior of any
defined operation or register. Such extensions are discouraged, since they limit the porta-
bility of applications from one implementation to another. Appendix |, “Extending the
SPARC-V9 Architecture,” provides guidelines for incorporating enhancements in an
implementation.

This document defines a nonprivileged subset, designated SPARC-V9-NP. This includes only
those elements that may be executed or accessed while the processor is executing in nonprivileged
mode.

The informative appendixes provide supplementary information such as programming tips,
expected usage, and assembly language syntax. These appendixes are not binding on an imple-
mentation or user of a SPARC-V9 system.

The Architecture Committee of SPARC International has sole responsibility for clarification of
the definitions in this document.

1.2.6 SPARC-V9 Compliance

SPARC International is responsible for certifying that implementations comply with the SPARC-
V9 Architecture. Two levels of compliance are distinguished; an implementation may be certified
at either level.

Level I
The implementation correctly interprets all of the nonprivileged instructions by any
method, including direct execution, simulation, or emulation. This level supports user
applications and is the architecture component of the SPARC-V9 ABI.

Level 2
The implementation correctly interprets both nonprivileged and privileged instructions by
any method, including direct execution, simulation, or emulation. A Level 2 implementa-
tion includes all hardware, supporting software, and firmware necessary to provide a com-
plete and correct implementation.

Note that a Level-2-compliant implementation is also Level-1-compliant.

IMPL. DEP. #1: Whether an instruction is implemented directly by hardware, simulated by software, or
emulated by firmware is implementation-dependent.

SPARC International publishes a document, <Italic>Implementation Characteristics of Current
SPARC-V9-based Products, Revision 9.x, listing which instructions are simulated or emulated in
existing SPARC-V9 implementations.

Compliant implementations shall not add to or deviate from this standard except in aspects
described as implementation-dependent. See Appendix C, “SPARC-V9 Implementation Depen-
dencies.”

An implementation may be claimed to be compliant only if it has been
(1) Submitted to SPARC International for testing, and
(2) Issued a Certificate of Compliance by S. I.

A system incorporating a certified implementation may also claim compliance. A claim of com-
pliance must designate the level of compliance.

Prior to testing, a statement must be submitted for each implementation; this statement must:
— Resolve the implementation dependencies listed in Appendix C
— Identify the presence (but not necessarily the function) of any extensions
— Designate any instructions that require emulation

These statements become the property of SPARC International, and may be released publicly.

2 Definitions

The following subsections define some of the most important words and acronyms used in this
manual

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

address space identifier An eight-bit value that identifies an address space. For each
instruction or data access, thateger unit appends an ASI to the addressee also
implicit ASI .

ASI: Abbreviation foraddress space identifier

application program: A program executed with the processornanprivileged mode

Note that statements made in this document regarding application programs may not be
applicable to programs (for example, debuggers) that have accpgsiteged processor

state (for example, as stored in a memory-image dump).

big-endian: An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the most significant; a byte’s significance decreases as its address
increases.

byte: Eight consecutive bits of data.

clean window. A register window in which all of the registers contain either zero, a valid
address from the current address space, or valid data from the current address space.

completed A memory transaction is said to be completed when an idealized memory has
executed the transaction with respect to all processors. A load is considered completed
when no subsequent memory transaction can affect the value returned by the load. A store
is considered completed when no subsequent load can return the value that was overwrit-
ten by the store.

current window: The block of 24r registersthat is currently in use. The Current Window
Pointer (CWP) register points to the current window.

dispatch: Issue a fetched instruction to one or more functional units for execution.
doublet: Two bytes (16 bits) of data.

doubleword: An alignedoctlet. Note that the definition of this term is architecture-depen-
dent and may differ from that used in other processor architectures.

exception A condition that makes it impossible for the processor to continue executing
the current instruction stream without software intervention.

extended word An aligned octlet, nominally containing integer data. Note that the defini-
tion of this term is architecture-dependent and may differ from that used in other processor
architectures.

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

2.25

2.26

2.27

2.28

f register: A floating-point register. SPARC-V9 includes single- double- and quad- preci-
sionf registers.

fcen: One of the floating-point condition code fielbcQ, fccl, fcc2 orfcc3

floating-point exception An exception that occurs during the execution of a floating-
point operate (FPop) instruction. The exceptions areinfinished FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, and
IEEE_754 exception.

floating-point IEEE-754 exception A floating-point exception, as specified by IEEE Std
754-1985. Listed within this manual EEE 754 _exception.

floating-point trap type: The specific type of floating-point exception, encoded in the
FSRftt field.

floating-point operate (FPop) instructions Instructions that perform floating-point cal-
culations, as defined by the FPopl and FPop2 opcodes. FPop instructions do not include
FBfcc instructions, or loads and stores between memory affidatieg-point unit.

floating-point unit: A processing unit that contains the floating-point registers and per-
forms floating-point operations, as defined by this specification.

FPU: Abbreviation forfloating-point unit.

halfword: An aligneddoublet. Note that the definition of this term is architecture-depen-
dent and may differ from that used in other processor architectures.

hexlet Sixteen bytes (128 bits) of data.

implementation: Hardware and/or software that conforms to all of the specifications of an
ISA.

implementation-dependent An aspect of the architecture that may legitimately vary
among implementations. In many cases, the permitted range of variation is specified in the
standard. When a range is specified, compliant implementations shall not deviate from
that range.

implicit ASI : Theaddress space identifiethat is supplied by the hardware on all instruc-
tion accesses, and on data accesses that do not contain an explicit ASI or a reference to the
contents of the ASI register.

informative appendix: An appendix containing information that is useful but not required
to create an implementation that conforms to the SPARC-V9 specific&emalsonor-
mative appendix

initiated . Seeissued

2.29

2.30

231

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

2.40

2.41

2.42

2.43

instruction field: A bit field within an instruction word.

instruction set architecture (ISA): An ISA defines instructions, registers, instruction and
data memory, the effect of executed instructions on the registers and memory, and an algo-
rithm for controlling instruction execution. An ISA does not define clock cycle times,
cycles per instruction, data paths, etc. This specification defines an ISA.

integer unit: A processing unit that performs integer and control-flow operations and con-
tains general-purpose integer registers and processor state registers, as defined by this
specification.

interrupt request: A request for service presented to the processor by an external device.
IU: Abbreviation forinteger unit.
ISA: Abbreviation forinstruction set architecture.

issued In reference to memory transaction, a load, store, or atomic load-store is said to be
issued when a processor has sent the transaction to the memory subsystem and the com-
pletion of the request is out of the processor’s corfaythonyminitiated .

leaf procedure A procedure that is a leaf in the program'’s call graph; that is, one that
does not call (using CALL or JMPL) any other procedures.

little-endian: An addressing convention. Within a multiple-byte integer, the byte with the
smallest address is the least significant; a byte’s significance increases as its address
increases.

may: A key word indicating flexibility of choice with no implied preference. Note: “may”
indicates that an action or operation is allowed, “can” indicates that it is possible.

must: Synonymshall.

next program counter (NPC): A register that contains the address of the instruction to be
executed next, if a trap does not occur.

non-faulting load: A load operation that will either complete correctly (in the absence of
any faults) or will return a value (nominally zero) if a fault occ8esespeculative load

nonprivileged: An adjective that describes (1) the state of the processor when
PSTATE.PRIV =0, that isnonprivileged mode (2) processor state information that is
accessible to software while the processor is in eifhafileged mode or nonprivileged
mode, for example, nonprivileged registers, nonprivileged ASRs, or, in general, nonprivi-
leged state; (3) an instruction that can be executed when the processor is in either privi-
leged mode or nonprivileged mode.

nonprivileged mode The processor mode when PSTATE.PRIV =S@e alsononprivi-
leged

2.44

2.45

2.46

2.47

2.48

2.49

2.50
2.51

2.52

2.53

2.54

2.55

2.56

2.57

normative appendix An appendix containing specifications that must be met by an
implementation conforming to the SPARC-V9 specificati®®ee also informative
appendix.

NWINDOWS: The number of register windows present in an implementation.

octlet: Eight bytes (64 bits) of data. Not to be confused with an “octet,” which has been
commonly used to describe eight bits of data. In this document, theltgienrather than
octet, is used to describe eight bits of data.

opcode A bit pattern that identifies a particular instruction.

prefetchable An attribute of a memory location which indicates to an MMU that
PREFETCH operations to that location may be applied. Normal memory is prefetchable.
Nonprefetchable locations include those that, when read, change state or cause external
events to occuSee alspside effect

privileged: An adjective that describes (1) the state of the processor when PSTATE.PRIV
=1, that is ,privileged mode (2) processor state information that is accessible to soft-
ware only while the processor is in privileged mode, for example, privileged registers,
privileged ASRs, or, in general, privileged state; (3) an instruction that can be executed
only when the processor is in privileged mode.

privileged mode The processor mode when PSTATE.PRIV =Sge alsononprivileged.
processor The combination of thmteger unit and thefloating-point unit.

program counter (PC): A register that contains the address of the instruction currently
being executed by tH&J.

quadlet: Four bytes (32 bits) of data.

guadword: An alignedhexlet Note that the definition of this term is architecture-depen-
dent and may be different from that used in other processor architectures.

r register. An integer register. Also called a general purpose register or working register.

RED_state Reset,Error, andDebug state. The processor state when PSTATE.RED = 1.
A restricted execution environment used to process resets and traps that occur when
TL=MAXTL - 1.

reserved Used to describe an instruction field, certain bit combinations within an instruc-
tion field, or a register field that is reserved for definition by future versions of the archi-
tecture. Reserved instruction fields shall read as zero, unless the implementation
supports extended instructions within the field. The behavior of SPARC-V9-compliant
processors when they encounter non-zero values in reserved instruction fields is unde-
fined. Reserved bit combinations within instruction fieldsare defined in Appendix A;

in all cases, SPARC-V9-compliant processors shall decode and trap on these reserved

combinationsReserved register fieldshould always be written by software with values

of those fields previously read from that register, or with zeroes; they should read as zero
in hardware. Software intended to run on future versions of SPARC-V9 should not assume
that these field will read as zero or any other particular value. Throughout this manual, fig-
ures and tables illustrating registers and instruction encodings indicate reserved fields and
combinations with an em dash ‘—'.

2.58 reset trap: A vectored transfer of control to privileged software through a fixed-address
reset trap table. Reset traps cause entryRED _state

2.59 restricted: An adjective used to describe address space identifie(ASI) that may be
accessed only while the processor is operatiqgiuileged mode

2.60 rsl, rs2, rd The integer register operands of an instruction, whefeandrs2 are the
source registers and is the destination register.

2.61 shall: A key word indicating a mandatory requirement. Designers shall implement all such
mandatory requirements to ensure interoperability with other SPARC-V9-conformant
products Synonymmust.

2.62 should: A key word indicating flexibility of choice with a strongly preferred implementa-
tion. Synonymit is recommended.

2.63 side effect An operation has a side effect if it induces a secondary effect as well as its pri-
mary effect. For example, access to an I/O location may cause a register value in an 1/O
device to change state or initiate an I/O operation. A memory location is deemed to have
side effects if additional actions beyond the reading or writing of data may occur when a
memory operation on that location is allowed to succBed.alsoprefetchable

2.64 speculative load A load operation that is issued by the processor speculatively, that is,
before it is known whether the load will be executed in the flow of the program. Specula-
tive accesses are used by hardware to speed program execution and are transparent to
code. Contrast wittmon-faulting load, which is an explict load that always completes,
even in the presence of faulid/arning some authors confuse speculative loads with non-
faulting loads.

2.65 supervisor software Software that executes when the processorpsivileged mode

2.66 trap: The action taken by the processor when it changes the instruction flow in response to
the presence of aexception a Tcc instruction, or an interrupt. The action is a vectored
transfer of control tsupervisor softwarethrough a table, the address of which is speci-
fied by the privileged Trap Base Address (TBA) register.

2.67 unassigned A value (for example, aaddress space identifiey, the semantics of which
are not architecturally mandated and may be determined independently by each imple-
mentation within any guidelines given.

2.68 undefined An aspect of the architecture that has deliberately been left unspecified. Soft-
ware should have no expectation of, nor make any assumptions about, an undefined fea-
ture or behavior. Use of such a feature may deliver random results, may or may not cause
a trap, may vary among implementations, and may vary with time on a given implementa-
tion. Notwithstanding any of the above, undefined aspects of the architecture shall not
cause security holes such as allowing user software to access privileged state, put the pro-
cessor into supervisor mode, or put the processor into an unrecoverable state.

2.69 unrestricted: An adjective used to describe address space identifiethat may be used
regardless of the processor mode, that is, regardless of the value of PSTATE.PRIV.

2.70 user application program: Synonymapplication program.

2.71 word: An alignedquadlet. Note that the definition of this term is architecture-dependent
and may differ from that used in other processor architectures.

3 Architectural Overview

SPARC-V9 is an instruction set architecture (ISA) with 32- and 64-bit integer and 32-, 64- and
128-bit floating-point as its principal data types. The 32- and 64- bit floating point types conforms
to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std 1596.5-1992.
SPARC-V9 defines general-purpose integer, floating-point, and special state/status register
instructions, all encoded in 32-bit-wide instruction formats. The load/store instructions address a
linear, 24-byte address space.

3.1 SPARC-V9 Processor

A SPARC-V9 processor logically consists of an integer uitit)(@and a floating-point unitfPU),

each with its own registers. This organization allows for implementations with concurrency
between integer and floating-point instruction execution. Integer registers are 64 bits wide; float-
ing-point registers are 32, 64, or 128 bits wide. Instruction operands are single registers, register
pairs, register quadruples, or immediate constants.

The processor can be in either of two modesvileged or nonprivileged. In privileged mode,
the processor can execute any instruction, including privileged instructions. In nonprivileged
mode, an attempt to execute a privileged instruction causes a trap to privileged software.

3.1.1 Integer Unit (IV)

The integer unit contains the general-purpose registers and controls the overall operation of the

processor. The IU executes the integer arithmetic instructions and computes memory addresses
for loads and stores. It also maintains the program counters and controls instruction execution for

the FPU.

IMPL. DEP. #2: An implementation of the IU may contain from 64 to 528 general-purpose 64-bit rregisters.
this corresponds to a grouping of the registers into 8 global r registers, 8 alternate global r registers, plus a
circular stack of from 3 to 32 sets of 16 registers each, known as register windows. Since the number of
register windows present (NWINDOWS) is implementation-dependent, the total number of registers is
implementation-dependent.

At a given time, an instruction can access thgi@als (or the 8alternate globalyand a register
window into ther registers. The 24-register window consists of a 16-register set — divided into 8
in and 8local registers — together with theif registers of an adjacent register set, addressable
from the current window as itaut registers. See figure 2 on page 32.

The current window is specified by the current window pointer (CWP) register. The processor
detects window spill and fill exceptions via the CANSAVE and CANRESTORE registers, respec-
tively, which are controlled by hardware and supervisor software. The actual number of windows
in a SPARC-V9 implementation is invisible to a user application program.

Whenever the IU accesses an instruction or datum in memory, it appeladisisess space iden-

tifier (ASI), to the address. All instruction accesses and most data accesses appaptican

ASI, but some instructions allow the inclusion of an explict ASI, either as an immediate field
within the instruction, or from the ASI register. The ASI determines the byte order of the access.
All instructions are accessed in big-endian byte order; data can be referenced in either big- or lit-
tle-endian order. See 5.2.1, “Processor State Register (PSTATE),” for information about changing
the default byte order.

3.1.2 Floating-Point Unit (FPU)

The FPU has 32 32-bit (single-precision) floating-point registers, 32 64-bit (double-precision)
floating-point registers, and 16 128-bit (quad-precision) floating-point registers, some of which
overlap. Double-precision values occupy an even-odd pair of single-precision registers, and quad-
precision values occupy a quad-aligned group of four single-precision registers. The 32 single-
precision registers, the lower half of the double-precision registers, and the lower half of the quad-
precision registers overlay each other. The upper half of the double-precision registers and the
upper half of the quad-precision registers overlay each other, but do not overlay any of the single-
precision registers. Thus, the floating-point registers can hold a maximum of 32 single-precision,
32 double-precision, or 16 quad-precision values. This is described in more detail in 5.1.4, “Float-
ing-Point Registers.”

Floating-point load/store instructions are used to move data between the FPU and memory. The
memory address is calculated by the 1U. Floating-Pop#rate (FPop) instructions perform the
floating-point arithmetic operations and comparisons.

The floating-point instruction set and 32- and 64-bit data formats conform to the IEEE Standard
for Binary Floating-Point Arithmetic, IEEE Std 754-1985. The 128-bit floating-point data type
conforms to the IEEE Standard for Shared Data Formats, IEEE Std 1596.5-1992.

If an FPU is not present or is not enabled, an attempt to execute a floating-point instruction gener-
ates anp_disabled trap. In either case, privileged-mode software must:

— Enable the FPU and reexecute the trapping instruction, or

— Emulate the trapping instruction.

3.2 Instructions
Instructions fall into the following basic categories:
— Memory access
— Integer operate
— Control transfer
— State register access
— Floating-point operate
— Conditional move
— Register window management

These classes are discussed in the following subsections.

3.2.1 Memory Access

Load and store instructions and the atomic operations, CASX, SWAP, and LDSTUB, are the only
instructions that access memory. They use twegisters or am register and a signed 13-bit
immediate value to calculate a 64-bit, byte-aligned memory address. The IU appends an ASI to
this address.

The destination field of the load/store instruction specifies either one or tegisters, or one,
two, or fourf registers, that supply the data for a store or receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and doubleword
(64-bit) accesses. Some versions of integer load instructions perform sign extension on 8-, 16-,
and 32-bit values as they are loaded into a 64-bit destination register. Floating-point load and store
instructions support word, doubleword, and quadword memory accesses.

CAS, SWAP, and LDSTUB are special atomic memory access instructions that are used for syn-
chonization and memory updates by concurrent processes.

3.2.1.1 Memory Alignment Restrictions

Halfword accesses shall ladigned on 2-byte boundaries; word accesses (which include instruc-
tion fetches) shall be aligned on 4-byte boundaries; extended-word and doubleword accesses shall
be aligned on 8-byte boundaries; and quadword quantities shall be aligned on 16-byte boundaries.
An improperly aligned address in a load, store, or load-store instruction causes a trap to occur,
with the possible exception of cases described in 6.3.1.1, “Memory Alignment Restrictions.”

3.2.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order by default: the address of a quadword, doubleword, word,
or halfword is the address of its most significant byte. Increasing the address means decreasing the
significance of the unit being accessed. All instruction accesses are performed using big-endian
byte order. SPARC-V9 also can support little-endian byte order for data accesses only: the address
of a quadword, doubleword, word, or halfword is the address of its least significant byte. Increas-
ing the address means increasing the significance of the unit being accessed. See 5.2.1, Processor
State Register (PSTATE), for information about changing the implicit byte order to little-endian.

Addressing conventions are illustrated in figure 35 on page 71 and figure 36 on page 73.

3.2.1.3 Load/Store Alternate

Versions of load/store instructions, thead/store alternateinstructions, can specify an arbitrary

8-bit address space identifier for the load/store data access. Access to alternate sga@é&s;00

is restricted, and access to alternate spaces.&®; is unrestricted. Some of the ASIs are avail-

able for implementation-dependent uses (impl. dep. #29). Supervisor software can use the imple-
mentation-dependent ASIs to access special protected registers, such as MMU, cache control, and
processor state registers, and other processor- or system-dependent values. See 6.3.1.3, “Address
Space Identifiers (ASIs),” for more information.

Alternate space addressing is also provided for the atomic memory access instructions, LDSTUB,
SWAP, and CASX.

3.2.1.4 Separate | and D Memories

Most of the specifications in this manual ignore the issues of memory mapping and caching. The
interpretation of addresses can be unified, in which case the same translations and caching are
applied to both instructions and data, or they can be split, in which case instruction references use
one translation mechanism and cache and data references another, although the same main mem-
ory is shared. In such split-memory systems, the coherency mechanism may be unified and
include both instructions and data, or it may be split. For this reason, programs that modify their
own code (self-modifying code) must issue FLUSH instructions, or a system call with a similar
effect, to bring the instruction and data memories into a consistent state.

3.2.1.5 Input/Output

SPARC-V9 assumes that input/output registers are accessed via load/store alternate instructions,
normal load/store instructions, or read/write Ancillary State Register instructions (RDASR,
WRASR).

IMPL. DEP. #123. The semantic effect of accessing input/output (1/O) locations is implementation-depen-
dent.

IMPL. DEP. #6:. Whether the I/O registers can be accessed by nonprovileged code is implementation-
dependent.

IMPL. DEP. #7: The addresses and contents of 1/O registers are implementation-dependent.

3.2.1.6 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEMBAR.
Their operation is explained in A.20, “Flush Instruction Memory,” and A.32, “Memory Barrier,”
respectively.

3.2.2 Arithmetic/Logical/Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and shift
operations. With one exception, these instructions compute a result that is a function of two
source operands; the result is either written into a destination register or discarded. The exception,
SETHI, may be used in combination with another arithmentic or logical instruction to create a 32-
bit constant in an register.

Shift instructions are used to shift the contents of aegister left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents refgsster.

The integer multiply instruction performs a 6464 — 64-bit operation. The integer division
instructions perform 64 64 - 64-bit operations. In addition, for compatibility with SPARC-V8,

32 x 32 - 64-bit multiply, 64+ 32 - 32-bit divide, and multiply step instructions are included.
Division by zero causes a trap. Some versions of the 32-bit multiply and divide instructions set the
condition codes.

The tagged arithmetic instructions assume that the least-significant two bits of each operand are a
data-type tag. The nontrapping versions of these instructions set the integer conditiorccpde (
and extended integer condition codeg overflow bits on 32-biti€c) or 64-bit kcc) arithmetic
overflow. In addition, if any of the operands’ tag bits are nonzexis set. Thexccoverflow bit

is not affected by the tag bits.

3.2.3 Control Transfer

Control-transfer instructions((T1s) include PC-relative branches and calls, register-indirect
jumps, and conditional traps. Most of the control-transfer instructions are delayed; that is, the
instruction immediately following a control-transfer instruction in logical sequence is dispatched
before the control transfer to the target address is completed. Note that the next instruction in log-
ical sequence may not be the instruction following the control-transfer instruction in memory.

The instruction following a delayed control-transfer instruction is callddlay instruction. A bit

in a delayed control-transfer instruction (taenul bit) can cause the delay instruction to be
annulled (that is, to have no effect) if the branch is not taken (or in the “branch always” case, if the
branch is taken).

Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. SPARC-V9 does not require the delay instruction to be fetched if it is
annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL) and
return (RETURN) instructions use a register-indirect target address. They compute their target
addresses as either the sum of tweegisters, or the sum of anregister and a 13-bit signed
immediate value. The branch on condition codes without prediction instruction provides a dis-
placement o8 Mbytes; the branch on condition codes with prediction instruction provides a dis-
placement ott1 Mbyte; the branch on register contents instruction provides a displacement of
+128 Kbytes, and the CALL instruction’s 30-bit word displacement allows a control transfer to
any address withie2 gigabytes £23! bytes). Note that when 32-bit address masking is enabled
(see 5.2.1.7, "PSTATE_address_mask (AM)"), the CALL instruction may transfer control to an
arbitrary 32-bit address. The return from privileged trap instructions (DONE and RETRY) get
their target address from the appropriate TPC or TNPC register.

3.2.4 State Register Access

The read and write state register instructions read and write the contents of state registers visible
to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The read and write privileged
register instructions read and write the contents of state registers visible only to privileged soft-
ware (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL, PIL, CWP, CANSAVE, CANRE-
STORE, CLEANWIN, OTHERWIN, WSTATE, FPQ, and VER).

IMPL. DEP. #8: Software can use read/write ancillary state register instructions to read/write implementa-
tion-dependent processor registers (ASRs 16..31).

IMPL. DEP. #9: Which if any of the implementation-dependent read/write ancillary state register instruc-
tions (for ASRS 16..31) is privileged is implementation-dependent.

3.2.5 Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are regis-
ter-to-register instructions that operate on the floating-point registers. Like arithmetic/logical/shift
instructions, FPops compute a result that is a function of one or two source operands. Specific
floating-point operations are selected by a subfield of the FPop1/FPop2 instruction formats.

3.2.6 Conditional Move

Conditional move instructions conditionally copy a value from a source register to a destination
register, depending on an integer or floating-point condition code or upon the contents of an inte-
ger register. These instructions increase performance by reducing the number of branches.

3.2.7 Register Window Management

These instructions are used to manage the register windows. SAVE and RESTORE are nonprivi-
leged and cause a register window to be pushed or popped. FLUSHW is nonprivileged and causes
all of the windows except the current one to be flushed to memory. SAVED and RESTORED are
used by privileged software to end a window spill or fill trap handler.

3.3 Traps

A trap is a vectored transfer of control to privileged software through a trap table that may con-
tain the first eight instructions (thirty-two for fill/spill traps) of each trap handler. The base address
of the table is established by software in a state register (the Trap Base Address register, TBA).
The displacement within the table is encoded in the type number of each trap and the level of the
trap. One half of the table is reserved for hardware traps; one quarter is reserved for software traps
generated by trap (Tcc) instructions; the final quarter is reserved for future expansion of the archi-
tecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It also causes
the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC, and TSTATE
are entries in a hardware trap stack, where the number of entries in the trap stack is equal to the
number of trap levels supported (impl. dep. #101). A trap also sets bits in the PSTATE register,
one of which can enable an alternate set of global registers for use by the trap handler. Normally,
the CWP is not changed by a trap; on a window spill or fill trap, however, the CWP is changed to
point to the register window to be saved or restored.

A trap may be caused by a Tcc instruction, an asynchronous exception, an instruction-induced
exception, or amnterrupt request not directly related to a particular instruction. Before execut-

ing each instruction, the processor behaves as though it determines if there are any pending excep-
tions or interrupt requests. If any are pending, the processor selects the highest-priority exception
or interrupt request and causes a trap.

See Chapter 7, “Traps,” for a complete description of traps.

4 Data Formats

The SPARC-V9 architecture recognizes these fundamental data types:
— Signed Integer: 8, 16, 32, and 64 bits
— Unsigned Integer: 8, 16, 32, and 64 bits
— Floating Point: 32, 64, and 128 bits
The widths of the data types are:
— Byte: 8 bits
— Halfword: 16 bits

— Word: 32 bits

— Extended Word: 64 bits

— Tagged Word: 32 bits (30-bit value plus 2-bit tag)
— Doubleword: 64 bits

— Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commensurate
with their range. Unsigned integer values, bit strings, boolean values, strings, and other values
representable in binary form are stored as unsigned integers with a width commensurate with their
range. The floating-point formats conform to the IEEE Standard for Binary Floating-Point Arith-
metic, IEEE Std 754-1985. In tagged words, the least significant two bits are treated as a tag; the
remaining 30 bits are treated as a signed integer.

Subsections 4.1 through 4.11 illustrate the signed integer, unsigned integer, and tagged formats.
Subsections 4.12 through 4.14 illustrate the floating-point formats. In 4.4, 4.9, 4.13, and 4.14, the
individual subwords of the multiword data formats are assigned names. The arrangement of the
subformats in memory and processor registers based on these names is shown in table 1. Tables 2
through 5 define the integer and floating-point formats.

4.1 Signed Integer Byte

S

7 6 0

4.2 Signed Integer Halfword

S

1514 0

4.3 Signed Integer Word

S

3130 0

4.4 Signed Integer Double
SD-0

S signed_dbl_integer[62:32]

3130

SD-1

signed_dbl_integer[31:0]

31

4.5 Signed Extended Integer

SX

S signed_ext_integer

63 62

4.6 Unsigned Integer Byte

4.7 Unsigned Integer Halfword

15 0

4.8 Unsigned Integer Word

31

4.9 Unsigned Integer Double
UD-0

unsigned_dbl_integer[63:32]

31

UD-1

unsigned_dbl_integer[31:0]

31

4.10 Unsigned Extended Integer

Ux

unsigned_ext_integer

63

4.11 Tagged Word

tag

31

4.12 Floating-Point Single Precision

10

S| exp[7:0] fraction[22:0]

3130 2322

4.13 Floating-Point Double Precision

FD—-0 |s| exp[10:0] fraction[51:32]

3130 2019

FD-1 fraction[31:0]

31

4.14 Floating-Point Quad Precision

FQ-0 S exp[14:0] fraction[111:96]
3130 1615 0
FO-1 fraction[95:64]
31 0
FQ-2 fraction[63:32]
31 0
FQ-3 fraction[31:0]
31 0
Table 1—Double- and Quadwords in Memory & Registers
Subformat | o mat Field ndiress | Memory | (OOEST | Regiser
Alignment Alignment
SD-0 signed_dbl_integer[63:32] rbod 8 n 0O mod 2 r
SD-1 signed_dbl_integer[31:0] Mod 8 n+4 1mod 2 r+1
SX signed_ext_integer[63:0] idod 8 n — r
uD-0 unsigned_dbl_integer[63:32] rBod 8 n O mod 2 r
UD-1 unsigned_dbl_integer[31:0] Mod 8 n+4 1mod 2 r+1
UX unsigned_ext_integer[63:0] idod 8 n — r
FD-0 s:exp[10:0]:fraction[51:32] @nod 4T n 0mod 2 f
FD-1 fraction[31:0] omod4T | n+4 imod2 |f+1
FQ-0 s:exp[14:0]:fraction[111:96] Mmod4* | n Omod4 | f
FQ-1 fraction[95:64] Omod 4 ¥ n+4 1mod 4 f+1
FQ-2 fraction[63:32] omod4* | n+8 2mod4 | f+2
FQ-3 fraction[31:0] Oomod 4% | n+12 3mod4 | f+3

T Although a floating-point doubleword is only required to be word-aligned in memory, it is recommended

that it be doubleword-aligned (i.e., the address of its FD-0 word shouldbd 8).

¥ Although a floating-point quadword is only required to be word-aligned in memory, it is recommended that
it be quadword-aligned (i.e., the address of its FQ-0 word shoulahrimoel @.6).

Table 2—Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data type Width (bits) Range
Signed integer byte 8 —2't0 2’ -1
Signed integer halfword 16 -2t 251
Signed integer word 32 2810 81 -1
Signed integer tagged word 32 22910 291
Signed integer double 64 —283t0 #3-1
Signed extended integer 64 —263t9 B3 -1
Unsigned integer byte 8 OtoP -1
Unsigned integer halfword 16 Oto216-1
Unsigned integer word 32 Oto®?—-1
Unsigned integer tagged word 32 Oto 20-1
Unsigned integer double 64 OtoX*-1
Unsigned extended integer 64 OtoP4-1

Table 3—Floating-Point

Single-Precision Format Definition

s =sign (1 bit)

e = biased exponent (8 bits)
f =fraction (23 bits)

u =undefined

Normalized value (0 < e < 255)

__—()S x 28—127 x 1.f

Subnormal value (e = 0):

_&)S x 2—126 x 0.f

Zero (e =0) €1x0
Signalling NaN s =u; e =255 (max); f = u-uu

(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =255 (max); f = du-uu

— 00 (negative infinity)

s =1; e =255 (max); f =.000--00

+ oo (positive infinity)

s =0; e =255 (max); f =.000--00

Table 4—Floating-Point Double-Precision Format Definition

s =sign (1 bit)

e = biased exponent (11 bits)
f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047)] -1)Sx 2671023 1 f
Subnormal value (e = 0): —1)Sx 271922 0 f
Zero (e =0) €1°x0
Signalling NaN s ;e =2047 (max); f = 1r-uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =2047 (max); f =udu-uu
— 00 (negative infinity) s =1; e =2047 (max); f =.000--00
+ oo (positive infinity) s =0; e =2047 (max); f =.000--00

Table 5—Floating-Point Quad-Precision Format Definition

s =sign (1 bit)

e = biased exponent (15 bits)
f =fraction (112 bits)

u =undefined

Normalized value (0 < e < 32767)] (¥®)2°716383x 1 f
Subnormal value (e = 0): (x 2716382 o f
Zero (e =0) (-15x0
Signalling NaN s u; e =32767 (max); f =ur-uu
(At least one bit of the fraction must be nonzero)
Quiet NaN s =u; e =32767 (max); f =uu-uu
— 00 (negative infinity) s =1; e =32767 (max); f =.000--00
+ oo (positive infinity) s =0; e =32767 (max); f =.000--00
5 Regqisters

A SPARC-V9 processor includes two types of registers: general-purpose, or working data regis-
ters, and control/status registers.

Working registers include:

— Integer working registers ¢egisters)

— Floating-point working registers fegisters)
Control/status registers include:

— Program Counter register (PC)

— Next Program Counter register (nPC)

— Processor State register (PSTATE)

— Trap Base Address register (TBA)

— Y register (Y)

— Processor Interrupt Level register (PIL)

— Current Window Pointer register (CWP)

— Trap Type register (TT)

— Condition Codes Register (CCR)

— Address Space Identifier register (ASI)

— Trap Level register (TL)

— Trap Program Counter register (TPC)

— Trap Next Program Counter register (TNPC)

— Trap State register (TSTATE)

— Hardware clock-tick counter register (TICK)

— Savable windows register (CANSAVE)

— Restorable windows register (CANRESTORE)

— Other windows register (OTHERWIN)

— Clean windows register (CLEANWIN)

— Window State register (WSTATE)

— Version register (VER)

— Implementation-dependent Ancillary State Registers (ASRs) (impl. dep. #8)
— Implementation-dependent IU Deferred-Trap Queue (impl. dep. #16)
— Floating-Point State Register (FSR)

— Floating-Point Registers State register (FPRS)

— Implementation-dependent Floating-Point Deferred-Trap Queue (FQ) (impl. dep. #24)

For convenience, some registers in this chapter are illustrated as fewer than 64 bits wide. Any bits
not shown are reserved for future extensions to the architecture. Such reserved bits read as zeroes
and, when written by software, should always be written with the values of those bits previously
read from that register, or with zeroes.

5.1 Nonprivileged Registers

The registers described in this subsection are visible to nonprivileged (application, or “user-
mode”) software.

5.1.1 General Purpose r Registers
At any moment, general-purpose registers appear to nonprivileged software as shown in figure 1.

An implementation of the IU may contain from 64 to 528 general-purpose @4rgfisters. They
are partitioned into §lobalregisters, <ernate globalregisters, plus an implementation-depen-
dent number of 16-register sets (impl. dep. #2). A register window consists of the cumenaig3
isters, 8ocal registers, and 8ut registers. See table 6.

5.1.1.1 Global r Registers

Registersr[0]..r[7] refer to a set of eight registers called the global registgs.g7). At any

time, one of two sets of eight registers is enabled and can be accessed as the global registers.
Which set of globals is currently enabled is selected by the AG (alternate global) field in the
PSTATE register. See 5.2.1, “Processor State Register (PSTATE),” for a description of the AG
field.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

Compatibility Note:
Since the PSTATE register is only writable by privileged software, existing nonprivileged SPARC-V8 soft-
ware will operate correctly on a SPARC-V9 implementation if supervisor software ensures that nonprivi-
leged software sees a consistent set of global registers.

i7 r31]
i6 r{30]
i5 r29]
i4 28]
i3 r27]
i2 r[26]
il r[25]
i0 r24]
17 23]
16 n22]
15 r21]
14 r20]
13 r19]
12 18]
11 r17]
10 r[16]
o7 r[15]
06 r14]
05 13]
o4 M12]
03 r11]
02 r[10]
ol 9]
00 8]
g7 7]
g6 (6]
go 5]
g4 r4]
93 3]
g2 2]
gl 1]
90 o]

Figure 1—General-Purpose Registers (Nonprivileged View)

Programming Note:
The alternate global registers are present to give trap handlers a set of scratch registers that are independent
of nonprivileged software’s registers. The AG bit in PSTATE allows supervisor software to access the nor-
mal global registers if required (for example, during instruction emulation).

5.1.1.2 Windowed r Registers

At any time, an instruction can access thgl@balsand a 24-registevindow into ther registers.
A register window comprises theii and 8local registers of a particular register set, together

with the 8in registers of an adjacent register set, which are addressable from the current window
asoutregisters. See figure 2 and table 6.

Window (CWP — 1)

31]
: ins
24]
23]
: locals
r16] Window (CWP)
r15] r31]
. outs . ns
8] r24]
23]
: locals
r[16] Window (CWP + 1)
r15] r31]
) outs . ins
M 8] r[24]
23]
: locals
r16]
5]
: outs
M 8]
7]
: globals
1]
f 0] 0
63 0

Figure 2—Three Overlapping Windows and the Eight Global Registers

The number of windows or register sel/VINDOWS, is implementation-dependent and ranges
from 3 to 32 (impl. dep. #2). The total numberrategisters in a given implementation is 8 (for the

globalg, plus 8 (for the alternatglobalg, plus the number of sets times 16 registers/set. Thus, the
minimum number of registers is 64 (3 sets plus the g®balsand alternataeylobalg and the
maximum number is 528 (32 sets plus thgbbalsand alternatglobals.

Table 6—Window Addressing

Windowed Register Address r Register Address
in[0] —in[7] r[24] —r[31]
local[0] — local[7] r[16] —r[23]
out0] —ouf7] r[8] -r[15]
global0] — global7] r[O]—r[7]

The current window into the registers is given by the current window pointer (CWP) register.
The CWP is decremented by the RESTORE instruction and incremented by the SAVE instruction.
Window overflow is detected via the CANSAVE register and window underflow is detected via
the CANRESTORE register, both of which are controlled by privileged software. A window over-
flow (underflow) condition causes a window spill (fill) trap.

5.1.1.3 Overlapping Windows

Each window shares iigs with one adjacent window and iteits with another. Theuts of the
CWP-1 (modulo NWINDOWS) window are addressable asrite@f the current window, and the
outs in the current window are thes of the CWP+1 (modulo NWINDOWS) window. Thecals
are unigue to each window.

An r register with address, where 8< 0 < 15, refers to exactly the same register@s16) does
after the CWP is incremented by 1 (modulo NWINDOWS). Likewise, a register with adgress
where 24<i < 31, refers to exactly the same register as addieds$(does after the CWP is dec-
remented by 1 (modulo NWINDOWS). See figures 2 and 3.

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered implemented
window overlaps with window 0. Theuts of window NWINDOWS-1 are theins of window O.
Implemented windows must be numbered contiguously from 0 through NWINBQWS

Programming Note:
Since the procedure call instructions (CALL and JMPL) do not change the CWP, a procedure can be called
without changing the window. See H.1.2, “Leaf-Procedure Optimization.”

Because the windows overlap, the number of windows available to software is one less than the number of
implemented windows, or NWINDOWSL. When the register file is full, theuts of the newest window are
theins of the oldest window, which still contains valid data.

Thelocal andoutregisters of a register window are guaranteed to contain either zeroes or an old value that
belongs to the current context upon reentering the window through a SAVE instruction. If a program exe-
cutes a RESTORE followed by a SAVE, the resulting windole&als andouts may not be valid after the
SAVE, since a trap may have occurred between the RESTORE and the SAVE. Howevetjéhthevindow

protocol is being used, system software must guarantee that registers in the current window after a SAVE
will always contain only zeroes or valid data from that context. See 5.2.10.6, “Clean Windows (CLEAN-
WIN) Register.”

Subsection 6.4, “Register Window Management,” describes how the windowed integer registers
are managed.

CWP =0 !
|
|

(current window pointer)

\
\
\

N
N
N
/ .
CANRESTORE

wO locals

. CANSAVE =3
W7 ins

w6 outs w2 locals

RESTORE

w4 locals

OTHERWIN = 2

(Overlap)

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS - 2

The current window (window 0) and the overlap window (window 4) account for the two windows
in the right-hand side of the equation. The “overlap window” is the window that must remain
unused because its ins and outs overlap two other valid windows.

Figure 3—The Windowedr Registers for NWINDOWS = 8

5.1.2 Special r Registers
The usage of two of theregisters is fixed, in whole or in part, by the architecture:

— The value of[0] is always zero; writes to it have no program-visible effect.

— The CALL instruction writes its own address into regisfgb] (out register 7).

5.1.2.1 Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjacemtgisters and
require even-odd register alignment. The least-significant bit of eegister number in these
instructions is reserved, and should be supplied as zero by software.

When ther[0] — r[1] register pair is used as a destination in LDD or LDDA, only] is modified.
When ther[0] — r[1] register pair is used as a source in STD or STDA, a zero is written to the 32-
bit word at the lowest address and the least significant 32 bi{d pare written to the 32-bit word

at the highest address (in big-endian mode).

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a misaligned
(odd) destination register number causesleyal_instruction trap.

5.1.2.2 Register Usage
See H.1.1, “Registers,” for information about the conventional usage oféfesters.

In figure 3, NWINDOWS =8. The &lobals are not illustrated. CWP =0, CANSAVE = 3,
OTHERWIN =2, and CANRESTORE = 1. If the procedure using winde®® executes a
RESTORE, windowv7 becomes the current window. If the procedure using windd@executes
a SAVE, windoww1 becomes the current window.

5.1.3 U Control/Status Registers

The nonprivileged 1U control/status registers include the program counters (PC and nPC), the 32-
bit multiply/divide (YY) register (and possibly optional) implementation-dependent Ancillary State
Registers (ASRs) (impl. dep. #8).

5.1.3.1 Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed by the IU. The nPC holds
the address of the next instruction to be executed, if a trap does not occur. The low-order two bits
of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer instruction is
known as the delay instruction. This delay instruction is executed (unless the control transfer
instruction annuls it) before control is transferred to the target. During execution of the delay
instruction, the nPC points to the target of the control transfer instruction, while the PC points to
the delay instruction. See Chapter 6, “Instructions.”

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc, FBPfcc,
JMPL, and RETURN instructions. It can be read directly by an RDPC instruction.

5.1.3.2 32-Bit Multiply/Divide Register (Y)

The Y register is deprecated; it is provided only for compatibility with previous v
sions of the architecture. It should not be used in new SPARC-V9 software. Iflis
recommended that all instructions that reference the Y register (i.e., SM
SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVce, UDIV, UDIVcc, RDY, and
WRY) be avoided. See the appropriate pages in Appendix A, “Instruction Defifli-
tions,” for suitable substitute instructions.

— product<63:32> or dividend<63:32>

63 32 31 0
Figure 4—Y Register

The low-order 32 bits of the Y register, illustrated in figure 4, contain the more significant word of
the 64-bit product of an integer multiplication, as a result of either a 32-bit integer multiply
(SMUL, SMULcc, UMUL, UMULcc) instruction or an integer multiply step (MULScc) instruc-
tion. The Y register also holds the more significant word of the 64-bit dividend for a 32-bit integer
divide (SDIV, SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as 0.

The Y register is read and written with the RDY and WRY instructions, respectively.

5.1.3.3 Ancillary State Registers (ASRS)

SPARC-V9 provides for optional ancillary state registers (ASRs). Access to a particular ASR may
be privileged or nonprivileged (impl. dep. #9); see 5.2.11, “Ancillary State Registers (ASRs),” for
a more complete description of ASRs.

5.1.4 Floating-Point Registers

The FPU contains:
— 32 single-precision (32-bit) floating-point registers, numbé&@d f[1], .. f[31].
— 32 double-precision (64-bit) floating-point registers, numb&@df[2], .. f[62].
— 16 quad-precision (128-bit) floating-point registers, numbgMdf[4], .. f[60].

The floating-point registers are arranged so that some of them overlap, that is, are aliased. The
layout and numbering of the floating-point registers are shown in figures 5, 6, and 7. Unlike the
windowedr registers, all of the floating-point registers are accessible at any time. The floating-
point registers can be read and written by FPop (FPopl/FPop2 format) instructions, and by load/
store single/double/quad floating-point instructions.

Figure 5—Single-Precision Floating-Point Registers, with Aliasing

Operand Operand

register ID from
f31 f31<31:0>
f30 f30<31:0>
f29 f29<31:0>
f28 f28<31:0>
f27 f27<31:0>
26 f26<31:0>
f25 f25<31:0>
f24 f24<31:0>
f23 f23<31:0>
f22 f22<31:0>
f21 f21<31:0>
f20 f20<31:0>
f19 f19<31:0>
f18 f18<31:0>
f17 f17<31:0>
f16 f16<31:0>
f15 f15<31:0>
f14 f14<31:0>
f13 f13<31:0>
f12 f12<31:0>
fl1 f11<31:0>
f10 f10<31:0>
fo f9<31:0>
8 f8<31:0>
7 f7<31:.0>
6 f6<31:0>
5 f5<31:0>
f4 f4<31:0>
3 f3<31:0>
f2 f2<31:0>
fl f1<31:0>
fo f0<31:0>

Figure 6—Double-Precision Floating-Point Registers, with Aliasing

Operand Operand From
register ID field register
62 <63:0> f62<63:0>
f60 <63:0> f60<63:0>
f58 <63:0> f58<63:0>
f56 <63:0> f56<63:0>
54 <63:0> f54<63:0>
52 <63:0> f52<63:0>
f50 <63:0> f50<63:0>
f48 <63:0> f48<63:0>
f46 <63:0> f46<63:0>
fa4 <63:0> f44<63:0>
f42 <63:0> f42<63:0>
f40 <63:0> f40<63:0>
38 <63:0> f38<63:0>
36 <63:0> f36<63:0>
f34 <63:0> f34<63:0>
32 <63:0> f32<63:0>
£30 <31:.0> f31<31:0>

<63:32> f30<31:0>
8 <31:.0> f29<31:0>
<63:32> f28<31:0>
26 <31:.0> f27<31:0>
<63:32> f26<31:0>
24 <31:.0> f25<31:0>
<63:32> f24<31:0>
22 <31:.0> f23<31:0>
<63:32> f22<31:0>
£0 <31:.0> f21<31:0>
<63:32> f20<31:0>
8 <31:.0> f19<31:0>
<63:32> f18<31:0>
16 <31:0> f17<31:0>
<63:32> f16<31:0>
f14 <31:0> f15<31:0>
<63:32> f14<31:0>
f12 <31:0> f13<31:0>
<63:32> f12<31:0>
10 <31:0> f11<31:0>
<63:32> f10<31:0>
fg <31:0> f9<31:0>
<63:32> f8<31:0>
6 <31:0> f7<31:0>
<63:32> f6<31:0>
fa <31:0> f5<31:0>
<63:32> f4<31:0>
f2 <31:0> f3<31:0>
<63:32> f2<31:0>
f0 <31:0> f1<31:0>
<63:32> f0<31:0>

Figure 7—Quad-Precision Floating-Point Registers, with Aliasing

Operand Operand From
register ID field register
60 <63:0> f62<63:0>

<127:64> | f60<63:0>
56 <63:0> f58<63:0>
<127:64> | f56<63:0>
t52 <63:0> f54<63:0>
<127:64> | f52<63:0>
(8 <63:0> f50<63:0>
<127:64> | f48<63:0>
t44 <63:0> f46<63:0>
<127:64> | f44<63:0>
t40 <63:0> f42<63:0>
<127:64> | f40<63:0>
36 <63:0> f38<63:0>
<127:64> | {36<63:0>
t32 <63:0> f34<63:0>
<127:64> | f32<63:0>
<31:.0> f31<31:0>
8 <63:32> f30<31:0>
<95:64> f29<31:0>
<127:96> | f28<31:0>
<31:.0> f27<31:0>
t24 <63:32> f26<31:0>
<95:64> f25<31:0>
<127:96> | f24<31:.0>
<31:.0> f23<31:0>
0 <63:32> f22<31:0>
<95:64> f21<31:0>
<127:96> | f20<31:0>
<31:.0> f19<31:0>
16 <63:32> f18<31:0>
<95:64> f17<31:0>
<127:96> | f16<31:0>
<31:.0> f15<31:0>
12 <63:32> f14<31:0>
<95:64> f13<31:0>
<127:96> | f12<31:0>
<31:0> f11<31:0>
3 <63:32> f10<31:0>
<95:64> f9<31:0>
<127:96> | 8<31:0>
<31:0> f7<31.0>
t <63:32> f6<31:0>
<95:64> f5<31:0>
<127:96> | f4<31:0>
<31:0> f3<31:0>
‘0 <63:32> f2<31:0>
<95:64> f1<31:0>
<127:96> | f0<31:0>

5.1.4.1 Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit regis-
ter number field in a floating-point instruction. If the bits in a register number field are labeled:
b<4>..b<0> (where b<4> is the most-significant bit of the register number), the encoding of float-
ing-point register numbers into 5-bit instruction fields is as given in table 7.

Table 7—Floating-Point Register Number Encoding

Register Encoding in a
operand 5-bit register field
type 6-bit register number in an instruction

Single tp.or | g | oo | bess| b<2s| beid b<od bedb b<3> b<d> b<l> beps
32-bit integer
Double f.p.orl p 5o heas| bess| b<2s| b<iy 0| b<ab b<3> b<d> b<l> bep>
64-bit integer
Quad f.p. b<5>| b<4x b<3x b<2p 0 0| b<4> b<3> b<P> D bgp>

Compatibility Note:
In SPARC-V8, bit 0 of double and quad register numbers encoded in instruction fields was required to be
zero. Therefore, all SPARC-V8 floating-point instructions can run unchanged on a SPARC-V9 implementa-
tion using the encoding in table 7.

5.1.4.2 Double and Quad Floating-Point Operands

A singlef register can hold one single-precision operand, a double-precision operand requires an
aligned pair off registers, and a quad-precision operand requires an aligned quadrijpésyisk

ters. At a given time, the floating-point registers can hold a maximum of 32 single-precision, 16
double-precision, or 8 quad-precision values in the lower half of the floating-point register file,
plus an additional 16 double-precision or 8 quad-precision values in the upper half, or mixtures of
the three sizes.

Programming Note:
Data to be loaded into a floating-point double or quad register that is not doubleword-aligned in memory
must be loaded into the lower 16 double registers (8 quad registers) using single-precision LDF instructions.
If desired, it can then be copied into the upper 16 double registers (8 quad registers).

An attempt to execute an instruction that refers to a misaligned floating-point register operand
(that is, a quad-precision operand in a register whose 6-bit register number isnuat 4) shall
cause amp_exception_other trap, with FSRtt = 6 (invalid_fp_register).

Programming Note:
Given the encoding in table 7, it is impossible to specify a misaligned double-precision register.

5.1.5 Condition Codes Register (CCR)

CCR xcc icc

7 4 3 0

Figure 8—Condition Codes Register

The Condition Codes Register (CCR) holds the integer condition codes.

5.1.5.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set bothxiteandicc fields. Thexcccondition

codes indicate the result of an operation when viewed as a 64-bit operatiomccTéendition

codes indicate the result of an operation when viewed as a 32-bit operation. For example, if an
operation results in the 64-bit value 0000 0000 FFFF RERRe 32-bit result is negativéc€.N is

set to 1) but the 64-bit result is nonnegatixec(is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in figure 9.

nj|z\|v|c

Xcc:
jicc:. 3 2 1 0

Figure 9—Integer Condition Codes (CCR_icc and CCR_xcc)

Then bits indicate whether the 2’s-complement ALU result was negative for the last instruction
that modified the integer condition codes. 1 = negative, 0 = not negative.

Thez bits indicate whether the ALU result was zero for the last instruction that modified the inte-
ger condition codes. 1 = zero, 0 = nonzero.

Thev bits indicate whether the ALU result was within the range of (was representable in) 64-bit
(xco or 32-bit (cc) 2's complement notation for the last instruction that modified the integer con-
dition codes. 1 = overflow, 0 = no overflow.

Thec bits indicate whether a 2’'s complement carry (or borrow) occurred during the last instruc-
tion that modified the integer condition codes. Carry is set on addition if there is a carry out of bit
63 (xco or bit 31 (cc). Carry is set on subtraction if there is a borrow into bit 88d or bit 31

(icc). 1 = carry, 0 = no carry.

5.1.5.1.1 CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes that indicate the results of an integer operation with
both of the operands considered to be 64 bits long. These bits are modified by the arithmetic and
logical instructions the names of which end with the letters “cc” (e.g., ANDcc) and by the
WRCCR instruction. They can be modified by a DONE or RETRY instruction, which replaces
these bits with the CCR field of the TSTATE register. The BPcc and Tcc instructions may cause a
transfer of control based on the values of these bits. The MOVcc instruction can conditionally
move the contents of an integer register based on the state of these bits. The FMOVcc instruction
can conditionally move the contents of a floating-point register based on the state of these bits.

5.1.5.1.2 CCR_integer_cond_codes (icc)

Bits 3 through 0 are the U condition codes, which indicate the results of an integer operation with
both of the operands considered to be 32 bits. These bits are modified by the arithmetic and logi-
cal instructions the names of which end with the letters “cc” (e.g., ANDcc) and by the WRCCR
instruction. They can be modified by a DONE or RETRY instruction, which replaces these bits
with the CCR field of the TSTATE register. The BPcc, Bicc, and Tcc instructions may cause a
transfer of control based on the values of these bits. The MOVcc instruction can conditionally
move the contents of an integer register based on the state of these bits. The FMOVcc instruction
can conditionally move the contents of a floating-point register based on the state of these bits.

5.1.6 Floating-Point Registers State (FPRS) Register

FPRS FEF|DU | DL

2 1 0
Figure 10—Floating-Point Registers State Register

The Floating-Point Registers State (FPRS) register holds control information for the floating-
point register file; this information is readable and writable by nonprivileged software.

5.1.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a floating-point
instruction causes af_disabled trap. If this bit is set but the PSTATE.PEF bit is not set, then exe-
cuting a floating-point instruction causes &m disabled trap; that is, both FPRS.FEF and
PSTATE.PEF must be set to enable floating-point operations.

5.1.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32..f62. It is set
whenever any of the upper floating-point registers is modified. Its setting may be pessimistic; that
is, it may be set in some cases even though no register was actually modified. It is cleared only by
software.

5.1.6.3 FPRS_dirty_lower (DL)

Bit O is the “dirty” bit for the lower 32 floating-point registers; that is, f0..f31. It is set whenever
any of the lower floating-point registers is modified. Its setting may be pessimistic; that is, it may
be set in some cases even though no register was actually modified. It is cleared only by software.

Implementation Note:
The pessimistic setting of FPRS.DL and FPRS.DU allows hardware to set these bits even though the modifi-
cation of a floating-point register might be cancelled before data is written.

5.1.7 Floating-Point State Register (FSR)

The FSR register fields, illustrated in figure 11, contain FPU mode and status information. The
lower 32 bits of the FSR are read and written by the STFSR and LDFSR instructions; all 64 bits of
the FSR are read and written by the STXFSR and LDXFSR instructions, respectiveleiTfig
andreservedields are not modified by LDFSR or LDXFSR.

— fce3| fee2 | fecl
63 38 37 36 35 34 33 32
RD| — TEM NS| — ver fit |gne|—| fccO aexc cexc
31 30 29 28 27 23 22 21 20 19 17 16 14 13 12 11 10 9 5 4 0

Figure 11—FSR Fields

Bits 63..38, 29..28, 21..20, and 12 are reserved. When read by an STXFSR instruction, these bits
shall read as zero. Software should only issue LDXFSR instructions with zero values in these bits,
unless the values of these bits are exactly those derived from a previous STFSR.

Subsections 5.1.7.1 through 5.1.7.10.5 describe the remaining fields in the FSR.

5.1.7.1 FSR_fp_condition_codes (fcc0, fccl, fec2, fcc3)

There are four sets of floating-point condition code fields, latiet€dfccl, fcc2 andfcc3d

Compatibility Note:
SPARC-V9'sfccOis the same as SPARC-V8&.

ThefccOfield consists of bits 11 and 10 of the FSB;1 consists of bits 33 and 3&;c2 consists

of bits 35 and 34andfcc3 consists of bits 37 and 36. Execution of a floating-point compare
instruction (FCMP or FCMPE) updates one of tleen fields in the FSR, as selected by the
instruction. Thefccnfields are read and written by STXFSR and LDXFSR instructions, respec-
tively. ThefccOfield may also be read and written by STFSR and LDFSR, respectively. FBfcc and
FBPfcc instructions base their control transfers on these fields. The MOVcc and FMOVcc instruc-
tions can conditionally copy a register based on the state of these fields.

In table 8,f,51 andf,s, correspond to the single, double, or quad values in the floating-point regis-
ters specified by a floating-point compare instructioakandrs2 fields. The question mark (‘?’)
indicates an unordered relation, which is true if eithgror f,s» is a signalling NaN or quiet NaN.

If FCMP or FCMPE generates &n exception_ieee_754 exception, theficcnis unchanged.

Table 8—Floating-Point Condition Codesfccn) Fields of FSR

Co?tent of Indicated relation
ccn

0 frs1 =frs2

1 frsl < frsz

2 frsl > frsZ

3 fs1 ?frso (Unordered

5.1.7.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE Std 754-
1985. Table 9 shows the encodings.

Table 9—Rounding Direction (RD) Field of FSR

RD Round toward
0 Nearest (even if tie)
1 0
2 + oo
3 — 0

5.1.7.3 FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions that can
be indicated in the current_exception fieltkXg. See figure 12 on page 67. If a floating-point
operate instruction generates one or more exceptions and the TEM bit corresponding to any of the
exceptions is 1, am_exception_ieee_754 trap is caused. A TEM bit value of O prevents the corre-
sponding exception type from generating a trap.

5.1.7.4 FSR_nonstandard_fp (NS)

IMPL. DEP. #18: When set to 1, bit 22 causes the FPU to produce implementation-defined results that
may not correspond to IEEE Std 754-1985.

For instance, to obtain higher performance, implementations may convert a subnormal floating-
point operand or result to zero when FSR.NS is set. SPARC-V9 implementations are permitted
but not encouraged to deviate from IEEE 754 requirements when the nonstandard mode bit of the
FSR is 1. For implementations in which no nonstandard floating-point mode exists, the NS bit of
the FSR should always read as 0, and writes to it should be ignored.

See <lItalic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x,
a document available from SPARC International, for a description of how this field is used in
existing implementations.

5.1.7.5 FSR_version (ver)

IMPL. DEP. #19: Bits 19 through 17 identify one or more particular implementations of the FPU architec-
ture.

For each SPARC-V9 IU implementation (as identified by its ViER field), there may be one or

more FPU implementations, or none. This field identifies the particular FPU implementation
present. Version number 7 is reserved to indicate that no hardware floating-point controller is
present. See <lItalic>Implementation Characteristics of Current SPARC-V9-based Products, Revi-
sion 9.x, a document available from SPARC International, for a description of the values of this
field in existing implementations.

Theverfield is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

5.1.7.6 FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point exception trap
occurs ftt (bits 16 through 14 of the FSR) identifies the cause of the exception, the “floating-point
trap type.” After a floating-point exception occurs, tiiefield encodes the type of the floating-
point exception until an STFSR or an FPop is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and LDXFSR
instructions do not affedtt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFSR) to
determine the floating-point trap type. STFSR and STXFSR shallftexfter the store completes
without error. If the store generates an error and does not confiplskall remain unchanged.

Programming Note:
Neither LDFSR nor LDXFSR can be used for this purpose, since both fdawechanged. However, execut-
ing a nontrapping FPop such dsfovs %f0,%f0 " prior to returning to nonprivileged mode will zeft.
Theftt remains valid until the next FPop instruction completes execution.

Theftt field encodes the floating-point trap type according to table 10. Note that the value “7” is
reserved for future expansion.

Table 10—Floating-Point Trap Type (tt) Field of FSR

—
—

Trap type

None

IEEE 754 exception
unfinished_FPop
unimplemented_FPop
sequence_error
hardware_error
invalid_fp_register

N[([ofo|~[W|IN|FL]|O

The sequence_error and hardware_error trap types are unlikely to arise in the normal course of
computation. They are essentially unrecoverable from the point of view of user applications. In
contrast/EEE 754 exception, unfinished_FPop, andunimplemented_FPop Will likely arise occasion-

ally in the normal course of computation and must be recoverable by system software.

When a floating-point trap occurs, the following results are observed by user software:
(1) The value ofexcis unchanged.

(2) The value otexcis unchanged, except that for &EE_754 exception a bit corresponding
to the trapping exception is set. Thefinished_FPop, unimplemented_FPop, sequence_error,
andinvalid_fp_register floating-point trap types do not affextxc

(3) The source registers are unchanged (usually implemented by leaving the destination regis-
ters unchanged).

(4) The value ofccnis unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is signalled,
either immediately from aneee 754 exception or after recovery from arnfinished_FPop Or
unimplemented_FPop. In either casegexcas seen by the trap handler reflects the exception causing
the trap.

In the cases oifinfinished_FPop and unimplemented_FPop exceptions that do not subsequently gen-
erate |IEEE traps, the recovery software should defee; aexg and the destination registers or
fces, as appropriate.

5.1.7.6.1 ftt = IEEE_754_exception

The IEEE_754_exception floating-point trap type indicates that a floating-point exception conform-
ing to IEEE Std 754-1985 has occurred. The exception type is encodedaaxtieeld. Note that
aexg thefccs, and the destinatidiregister are not affected by &8EE_754_exception trap.

5.1.7.6.2 ftt = unfinished_FPop

The unfinished_FPop floating-point trap type indicates that an implementation’s FPU was unable to
generate correct results, or that exceptions as defined by IEEE Std 754-1985 have occurred. In the
latter case, theexcfield is unchanged.

5.1.7.6.3 ftt = unimplemented_FPop

The unimplemented_FPop floating-point trap type indicates that an implementation’s FPU decoded
an FPop that it does not implement. In this casecéhkefield is unchanged.

Programming Note:
For the unfinished_FPop and unimplemented_FPop floating-point traps, software should emulate or reexe-
cute the exception-causing instruction and update the FSR, destinatiister(s), anttcs.

5.1.7.6.4 ftt = sequence_error

The sequence_error floating-point trap type indicates one of three abnormal error conditions in the
FPU, all caused by erroneous supervisor software:

— An attempt was made to read the floating-point deferred-trap queue (FQ) on an implemen-
tation without an FQ.

Implementation Note:
IMPL. DEP #25: On implementations without a floating-point queue, an attempt to read the fq with
an RDPR instruction shall cause either an illegal_instruction exception or an fp_exception_other
exception with FSR.fit set to 4 (sequence_error).

— An attempt was made to execute a floating-point instruction when the FPU was unable to
accept one. This type alequence_error arises from a logic error in supervisor software
that has caused a previous floating-point trap to be incompletely serviced (for example, the
floating-point queue was not emptied after a previous floating-point exception).

— An attempt was made to read the floating-point deferred-trap queue (FQ) with a RDPR
instruction when the FQ was empty; that is, when Ffsie= 0. Note that generation of
sequence_error is recommended but not required in this case.

Programming Note:
If a sequence_error floating-point exception occurs while executing user code due to any of the above con-
ditions, it may not be possible to recover sufficient state to continue execution of the user application.

5.1.7.6.5 ftt = hardware_error

The hardware_error floating-point trap type indicates that the FPU detected a catastrophic internal
error, such as an illegal state or a parity error ohregister access.

Programming Note:
If a hardware_error occurs while executing user code, it may not be possible to recover sufficient state to
continue execution of the user application.

5.1.7.6.6 ftt = invalid_fp_register

The invalid_fo_register trap indicates that one (or more) operands of an FPop are misaligned; that
is, a quad-precision register number is notm@d 4. An implementation shall generate an
fo_exception_other trap with FSRitt = invalid_fp_register in this case.

5.1.7.7 FSR_FQ_not_empty (gne)

Bit 13 indicates whether the optional floating-point deferred-trap queue (FQ) is empty after a
deferred floating-point exception trap or after a read privileged register (RDPR) instruction that
reads the queue has been executednd= 0, the queue is empty; gne= 1, the queue is not
empty.

The gne bit can be read by the STFSR and STXFSR instructions. The LDFSR and LDXFSR
instructions do not affeagne However, executing successivBRBDPR %fpq instructions will
(eventually) cause the FQ to become empfye= 0). If an implementation does not provide an

FQ, this bit shall read as zero. Supervisor software must arrange for this bit to always read as zero
to user-mode software.

5.1.7.8 FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions while floating-point exception
traps are disabled using the TEM field. See figure 13 on page 68. After an FPop completes, the
TEM andcexcfields are logically ANDed together. If the result is nonzexexcis left unchanged

and anfo_exception_ieee_754 trap is generated; otherwise, the neexcfield is ORed into theexc

field and no trap is generated. Thus, while (and only while) traps are masked, exceptions are accu-
mulated in theaexcfield.

5.1.7.9 FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were generated by
the most recently executed FPop instruction. The absence of an exception causes the correspond-
ing bit to be cleared. See figure 14 on page 68.

Thecexcbits are set as described in 5.1.7.10, “Floating-Point Exception Fields,” by the execution
of an FPop that either does not cause a trap or cause®_axception ieee 754 trap with
FSRftt = IEEE_754 exception. An IEEE_754 exception that traps shall cause exactly one bit in
FSRcexcto be set, corresponding to the detected IEEE Std 754-1985 exception.

In the case of an overflow (underflow8EE_754 exception that doesnot trap (because neither
OFM (UFM) nor NXM is set), more than one bit oexcis set: such an overflow (underflow) sets
both ofc (ufc) andnxc. An overflow (underflow)YEEE_754_exception thatdoestrap (because OFM
(UFM) or NXM or both are set) shall sefic (ufc), but notnxc

If the execution of an FPop causes a trap other thafp &sception_ieee_754 due to an IEEE Std
754-1985 exception, FSg&xcis left unchanged.

5.1.7.10 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following defini-
tions of the floating-point exception conditions (per IEEE Std 754-1985):

NVM | OFM [UFM [DZM | NXM

27 26 25 24 23
Figure 12—Trap Enable Mask (TEM) Fields of FSR

nva | ofa ufa | dza | nxa

9 8 7 6 5
Figure 13—Accrued Exception Bits §exq Fields of FSR

nvc | ofc | ufc | dzc | nxc

4 3 2 1 0
Figure 14—Current Exception Bits (cexg Fields of FSR

5.1.7.10.1 FSR_invalid (nvc, nva)

An operand is improper for the operation to be performed. For example, ©.0 andeo — 0 are
invalid. 1 = invalid operand(s), O = valid operand(s).

5.1.7.10.2 FSR_overflow (ofc, ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magnitude than
the destination format'’s largest finite number. 1 = overflow, 0 = no overflow.

5.1.7.10.3 FSR_underflow (ufc, ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest normalized
number in the indicated format. 1 = underflow, O = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

If UFM =0: Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs. Tini-
ness may be detected before or after rounding (impl. dep. #55). Loss of accu-
racy may be either a denormalization loss or an inexact result.

If UFM = 1: Underflow occurs if a nonzero result is tiny. Tininess may be detected before or
after rounding (impl. dep. #55).

5.1.7.10.4 FSR_division-by-zero (dzc, dza)

X + 0.0, where X is subnormal or normalized. Note that-0MO0 doesot set thedzcor dzabits.
1 = division by zero, 0 = no division by zero.

5.1.7.10.5 FSR_inexact (nxc, nxa)

The rounded result of an operation differs from the infinitely precise unrounded result. 1 = inexact
result, O = exact result.

5.1.7.11 FSR Conformance

IMPL. DEP. #22: An implementation may choose to implement the TEM, cexc, and aexc fields in hardware
in either of two ways (both of which comply with IEEE Std 754-1985):

(1) Implement all three fields conformant to IEEE Std 754-1985.

(2) Implement the NXMnxa, andnxcbits of these fields conformant to IEEE Std 754-1985.
Implement each of the remaining bits in the three fields either

(a) Conformant to IEEE Std 754-1985, or

(b) As a state bit that may be set by software that calculates the IEEE Std 754-1985 value
of the bit. For any bit implemented as a state bit:

[1] The IEEE exception corresponding to the state bit nalwhyscause an exception
(specifically, anunfinished_FPop exception). During exception processing in the
trap handler, the bit in the state field can be written to the appropriate value by an
LDFSR or LDXFSR instruction.

[2] The state bit must be implemented in such a way that if it is written to a particular
value by an LDFSR or LDXFSR instruction, it will be read back as the same value
by a subsequent STFSR or STXFSR.

Programming Note:
Software must be capable of simulating the operation of the FPU in order to handle the
unimplemented_FPop, unfinished_FPop, andIEEE_754 exception floating-point trap types properly. Thus, a
user application program always sees an FSR that is fully compliant with IEEE Std 754-1985.

5.1.8 Address Space ldentifier Register (ASI)

ASI

7 0
Figure 15—ASI Register

The ASI register specifies the address space identifier to be used for load and store alternate
instructions that use thasl + simm13 addressing form. Nonprivileged (user-mode) software
may write any value into the ASI register; however, values with bit 7 = 0 indicate restricted ASIs.
When a nonprivileged instruction makes an access that uses an ASI with bit 7=0, a
privileged_action exception is generated. See 6.3.1.3, “Address Space ldentifiers (ASIs),” for
details.

5.1.9 TICK Register (TICK)

TICK |NPT] counter

63 62 0
Figure 16—TICK Register

The counterfield of the TICK register is a 63-bit counter that counts CPU clock cycles. Bit 63 of
the TICK register is the Nonprivileged Trap (NPT) bit, which controls access to the TICK register
by nonprivileged software. Privileged software can always read the TICK register with either the
RDPR or RDTICK instruction. Privileged software can always write the TICK register with the
WRPR instruction; there is no WRTICK instruction.

Nonprivileged software can read the TICK register using the RDTICK instruction; TICK.NPT
must be 0. When TICK.NPT =1, an attempt by nonprivileged software to read the TICK register
causes arivileged_action exception. Nonprivileged software cannot write the TICK register.

TICK.NPT is set to 1 by a power-on reset trap. The value of Tkokinteris undefined after a
power-on reset trap.

After the TICK register is written, reading the TICK register returns a value incremented (by one

or more) from the last value written, rather than from some previous value of the counter. The
number of counts between a write and a subsequent read need not accurately reflect the number of
processor cycles between the write and the read. Software may only rely on read-to-read counts of
the TICK register for accurate timing, not on write-to-read counts.

IMPL. DEP. #105: The difference between the values read from the TICK register on two reads should
reflect the number of processor cycles executed between the reads. If an accurate count cannot always be
returned, any inaccuracy should be small, bounded, and documented. An implementation may implement
fewer than 63 bits in TICK.counter; however, the counter as implemented must be able to count for at least
10 years without overflowing. Any upper bits not implemented must read as zero.

Programming Note:
TICK.NPT may be used by a secure operating system to control access by user software to high-accuracy
timing information. The operation of the timer might be emulated by the trap handler, which could read
TICK.counterand “fuzz” the value to lower accuracy.

5.2 Privileged Registers

The registers described in this subsection are visible only to software running in privileged mode;
that is, when PSTATE.PRIV = 1. Privileged registers are written using the WRPR instruction and
read using the RDPR instruction.

5.2.1 Processor State Register (PSTATE)

PSTATE|pID1 | PIDO | CLE | TLE MM RED| PEF | AM [(PRIV| IE AG

1 10 9 8 7 6 5 4 3 2 1 0
Figure 17—PSTATE Fields

The PSTATE register holds the current state of the processor. There is only one instance of the
PSTATE register. See Chapter 7, “Traps,” for more details.

Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to the
next instruction executed. The privileged RDPR and WRPR instructions are used to read and
write PSTATE, respectively.

Implementation Note:
To ensure the nondelayed semantics, a write to PSTATE may take multiple cycles to complete on some
implementations.

5.2.1.2 through 5.2.1.10 describe the fields contained in the PSTATE register.

5.2.1.1 PSTATE_impldep (PID1, PIDO)

IMPL. DEP. #127: The presence and semantics of PSTATE.PID1 and PSTATE.PIDO are implementation-
dependent. Software intended to run on multiple implementations should only write these bits to values
previously read from PSTATE, or to zeroes.

See also TSTATE bits 19..18.

5.2.1.2 PSTATE_current_little_endian (CLE)

When PSTATE.CLE =1, all data reads and writes using an implicit ASI are performed in little-
endian byte order with an ASI of ASI_PRIMARY_LITTLE. When PSTATE.CLE =0, all data
reads and writes using an implicit ASI are performed in big-endian byte order with an ASI of
ASI_PRIMARY. Instruction accesses are always big-endian.

5.2.1.3 PSTATE_ trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack and the
PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This allows system
software to have a different implicit byte ordering than the current process. Thus, if PSTATE.TLE
is set to 1, data accesses using an implicit ASI in the trap handler are little-endian. The original
state of PSTATE.CLE is restored when the original PSTATE register is restored from the trap
stack.

5.2.1.4 PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. Its values are:

Value Memory model
00 Total Store Order (TSO)
01 Partial Store Order (PSO)
10 Relaxed Memory Order (RMO)
11 —

An implementation must provide a memory model that allows programs conforming to the TSO
model to run correctly; that is, TSO or a stronger model. Whether the Partial Store Order (PSO)

model or the Relaxed Memory Ordering (RMO) model is supported is implementation-dependent
(impl. dep. #113).

The current memory model is determined by the value of PSTATE.MM. The effect of setting
PSTATE.MM to an unsupported value is implementation-dependent (impl. dep. #119).

5.2.1.5 PSTATE_RED_state (RED)

When PSTATE.RED is set to 1, the processor is operating in RED (Reset, Error, and Debug) state.
See 7.2.1, “RED_state.” The IU sets PSTATE.RED when any hardware reset occurs. It also sets
PSTATE.RED when a trap is taken while TL = (MAXTL — 1). Software can exit RED_state by
one of two methods:

(1) Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE and
clears PSTATE.RED if it was 0 in the stacked copy.

(2) Write a 0 to PSTATE.RED with a WRPR instruction.

Programming Note:
Changing PSTATE.RED may cause a change in address mapping on some systems. It is recommended that
writes of PSTATE.RED be placed in the delay slot of a IMPL; the target of this JIMPL should be in the new
address mapping. The JMPL sets the nPC, which becomes the PC for the instruction that folows the WPR in
its delay slot. The effect of the WPR instruction is immediate.

5.2.1.6 PSTATE_enable_floating-point (PEF)

When set to 1, this bit enables the floating-point unit, which allows privileged software to manage
the FPU. For the floating-point unit to be usable, both PSTATE.PEF and FPRS.FEF must be set.
Otherwise, a floating-point instruction that tries to reference the FPU will cauge @sabled

trap.

5.2.1.7 PSTATE_address_mask (AM)

When PSTATE.AM = 1, both instruction and data addresses are interpreted as if the high-order 32
bits were masked to zero before being presented to the MMU or memory system. Thirty-two-bit
application software must run with this bit set.

Branch target addresses (sent to the nPC) and addresses sent to registers by CALL, JMPL, and
RDPC instructions are always 64-bit values, but the value of the high-order 32-bits are implemen-
tation-dependent. Similarly, the value of the high-order 32-bits of TPC and TNPC after a trap
taken while PSTATE.AM = 1 is implementation-dependent.

IMPL. DEP. #125. When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted to the
specified destination register(s) by CALL, JMLP, RDPC, and on a trap is implementation-dependent.

5.2.1.8 PSTATE_privileged_mode (PRIV)
When PSTATE.PRIV = 1, the processor is in privileged mode.

5.2.1.9 PSTATE interrupt_enable (IE)
When PSTATE.IE = 1, the processor can accept interrupts.

5.2.1.10 PSTATE_alternate_globals (AG)

When PSTATE.AG =0, the processor interprets integer register numbers in the range 0..7 as
referring to the normal global register set. When PSTATE.AG = 1, the processor interprets integer
register numbers in the range 0..7 as referring to the alternate global register set.

5.2.2 Trap Level Register (TL)

TL TL

2 0
Figure 18—Trap Level Register

The trap level register specifies the current trap level. TL = 0 is the normal (nontrap) level of oper-
ation. TL > 0 implies that one or more traps are being processed. The maximum valid value that
the TL register may contain is “MAXTL.” This is always equal to the number of supported trap
levels beyond level 0. See Chapter 7, “Traps,” for more details about the TL register. An imple-
mentation shall support at least four levels of traps beyond level O; that is, MAXTL skall be

IMPL. DEP. #101: How many additional trap levels, if any, past level 4 are supported is implementation-
dependent.

The remainder of this subsection assumes that there are four trap levels beyond level 0.
Programming Note:

Writing the TL register with avrpr %tl instruction does not alter any other machine state; that is, it is not
equivalent to taking or returning from a trap.

5.2.3 Processor Interrupt Level (PIL)

PIL PIL

3 0

Figure 19—Processor Interrupt Level Register

The processor interrupt level (PIL) is the interrupt level above which the processor will accept an
interrupt. Interrupt priorities are mapped such that interrupt level 2 has greater priority than inter-
rupt level 1, and so on. See table 15 on page 103 for a list of exception and interrupt priorities.

Compatibility Note:
On SPARC-V8 processors, the level 15 interrupt is considered to be nonmaskable, so it has different seman-
tics from other interrupt levels. SPARC-V9 processors do not treat level 15 interrupts differently from other

interrupt levels. See 7.6.2.4, “Externally Initiated Reset (XIR) Traps,” for a facility in SPARC-V9 that is
similar to a nonmaskable interrupt.

5.2.4 Trap Program Counter (TPC)

TPC, PC from trap while TL =0 00
TPC, PC from trap while TL =1 00
TPC3 PC from trap while TL =2 00
TPCy PC from trap while TL =3 00

63 210

Figure 20—Trap Program Counter Register

The TPC register contains the program counter (PC) from the previous trap level. There are
MAXTL instances of the TPC (impl. dep. #101), but only one is accessible at any time. The cur-

rent value in the TL register determines which instance of the TPC register is accessible. An
attempt to read or write the TPC register when TL = 0 shall cauegahinstruction exception.

5.2.5 Trap Next Program Counter (TNPC)

TNPC, nPC from trap while TL =0 00
TNPC, nPC from trap while TL =1 00
TNPCy nPC from trap while TL =2 00
TNPC, nPC from trap while TL =3 00
63 210

Figure 21—Trap Next Program Counter Register

The TNPC register is the next program counter (nPC) from the previous trap level. There are
MAXTL instances of the TNPC (impl. dep. #101), but only one is accessible at any time. The cur-
rent value in the TL register determines which instance of the TNPC register is accessible. An
attempt to read or write the TNPC register when TL = 0 shall cause@ai instruction exception.

5.2.6 Trap State (TSTATE)

TSTATE; | cCCRfromTL =0 | ASIfromTL =0 — PSTATE from TL =0 — | CWPfromTL =0
TSTATE, | CCRfromTL =1 | ASIfromTL =1 — PSTATE from TL =1 — | CWPfromTL =1
TSTATE3 | CCRfromTL =2 | ASIfrom TL =2 — PSTATE from TL =2 — | CWPfromTL =2
TSTATE, | CCRfromTL =3 | ASlfromTL =3 — PSTATE from TL =3 — | cwPfromTL =3
39 32 31 24 23 20 19 87 54 0

Figure 22—Trap State Register

TSTATE contains the state from the previous trap level, comprising the contents of the CCR, ASI,
CWP, and PSTATE registers from the previous trap level. There are MAXTL instances of the
TSTATE register, but only one is accessible at a time. The current value in the TL register deter-
mines which instance of TSTATE is accessible. An attempt to read or write the TSTATE register
when TL = 0 causes alfegal_instruction exception.

TSTATE bits 19 and 18 are implementation-dependeKPL.DEP. #127: If PSTATE bit 11 (10) is
implemented, TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE bit 11 (10) from
the previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero.
Software intended to run on multiple implementations should only write these bits to values previously read
from PSTATE, or to zeroes.

5.2.7 Trap Type Register (TT)

TT, | Trap type from trap while TL =0

TT, | Trap type from trap while TL =1

TT3| Trap type from trap while TL =2

TT,4 | Trap type from trap while TL =3

8 0

Figure 23—Trap Type Register

The TT register normally contains the trap type of the trap that caused entry to the current trap
level. On a reset trap the TT field contains the trap type of the reset (see 7.2.1.1, “RED_state Trap
Table”), except when a watchdog (WDR) or externally initiated (XIR) reset occurs while the pro-
cessor is in error_state. When this occurs, the TT register will contain the trap type of the excep-
tion that caused entry into error_state.

There are MAXTL instances of the TT register (impl. dep. #101), but only one is accessible at a
time. The current value in the TL register determines which instance of the TT register is accessi-
ble. An attempt to read or write the TT register when TL =0 shall causéegal_instruction
exception.

5.2.8 Trap Base Address (TBA)

Trap Base Address 000000000000000

63 15 14 0

Figure 24—Trap Base Address Register

The TBA register provides the upper 49 bits of the address used to select the trap vector for a trap.
The lower 15 bits of the TBA always read as zero, and writes to them are ignored.

The full address for a trap vector is specified by the TBA, TL, TT[TL], and five zeroes:

TBA<63:15> TL>0 TTr. |00000

63 15 14 13 5 4 0

Figure 25—Trap Vector Address

Note that the “(TL>0)" bit is O if TL = 0 when the trap was taken, and 1 if TL > 0 when the trap
was taken. This implies that there are two trap tables: one for traps from TL = 0 and one for traps
from TL > 0. See Chapter 7, “Traps,” for more details on trap vectors.

5.2.9 Version Register (VER)

manuf impl mask — maxt/ — | maxwin

63 48 47 32 31 24 23 16 15 87 5 4 0

Figure 26—\Version Register

The version register specifies the fixed parameters pertaining to a particular CPU implementation
and mask set. The VER register is read-only.

IMPL. DEP. #104:. VER.manuf contains a 16-bit manufacturer code. This field is optional and, if not
present, shall read as 0. VER.manuf may indicate the original supplier of a second-sourced chip. It is
intended that the contents of VER.manuftrack the JEDEC semiconductor manufacturer code as closely as
possible. If the manufacturer does not have a JEDEC semiconductor manufacturer code, SPARC Interna-
tional will assign a value for VER.manuf.

IMPL. DEP. #13: VER.impl uniquely identifies an implementation or class of software-compatible imple-
mentations of the architecture. Values FFF04¢.. FFFF g are reserved and are not available for assignment.

The value of VERmpl is assigned as described in C.3, “Implementation Dependency Catego-
ries.”

VER .maskspecifies the current mask set revision, and is chosen by the implementor. It generally
increases numerically with successive releases of the processor, but does not necessarily increase
by one for consecutive releases.

VER .maxtl contains the maximum number of trap levels supported by an implementation (impl.
dep. #101), that is, MAXTL, the maximum value of the contents of the TL register.

VER.maxwincontains the maximum index number available for use as a valid CWP value in an
implementation; that is, VERaxwincontains the value “NWINDOWS — 1” (impl. dep. #2).

5.2.10 Register-Window State Registers

The state of the register windows is determined by a set of privileged registers. They can be read/
written by privileged software using the RDPR/WRPR instructions. In addition, these registers
are modified by instructions related to register windows and are used to generate traps that allow
supervisor software to spill, fill, and clean register windows.

IMPL. DEP. #126: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0..NWINDOWS-1. The effect of writing a value greater than NWINDOWS-1 to
any of these registers is undefined. Although the width of each of these five registers is nominally 5 bits,
the width is implementation-dependent and shall be between og,(NWINDOWS)UOand 5 bits, inclusive. If
fewer than 5 bits are implemented, the unimplemented upper bits shall read as 0, and writes to them shall
have no effect. All five registers should have the same width.

The details of how the window-management registers are used by hardware are presented in 6.3.6,
“Register Window Management Instructions.”

5.2.10.1 Current Window Pointer (CWP)

CWP Current Window #

4 0
Figure 27—Current Window Pointer Register

The CWP register is a counter that identifies the current window into the set of integer registers.
See 6.3.6, “Register Window Management Instructions,” and Chapter 7, “Traps,” for information
on how hardware manipulates the CWP register.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl. dep.
#126).

Compatibility Note:
The following differences between SPARC-V8 and SPARC-V9 are visible only to privileged software; they
are invisible to nonprivileged software:

1) InSPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the opposite is
true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2) PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by a trap caused
by a window fill or spill exception.

3) In SPARC-V8, writing a value into PSR.CWP that is greater than or equal to the number of imple-
mented windows causes dlegal_instruction exception. In SPARC-V9, the effect of writing an out-of-
range value to CWP is undefined.

5.2.10.2 Savable Windows (CANSAVE) Register

CANSAVE

4 0
Figure 26— CANSAVE Register

The CANSAVE register contains the number of register windows following CWP that are not in
use and are, hence, available to be allocated by a SAVE instruction without generating a window
spill exception

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl. dep.
#126).

5.2.10.3 Restorable Windows (CANRESTORE) Register

CANRESTORE

4 0
Figure 29—CANRESTORE Register

The CANRESTORE register contains the number of register windows preceding CWP that are in
use by the current program and can be restored (via the RESTORE instruction) without generat-
ing a window fill exception.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl. dep.
#126).

5.2.10.4 Other Windows (OTHERWIN) Register

OTHERWIN

4 0
Figure 30—OTHERWIN Register

The OTHERWIN register contains the count of register windows that will be spilled/filled using a

separate set of trap vectors based on the contents of WSTATE_OTHER. If OTHERWIN is zero,
register windows are spilled/ffilled wusing trap vectors based on the contents of
WSTATE_NORMAL.

The OTHERWIN register can be used to split the register windows among different address
spaces and handle spill/fill traps efficiently by using separate spill/fill vectors.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl. dep.
#126).

5.2.10.5 Window State (WSTATE) Register

WSTATE OTHER NORMAL

5 3 2 0
Figure 31—WSTATE Register

The WSTATE register specifies bits that are inserted intg, ¥%:2> on traps caused by window
spill and fill exceptions. These bits are used to select one of eight different window spill and fill
handlers. If OTHERWIN =0 at the time a trap is taken due to a window spill or window fill
exception, then the WSTATE.NORMAL bits are inserted into TT[TL]. Otherwise, the
WSTATE.OTHER bits are inserted into TT[TL]. See 6.4, “Register Window Management,” for
details of the semantics of OTHERWIN.

5.2.10.6 Clean Windows (CLEANWIN) Register

CLEANWIN

4 0
Figure 32—CLEANWIN Register

The CLEANWIN register contains the number of windows that can be used by the SAVE instruc-
tion without causing alean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with respect to
the current program; that is, register windows that contain only zeros, valid addresses, or valid
data from that program. Registers in these windows need not be cleaned before they can be used.
The count includes the register windows that can be restored (the value in the CANRESTORE
register) and the register windows following CWP that can be used without cleaning. When a
clean window is requested (via a dSAVE instruction) and none is availableyawindow excep-

tion occurs to cause the next window to be cleaned.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl. dep.
#126).

5.2.11 Ancillary State Registers (ASRS)
SPARC-V9 provides for up to 25 ancillary state registers (ASRs), numbered from 7 through 31.

ASRs numbered 7..15 are reserved for future use by the architecture and should not be referenced
by software.

ASRs numbered 16..31 are available for implementation-dependent uses (impl. dep. #8), such as
timers, counters, diagnostic registers, self-test registers, and trap-control registers. An IU may

choose to implement from zero to sixteen of these ASRs. The semantics of accessing any of these
ASRs is implementation-dependent. Whether access to a particular ancillary state register is priv-

ileged is implementation-dependent (impl. dep. #9).

An ASR is read and written with the RDASR and WRASR instructions, respectively. An RDASR
or WRASR instruction is privileged if the accessed register is privileged.

5.2.12 Floating-Point Deferred-Trap Queue (FQ)

If present in an implementation, the FQ contains sufficient state information to implement resum-
able, deferred floating-point traps.

IMPL. DEP. #23: Floating-point traps may be precise or deferred. If deferred, a floating-point deferred-trap
gueue (FQ) shall be present.

The FQ can be read with the read privileged register (RDPR) floating-point queue instruction. In a
given implementation, it may also be readable or writable via privileged load/store double alter-
nate instructions (LDDA, STDA), or by read/write ancillary state register instructions (RDASR,
WRASR).

IMPL. DEP. #24: The presence, contents of, and operations upon the FQ are implementation-dependent.

If an FQ is present, however, supervisor software must be able to deduce the exception-causing
instruction’s opcodeqpf), operands, and address from its FQ entry. This also must be true of any
other pending floating-point operations in the queue. See <lItalic>Implementation Characteristics
of Current SPARC-V9-based Products, Revision 9.x, a document available from SPARC Interna-
tional, for a discussion of the formats and operation of implemented floating-point queues in
existing SPARC-V9 implementations.

In implementations with a floating-point queue, an attempt to read the FQ with a RDPR instruc-
tion when the FQ is empty (FS&e= 0) shall cause am_exception_other trap with FSRItt set to
4 (sequence_error).In implementations without an FQ, theebit in the FSR is always 0.

IMPL. DEP. #25: In implementations without a floating-point queue, an attempt to read the FQ with an
RDPR instruction shall cause either an illegal_instruction trap or an fp_exception_other trap with FSR.ftt
SET TO 4 (sequence_error).

5.2.13 IU Deferred-Trap Queue

An implementation may contain zero or more IU deferred-trap queues. Such a queue contains suf-
ficient state to implement resumable deferred traps caused by the 1U. See 7.3.2, “Deferred Traps,”
for more information. Note that deferred floating-point traps are handled by the floating-point
deferred-trap queue. See <lItalic>Implementation Characteristics of Current SPARC-V9-based
Products, Revision 9.x, a document available from SPARC International, for a discussion of such
gueues in existing implementations.

IMPL. DEP. #16: The existence, contents, and operation of an IU deferred-trap queue are implementation-
dependent; it is not visible to user application programs under normal conditions.

6 Instructions

Instructions are accessed by the processor from memory and are executed, annulled, or trapped.
Instructions are encoded in four major formats and partitioned into eleven general categories.

6.1 Instruction Execution

The instruction at the memory location specified by the program counter is fetched and then exe-
cuted. Instruction execution may change program-visible processor and/or memory state. As a
side-effect of its execution, new values are assigned to the program counter (PC) and the next pro-
gram counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it impossible
to complete normal execution. Such an exception may in turn generate a precise trap. Other events
may also cause traps: an exception caused by a previous instruction (a deferred trap), an interrupt
or asynchronous error (a disrupting trap), or a reset request (a reset trap). If a trap occurs, control
is vectored into a trap table. See Chapter 7, “Traps,” for a detailed description of exception and
trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program counter
(nPC) is copied into the PC and the nPC is incremented by 4 (ignoring overflow, if any). If the
instruction is a control-transfer instruction, the next program counter (nPC) is copied into the PC
and the target address is written to nPC. Thus, the two program counters provide for a delayed-
branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit address space
identifier, or ASI, to the 64-bit memory address. Load/store alternate instructions (see 6.3.1.3,
“Address Space Identifiers (ASIs),”) can provide an arbitrary ASI with their data addresses, or use
the ASI value currently contained in the ASI register.

Implementation Note:
The time required to execute an instruction is implementation-dependent, as is the degree of execution con-
currency. In the absence of traps, an implementation should cause the same program-visible register and
memory state changes as if a program had executed according to the sequential model implied in this docu-
ment. See Chapter 7, “Traps,” for a definition of architectural compliance in the presence of traps.

6.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as shown in fig-
ures 33 and 34.

Format 1 (op=1): CALL

op

disp30

31 30 29

Format 2 (op= 0): SETHI & Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

op rd op2 imm22

op |a cond op2 disp22

op |a cond op2 |ccliccO| p disp19

op |a|0O]| rcond op2 dieéhi | p rsl d16lo
31 30 29 28 25 24 22 21 20 19 18 14 13

Format 3 (op = 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Load, and Store

op rd op3 rsl i=0 — rs2
op rd op3 rsl i=1 simm13
op — op3 rsl i=0 — rs2
op — op3 rsl i=1 simm13
op rd op3 rsl i=0| rcond — rs2
op rd op3 rsl i=1{ rcond simm10
op rd op3 rsl i=0 — rs2
op rd op3 rsl i=1 — cmask mmask
op rd op3 rsl i=0 imm_asi rs2
op impl-dep op3 impl-dep

31 30 29 27 26 25 24 19 18 14 13 12 10 9 7 6 5 4

Figure 33—Summary of Instruction Formats: Formats 1, 2, and 3

Format 3 (op = 2 or 3):Continued

op rd op3 rsl i=0 x — rs2
op rd op3 rsl i=1x=0 — shcnt32
op rd op3 rsl i=1{x=1 — shent64
op rd op3 — opf rs2
op 000 (ccljccO op3 rsl opf rs2
op rd op3 rsl opf rs2
op rd op3 rsi _
op fcn op3 —
op rd op3 _
31 30 29 25 24 19 18 14 13 12 11 6 5 4
Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc
op rd op3 rsi i=0|cclccO — rs2
op rd op3 rsl i=1{cclccO simm11
op rd op3 cc2 cond i=0|cclccO — rs2
op rd op3 cc2) cond i=1|ccccO simm11l
op rd op3 rsl i=1{cclccO — Sw_trap#
op rd op3 rsl 0 rcond opf_low rs2
op rd op3 0 cond opf_cc opf_low rs2
31 30 29 25 24 19 18 17 14 13 12 11 10 9 7 6 5 4

Figure 34—Summary of Instruction Formats: Formats 3 and 4

6.2.1 Instruction Fields
The instruction fields are interpreted as follows:

a
Thea bit annuls the execution of the following instruction if the branch is conditional and
untaken, or if it is unconditional and taken.

ccO, ccl, and cc2
cc2cclccOspecify the condition codescE, xcg fccO, feel, feez, fee3) to be used in the
instruction. Individual bits of the same logical field are present in several other instruc-
tions: Branch on Floating-Point Condition Codes with Prediction Instructions (FBPfcc),
Branch on Integer Condition Codes with Prediction (BPcc), Floating-Point Compare
Instructions, Move Integer Register if Condition is Satisfied (MOVcc), Move Floating-
Point Register if Condition is Satisfied (FMOVcc), and Trap on Integer Condition Codes
(Tcce). Ininstructions such as Tcc that do not containdtizbit, the missingcc2 bit takes
on a default value. See table 38 on page 279 for a description of these fields’ values.

cmask
This 3-bit field specifies sequencing constraints on the order of memory references and the
processing of instructions before and after a MEMBAR instruction.

cond:
This 4-bit field selects the condition tested by a branch instruction. See Appendix E,
“Opcode Maps,” for descriptions of its values.

d16hi and d16lo
These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-relative
displacement for a branch-on-register-contents with prediction (BPr) instruction.

disp19
This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an integer
branch-with-prediction (BPcc) instruction or a floating-point branch-with-prediction
(FBPfcc) instruction.

disp22 and disp30
These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative displacements
for a branch or call, respectively.

fcn:
This 5-bit field provides additional opcode bits to encode the DONE and RETRY instruc-
tions.

Thei bit selects the second operand for integer arithmetic and load/store instructions. If
i =0, the operand is r[rs2]. If= 1, the operand isimm10QsimmZ11 or simm13 depending
on the instruction, sign-extended to 64 bits.

imm22:
This 22-bit field is a constant that SETHI places in bits 31..10 of a destination register.

imm_ast
This 8-bit field is the address space identifier in instructions that access alternate space.

impl-dep:
The meaning of these fields is completely implementation-dependent for IMPDEP1 and
IMPDEP?2 instructions.

mmask:
This 4-bit field imposes order constraints on memory references appearing before and
after a MEMBAR instruction.

op and op2
These 2- and 3-bit fields encode the three major formats and the Format 2 instructions. See
Appendix E, “Opcode Maps,” for descriptions of their values.

op3:.
This 6-bit field (together with one bit frorop) encodes the Format 3 instructions. See
Appendix E, “Opcode Maps,” for descriptions of its values.

opf:
This 9-bit field encodes the operation for a floating-point operate (FPop) instruction. See
Appendix E, “Opcode Maps,” for possible values and their meanings.

opf_cc
Specifies the condition codes to be used in FMOVcc instructionsc8&eccl, and cc2
above for details.

opf_low:
This 6-bit field encodes the specific operation for a Move Floating-Point Register if Con-
dition is satisfied (FMOVcc) or Move Floating-Point register if contents of integer register
match condition (FMOVr) instruction.

p:
This 1-bit field encodes static prediction for BPcc and FBPfcc instructions, as follows:
p Branch prediction
0 Predict branch will not be taken
1 Predict branch will be taken
rcond:
This 3-bit field selects the register-contents condition to test for a move based on register
contents (MOVr or FMQOVTr) instruction or a branch on register contents with prediction
(BPr) instruction. See Appendix E, “Opcode Maps,” for descriptions of its values.
rd:

This 5-bit field is the address of the destination (or source) f register(s) for a load,
arithmetic, or store instruction.

rsi:
This 5-bit field is the address of the firgir f register(s) source operand.

rs2
This 5-bit field is the address of the secomul f register(s) source operand with 0.

shcnt32
This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64
This 6-bit field provides the shift count for 64-bit shift instructions.

simm10
This 10-bit field is an immediate value that is sign-extended to 64 bits and used as the sec-
ond ALU operand for a MOVr instruction wheg 1.

simm1l
This 11-bit field is an immediate value that is sign-extended to 64 bits and used as the sec-
ond ALU operand for a MOVcc instruction when 1.

simm13
This 13-bit field is an immediate value that is sign-extended to 64 bits and used as the sec-
ond ALU operand for an integer arithmetic instruction or for a load/store instruction when
i=1.

SW_trap#
This 7-bit field is an immediate value that is used as the second ALU operand for a Trap
on Condition Code instruction.

Thex bit selects whether a 32- or 64-bit shift will be performed..

6.3 Instruction Categories
SPARC-V9 instructions can be grouped into the following categories:
— Memory access
— Memory synchronization
— Integer arithmetic
— Control transfer (CTI)
— Conditional moves
— Register window management
— State register access
— Privileged register access

— Floating-point operate

— Implementation-dependent
— Reserved

Each of these categories is further described in the following subsections.

6.3.1 Memory Access Instructions

Load, Store, Prefetch, Load Store Unsigned Byte, Swap, and Compare and Swap are the only
instructions that access memory. All of the instructions except Compare and Swap use either two
r registers or am register ancsimm213to calculate a 64-bit byte memory address. Compare and
Swap uses a singleregister to specify a 64-bit byte memory address. To this 64-bit address, the
IU appends an ASI that encodes address space information.

The destination field of a memory reference instruction specifies thé register(s) that supply

the data for a store or receive the data from a load or LDSTUB. For SWAP, the destination regis-
ter identifies the register to be exchanged atomically with the calculated memory location. For
Compare and Swap, arregister is specified whose value is compared with the value in memory
at the computed address. If the values are equal, the destination field specifiesgiséer that is

to be exchanged atomically with the addressed memory location. If the values are unequal, the
destination field specifies threregister that is to receive the value at the addressed memory loca-
tion; in this case, the addressed memory location remains unchanged.

The destination field of a PREFETCH instruction is used to encode the type of the prefetch.

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-bit), and dou-
bleword (64-bit) accesses. Floating-point load and store instructions support word, doubleword,
and quadword memory accesses. LDSTUB accesses bytes, SWAP accesses words, and CAS
accesses words or doublewords. PREFETCH accesses at least 64 bytes.

Programming Note:
By settingi =1 andrs1=0, any location in the lowest or highest 4K bytes of an address space can be
accessed without using a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

Halfword accesses shall ladigned on 2-byte boundaries, word accesses (which include instruc-

tion fetches) shall be aligned on 4-byte boundaries, extended word and doubleword accesses shall
be aligned on 8-byte boundaries, and quadword accesses shall be aligned on 16-byte boundaries,
with the following exceptions.

An improperly aligned address in a load, store, or load-store instruction causes a
mem_address_not_aligned exception to occur, except:

— An LDDF or LDDFA instruction accessing an address that is word-aligned but not double-
word-aligned may cause ambDF _mem_address_not_aligned exception, or may complete
the operation in hardware (impl. dep. #109).

— An STDF or STDFA instruction accessing an address that is word-aligned but not double-
word-aligned may cause a8WDF_mem_address _not_aligned exception or may complete
the operation in hardware (impl. dep. #110).

— An LDQF or LDQFA instruction accessing an address that is word-aligned but not quad-
word-aligned may cause arbQF_mem_address_not_aligned exception or may complete
the operation in hardware (impl. dep. #111).

— An STQF or STQFA instruction accessing an address that is word-aligned but not quad-
word aligned may cause a$TTQF_mem_address_not_aligned exception or may complete
the operation in hardware (impl. dep. #112).

6.3.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order for all instruction accesses and, by default, for data
accesses. It is possible to access data in little-endian format by using selected ASlIs. It is also pos-
sible to change the default byte order for implicit data accesses. See 5.2.1, “Processor State Regis-
ter (PSTATE),” for more informatioh.

6.3.1.2.1 Big-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a byte’s
significance decreases as its address increases. The big-endian addressing conventions are illus-
trated in figure 35 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-endian
modes.

halfword:
For a load/store halfword instruction, two bytes are accessed. The most significant byte
(bits 15..8) is accessed at the address specified in the instruction; the least significant byte
(bits 7..0) is accessed at the address + 1.

word:
For a load/store word instruction, four bytes are accessed. The most significant byte (bits
31..24) is accessed at the address specified in the instruction; the least significant byte
(bits 7..0) is accessed at the address + 3.

doubleword or extended word
For a load/store extended or floating-point load/store double instruction, eight bytes are
accessed. The most significant byte (bits 63..56) is accessed at the address specified in the
instruction; the least significant byte (bits 7..0) is accessed at the address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two big-endian
words are accessed. The word at the address specified in the instruction corresponds to the

1.See Cohen, D., “On Holy Wars and a Plea for Pe@etiputerl4:10 (October 1981), pp. 48-54.

even register specified in the instruction; the word at address + 4 corresponds to the fol-
lowing odd-numbered register.

quadword:
For a load/store quadword instruction, sixteen bytes are accessed. The most significant
byte (bits 127..120) is accessed at the address specified in the instruction; the least signifi-
cant byte (bits 7..0) is accessed at the address + 15.

Byte Address
7 0
Halfword Address<0> = 0 1
15 8|7 0
Word Address<1:0> = 00 01 10 11
31 24|23 16(15 8|7 0
Doubleword / Address<2:0> = 000 001 010 011
Extended word 63 56| 55 48|47 40|39 32
Address<2:0> = 100 101 110 111
31 2423 1615 8|7 0
Quadword Address<3:0> = 0000 0001 0010 0011
127 120 119 112|111 104 (103 9
Address<3:.0> = 0100 0101 0110 0111
95 88| 87 80|79 72|71 64
Address<3:0> = 1000 1001 1010 1011
63 56 | 55 48|47 40|39 32
Address<3:0> = 1100 1101 1110 1111
31 24|23 1615 8|7 0

Figure 35—Big-Endian Addressing Conventions

6.3.1.2.2 Little-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a byte’s
significance increases as its address increases. The little-endian addressing conventions are illus-
trated in figure 36 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-endian
modes.

halfword:
For a load/store halfword instruction, two bytes are accessed. The least significant byte
(bits 7..0) is accessed at the address specified in the instruction; the most significant byte
(bits 15..8) is accessed at the address + 1.

word:
For a load/store word instruction, four bytes are accessed. The least significant byte (bits
7..0) is accessed at the address specified in the instruction; the most significant byte (bits
31..24) is accessed at the address + 3.

doubleword or extended word
For a load/store extended or floating-point load/store double instruction, eight bytes are
accessed. The least significant byte (bits 7..0) is accessed at the address specified in the
instruction; the most significant byte (bits 63..56) is accessed at the address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two little-endian
words are accessed. The word at the address specified in the instruction + 4 corresponds to
the even register specified in the instruction; the word at the address specified in the
instruction corresponds to the following odd-numbered register.

guadword:
For a load/store quadword instruction, sixteen bytes are accessed. The least significant
byte (bits 7..0) is accessed at the address specified in the instruction; the most significant
byte (bits 127..120) is accessed at the address + 15

Byte Address
7 0
Halfword Address<0> = 0 1
7 ol 15 8
Word Address<1:0> = 00 01 10 11
7 ol 15 8| 23 16|31 24
Doubleword / Address<2:0> = 000 001 010 011
Extended word 7 ol 15 8| 23 1631 24
Address<2:0> = 100 101 110 111
39 32| 47 40| 55 48|63 56
Quadword Address<3:0> = 0000 0001 0010 0011
7 ol 15 8| 23 1631 24
Address<3:0> = 0100 0101 0110 0111
39 32| 47 40| 55 48|63 56
Address<3:0> = 1000 1001 1010 1011
71 64| 79 72| 87 80|95 88
Address<3:0> = 1100 1101 1110 1111
103 96| 111 104| 119 112|127 120

Figure 36—Little-Endian Addressing Conventions

6.3.1.3 Address Space Identifiers (ASIs)

Load and store instructions provide an implicit ASI value of ASI_PRIMARY or
ASI_PRIMARY_LITTLE. Load and store alternate instructions provide an explicit ASI, specified
by theimm_asiinstruction field whem = 0, or the contents of the ASI register whenl.

ASls 00 through 7F¢ are restricted; only privileged software is allowed to access them. An
attempt to access a restricted ASI by nonprivileged software resultgrnileged action excep-

tion. ASIs 8Q¢ through FFg are unrestricted; software is allowed to access them whether the pro-
cessor is operating in privileged or nonprivileged mode. This is illustrated in table 11.

Table 11—Allowed Accesses to ASls

Processor state
Value Access Type (PSTATE.PRIV) Result of ASI access
Nonprivileged (O rivileged_action exception
0046.. 7TFig Restricted p 9ed (@ | p - ke P
Privileged (1) Valid access
. Nonprivileged (0) Valid access
80y¢.-FFig Unrestricted — -
Privileged (1) Valid access

The required ASI assignments are shown in table 12. In the table, “R” indicates a restricted ASI,
and “U” indicates an unrestricted ASI.

IMPL. DEP. #29: These ASI assignments are implementation-dependent. restricted ASIS 004¢..034g,
0516..0B16, 0D15..0F 16, 1215..1716, AND 1A44..7F16; and unrestricted ASIs CO¢.. FFg.

IMPL. DEP. #30: An implementation may choose to decode only a subset of the 8-bit ASI specifier; how-
ever, it shall decode at least enough of the ASI to distinguish ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY, ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY, ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and ASI_SECONDARY_NOFAULT_LITTLE. If the nucleus context is sup-
ported, then ASI_NUCLEUS and ASI_NUCLEUS_LITTLE must also be decoded (impl. dep. #1234
Finally, an implementation must always decode ASI bit<7> while PSTATE.PRIV = 0, so that an attempt by
nonprivileged software to access a restricted ASI will always cause a privileged _action exception.

Table 12—Address Space ldentifiers (ASIs)

Value Name Access$ Address space
00y6..03¢ — R |Implementation-dependént
0dyg AS|_NUCLEUS R |Implementation-dependént
056..0B;¢ — R |Implementation-dependént
0Ci5 ASI_NUCLEUS_LITTLE R |Implementation-dependént
0D4g..0F6 — R |Implementation-dependént
1046 ASI_AS_IF_USER_PRIMARY R Primary address space, user privifege
1L ASI_AS_IF_USER_SECONDARY R Secondary address space, user priv:'l’lege
1245 .17 — R |Implementation-dependént
185 AS|_AS_IF_USER_PRIMARY_LITTLE R Primary address space, user privilege, IittIe-en”dipn
194 ASI_AS_IF_USER_SECONDARY_LITTLHE R Secondary address space, user priv., little-eAdia
1A15.. TR — R |Implementation-dependént
80;5 ASI_PRIMARY U Primary address space
8116 ASI_SECONDARY U Secondary address space
825 ASI_PRIMARY_NOFAULT] Primary address space, no fAult
8316 AS|_SECONDARY_NOFAULT U Secondary address space, no fault
84.5..8715 — U |Reserved
885 ASI_PRIMARY_LITTLE U Primary address space, little-endian
896 AS|_SECONDARY_LITTLE U Secondary address space, little-endian
8A16 AS|_PRIMARY_NOFAULT_LITTLE U Primary address space, no fault, little-endlian
8B1g ASI_SECONDARY_NOFAULT_LITTLE U Secondary address space, no fault, little-erffdian
8C5..BFg — U |Reserved
CO5..FFig — U |Implementation-dependént

These ASI assignments are implementation-dependent (impl. dep. #29) and available for use by implemen-

tors. Code that references any of these ASIs may not be portable.

2 ASI_NUCLEUS{ LITTLE} are implementation-dependent (impl. dep. #124); they may not be supported in all

implementations. See F.4.4, “Contexts,” for more information.

space.

Use of these ASIs causes access checks to be performed as if the memory access instruction were issued
while PSTATE.PRIV =0 (that is, in nonprivileged mode) and directed towards the corresponding address

ASI_PRIMARY_NOFAULT{_LITTLE} andASI_SECONDARY_NOFAULT{_LITTLE} refer to the same address

spaces asSl_PRIMARY{ LITTLE} andASI_SECONDARY{ LITTLE}, respectively, with additional seman-
tics as described in 8.3, “Addressing and Alternate Address Spaces.”

6.3.1.4 Separate Instruction Memory

A SPARC-V9 implementation may choose to place instruction and data in the same shared
address space and use hardware to keep the data and instruction memory consistent at all times. It
may also choose to overload independent address spaces for data and instructions and allow them
to become inconsistent when data writes are made to addresses shared with the instruction space.
A program containing such self-modifying code must issue a FLUSH instruction or appropriate
calls to system software to bring the address spaces to a consistent state. See H.1.6, “Self-Modify-

ing Code,” for more information.

6.3.2 Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order and
completion of memory references. Ordering MEMBARS induce a partial ordering between sets of
loads and stores and future loads and stores. Sequencing MEMBARS exert explicit control over
completion of loads and stores. Both barrier forms are encoded in a single instruction, with sub-
functions bit-encoded in an immediate field.

Compatibility Note:
The deprecated STBAR instruction is a subcase of the MEMBAR instruction; it is identical in operation to
the STBAR instruction of SPARC-V8, and is included only for compatibility.

6.3.3 Integer Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that compute
a result which is a function of two source operands. They either write the result into the destina-
tion registerr[rd] or discard it. One of the source operands is alwaysl}] The other source
operand depends on théit in the instruction; ifi = 0, the operand ig[rs2]; if i = 1, the operand

is the constargimm10simm11 or simm13sign-extended to 64 bits.

Note that the value @f0] always reads as zero, and writes to it are ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions; one sets the integer condition icades (
and xcc) as a side effect; the other does not affect the condition codes. A special comparison
instruction for integer values is not needed, since it is easily synthesized using the “subtract and
set condition codes” (SUBcc) instruction. See G.3, “Synthetic Instructions,” for details.

6.3.3.2 Shift Instructions

Shift instructions shift am register left or right by a constant or variable amount. None of the shift
instructions changes the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of anregister” instruction (SETHI) writes a 22-bit constant
from the instruction into bits 31 through 10 of the destination register. It clears the low-order 10
bits and high-order 32 bits, and does not affect the condition codes. Its primary use is to construct
constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 8464 - 64-bit operation; the integer divide
instructions perform 64 64 - 64-bit operations. For compatibility with SPARC-VS,

32x% 32 - 64-bit multiply instructions, 64 32 - 32-bit divide instructions, and the multiply
step instruction are provided. Division by zero caus#gston_by zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the two low-
order bits of each operand. If either of the two operands has a nonzero tag, or if 32-bit arithmetic
overflow occurs, tag overflow is detected. TADDcc and TSUBcc set the IC€Rbit if tag over-

flow occurs; they set the CCRecV bit if 64-bit arithmetic overflow occurs. The trapping ver-
sions (TADDccTV, TSUBccTV) of these instructions causeg@ overflow trap if tag overflow
occurs. If 64-bit arithmetic overflow occurs but tag overflow does not, TADDccTV and TSUBc-
CcTV set the CCRccV bit but do not trap.

6.3.4 Control-Transfer Instructions (CTIs)
These are the basic control-transfer instruction types:
— Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)
— Unconditional Branch
— Call and Link (CALL)
— Jump and Link (JMPL, RETURN)
— Return from trap (DONE, RETRY)
— Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter (nPC)
or by changing the value of both the program counter (PC) and the next program counter (nPC).
When only the next program counter, nPC, is changed, the effect of the transfer of control is
delayed by one instruction. Most control transfers in SPARC-V9 are of the delayed variety. The
instruction following a delayed control transfer instruction is said to be ird#day slot of the

control transfer instruction. Some control transfer instructions (branches) can optionally annul,
that is, not execute, the instruction in the delay slot, depending upon whether the transfer is taken
or not-taken. Annulled instructions have no effect upon the program-visible state nor can they
cause a trap.

Programming Note:
The annul bit increases the likelihood that a compiler can find a useful instruction to fill the delay slot after a
branch, thereby reducing the number of instructions executed by a program. For example, the annul bit can
be used to move an instruction from within a loop to fill the delay slot of the branch that closes the loop.
Likewise, the annul bit can be used to move an instruction from either the “else” or “then” branch of an “if-
then-else” program block to the delay slot of the branch that selects between them. Since a full set of condi-
tions are provided, a compiler can arrange the code (possibly reversing the sense of the condition) so that an
instruction from either the “else” branch or the “then” branch can be moved to the delay slot.

Table 13 below defines the value of the program counter and the value of the next program
counter after execution of each instruction. Conditional branches have two forms: branches that

test a condition, represented in the table by “Bcc,” and branches that are unconditional, that is,
always or never taken, represented in the table by “B.” The effect of an annulled branch is shown
in the table through explicit transfers of control, rather than by fetching and annulling the instruc-
tion.

The effective address, EA in table 13, specifies the target of the control transfer instruction. The
effective address is computed in different ways, depending on the particular instruction:

PC-relative Effective Address
A PC-relative effective address is computed by sign extending the instruction’s immediate
field to 64-bits, left-shifting the word displacement by two bits to create a byte displace-
ment, and adding the result to the contents of the PC.

Register-Indirect Effective Address
A register-indirect effective address computes its target address as aigigrm{rs?] if i
=0, orr[rs1]+sign_ext(simm13ijfi = 1.

Trap Vector Effective Address
A trap vector effective address first computes the software trap number as the least signifi-
cant seven bits of[rs1]+r[rs2] if i =0, or as the least significant seven bits of
rirsl]+sw_trap#if i = 1. The trap level, TL, is incremented. The hardware trap type is
computed as 256 sw_trap#and stored in TT[TL]. The effective address is generated by
concatenating the contents of the TBA register, the “TL>0" bit, and the contents of
TT[TL]. See 5.2.8, “Trap Base Address (TBA),” for details.

Trap State Effective Address
A trap state effective address is not computed, but is taken directly from either TPC[TL] or
TNPCITL].

Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an annulled
instruction could not cause any traps. SPARC-V9 does not require the delay instruction to be fetched if it is
annulled.

Compatibility Note:
SPARC-V8 left as undefined the result of executing a delayed conditional branch that had a delayed control
transfer in its delay slot. For this reason, programmers should avoid such constructs when backwards com-
patibility is an issue.

Table 13—Control Transfer Characteristics

Instruction group A?(;jr:ﬁss Delayed Taken A?)?[UI New PC New nPC
Non-CTls — — — — nPC nPC +4
Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4
Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC +4 nPC + 8
B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC + 4

B PC-relative Yes Yes 1 EA EA+4

B PC-relative Yes No 1 nPC + 4 nPC + 8
CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-ind Yes — — nPC EA
DONE Trap state No — — TNPC[TL] TNPC[TL]+4
RETRY Trap state No — — TPC[TL] TNPCJ[TL]
Tcc Trap vector No Yes — EA EA+4
Tcc Trap vector No No — nPC nPC + 4

6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is 0, the
instruction in the delay slot is always executed. If the annul bit is 1, the instruction in the delay
slot isnot executedunlessthe conditional branch is taken. Note that the annul behavior of a taken
conditional branch is different from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is “always”; it
never transfers control if its specified condition is “never.” If the annul bit is 0, the instruction in
the delay slot is always executed. If the annul bit is 1, the instruction in the delay sitasexe-
cuted. Note that the annul behavior of an unconditional branch is different from that of a taken
conditional branch.

6.3.4.3 CALL and JMPL instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction itself,
into r[15] (outregister 7) and then causes a delayed transfer of control to a PC-relative effective
address. The value written intl.5] is visible to the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction itself,
into r[rd] and then causes a delayed transfer of control to a PC-relative effective address. The
value written inta[rd] is visible to the instruction in the delay slot.

When PSTATE.AM =1, the value of the high order 32-bits transmitted 18] by the CALL
instruction or ta[rd] by the JMPL instruction is implementation-dependent. (impl. dep #125).

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonpriviliged mode.
RETURN combines the control-transfer characteristics of a JMPL instructionr{@ispecified
as the destination register and the register-window semantics of a RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap. These
instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE returns to the
instruction pointed to by the value of nPC associated with the instruction that caused the trap, that
is, the next logical instruction in the program. DONE presumes that the trap handler did whatever
was requested by the program and that execution should continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified bydadfield matches the current

state of the condition code register specified bydsield, otherwise it executes as a NOP. If the
trap is taken, it increments the TL register, computes a trap type which is stored in TT[TL], and
transfers to a computed address in the trap table pointed to by TBA. See 5.2.8, “Trap Base
Address (TBA).”

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken, 256 plus the
seven least significant bits of the sum of the Tcc’s source operands is written to TT[TL]. The only
visible difference between a software trap generated by a Tcc instruction and a hardware trap is
the trap number in the TT register. See Chapter 7, “Traps,” for more information.

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. Tcc can also be used
for run-time checks, such as out-of-range array index checks or integer overflow checks.

6.3.5 Conditional Move Instructions

6.3.5.1 MOVcc and FMQOVcc Instructions

The MOVcc and FMOVcc instructions copy the contents of any integer or floating-point register
to a destination integer or floating-point register if a condition is satisfied. The condition to test is
specified in the instruction and may be any of the conditions allowed in conditional delayed con-
trol-transfer instructions. This condition is tested against one of the six condition dodesc(,

fceQ, feel, feez, andfecd as specified by the instruction. For example:

fmovdg %fcc2, %f20, %f22

moves the contents of the double-precision floating-point redgist20 to registerof22 if float-
ing-point condition code number £c€2) indicates a greater-than relation (F&R2= 2). If fcc2
does not indicate a greater-than relation (f&R# 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in programs. In
most implementations, branches will be more expensive than the MOVcc or FMOVcc instruc-
tions. For example, the following C statement:

if(A>B)X = 1;elseX = 0;

can be coded as:

cmp %i0, %i2 1'(A>B)
or %090, 0, %i3 IsetX =0
movg %xcc, %g0,1, %i3 ! overwrite X with 1if A>B

which eliminates the need for a branch.

6.3.5.2 MOVr and FMQOVr Instructions

The MOVr and FMOVr instructions allow the contents of any integer or floating-point register to
be moved to a destination integer or floating-point register if a condition specified by the instruc-
tion is satisfied. The condition to test may be any of the following:

Condition Description

NZ Nonzero

y4 Zero

GEz Greater than or equal to zero|
Lz Less than zero

LEZ Less than or equal to zero
Gz Greater than zero

Any of the integer registers may be tested for one of the conditions, and the result used to control
the move. For example,

movrnz %i2, %l4, %I|6

moves integer registéxl4 to integer registefol6 if integer register%i2 contains a nonzero
value.

MOVr and FMOVr can be used to eliminate some branches in programs, or to emulate multiple
unsigned condition codes by using an integer register to hold the result of a comparison.

6.3.6 Register Window Management Instructions

This subsection describes the instructions used to manage register windows in SPARC-V9. The
privileged registers affected by these instructions are described in 5.2.10, “Register-Window State
Registers.”

6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register window by
incrementing the CWP register.

If CANSAVE = 0, execution of a SAVE instruction causesi@ow_spill exception.

If CANSAVE # 0, but the number of clean windows is zero, that is:
(CLEANWIN — CANRESTORE) =0

then SAVE causes@ean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CANSAVE, and
increments CANRESTORE. The source registers for the ADD are from the old window (the one
to which CWP pointed before the SAVE), while the result is written into a register in the new win-
dow (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP regis-
ter.

If CANRESTORE = 0, execution of a RESTORE instruction causesdaw _fill exception.

If RESTORE does not cause an exception, it performs an ADD operation, decrements CANRE-
STORE, and increments CANSAVE. The source registers for the ADD are from the “old” win-
dow (the one to which CWP pointed before the RESTORE), while the result is written into a
register in the “new” window (the one to which the decremented CWP points).

Programming Note:
The following describes a common convention for use of register windows, SAVE, RESTORE, CALL, and
JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure requires a register
window, it executes a SAVE instruction. A routine that does not allocate a register window of its own (possi-
bly a leaf procedure) should not modify any windowed registers exagpegisters 0 through 6. See H.1.2,
“Leaf-Procedure Optimization.”

A procedure that uses a register window returns by executing both a RESTORE and a JMPL instruction. A
procedure that has not allocated a register window returns by executing a JMPL only. The target address for
the JMPL instruction is normally eight plus the address saved by the calling instruction, that is, to the
instruction after the instruction in the delay slot of the calling instruction.

The SAVE and RESTORE instructions can be used to atomically establish a new memory stack pointer in an
r register and switch to a new or previous register window. See H.1.4, “Register Allocation within a Win-
dow.”

6.3.6.3 SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a window spill has
completed successfully. It increments CANSAVE:

CANSAVE (CANSAVE + 1)

If the saved window belongs to a different address space (OTHER¥\IN it decrements OTH-
ERWIN:

OTHERWIN ~ (OTHERWIN — 1)

Otherwise, the saved window belongs to the current address space (OTHERWIN = 0), so SAVED
decrements CANRESTORE:

CANRESTORE~ (CANRESTORE - 1)

6.3.6.4 RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a window has
been filled successfully. It increments CANRESTORE:

CANRESTORE~ (CANRESTORE+ 1)

If the restored window replaces a window that belongs to a different address space
(OTHERWIN # 0), it decrements OTHERWIN:

OTHERWIN ~ (OTHERWIN — 1)

Otherwise, the restored window belongs to the current address space (OTHERWIN =0), so
RESTORED decrements CANSAVE:

CANSAVE (CANSAVE — 1)

If CLEANWIN is less than NWINDOWS-1, the RESTORED instruction increments CLEAN-
WIN:

if (CLEANWIN < (NWINDOWS-1))then CLEANWIN « (CLEANWIN + 1)

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows except the current window, by per-
forming repetitive spill traps. The FLUSHW instruction is implemented by causing a spill trap if
any register window (other than the current window) has valid contents. The number of windows
with valid contents is computed as

NWINDOWS — 2 — CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise, FLUSHW has
no effect. If the spill trap handler exits with a RETRY instruction, the FLUSHW instruction will
continue causing spill traps until all the register windows except the current window have been
flushed.

6.3.7 State Register Access

The read/write state register instructions access program-visible state and status registers. These
instructions read/write the state registers into/froragisters. A read/write Ancillary State Regis-
ter instruction is privileged only if the accessed register is privileged.

6.3.8 Privileged Register Access

The read/write privileged register instructions access state and status registers that are visible only
to privileged software. These instructions read/write privileged registers intoffregisters. The
read/write privileged register instructions are privileged.

6.3.9 Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally triadic-register-address instructions.
They compute a result that is a function of one or two source operands and place the result in one
or more destinatiohregisters. The exceptions are:

— Floating-point convert operations, which use one source and one destination operand

— Floating-point compare operations, which do not write td aegister, but update one of
thefcenfields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPopl and FPop2 opcodes and does
not include branches based on the floating-point condition codes (FBfcc and FBPfcc) or the load/
store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc instructions do
for the integer registers. See 6.3.5.1, “MOVcc and FMOVcc Instructions.”

The FMOVr instructions function for the floating-point registers as the MOVr instructions do for
the integer registers. See 6.3.5.2, “MOVr and FMOVTr Instructions.”

If there is no floating-point unit present or if PSTATE.PEF = 0 or FPRS.FEF = 0, any instruction
that attempts to access an FPU register, including an FPop instruction, generatassablied
exception.

All FPop instructions clear thfit field and set theexcfield, unless they generate an exception.
Floating-point compare instructions also write one of fiten fields. All FPop instructions that

can generate IEEE exceptions set texcand aexcfields, unless they generate an exception.
FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and FNEG(s,d,q) cannot generate
IEEE exceptions, so they cleeexcand leaveaexcunchanged. FMOVcc and FMOVTr instructions
clear these FSR fields regardless of the value of the conditional predicate.

IMPL. DEP. #3: An implementation may indicate that a floating-point instruction did not produce a correct
IEEE STD 754-1985 result by generating a special unfinished FPop or unimplemented FPop exception.
Privileged-mode software must emulate any functionality not present in the hardware.

6.3.10 Implementation-Dependent Instructions

SPARC-V9 provides two instructions that are entirely implementation-dependent, IMPDEP1 and
IMPDEP2 (impl. dep. #106).

Compatibility Note:
The IMPDER instructions replace the CRojmstructions in SPARC-V8.

See A.23, “Implementation-Dependent Instructions,” for more information.

6.3.11 Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned shall cause a trap. Specifi-
cally, attempting to execute a reserved FPop causesfpagxception other trap (with

FSRftt = unimplemented_FPop); attempting to execute any other reserved opcode shall cause an
illegal_instruction trap. See Appendix E, “Opcode Maps,” for a complete enumeration of the
reserved opcodes.

6.4 Register Window Management

The state of the register windows is determined by the contents of the set of privileged registers
described in 5.2.10, “Register-Window State Registers.” Those registers are affected by the
instructions described in 6.3.6, “Register Window Management Instructions.” Privileged software
can read/write these state registers directly by using RDPR/WRPR instructions.

6.4.1 Register Window State Definition
In order for the state of the register windows to be consistent, the following must always be true:
CANSAVE + CANRESTORE+ OTHERWIN = NWINDOWS - 2

Figure 3 on page 34 shows how the register windows are partitioned to obtain the above equation.
In figure 3, the partitions are as follows:

— The current window and the window that overlaps two other valid windows and so must
not be used (in the figure, windows 0 and 4, respectively) are always present and account
for the 2 subtracted from NWINDOWS in the right-hand side of the equation.

— Windows that do not have valid contents and can be used (via a SAVE instruction) without
causing a spill trap. These windows (windows 1, 2 and 3 in the figure) are counted in
CANSAVE.

— Windows that have valid contents for the current address space and can be used (via the
RESTORE instruction) without causing a fill trap. These windows (window 7 in the fig-
ure) are counted in CANRESTORE.

— Windows that have valid contents for an address space other than the current address
space. An attempt to use these windows via a SAVE (RESTORE) instruction results in a

spill (fill) trap to a separate set of trap vectors, as discussed in the following subsection.
These windows (windows 5 and 6 in the figure) are counted in OTHERWIN.

In addition,
CLEANWIN = CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows following
CWP.

In order to use the window-management features of the architecture as described here, the state of
the register windows must be kept consistent at all times, except in trap handlers for window spill-
ing, filling, and cleaning. While handling window traps the state may be inconsistent. Window
spill/fill strap handlers should be written such that a nested trap can be taken without destroying
state.

6.4.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register windows, to
support clean windows, and to implement the FLUSHW instruction.

6.4.2.1 Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next register window is
occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged software to save
the occupied register window in memory, thereby making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the previous register
window is not valid (CANRESTORE = 0). An underflow causes a fill trap that allows privileged
software to load the registers from memory.

6.4.2.2 Clean-Window Trap

SPARC-V9 provides thelean_window trap so that software can create a secure environment in
which it is guaranteed that register windows contain only data from the same address space.

A clean register window is one in which all of the registers, including uninitialized registers, con-
tain either zero or data assigned by software executing in the address space to which the window
belongs. A clean window cannot contain register values from another process, that is, software
operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to the current
address space in the CLEANWIN register. This includes register windows that can be restored
(the value in the CANRESTORE register) and the register windows following CWP that can be
used without cleaning. Therefore, the number of clean windows that are available to be used by
the SAVE instruction is

CLEANWIN — CANRESTORE

The SAVE instruction causesc&an_window trap if this value is zero. This allows supervisor soft-
ware to clean a register window before it is accessed by a user.

6.4.2.3 Vectoring of Fill/Spill Traps

In order to make handling of fill and spill traps efficient, SPARC-V9 provides multiple trap vec-
tors for the fill and spill traps. These trap vectors are determined as follows:

— Supervisor software can mark a set of contiguous register windows as belonging to an
address space different from the current one. The count of these register windows is kept
in the OTHERWIN register. A separate set of trap vectarisi_other andspill_n_other) is
provided for spill and fill traps for these register windows (as opposed to register windows
that belong to the current address space).

— Supervisor software can specify the trap vectors for fill and spill traps by presetting the
fields in the WSTATE register. This register contains two subfields, each three bits wide.
The WSTATE.NORMAL field is used to determine one of eight spill (fill) vectors to be
used when the register window to be spilled (filled) belongs to the current address space
(OTHERWIN = 0). If the OTHERWIN register is nonzero, the WSTATE.OTHER field
selects one of eighit/_n_other (spill_n_other) trap vectors.

See Chapter 7, “Traps,” for more details on how the trap address is determined.

6.4.2.4 CWP on Window Traps

On a window trap the CWP is set to point to the window that must be accessed by the trap handler,
as follows (note that all arithmetic on CWP is done modulo NWINDOWS):

— Ifthe spill trap occurs due to a SAVE instruction (when CANSAVE = 0), there is an over-
lap window between the CWP and the next register window to be spilled

CWP « (CWP+ 2) mod NWINDOWS

If the spill trap occurs due to a FLUSHW instruction, there can be unused windows (CAN-
SAVE) in addition to the overlap window, between the CWP and the window to be spilled

CWP ~ (CWP+ CANSAVE + 2) mod NWINDOWS

Implementation Note:
All spill traps can use:

CWP — (CWP+ CANSAVE + 2) mod NWINDOWS
since CANSAVE is zero whenever a trap occurs due to a SAVE instruction.
— On afill trap, the window preceding CWP must be filled
CWP ~ (CWP — 1)mod NWINDOWS
— On a clean_window trap, the window following CWP must be cleaned. Then
CWP ~ (CWP+ 1) mod NWINDOWS

6.4.2.5 Window Trap Handlers

The trap handlers for fill, spill andlean_window traps must handle the trap appropriately and
return using the RETRY instruction, to reexecute the trapped instruction. The state of the register
windows must be updated by the trap handler, and the relationship among CLEANWIN, CAN-
SAVE, CANRESTORE, and OTHERWIN must remain consistent. The following recommenda-
tions should be followed:

— A spill trap handler should execute the SAVED instruction for each window that it spills.
— Afill trap handler should execute the RESTORED instruction for each window that it fills.

— A clean_window trap handler should increment CLEANWIN for each window that it
cleans:

CLEANWIN ~ (CLEANWIN + 1)

Window trap handlers in SPARC-V9 can be very efficient. See H.2.2, “Example Code for Spill
Handler,” for details and sample code.

7 Traps

7.1 Overview

A trap is a vectored transfer of control to supervisor software through a trap table that contains the
first eight (thirty-two for fill/spill traps) instructions of each trap handler. The base address of the
table is established by supervisor software, by writing the Trap Base Address (TBA) register. The
displacement within the table is determined by the trap type and the current trap level (TL). One-
half of the table is reserved for hardware traps; one-quarter is reserved for software traps gener-
ated by Tcc instructions; the remaining quarter is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to

(1) Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and the trap
type) on a hardware register stack

(2) Enter privileged execution mode with a predefined PSTATE
(3) Begin executing trap handler code in the trap vector
When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an SIR instruction, an instruction-induced exception, a
reset, an asynchronous exception, or an interrupt request not directly related to a particular
instruction. The processor must appear to behave as though, before executing each instruction, it
determines if there are any pending exceptions or interrupt requests. If there are pending excep-
tions or interrupt requests, the processor selects the highest-priority exception or interrupt request
and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to continue executing
the current instruction stream without software intervention. A trap is the action taken by the pro-

cessor when it changes the instruction flow in response to the presence of an exception, interrupt,
or Tcc instruction.

A catastrophic error exception is due to the detection of a hardware malfunction from which, due
to the nature of the error, the state of the machine at the time of the exception cannot be restored.
Since the machine state cannot be restored, execution after such an exception may not be resum-
able. An example of such an error is an uncorrectable bus parity error.

IMPL. DEP. #31: The causes and effects of catastrophic errors are implementation-dependent. They may
cause precise, deferred, or disrupting traps.

7.2 Processor States, Normal and Special Traps
The processor is always in one of three discrete states:
— execute_state, which is the normal execution state of the processor

— RED_state (Reset, Error, and Debug state), which is a restricted execution state reserved
for processing traps that occur when TL = MAXTL — 1, and for processing hardware- and
software-initiated resets

— error_state, which is a halted state that is entered as a result of a trap when TL = MAXTL,
or due to an unrecoverable error

Traps processed in execute_state are call@anal traps. Traps processed in RED_state are
calledspecial traps Exceptions that cause the processor to enter error_state are recorded by the
hardware and are made available in the TT field after the processor is reset.

Figure 37 shows the processor state diagram.

Trap @
TL = MAXTL

Trap or SIR @
TL = MAXTL

Trap @
TL = MAXTL-1,

Trap or SIR @
TL< MAXTL,

RED =1

execute_state RED_state error_state

Trap or SIR @
TL < MAXTL

WDR,
Trap @ XIR
TL < MAXTL-1
Any State

Including Power Off

Figure 37—Processor State Diagram

7.2.1 RED_state

RED_state is an acronym fdReset,Error, andDebug state. The processor enters RED_state
under any one of the following conditions:

— Atrap is taken when TL = MAXTL-1.
— Any of the four reset requests occurs (POR, WDR, XIR, SIR).

— An implementation-dependent trapternal_processor_error exception, Olcatastrophic_error
exception OCCuUrs.

— System software sets PSTATE.RED = 1.
RED _state serves two mutually exclusive purposes:

— During trap processing, it indicates that there are no more available trap levels; that is, if
another nested trap is taken, the processor will enter error_state and halt. RED _state pro-
vides system software with a restricted execution environment.

— It provides the execution environment for all reset processing.

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in RED_state;
when this bit is clear, the processor is not in RED_state, independent of the value of TL. Execut-
ing a DONE or RETRY instruction in RED_state restores the stacked copy of the PSTATE regis-
ter, which clears the PSTATE.RED flag if the stacked copy had it cleared. System software can
also set or clear the PSTATE.RED flag with a WRPR instruction, which also forces the processor
to enter or exit RED_state, respectively. In this case, the WRPR instruction should be placed in
the delay slot of a jump, so that the PC can be changed in concert with the state change.

Programming Note:
Setting TL = MAXTL with a WRPR instructiordoes notalso set PSTATE.RED = 1; nor does it alter any
other machine state. The values of PSTATE.RED and TL are independent.

7.2.1.1 RED_state Trap Table

Traps occurring in RED _state or traps that cause the processor to enter RED _state use an abbrevi-
ated trap vector. The RED_state trap vector is constructed so that it can overlay the normal trap
vector if necessary. Figure 38 illustrates the RED _state trap vector.

Offset TT Reason

006 0 ReservedSPARC-V8 reset)

2046 1 Power-on reset (POR)

40,4 2 | watchdog reset (WDR)

60,6 3* | Externally initiated reset (XIR)
806 4 Software-initiated reset (SIR)
AO04g * All other exceptions in RED_state

TT=2ifa watchdog reset occurs while the processor is not in error_state; TT = trap type of the exception
that caused entry into error_state if a watchdog reset (WDR) occurs in error_state.

TT=3ifan externally initiated reset (XIR) occurs while the processor is not in error_state; TT = trap type
of the exception that caused entry into error_state if the externally initiated reset occurs in error_state.

"TT = trap type of the exception. See table 14 on page 124.
Figure 38—RED_state Trap Vector Layout

IMPL. DEP. #114: The RED_state trap vector is located at an implementation-dependent address referred
to as RSTVaddr.

Implementation Note:
The RED_state trap handlers should be located in trusted memory, for example, in ROM. The value of RST-
Vaddr may be hard-wired in an implementation, but it is suggested that it be externally settable, for instance
by scan, or read from pins at power-on reset.

7.2.1.2 RED_state Execution Environment

In RED_state the processor is forced to execute in a restricted environment by overriding the val-
ues of some processor controls and state registers.

Programming Note:
The values are overridden, not set. This is to allow them to be switched atomically.

IMPL. DEP. #115: A processor’'s behavior in RED_state is implementation-dependent.
The following are recommended:

(1) Instruction address translation is a straight-through physical map; that is, the MMU is
always suppressed for instruction access in RED_state.

(2) Data address translation is handled normally; that is, the MMU is used if it is enabled.
However, any event that causes the processor to enter RED_state also disables the MMU.
The handler executing in RED_state can reenable the MMU.

(3) All references are uncached.

(4) Cache coherence in RED_state is the problem of the system designer and system program-
mer. Normally, cache enables are left unchanged by RED _state; thus, if a cache is enabled,
it will continue to participate in cache coherence until explicitly disabled by recovery
code. A cache may be disabled automatically if an error is detected in the cache.

(5) Unessential functional units (for example, the floating-point unit) and capabilities (for
example, superscalar execution) should be disabled.

(6) If a store buffer is present, it should be emptied, if possible, before entering RED _state.
(7) PSTATE.MM is set to TSO.

Programming Note:
When RED_state is entered due to component failures, the handler should attempt to recover from poten-
tially catastrophic error conditions or to disable the failing components. When RED _state is entered after a
reset, the software should create the environment necessary to restore the system to a running state.

7.2.1.3 RED_state Entry Traps

The following traps are processed in RED_state in all cases
— POR (Power-on reset)
— WDR (Watchdog reset)
— XIR (Externally initiated reset)

In addition, the following trap is processed in RED_state if TL < MAXTL when the trap is taken.
Otherwise it is processed in error_state.

— SIR (Software-initiated Reset)

An implementation also may elect to set PSTATE.RED = 1 aftein@mal_processor_error trap
(impl. dep. #31), or any of the implementation-dependent traps (impl. dep. #35).

Implementation-dependent traps may force additional state changes, such as disabling failing
components.

Traps that occur when TL = MAXTL — 1 also set PSTATE.RED = 1; that is, any trap handler
entered with TL = MAXTL runs in RED_state.

Any nonreset trap that sets PSTATE.RED = 1 or that occurs when PSTATE.RED = 1, branches to
a special entry in the RED _state trap vector at RSTVaddr,;g AO

In systems in which it is desired that traps not enter RED_state, the RED _state handler may trans-
fer to the normal trap vector by executing the following code:

I Assumptions:

! -- In RED_state handler, therefore we know that

! PSTATE.RED = 1, so a WRPR can directly toggle itto 0
! and, we don't have to worry about intervening traps.

! -- Registers %g1 and %g2 are available as scratch registers.

#define PSTATE_RED 0x0020 ! PSTATE.RED is bit 5

rdpr %tt,%g1 ! Get the normal trap vector

rdpr %tba,%g2 ' address in %g2.

add %01,%92,%92

rdpr %pstate,%g1l I Read PSTATE into %g1.
jmpl %g2 I Jump to normal trap vector,
wrpr %g1,PSTATE_RED,%pstate I toggling PSTATE.RED to 0.

7.2.1.4 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing. Soft-
ware should be designed to require only MAXTL — 1 trap levels for normal processing. That is,
any trap that causes TL = MAXTL is an exceptional condition that should cause entry to
RED_state.

Since the minimum value for MAXTL is 4, typical usage of the trap levels is as follows:

TL Usage
0 Normal execution
1 System calls; interrupt handlers; instruction emulagon
2 Window spill / fill
3 Page-fault handler
4 RED_state handler

Programming Note:
In order to log the state of the processor, RED_state-handler software needs either a spare register or a pre-
loaded pointer to a save area. To support recovery, the operating system might reserve one of the alternate
global registers, (for exampl&a?) for use in RED_state.

7.2.2 Error_state

The processor enters error_state when a trap occurs while the processor is already at its maximum
supported trap level, that is, when TL = MAXTL.

IMPL. DEP. #39: The processor may enter error_state when an implementation-dependent error condition
occurs.

IMPL. DEP. #40: Effects when error_state is entered are implementation-dependent, but it is recom-
mended that as much processor state as possible be preserved upon entry to error_state.

In particular:
(1) The processor should present an external indication that it has entered error_state.
(2) The processor should halt, that is, make no further changes to system state.

(3) The processor should be restarted by a watchdog reset (WDR). Alternatively, it may be
restarted by an externally initiated reset (XIR) or a power-on reset (POR).

After a reset that brings the processor out of error_state, the processor enters RED_state with TL
set as defined in table 18 on page 130; the trap state describes the state at the time of entry into
error_state. In particular, for WDR and XIR, TT is set to the value of the original trap that caused
entry to error_state, not the normal TT value for the WDR or XIR.

7.3 Trap Categories

An exception or interrupt request can cause any of the following trap types:
— A precise trap
— A deferred trap
— A disrupting trap

— Avreset trap

7.3.1 Precise Traps

A precise trapis induced by a particular instruction and occurs before any program-visible state
has been changed by the trap-inducing instruction. When a precise trap occurs, several conditions
must be true.

— The PC saved in TPC[TL] points to the instruction that induced the trap, and the nPC
saved in NTPC[TL] points to the instruction that was to be executed next.

— All instructions issued before the one that induced the trap have completed execution.

— Any instructions issued after the one that induced the trap remain unexecuted.

Programming Note:
Among the actions the trap handler software might take after a precise trap are:

— Return to the instruction that caused the trap and reexecute it, by executing a RETRY instruction (PC
« old PC, nPC«~ old nPC)

— Emulate the instruction that caused the trap and return to the succeeding instruction by executing a
DONE instruction (PC— old nPC, nPC~ old nPC + 4)

— Terminate the program or process associated with the trap

7.3.2 Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a deferred
trap may occur after program-visible state has been changed. Such state may have been changed
by the execution of either the trap-inducing instruction itself or by one or more other instructions.

If an instruction induces a deferred trap and a precise trap occurs simultaneously, the deferred trap
may not be deferred past the precise trap, except that a floating-point exception may be deferred
past a precise trap.

Associated with a particular deferred-trap implementation, there must exist:

— An instruction that causes a potentially outstanding deferred-trap exception to be taken as
a trap.

— Privileged instructions that access the deferred-trap queues. This queue contains the state
information needed by supervisor software to emulate the deferred-trap-inducing instruc-
tion, and to resume execution of the trapped instruction stream. See 5.2.13, “IU Deferred-
Trap Queue.”)

Note that resuming execution may require the emulation of instructions that had not completed
execution at the time of the deferred trap, that is, those instructions in the deferred-trap queue.

IMPL. DEP. #32: Whether any deferred traps (and associated deferred-trap queues) are present is imple-
mentation-dependent.

Note that to avoid deferred traps entirely, an implementation would need to execute all imple-
mented floating-point instructions synchronously with the execution of integer instructions, caus-
ing all generated exceptions to be precise. A deferred-trap queue (e.g., FQ) would be superfluous
in such an implementation.

Programming Note:
Among the actions software can take after a deferred trap are:

— Emulate the instruction that caused the exception, emulate or cause to execute any other execution-
deferred instructions that were in an associated deferred-trap state queue, and use RETRY to return con-
trol to the instruction at which the deferred trap was invoked, or

— Terminate the program or process associated with the trap.

7.3.3 Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused by a
condition (e.g., an interrupt), rather than directly by a particular instruction; this distinguishes it
from precise and deferred traps. When a disrupting trap has been serviced, program execution
resumes where it left off. This differentiates disrupting traps from reset traps, which resume exe-
cution at the unique reset address.

Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL) register
and the Interrupt Enable (IE) field of PSTATE. A disrupting trap condition is ignored when inter-

rupts are disabled (PSTATE.IE = 0) or when the condition’s interrupt level is lower than that spec-
ified in PIL.

A disrupting trap may be due to either an interrupt request not directly related to a previously exe-
cuted instruction, or to an exception related to a previously executed instruction. Interrupt
requests may be either internal or external. An interrupt request can be induced by the assertion of
a signal not directly related to any particular processor or memory state. Examples of this are the
assertion of an “I/O done” signal or setting external interrupt request lines.

A disrupting trap related to an earlier instruction causing an exception is similar to a deferred trap
in that it occurs after instructions following the trap-inducing instruction have modified the pro-
cessor or memory state. The difference is that the condition which caused the instruction to induce
the trap may lead to unrecoverable errors, since the implementation may not preserve the neces-
sary state. An example of this is an ECC data-access error reported after the corresponding load
instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.

Programming Note:
Among the actions that trap-handler software might take after a disrupting trap are:

— Use RETRY to return to the instruction at which the trap was invoked
(PC < old PC, nPC- old nPC), or

— Terminate the program or process associated with the trap.

7.3.4 Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware determines that
the machine must be reset to a known state. Reset traps differ from disrupting traps, since they do
not resume execution of the program that was running when the reset trap occurred.

IMPL. DEP. #37. Some of a processor’s behavior during a reset trap is implementation-dependent. See
7.6.2, “Special Trap Processing,” for details.

The following reset traps are defined for SPARC-V9:

Software-initiated reset (SIR)
Initiated by software by executing the SIR instruction.

Power-on reset (POR)
Initiated when power is applied (or reapplied) to the processor.

Watchdog reset (WDR)
Initiated in response to error_state or expiration of a watchdog timer.

Externally initiated reset (XIR):
Initiated in response to an external signal. This reset trap is normally used for critical sys-
tem events, such as power failure.

7.3.5 Uses of the Trap Categories
The SPARC-V@rap model stipulates that:

(1) Reset traps, excepbfiware_initiated_reset traps, occur asynchronously to program execu-
tion.

(2) When recovery from an exception can affect the interpretation of subsequent instructions,
such exceptions shall be precise. These exceptions are:

— software_initiated_reset

— Instruction_access_exception

— privileged_action

— privileged_opcode

— trap_instruction

— instruction_access_error

— clean_window

— fp_disabled

— LDDF_mem_address_not_aligned
— STDF_mem_address_not_aligned
— tag_overflow

— unimplemented_LDD

— unimplemented_STD

— spill_n_normal

— spill_n_other

— fill_n_normal

— fill_n_other

(3) IMPL. DEP. #33: Exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise. Examples:
mem_address _not_aligned, division_by zero.

(4) An exception caused after the initial access of a multiple-access load or store instruction
(load-store doubleword, LDSTUB, CASA, CASXA, or SWAP) that causes a catastrophic
exception may be precise, deferred, or disrupting. Thus, a trap due to the second memory
access can occur after the processor or memory state has been modified by the first access.

(5) Implementation-dependent catastrophic exceptions may cause precise, deferred, or dis-
rupting traps (impl. dep. #31).

(6) Exceptions caused by external events unrelated to the instruction stream, such as inter-
rupts, are disrupting.

For the purposes of this subsection, we must distinguish between the dispatch of an instruction
and its execution by some functional unit. An instruction is deemed to have dispatched

when the software-visible PC advances beyond that instruction in the instruction stream. An
instruction is deemed to have beexecutedwhen the results of that instruction are available to
subsequent instructions.

For most instructions, dispatch and execution appear to occur simultaneously; when the PC has
advanced beyond the instruction, its results are immediately available to subsequent instructions.
For floating-point instructions, however, the PC may advance beyond the instruction as soon as
the IU places the instruction into a floating-point queue; the instruction itself may not have com-
pleted (or even begun) execution, and results may not be available to subsequent instructions for
some time. In particular, the fact that a floating-point instruction will generate an exception may
not be noticed by the hardware until additional floating-point instructions have been placed into
the queue by the IU. This creates the condition for a deferred trap.

A deferred trap may occur one or more instructions after the trap-inducing instruction is dis-
patched. However, a deferred trap must occur before the execution (but not necessarily the dis-
patch) of any instruction that depends on the trap-inducing instruction. That is, a deferred trap
may not be deferred past the execution of an instruction that specifies source registers, destination
registers, condition codes, or any software-visible machine state that could be modified by the
trap-inducing instruction.

In the case of floating-point instructions, if a floating-point exception is currently deferred, an
attempt to dispatch a floating-point instruction (FPop, FBfcc, FBPfcc, or floating-point load/store)
invokes or causes the outstandingexception_ieee_754 trap.

Implementation Note:
To provide the capability to terminate a user process on the occurrence of a catastrophic exception that can
cause a deferred or disrupting trap, an implementation should provide one or more instructions that provoke
an outstanding exception to be taken as a trap. For example, an outstanding floating-point exception might
cause arfp_exception_ieee_754 trap when any of an FPop, load or store floating-point register (including
the FSR), FBfcc, or FBPfcc instruction is executed.

7.4 Trap Control
Several registers control how any given trap is processed:

— The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL) register
control interrupt processing.

— The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable (PEF)
field in PSTATE, and the trap enable mask (TEM) in the FSR control floating-point traps.

— The TL register, which contains the current level of trap nesting, controls whether a trap
causes entry to execute_state, RED_state, or error_state.

— PSTATE.TLE determines whether implicit data accesses in the trap routine will be per-
formed using the big- or little-endian byte order.

7.4.1 PIL Control

Between the execution of instructions, the U prioritizes the outstanding exceptions and interrupt
requests according to table 15. At any given time, only the highest priority exception or interrupt
request is taken as a tré;when there are multiple outstanding exceptions or interrupt requests,

1. The highest priority exception or interrupt is the one with the lowest priority value in table 15. For example, a
priority 2 exception is processed before a priority 3 exception.

SPARC-V9 assumes that lower-priority interrupt requests will persist and lower-priority excep-
tions will recur if an exception-causing instruction is reexecuted.

For interrupt requests, the IU compares the interrupt request level against the processor interrupt
level (PIL) register. If the interrupt request level is greater than PIL, the processor takes the inter-
rupt request trap, assuming there are no higher-priority exceptions outstanding

IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the method by which an
interrupt request is removed are implementation-dependent.

7.4.2 TEM Control

The occurrence of floating-point traps of tyjs=E 754 exception can be controlled with the user-
accessible trap enable mask (TEM) field of the FSR. If a particular bit of TEM is 1, the associated
IEEE_754_exception Can cause afp_exception_ieee 754 trap.

If a particular bit of TEM is 0, the associatetEEE 754 exception does not cause an
fo_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FSR’s
accrued exception field€xg.

If an IEEE_754 exception results in anfo_exception_ieee_754 trap, then the destinatioinregister,
fccn, andaexcfields remain unchanged. However, if 8EE 754 exception does not result in a
trap, then thé registerfccn, andaexcfields are updated to their new values.

7.5 Trap-Table Entry Addresses

Privileged software initializes the trap base address (TBA) register to the upper 49 bits of the trap-
table base address. Bit 14 of the vector address (the “TL>0" field) is set based on the value of TL
at the time the trap is taken; thatis, to O if TL=0and to 1 if TL > 0. Bits 13..5 of the trap vector
address are the contents of the TT register. The lowest five bits of the trap address, bits 4..0, are
always 0 (hence each trap-table entry is at |€ast 22 bytes long). Figure 39 illustrates this.

TBA<63:15> TL>0| TTq. |00000

63 15 14 13 5 4 0

Figure 39—Trap Vector Address

7.5.1 Trap Table Organization

The trap table layout is as illustrated in figure 40.

Trap Table Contents Trap Type
Value of TL

Before the Trap Hardware traps 00044..07F¢
B Spillfill traps 0804¢..0FF 4
=0 Software traps 10046..17F 16
Reserved 180,¢..1FF 46
Hardware traps 20044..27F¢
TL>0 Spillffill traps 2804g..2FF 4
Software traps 30046..37F15
Reserved 38046..3FF 15

Figure 40—Trap Table Layout

The trap table for TL = 0 comprises 512 32-byte entries; the trap table for TL > 0 comprises 512
more 32-byte entries. Therefore, the total size of a full trap table isx&@2x 2, or 32K bytes.
However, if privileged software does not use software traps (Tcc instructions) at TL > 0, the table
can be made 24K bytes long.

7.5.2 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into the current 9-bit
TT register (TT[TL]) by hardware. Control is then transferred into the trap table to an address
formed by the TBA register (“TL>0") and TT[TL] (see 5.2.8, “Trap Base Address (TBA)").
Since the lowest five bits of the address are always zero, each entry in the trap table may contain
the first eight instructions of the corresponding trap handler.

Programming Note:
The spillffill and clean_window trap types are spaced such that their trap table entries are 128 bytes (32
instructions) long. This allows the complete code for one spill/filtlean_window routine to reside in one
trap table entry.

When a special trap occurs, the TT register is set as described in 7.2.1, “RED_state.” Control is
then transferred into the RED _state trap table to an address formed by the RSTVaddr and an offset
depending on the condition.

TT values 000;..0FF¢ are reserved for hardware traps. TT values;31007F are reserved for
software traps (traps caused by execution of a Tcc instruction). TT valueg.. 1#¥ are
reserved for future uses. The assignment of TT values to traps is shown in table 14; table 15 lists
the traps in priority order. Traps marked with an open buliétdre optional and possibly imple-
mentation-dependent. Traps marked with a closed bulleafe mandatory; that is, hardware
must detect and trap these exceptions and interrupts and must set the defined TT values.

The trap type for theclean_window exception is 024. Three subsequent trap vectors
(0255..027,¢) are reserved to allow for an inline (branchless) trap handler. Window spill/fill traps
are described in 7.5.2.1. Three subsequent trap vectors are reserved for each spill/fill vector, to
allow for an inline (branchless) trap handler.

Table 14—Exception and Interrupt Requests, Sorted by TT Value

M/O Exception or interrupt request TT Priority
° Reserved 0004 n/a
° power_on_reset 0014 0
O | watchdog_reset 0024 1
O | externally_initiated_reset 0034 1
° software_initiated_reset 0044 1
° RED_state_exception 0054 1
° Reserved 006;6..0074 n/a
° instruction_access_exception 0084 5
0 instruction_access_MMU_miss 0094 2
a instruction_access_error 00A6 3
° Reserved 00B;¢..00FR¢4 n/a
° illegal_instruction 0104 7
° privileged _opcode 014 6
O unimplemented _LDD 012 6
O | unimplemented_STD 0134 6
° Reserved 014,6..01R¢ n/a
° fo_disabled 0204 8
0 fo_exception_ieee_754 0214 11
O | fo_exception_other 0224 11
° tag_overflow 0234 14
O | clean_window 024,6..027¢ 10
° division_by_zero 0284 15
a internal_processor_error 0294 4
° Reserved 02A5..02F4 n/a
° data_access_exception 0304 12
O data_access MMU_miss 036 12
g data_access_error 0324 12
O | data_access_protection 033 12
° mem_address_not_aligned 0345 10
O LDDF_mem_address_not_aligned (impl. dep. #109) 033 10
O STDF_mem_address_not_aligned (impl. dep. #110) 036 10
° privileged_action 0376 11
O LDQF_mem_address_not_aligned (impl. dep. #111) 038 10
O STQF_mem_address_not_aligned (impl. dep. #112) 032 10
° Reserved 03Aq5.-03F¢ n/a
a async_data_error 0404 2
° interrupt_level n (n=1..15) 041¢..04F4 32—n
° Reserved 050;6..05FR ¢ n/a
O implementation_dependent_exception_n (impl. dep. #35) 06Q..07F¢ impl.-dep.
° spill_n_normal (n=10..7) 08Qe..09F ¢ 9
° spill_n_other (n=0..7) 0AQ¢..0BFg 9
° fill_n_normal (n=0..7) 0CQg..0DFg 9
° fill_n_other (N =10..7) OEQg..0FF 9
° trap_instruction 1006..17F4 16

Table 14—Exception and Interrupt Requests, Sorted by TT Value

M/O

Exception or interrupt request

TT

Priority

Reserved

180y5..1FFpq

n/a

Table 15—Exception and Interrupt Requests, Sorted by Priority (O = Highest; 31 = Lowest)

M/O Exception or Interrupt Request TT Priority
° power_on_reset 00L4 0
ad watchdog_reset 002 1
O externally_initiated_reset 0036 1
° software_initiated_reset 0044 1
° RED_state_exception 0054 1
a instruction_access_MMU_miss 0094 2
O async_data_error 0404 2
ad instruction_access_error 00A 3
O internal_processor_error 0294 4
° instruction_access_exception 0084 5
° privileged opcode 014 6
O unimplemented_LDD 0124 6
a unimplemented_STD 0134 6
° illegal_instruction 0106 7
° fo_disabled 0205 8
° spill_n_normal (n=0..7) 08Qg..09F¢ 9
° spill_n_other (n=0..7) 0AQg..0BFg 9
° fill_n_normal (n=0..7) 0CQg..0DFg 9
° fill_n_other (N=10..7) OEQg..0FFg 9
O clean_window 024,6..027¢ 10
° mem_address_not_aligned 0346 10
O LDDF _mem_address_not_aligned (impl. dep. #109) 033 10
O STDF_mem_address _not_aligned (impl. dep. #110) 036 10
O LDQF_mem_address_not_aligned (impl. dep. #111) 038 10
O STQF_mem_address_not_aligned (impl. dep. #112) 032 10
ad fo_exception_ieee_754 0214 11
O fo_exception_other 022 11
° privileged_action 0376 11
° data_access_exception 0304 12
ad data_access MMU_miss 03¢ 12
O data_access_error 0326 12
O data_access_protection 0335 12
° tag_overflow 0234 14
° division_by zero 0284 15
° trap_instruction 1006..17R¢ 16
° interrupt_level_n (n=1..15) 04%6..04F¢ 32—n
O implementation_dependent_exception_n (impl. dep. #35) 06Q..07F¢ impl.-dep.

Compatibility Note:
Support for some trap types is optional because they are associated with specific instruction(s), which, in a
given implementation, might be implemented purely in software. In such a case, hardware would never gen-
erate that type of trap; therefore, support for it would be superfluous. Examples of trap types to which this
applies ardp_exception_ieee_754 andfp_exception_other.

Since the assignment of exceptions and interrupt requests to particular trap vector addresses and
the priority levels are not visible to a user program, an implementation is allowed to define addi-
tional hardware traps.

IMPL. DEP. #35: TT values 060,45 TO 07F44 are reserved for implementation-dependent exceptions. The
existence of implementation_dependent_n traps and whether any that do exist are precise, deferred, or
disrupting is implementation-dependent. See Appendix C, “SPARC-V9 Implementation Dependen-
cies.”

Trap Type values markedReservedin table 14 are reserved for future versions of the architec-
ture.

7.5.2.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined based on the contents of the OTHERWIN
and WSTATE registers as follows:

Trap Type SPILL_OR_FILL [OTHER WTYPE 0 0

8 6 5 4 2 1 0

The fields have the following values:

SPILL_OR_FILL :
010, for spill traps; 011 for fill traps

OTHER:
(OTHERWINZ0)

WTYPE:
If (OTHER) then WSTATE.OTHER else WSTATE.NORMAL

7.5.3 Trap Priorities

Table 14 shows the assignment of traps to TT values and the relative priority of traps and interrupt
requests. Priority O is highest, priority 31 is lowest; that i ¥ Y, a pending exception or inter-

rupt request with priority is taken instead of a pending exception or interrupt request with prior-
ity Y.

IMPL. DEP. #36: The priorities of particular traps are relative and are implementation-dependent, because
a future version of the architecture may define new traps, and an implementation may define implementa-
tion-dependent traps that establish new relative priorities.

However, the TT values for the exceptions and interrupt requests shown in table 14 must remain
the same for every implementation.

7.6 Trap Processing

The processor’s action during trap processing depends on the trap type, the current level of trap
nesting (given in the TL register), and the processor state. All traps use normal trap processing,
except those due to reset requests, catastrophic errors, traps taken when TL = MAXTL — 1, and
traps taken when the processor is in RED_state. These traps use special RED_state trap process-

ing.

During normal operation, the processor is in execute_state. It processes traps in execute_state and
continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there are no
more levels on the trap stack, so the processor enters error_state and halts. In order to avoid this
catastrophic failure, SPARC-V9 provides the RED_state processor state. Traps processed in
RED_state use a special trap vector and a special trap-vectoring algorithm. RED _state vectoring
and the setting of the TT value for RED_state traps are described in 7.2.1, “RED_state.”

Traps that occur with TL = MAXTL — 1 are processed in RED_state. In addition, reset traps are
also processed in RED_state. Reset trap processing is described in 7.6.2, “Special Trap Process-
ing.” Finally, supervisor software can force the processor into RED_ state by setting the
PSTATE.RED flag to one.

Once the processor has entered RED_state, no matter how it got there, all subsequent traps are
processed in RED_state until software returns the processor to execute_state or a normal or SIR
trap is taken when TL = MAXTL, which puts the processor in error_state. Tables 16, 17, and 18
describe the processor mode and trap level transitions involved in handling traps:

Table 16—Trap Received While in execute_state

New State, after receiving trap type
Original state Ic\)lroirr?::rlrtl;gf POR \1\r/r?p$t>)(e”; SIR
execute_state execute_state RED_state RED_state RED_state
TL<MAXTL-1 TL+1 MAXTL TL+1 TL+1
execute_state RED_state RED_state RED_state RED_state
TL =MAXTL-1 MAXTL MAXTL MAXTL MAXTL
execute_stafe error_state RED_state RED_state error_state
TL = MAXTL MAXTL MAXTL MAXTL MAXTL

™This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it clears
PSTATE.RED while at MAXTL.

Table 17—Trap Received While in RED_state

New State, after receiving trap type
Normal trap WDR, XIR,
Original state or interrupt POR Impl. Dep. SIR
RED_state RED_state RED_state RED_state RED_state
TL<MAXTL-1 TL+1 MAXTL TL+1 TL+1
RED_state RED_state RED_state RED_state RED_state
TL =MAXTL-1 MAXTL MAXTL MAXTL MAXTL
RED_state error_state RED_state RED_state error_state
TL = MAXTL MAXTL MAXTL MAXTL MAXTL

Table 18—Reset Received While in error_state

New State, after receiving trap type

Normal trap WDR, XIR,

Original state or interrupt POR Impl. Dep. SIR
error_state RED_state RED_state

TL < MAXTL -1 B MAXTL TL+1 B
error_state RED_state RED_state

TL = MAXTL-1 - MAXTL MAXTL B
error_state RED_state RED_state

TL = MAXTL - MAXTL MAXTL o

Implementation Note:
The processor shall not recognize interrupts while it is in error_state.

7.6.1 Normal Trap Processing
A normal trap causes the following state changes to occur:

— If the processor is already in RED_state, the new trap is processed in RED_state unless
TL = MAXTL. See 7.6.2.6, “Normal Traps When the Processor is in RED_state.”

— If the processor is in execute_state and the trap level is one less than its maximum value,
that is, TL = MAXTL-1, the processor enters RED_state. See 7.2.1, “RED_state,” and
7.6.2.1, “Normal Traps with TL = MAXTL -1."

— If the processor is in either execute_state or RED_state, and the trap level is already at its
maximum value, that is, TL = MAXTL, the processor enters error_state. See 7.2.2,
“Error_state.”

Otherwise, the trap uses normal trap processing, and the following state changes occur:

— The trap level is set. This provides access to a fresh set of privileged trap-state registers
used to save the current state, in effect, pushing a frame on the trap stack.
TL « TL+1

— Existing state is preserved

TSTATE[TL].CCR
TSTATE[TL].ASI
TSTATE[TL].PSTATE
TSTATE[TL].CWP
TPC[TL]

TNPC[TL]

~ CCR

~ ASI

— PSTATE
~ CWP

~ PC

~ nPC

— The trap type is preserved.
TT[TL] « the trap type

— The PSTATE register

is updated to a predefined state

PSTATE.MM is unchanged

PSTATE.RED -
PSTATE.PEF -
PSTATE.AM -
PSTATE.PRIV —
PSTATE.IE -
PSTATE.AG -
PSTATE.CLE -

0

1if FPU is present, 0 otherwise

0 (address masking is turned off)

1 (the processor enters privileged mode)

O (interrupts are disabled)

1 (global regs are replaced with alternate globals)
PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that must be
accessed by the trap-handler software, that is:

o If TT[TL] = 0245 (a clean_window trap), then CWR- CWP+ 1.
« 1f (080,5< TT[TL] < OBFy) (window spill trap), then CWR-

CWP+ CANSAVE
e 1f (0CO, < TTITL]

+2.
< OFFg) (window fill trap), then CWR- CWP-1.

For non-register-window traps, CWP is not changed.

— Control is transferred
PC ~ TBA<63

nPC ~ TBA<63
where “(TL>0)"is O if

into the trap table:
:15>[] (TL>0)[] TT[TL][] 0 0000

:15>[] (TL>0)[] TT[TL][] 00100

TL=0,and 1if TL>O0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note:

State in TPQfi], TNPCJn], TSTATE[n], and TT|n] is only changed autonomously by the processor when a
trap is taken while TL =n—1, however, software can change any of these values with a WRPR instruction

when TL =n.

7.6.2 Special Trap Processing
The following conditions invoke special trap processing:
— Traps taken with TL = MAXTL -1
— Power-on reset traps
— Watchdog reset traps
— Externally initiated reset traps
— Software-initiated reset traps
— Traps taken when the processor is already in RED_state
— Implementation-dependent traps

IMPL. DEP. #38. Implementation-dependent registers may or may not be affected by the various reset
traps.

7.6.2.1 Normal Traps with TL = MAXTL -1

Normal traps that occur when TL = MAXT- 1 are processed in RED_state. The following state
changes occur:

— The trap level is advanced.

TL —« MAXTL

— Existing state is preserved
TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI — ASI
TSTATE[TL].PSTATE ~ PSTATE
TSTATE[TL].CWP ~ CWP
TPC[TL] ~ PC
TNPC[TL] « nPC

— The trap type is preserved.
TT[TL] « the trap type

— The PSTATE register is set as follows:
PSTATE.MM ~ 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV ~ 1 (the processor enters privileged mode)
PSTATE.IE « 0 (interrupts are disabled)
PSTATE.AG ~ 1 (global regs are replaced with alternate globals)
PSTATE.CLE ~ PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that must be
accessed by the trap-handler software, that is:

o If TT[TL] = 0245 (a clean_window trap), then CWR- CWP+ 1.

« 1f (080,5< TT[TL] < OBF,) (window spill trap), then CWR-
CWP+ CANSAVE + 2.

o If (0CO;5< TT[TL] < OFF)(window fill trap), then CWP- CWP-1.
For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:8%] 1010 0090
nPC — RSTVaddr<63:8%] 10100190

7.6.2.2 Power-On Reset (POR) Traps

Initiated when power is applied to the processor. If the processor is in error_state, a power-on
reset (POR) brings the processor out of error_state and places it in RED_state. Processor state is
undefined after POR, except for the following:

— The trap level is set.
TL « MAXTL

— The trap type is set.
TT[TL] < 001,

— The PSTATE register is set as follows:
PSTATE.MM — 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM — 0 (address masking is turned off)
PSTATE.PRIV « 1 (the processor enters privileged mode)
PSTATE.IE ~ O (interrupts are disabled)
PSTATE.AG — 1 (global regs are replaced with alternate globals)
PSTATE.TLE « 0 (big-endian mode for traps)
PSTATE.CLE ~ 0 (big-endian mode for non-traps)

— The TICK register is protected.
TICK.NPT ~ 1 (TICK unreadable by nonprivileged software)

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table
PC — RSTVaddr<63:8%] 0010 0090
nPC ~ RSTVaddr<63:8%] 0010 0190

For any reset when TL = MAXTL, for aln<MAXTL, the values in TPQf], TNPC|n], and
TSTATE[n] are undefined.

7.6.2.3 Watchdog Reset (WDR) Traps

WDR traps are initiated by an external signal. Typically, this is generated in response to
error_state or expiration of a watchdog timer. WDR clears error_state and hung states, and per-
forms a system reset; pending and in-progress hardware operations (for example, loads and
stores) may be cancelled or aborted. Architecturally defined registers (e. g., floating-point regis-
ters, integer registers, etc.) and state are unchanged from before the WDR, but they may be in an
inconsistent state if operations are aborted. If the processor is in error_state, a watchdog reset
(WDR) brings the processor out of error_state and places it in RED _state.

The following state changes occur:

— The trap level is set.
TL « MIN(TL + 1, MAXTL)

— Existing state is preserved.

TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI « ASI
TSTATE[TL].PSTATE . PSTATE
TSTATE[TL].CWP —~ CWP
TPC[TL] - PC
TNPC[TL] ~ nPC

— TTI[TL] is set as described below.

— The PSTATE register is set as follows:
PSTATE.MM ~ 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM ~ 0 (address masking is turned off)
PSTATE.PRIV ~ 1 (the processor enters privileged mode)
PSTATE.IE « 0 (interrupts are disabled)
PSTATE.AG « 1 (global regs are replaced with alternate globals)
PSTATE.CLE ~ PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.
PC ~ RSTVaddr<63:8%] 0100 0090
nPC ~ RSTVaddr<63:8%] 0100 0190

If a watchdog reset occurs when the processor is in error_state, the TT field gives the type of the
trap that caused entry into error_state. If a watchdog reset occurs with the processor in
execute_state, TT is set to 2 (WDR).

For any reset when TL = MAXTL, for aln<MAXTL, the values in TPQf], TNPC|n], and
TSTATE[n] are undefined.

7.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be masked
by IE = 0 or PIL. Typically, XIR is used for critical system events such as power failure, reset but-
ton pressed, failure of external components that does not require a WDR (which aborts opera-
tions), or system-wide reset in a multiprocessor. If the processor is in error_state, an externally
initiated reset (XIR) brings the processor out of error_state and places it in RED_state.

The following state changes occur:

— The trap level is set.
TL <« MIN(TL + 1, MAXTL)

— Existing state is preserved.

TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI < ASI
TSTATE[TL].PSTATE . PSTATE
TSTATE[TL].CWP ~ CWP
TPC[TL] - PC
TNPC[TL] - nPC

— TTI[TL] is set as described below.

— The PSTATE register is set as follows:
PSTATE.MM — 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM — 0 (address masking is turned off)
PSTATE.PRIV « 1 (the processor enters privileged mode)
PSTATE.IE ~ O (interrupts are disabled)
PSTATE.AG 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

1

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.
PC ~ RSTVaddr<63:8%] 0110 0090
nPC ~ RSTVaddr<63:8%] 0110 0190

TT is set in the same manner as for watchdog reset. If the processor is in execute_state when the
externally initiated reset (XIR) occurs, TT = 3. If the processor is in error_state when the XIR
occurs, TT identifies the exception that caused entry into error_state.

For any reset when TL = MAXTL, for aln<MAXTL, the values in TPQf], TNPC|n], and
TSTATE[n] are undefined.

7.6.2.5 Software-Initiated Reset (SIR) Traps

SIR traps are initiated by executing an SIR instruction. This is used by supervisor software as a
panic operation, or a meta-supervisor trap.

The following state changes occur:
— If TL = MAXTL, then enter error_state. Otherwise, do the following:

— The trap level is set.

TL -« TL+1

— Existing state is preserved
TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI — ASI
TSTATE[TL].PSTATE ~ PSTATE
TSTATE[TL].CWP ~ CWP
TPC[TL] — PC
TNPCI[TL] — nPC

— The trap type is set.
TT[TL] < 04

— The PSTATE register is set as follows:
PSTATE.MM — 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM — 0 (address masking is turned off)
PSTATE.PRIV « 1 (the processor enters privileged mode)
PSTATE.IE ~ O (interrupts are disabled)
PSTATE.AG — 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:85%] 1000 0090
nPC — RSTVaddr<63:85%] 1000 0190

For any reset when TL = MAXTL, for alh < MAXTL, the values in TPQjf], TNPCIn], and
TSTATE[n] are undefined.

7.6.2.6 Normal Traps When the Processor is in RED_state

Normal traps taken when the processor is already in RED_state are also processed in RED _state,
unless TL = MAXTL, in which case the processor enters error_state.

The processor state shall be set as follows:

— The trap level is set.

TL « TL+1

— Existing state is preserved.
TSTATE[TL].CCR ~ CCR
TSTATE[TL].ASI — ASI
TSTATE[TL].PSTATE ~ PSTATE
TSTATE[TL].CWP ~ CWP
TPC[TL] ~ PC
TNPCI[TL] — nPC

— The trap type is preserved.
TT[TL] - trap type

— The PSTATE register is set as follows:
PSTATE.MM — 00, (TSO)
PSTATE.RED ~ 1 (enter RED_state)
PSTATE.PEF ~ 1if FPU is present, 0 otherwise
PSTATE.AM — 0 (address masking is turned off)
PSTATE.PRIV « 1 (the processor enters privileged mode)
PSTATE.IE ~ 0O (interrupts are disabled)
PSTATE.AG — 1 (global regs are replaced with alternate globals)
PSTATE.CLE — PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that must be
accessed by the trap-handler software, that is:
o If TT[TL] = 0244 (a clean_window trap), then CWR- CWP+ 1.

e 1f (080,5< TT[TL] < OBFo) (window spill trap), then
CWP — CWP+ CANSAVE + 2.

o If (0CO;5< TT[TL] < OFF) (window fill trap), then CWR- CWP — 1.
For non-register-window traps, CWP is not changed.
— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table
PC ~ RSTVaddr<63:8%] 1010 0090
nPC — RSTVaddr<63:8%] 10100190

7.6.2.7 Implementation-Dependent Traps

The operation of the processor fiotplementation_dependent_exception_n traps is implementation-
dependent (impl. dep. #35).

7.7 Exception and Interrupt Descriptions

The following paragraphs describe the various exceptions and interrupt requests and the condi-
tions that cause them. Each exception and interrupt request describes the corresponding trap type
as defined by the trap model. An open bullgt identifies optional and possibly implementation-
dependent traps; traps marked with a closed budlétre mandatory. Each trap is marked as pre-

cise, deferred, disrupting, or reset. Example exception conditions are included for each exception
type. Appendix A, “Instruction Definitions,” enumerates which traps can be generated by each
instruction.

[0 async_data_error[tt = 040,4] (Disrupting)
An asynchronous data error occurred on a data access. Examples: an ECC error occurred
while writing data from a cache store buffer to memory, or an ECC error occurred on an
MMU hardware table walk. When aasync_data_error occurs, the TPC and TNPC stacked
by the trap are not necessarily related to the instruction or data access that caused the
error; that isasync_data_error causes a disrupting trap.

Compatibility Note:
The SPARC-V9async data error exception supersedes the less general SPARCINE store error
exception.

[0 clean_window[tt = 0245..027,¢] (Precise)

A SAVE instruction discovered that the window about to be used contains data from
another address space; the window must be cleaned before it can be used.

IMPL. DEP. #102: An implementation may choose either to implement automatic cleaning of regis-

ter windows in hardware, or to generate a clean_window trap, when needed, so that window(s) can

be cleaned by software. If an implementation chooses the latter option, then support for this
trap type is mandatory.

[0 data_access_erroftt = 032 (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred on a data access from/to memory (for example, a
parity error on a data cache access, or an uncorrectable ECC memory error) (impl. dep.
#31).

e data access_exceptiofit = 030,4] (Precise or Deferred)

An exception occurred on a data access. For example, an MMU indicated that a page was
invalid or protected (impl. dep. #33).

[0 data_access_MMU_mis§tt = 031;4 (Precise or Deferred)
A miss in an MMU occurred on a data access from/to memory. For example, a page

descriptor cache or translation lookaside buffer did not contain a translation for the virtual
address. (impl. dep. #33)

[0 data_access_protectiofitt = 0334 (Precise or Deferred)

A protection fault occurred on a data access; for example, an MMU indicated that the page
was write-protected (impl. dep. #33).

e division_by_zero[tt = 028,¢ (Precise or Deferred)
An integer divide instruction attempted to divide by zero (impl. dep..#33)

[0 externally_initiated_reset[tt = 0034 (Reset)

An external signal was asserted. This trap is used for catastrophic events such as power
failure, reset button pressed, and system-wide reset in multiprocessor systems.

e fill_n_normal [tt = 0COs..0DF,¢] (Precise)

e fill_n_other [tt = OEQ4.. OFFRg4] (Precise)

A RESTORE or RETURN instruction has determined that the contents of a register win-
dow must be restored from memory.

Compatibility Note:
The SPARC-VYill_n_*exceptions supersede the SPARCwWBdow_underflow exception.

e fp_disabled[tt = 0204 (Precise)

An attempt was made to execute an FPop, a floating-point branch, or a floating-point load/
store instruction while an FPU was not present, PSTATE.PEF =0, or FPRS.FEF = 0.

[0 fp_exception_ieee_ 758t = 021;4 (Precise or Deferred (impl. dep. #23))

An FPop instruction generated an IEEE_754_exception and its corresponding trap enable
mask (TEM) bit was 1. The floating-point exception typesE_ 754 _exception, is encoded
in the FSRit, and specifieEEE_754_exception information is encoded in FSgexc

[0 fp_exception_other[tt = 022 (Precise or Deferred (impl. dep. #23))

An FPop instruction generated an exception other thaiEBn 754 exception. For exam-

ple, the FPop is unimplemented, or the FPop did not complete, or there was a sequence or
hardware error in the FPU. The floating-point exception type is encoded in the RER’s
field.

e illegal_instruction [tt = 0104 (Precise or Deferred)

An attempt was made to execute an instruction with an unimplemented opcode, an ILL-
TRAP instruction, an instruction with invalid field usage, or an instruction that would
result in illegal processor state. Note that unimplemented FPop instructions generate
fp_exception_other traps.

[0 implementation_dependent_exceptiom [tt = 060,5..07F¢] (Pre, Def, or Dis)
These exceptions are implementation-dependent (impl. dep. #35).

[0 instruction_access_error[tt = 00A¢] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred on an instruction access. For example, a parity
error on an instruction cache access (impl. dep. #31).

e instruction_access_exceptiofit = 008,¢] (Precise)

An exception occurred on an instruction access. For example, an MMU indicated that the
page was invalid or not executable.

[0 instruction_access_MMU_misdtt = 009,¢ (Precise, Deferred, or Disrupting)

A miss in an MMU occurred on an instruction access from memory. For example, a PDC
or TLB did not contain a translation for the virtual address. (impl. dep. #33)

[0 internal_processor_error [tt = 029,¢] (Precise, Deferred, or Disrupting)

A catastrophic error exception occurred in the main processor. For example, a parity or
uncorrectable ECC error on an internal register or bus (impl. dep. #31).

Compatibility Note:
The SPARC-V9 internal_processor_error exception supersedes the less general SPARC-V8
I_register_access_error exception.

e interrupt_level_n [tt = 041..04F¢ (Disrupting)

An interrupt request level af was presented to the IU, while PSTATE.IE =1 and (inter-
rupt request level > PIL).

[0 LDDF_mem_address_not_alignedtt = 0354] (Precise)

An attempt was made to execute an LDDF instruction and the effective address was word-
aligned but not doubleword-aligned. Use of this exception is implementation-dependent
(impl. dep. #109). A separate trap entry for this exception supports fast software emulation
of the LDDF instruction when the effective address is word-aligned but not doubleword-
aligned. See A.25, “Load Floating-Point.”

0 LDQF_mem_address_not_alignedtt = 038,¢] (Precise)
An attempt was made to execute an LDQF instruction and the effective address was word-
aligned but not quadword-aligned. Use of this exception is implementation-dependent
(impl. dep. #111). A separate trap entry for this exception supports fast software emulation
of the LDQF instruction when the effective address is word-aligned but not quadword-
aligned. See A.25, “Load Floating-Point.”

e mem_address_not_aligneditt = 0344 (Precise or Deferred)
A load/store instruction generated a memory address that was not properly aligned accord-
ing to the instruction, or a JMPL or RETURN instruction generated a non-word-aligned
address (impl. dep. #33).

e power_on_reseftt = 0014 (Reset)

An external signal was asserted. This trap isused to bring a system reliably from the
power-off to the power-on state.

e privileged_action[tt = 037,¢ (Precise)
An action defined to be privileged has been attempted while PSTATE.PRIV = 0. Exam-
ples: a data access by nonprivileged software using an ASI value with its most significant
bit = 0 (a restricted ASI), or an attempt to read the TICK register by nonprivileged soft-
ware when TICK.NPT = 1.

e privileged_opcode[tt = 011 4] (Precise)
An attempt was made to execute a privileged instruction while PSTATE.PRIV = 0.
Compatibility Note:

This trap type is identical to the SPARC-\@ivileged_instruction trap. The name was changed to distin-
guish it from the newprivileged _action trap type.

e software_initiated_reset[tt = 004,¢] (Reset)

Caused by the execution of the SIR, Software-Initiated Reset, instruction. It allows system
software to reset the processor.

e spill_n_normal [tt = 080,5..09F¢] (Precise)
e spill_n_other [tt = 0AQ,¢x..0BF,¢] (Precise)

A SAVE or FLUSHW instruction has determined that the contents of a register window
must be saved to memory.

Compatibility Note:
The SPARC-V9 spilln_* exceptions supersede the SPARCMBdow_overflow exception.

0 STDF_mem_address_not_alignefit = 036,¢] (Precise)

An attempt was made to execute an STDF instruction and the effective address was word-
aligned but not doubleword-aligned. Use of this exception is implementation-dependent
(impl. dep. #110). A separate trap entry for this exception supports fast software emulation
of the STDF instruction when the effective address is word-aligned but not doubleword-
aligned. See A.52, “Store Floating-Point.”

[0 STQF_mem_address_not_aligneftt = 0394 (Precise)
An attempt was made to execute an STQF instruction and the effective address was word-
aligned but not quadword-aligned. Use of this exception is implementation-dependent
(impl. dep. #112). A separate trap entry for this exception supports fast software emulation
of the STQF instruction when the effective address is word-aligned but not quadword-
aligned. See A.52, “Store Floating-Point.”

e tag_overflow[tt = 0234 (Precise)

A TADDccTV or TSUBccTV instruction was executed, and either 32-bit arithmetic over-
flow occurred or at least one of the tag bits of the operands was nonzero.

e trap_instruction [tt = 100,..17F¢4] (Precise)
A Tcc instruction was executed and the trap condition evaluated to TRUE.

0 unimplemented_LDD [tt = 0124] (Precise)

An attempt was made to execute an LDD instruction, which is not implemented in hard-
ware on this implementation (impl. dep. #107).

0 unimplemented_STDJtt = 0134 (Precise)

An attempt was made to execute an STD instruction which is not implemented in hard-
ware on this implementation (impl. dep. #108).

e watchdog_reseftt = 002 (Precise)

An external signal was asserted. This trap exists to break a system deadlock created when
an expected external event does not happen within the expected time. In simple systems it
is also used to bring a system out of error_state, through RED _state, and ultimately back

to execute_state.

All other trap types are reserved.

8 Memory Models

8.1 Introduction

The SPARC-V9nemory modelsdefine the semantics of memory operations. The instruction set
semantics require that loads and stores seem to be performed in the order in which they appear in
the dynamic control flow of the program. The actual order in which they are processed by the
memory may be different. The purpose of the memory models is to specify what constraints, if
any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared-memory multiprocessors. Formal
memory models are necessary in order to precisely define the interactions between multiple pro-
cessors and input/output devices in a shared-memory configuration. Programming shared-mem-
ory multiprocessors requires a detailed understanding of the operative memory model and the
ability to specify memory operations at a low level in order to build programs that can safely and
reliably coordinate their activities. See Appendix J, “Programming With the Memory Models,”
for additional information on the use of the models in programming real systems.

The SPARC-V9 architecture is model that specifies the behavior observable by software on
SPARC-V9 systems. Therefore, access to memory can be implemented in any manner, as long as
the behavior observed by software conforms to that of the models described here and formally
defined in Appendix D, “Formal Specification of the Memory Models.”

The SPARC-V9 architecture defines three different memory modetal Store Order (TSO),

Partial Store Order (PSO), andRelaxed Memory Order (RMO). All SPARC-V9 processors

must provide Total Store Order (or a more strongly ordered model, for example, Sequential Con-
sistency) to ensure SPARC-V8 compatibility.

IMPL. DEP. 113: Whether the PSO or RMO models are supported is implementation-dependent.

Figure 41 shows the relationship of the various SPARC-V9 memory models, from the least
restrictive to the most restrictive. Programs written assuming one model will function correctly on
any included model.

Figure 41—Memory Models from Least Restrictive (RMO) to Most Restrictive (TSO)

SPARC-V9 provides multiple memory models so that:
— Implementations can schedule memory operations for high performance.
— Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix D, “Formal
Specification of the Memory Models.” If there is a conflict in interpretation between the informal
description provided here and the formal models, the formal models supersede the informal
description.

There is no preferred memory model for SPARC-V9. Programs written for Relaxed Memory
Order will work in Partial Store Order and Total Store Order as well. Programs written for Partial
Store Order will work in Total Store Order. Programs written for a weak model, such as RMO,
may execute more quickly, since the model exposes more scheduling opportunities, but may also
require extra instructions to ensure synchronization. Multiprocessor programs written for a stron-
ger model will behave unpredictably if run in a weaker model.

Machines that implemergequential consistencyalso called strong ordering or strong consis-
tency) automatically support programs written for TSO, PSO, and RMO. Sequential consistency
is not a SPARC-V9 memory model. In sequential consistency, the loads, stores, and atomic load-
stores of all processors are performed by memory in a serial order that conforms to the order in
which these instructions are issued by individual processors. A machine that implements sequen-
tial consistency may deliver lower performance than an equivalent machine that implements a
weaker model. Although particular SPARC-V9 implementations may support sequential consis-
tency, portable software must not rely on having this model available.

8.2 Memory, Real Memory, and I/O Locations

Memory is the collection of locations accessed by the load and store instructions (described in
Appendix A, “Instruction Definitions”). Each location is identified by an address consisting of

two elements: aaddress space identifie(ASI), which identifies an address space, and a 64-bit
address,which is a byte offset into that address space. Memory addresses may be interpreted by
the memory subsystem to be either physical addresses or virtual addresses; addresses may be

remapped and values cached, provided that memory properties are preserved transparently and
coherency is maintained.

When two or more data addresses refer to the same datum, the address is salthsetdn this
case, the processor and memory system must cooperate to maintain consistency; that is, a store to
an aliased address must change all values aliased to that address.

Memory addresses identify either real memory or I/O locations.

Real memory stores information without side effects. A load operation returns the value most
recently stored. Operations are side-effect-free in the sense that a load, store, or atomic load-store
to a location in real memory has no program-observable effect, except upon that location.

I/0O locations may not behave like memory and may have side effects. Load, store, and atomic
load-store operations performed on I/O locations may have observable side effects and loads may
not return the value most recently stored. The value semantics of operations on I/O locations are
not defined by the memory models, but the constraints on the order in which operations are per-
formed is the same as it would be if the 1/0O locations were real memory. The storage properties,
contents, semantics, ASI assignments, and addresses of I/O registers are implementation-depen-
dent (impl. dep. #6) (impl. dep. #7) (impl. dep. #123).

IMPL. DEP. #118: The manner in which I/O locations are identified is implementation-dependent.
See F.3.2, “Attributes the MMU Associates with Each Mapping,” for example.

IMPL. DEP #120: The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent.

Compatibility Note:
Operations to I/O locations aret guaranteed to be sequentially consistent between themselves, as they are
in SPARC-VS8.

SPARC-V9 does not distinguish real memory from 1/O locations in terms of ordering. All references, both to
I/O locations and real memory, conform to the memory model’s order constraints. References to I/O loca-
tions may need to be interspersed with MEMBAR instructions to guarantee the desired ordering. Loads fol-
lowing stores to locations with side effects may return unexpected results due to lookaside into the
processor’s store buffer, which may subsume the memory transaction. This can be avoided by using a MEM-
BAR #LookAside .

Systems supporting SPARC-V8 applications that use memory mapped 1/O locations must ensure that
SPARC-V8 sequential consistency of 1/O locations can be maintained when those locations are referenced
by a SPARC-V8 application. The MMU either must enforce such consistency or cooperate with system soft-
ware and/or the processor to provide it.

IMPL. DEP #121:. An implementation may choose to identify certain addresses and use an implementa-
tion-dependent memory model for references to them.

For example, an implementation might choose to process addresses tagged with a flag bit in the
memory management unit (see Appendix F, “SPARC-V9 MMU Requirements”), or to treat those
that utilize a particular ASI (see 8.3, “Addressing and Alternate Address Spaces,” below) as using
a sequentially consistent model.

8.3 Addressing and Alternate Address Spaces

An address in SPARC-V9 is a tuple consisting of an 8-bit address space identifier (ASI) and a 64-
bit byte-address offset in the specified address space. Memory is byte-addressed, with halfword
accesses aligned on 2-byte boundaries, word accesses (which include instruction fetches) aligned
on 4-byte boundaries, extended-word and doubleword accesses aligned on 8-byte boundaries, and
guadword quantities aligned on 16-byte boundaries. With the possible exception of the cases
described in 6.3.1.1, “Memory Alignment Restrictions,” an improperly aligned address in a load,
store, or load-store instruction always causes a trap to occur. The largest datum that is guaranteed
to be atomically read or written is an aligned doubleword. Also, memory references to different
bytes, halfwords, and words in a given doubleword are treated for ordering purposes as references
to the same location. Thus, the unit of ordering for memory is a doubleword.

Programming Note:
While the doubleword is the coherency unit for update, programmers should not assume that doubleword
floating-point values are updated as a unit unless they are doubleword-aligned and always updated using
double-precision loads and stores. Some programs use pairs of single-precision operations to load and store
double-precision floating-point values when the compiler cannot determine that they are doubleword-
aligned. Also, while quad-precision operations are defined in the SPARC-V9 architecture, the granularity of
loads and stores for quad-precision floating-point values may be word or doubleword.

The processor provides an address space identifier with every address. This ASI may serve several
purposes:

— To identify which of several distinguished address spaces the 64-bit address offset is to be
interpreted as addressing

— To provide additional access control and attribute information, for example, the processing
which is to be taken if an access fault occurs or to specify the endian-ness of the reference

— To specify the address of an internal control register in the processor, cache, or memory
management hardware

The memory management hardware can associate an indepeffeieyte2memory address space

with each ASI. If this is done, it becomes possible to allow system software easy access to the
address space of the faulting program when processing exceptions, or to implement access to a
client program’s memory space by a server program.

The architecturally specified ASIs are listed in table 12 on page 75. ASIs need not be fully
decoded by the hardware (impl. dep. #30). In particular, specifying an architecturally undefined
ASI value in a memory reference instruction or in the ASI register may produce unexpected
implementation-dependent results.

When TL = 0, normal accesses by the processor to memory when fetching instructions and per-
forming loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY_LITTLE,
depending on the setting of the PSTATE.CLE bit.

IMPL. DEP. #124: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is implementa-
tion-dependent.

Implementation Note:
Implementations that support the nucleus context should use ASI_NUCLEUS{ LITTLE}; those that do not
should use ASI_PRIMARY{ LITTLE}. See F.4.4, “Contexts,” for more information about the nucleus con-
text.

Accesses to other address spaces use the load/store alternate instructions. For these accesses, the
ASl is either contained in the instruction (for the register-register addressing mode) or taken from
the ASI register (for register-immediate addressing).

ASls are either unrestricted or restricted. An unrestricted ASlI is one that may be used independent
of the privilege level (PSTATE.PRIV) at which the processor is running. Restricted ASIs require
that the processor be in privileged mode for a legal access to occur. Restricted ASls have their
high-order bit equal to zero. The relationship between processor state and ASI restriction is shown
in table 11 on page 74.

Several restricted ASIs must be provided: ASI_AS IF_USER_PRIMARY{ LITTLE} and
ASI_AS_IF_USER_SECONDARY{ LITTLE}. The intent of these ASlIs is to give system soft-
ware efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the unrestricted
ASI_PRIMARY{ LITTLE}. The secondary address space, which is accessed by the unrestricted
ASI_SECONDARY{ _LITTLE}, is provided to allow a server program to access a client pro-
gram’s address space.

ASI_PRIMARY_NOFAULT{ LITTLE} and ASI_SECONDARY_NOFAULT{ LITTLE} sup-

port nonfaulting loads. These ASIs are aliased to ASI_PRIMARY{ LITTLE} and
ASI_SECONDARY{ LITTLE}, respectively, and have exactly the same action. They may be
used to color (that is, distinguish into classes) loads in the instruction stream so that, in combina-
tion with a judicious mapping of low memory and a specialized trap handler, an optimizing com-
piler can move loads outside of conditional control structures.

Programming Note:
Nonfaulting loads allow optimizations that move loads ahead of conditional control structures which guard
their use; thus, they can minimize the effects of load latency by improving instruction scheduling. The
semantics of nonfaulting load are the same as for any other load, except when non-recoverable catastrophic
faults occur (for example, address-out-of-range errors). When such a fault occurs, it is ignored and the hard-
ware and system software cooperate to make the load appear to complete normally, returning a zero result.
The compiler's optimizer generates load-alternate instructions with the ASI field or register set to
ASI_PRIMARY_NOFAULT{_LITTLE} or ASI_SECONDARY_NOFAULT{_LITTLE} for those loads it
determines should be nonfaulting. To minimize unnecessary processing if a fault does occur, it is desirable to
map low addresses (especially address zero) to a page of all zeros, so that references through a NULL
pointer do not cause unnecessary traps.

Implementation Note:

An implementation, through a combination of hardware and system software, must prevent nonfaulting
loads on memory locations that have side effects; otherwise, such accesses produce undefined results.

8.4 The SPARC-V9 Memory Model

The SPARC-V9 processor architecture specifies the organization and structure of a SPARC-V9
central processing unit, but does not specify a memory system architecture. Appendix F,

“SPARC-V9 MMU Requirements,” summarizes the MMU support required by a SPARC-V9 cen-
tral processing unit.

The memory models specify the possible order relationships between memory-reference instruc-
tions issued by a processor and the order and visibility of those instructions as seen by other pro-
cessors. The memory model is intimately intertwined with the program execution model for
instructions.

8.4.1 The SPARC-V9 Program Execution Model

The SPARC-V9 processor model consists of three units: an issue unit, a reorder unit, and an exe-
cute unit, as shown in figure 42.

The issue unit reads instructions over the instruction path from memory and issues them in
gram order. Program order is precisely the order determined by the control flow of the program
and the instruction semantics, under the assumption that each instruction is performed indepen-
dently and sequentially.

Issued instructions are collected, reordered, and then dispatched to the execute unit. Instruction
reordering allows an implementation to perform some operations in parallel and to better allocate
resources. The reordering of instructions is constrained to ensure that the results of program exe-
cution are the same as they would be if the instructions were performed in program order. This
property is calleghrocessor self-consistency

Processor

Data Path

Issue | Reorder [Execute Memory

Instruction Path

Figure 42—Processor Model: Uniprocessor System

Processor self-consistency requires that the result of execution, in the absence of any shared mem-
ory interaction with another processor, be identical to the result that would be observed if the
instructions were performed in program order. In the model in figure 42, instructions are issued in
program order and placed in the reorder buffer. The processor is allowed to reorder instructions,
provided it does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are:

— An instruction cannot be performed until all earlier instructions that set a register it uses
have been performed (read-after-write hazard; write-after-write hazard).

— An instruction cannot be performed until all earlier instructions that use a register it sets
have been performed (write-after-read hazard).

An implementation can avoid blocking instruction execution in the second case by using a renam-
ing mechanism which provides the old value of the register to earlier instructions and the new
value to later uses.

The data-flow order constraints for memory-reference instructions are those for register reference
instructions, plus the following additional constraints:

(1) A memory-reference instruction that sets (stores to) a location cannot be performed until
all previous instructions that use (load from) the location have been performed (write-
after-read hazard).

(2) A memory-reference instruction that uses (loads) the value at a location cannot be per-
formed until all earlier memory-reference instructions that set (store to) the location have
been performed (read-after-write hazard).

As with the case for registers, implementations can avoid blocking instructions in case (2) by pro-
viding an additional mechanism, in this case, a write buffer which guarantees that the value
returned by a load is that which would be returned by the most recent store, even though the store
has not completed. As a result, the value associated with an address may appear to be different
when observed from a processor that has written the location and is holding the value in its write
buffer than it would be when observed from a processor that references memory (or its own write
buffer). Moreover, the load that was satisfied by the write buffer never appears at the memaory.

Memory-barrier instructions (MEMBAR and STBAR) and the active memory model specified by
PSTATE.MM also constrain the issue of memory-reference instructions. See 8.4.3, “The MEM-
BAR Instruction,” and 8.4.4, “Memory Models,” for a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions in the reorder
buffer. Every one of the several possible orderings is a legal execution ordering for the program.
See Appendix D, “Formal Specification of the Memory Models,” for more information.

8.4.2 The Processor/Memory Interface Model

Each processor in a multiprocessor system is modelled as shown in figure 43; that is, having two
independent paths to memory: one for instructions and one for data. Caches and mappings are
considered to be part of the memory. Data caches are maintained by hardware to be consistent
(coherent). Instruction caches need not be kept consistent with data caches and, therefore, require
explicit program action to ensure consistency when a program modifies an executing instruction
stream. Memory is shared in terms of address space, but may be inhomogeneous and distributed
in an implementation. Mapping and caches are ignored in the model, since their functions are
transparent to the memory model.

In real systems addresses may have attributes that the processor must respect. The processor exe-
cutes loads, stores, and atomic load-stores in whatever order it chooses, as constrained by pro-
gram order and the current memory model. The ASI address-couples it generates are translated by

1. The model described here is only a model. Implementations of SPARC-V9 systems are unsonstrained so long
as their observable behaviors match those of the model.

a memory management unit (MMU), which associates attributes with the address and may, in
some instances, abort the memory transaction and signal an exception to the CPU. For example, a
region of memory may be marked as non-prefetchable, non-cacheable, read-only, or restricted. It
is the MMU'’s responsibility, working in conjunction with system software, to ensure that memory
attribute constraints are not violated. See Appendix F, “SPARC-V9 MMU Requirements,” for
more information.

Instructions are performed in an order constrained by local dependencies. Using this dependency
ordering, an execution unit submits one or more pending memory transactions to the memory. The
memory performs transactions memory order. The memory unit may perform transactions
submitted to it out of order; hence, the execution unit must not submit two or more transactions
concurrently that are required to be ordered.

Memory Transactions

Processors In Memory Order

Instructions

Data

i o Memory

Figure 43—Data Memory Paths: Multiprocessor System

The memory accepts transactions, performs them, and then acknowledges their completion. Mul-
tiple memory operations may be in progress at any time and may be initiated in a nondeterministic

fashion in any order, provided that all transactions to a location preserve the per-processor partial
orders. Memory transactions may complete in any order. Once initiated, all memory operations

are performed atomically: loads from one location all see the same value, and the result of stores
are visible to all potential requestors at the same instant.

The order of memory operations observed at a single locationatgahorder that preserves the
partial orderings of each processor’s transactions to this address. There may be many legal total
orders for a given program’s execution.

8.4.3 The MEMBAR Instruction

MEMBAR serves two distinct functions in SPARC-V9. One variant of the MEMBAR, the order-
ing MEMBAR, provides a way for the programmer to control the order of loads and stores issued
by a processor. The other variant of MEMBAR, the sequencing MEMBAR, allows the program-
mer to explicitly control order and completion for memory operations. Sequencing MEMBARs
are needed only when a program requires that the effect of an operation become globally visible,

rather than simply being schedul®ds both forms are bit-encoded into the instruction, a single
MEMBAR can function both as an ordering MEMBAR and as a sequencing MEMBAR.

8.4.3.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single proces-
sor. Sets of loads and stores that appear before the MEMBAR in program order are ordered with
respect to sets of loads and stores that follow the MEMBAR in program order. Atomic operations
(LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by MEMBAR as if they were both a
load and a store, since they share the semantics of both. An STBAR instruction, with semantics
that are a subset of MEMBAR, is provided for SPARC-V8 compatibility. MEMBAR and STBAR
operate on all pending memory operations in the reorder buffer, independent of their address or
ASI, ordering them with respect to all future memory operations. This ordering applies only to
memory-reference instructions issued by the processor issuing the MEMBAR. Memory-reference
instructions issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in table 19. For example, MEMBAR 01
written as ‘membar #LoadLoad ” in assembly language, requires that all load operations
appearing before the MEMBAR in program order complete before any of the load operations fol-
lowing the MEMBAR in program order complete. Store operations are unconstrained in this case.
MEMBAR 08,5 (#StoreStor e) is equivalent to the STBAR instruction; it requires that the val-
ues stored by store instructions appearing in program order prior to the STBAR instruction be vis-
ible to other processors prior to issuing any store operations that appear in program order
following the STBAR.

In table 19 these ordering relationships are specified by ttmiesymbol, which signifies memory
order. See Appendix D, “Formal Specification of the Memory Models,” for a formal description
of the dmrelationship.

Table 19—Ordering Relationships Selected by Mask

Ordering relation, Suggested Mask nmask
earlier < later assembler tag value bit #
Load <m Load #LoadLoad 016 0
Store m Load #StoreLoad 026 1
Load <m Store #LoadStore 0444 2
Store <n Store #StoreStore 086 3

Selections may be combined to form more powerful barriers. For example, a MEMBAR instruc-
tion with a mask of 0% (#LoadLoad | #StoreStore) orders loads with respect to loads and
stores with respect to stores, but does not order loads with respect to stores or vice versa.

1. Sequencing MEMBARSs are needed for some input/output operations, forcing stores into specialized stable
storage, context switching, and occasional other systems functions. Using a Sequencing MEMBAR when one
is not needed may cause a degradation of performance. See Appendix J, “Programming With the Memory
Models,” for examples of their use.

An ordering MEMBAR instruction does not guarantee any completion property; it only intro-
duces an ordering constraint. For example, a program should not assume that a store preceding a
MEMBAR instruction has completed following execution of the MEMBAR.

8.4.3.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. There are
three sequencing MEMBAR options, each with a different degree of control and a different appli-
cation.

Lookaside Batrrier:
Ensures that loads following this MEMBAR are from memory and not from a lookaside
into a write buffer.Lookaside Barrier requires that pending stores issued prior to the
MEMBAR be completed before any load from that address following the MEMBAR may
be issued. A.ookaside Barrier MEMBAR may be needed to provide lock fairness and to
support some plausible 1/0 location semantics. See the example in J.14.1, “I/O Registers
With Side Effects.”

Memory Issue Batrrier:
Ensures that all memory operations appearing in program order before the sequencing
MEMBAR complete before any any new memory operation may be initiated. See the
example in J.14.2, “The Control and Status Register (CSR).”

Synchronization Barrier:
Ensures that all instructions (memory reference and others) preceding the MEMBAR
complete and the effects of any fault or error have become visible before any instruction
following the MEMBAR in program order is initiated. Aynchronization Barrier
MEMBAR fully synchronizes the processor that issues it.

Table 20 shows the encoding of these functions in the MEMBAR instruction.

Table 20—Sequencing Barrier Selected by Mask

Sequencing Assembler tag Mask cmaskbit
function value #
Lookaside Barrier #Lookaside 1046 0
Memory Issue Barrier #Memlssue 206 1
Synchronization Barrier #Sync 40,4 2

8.4.4 Memory Models

The SPARC-V9 memory models are defined below in terms of order constraints placed upon
memory-reference instruction execution, in addition to the minimal set required for self-consis-
tency. These order constraints take the form of MEMBAR operations implicitly performed fol-
lowing some memory-reference instructions.

8.4.4.1 Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond those
required for processor self-consistency. When ordering is required, it must be provided explicitly
in the programs using MEMBAR instructions.

8.4.4.2 Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC-V8 programs. Pro-
grams that execute correctly in the RMO memory model will execute correctly in the PSO model.

The rules for PSO are:
— Loads are blocking and ordered with respect to earlier loads.
— Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures that:

— Each load and atomic load-store instruction behaves as if it were followed by a MEMBAR
with a mask value of Q&

— Explicit MEMBAR instructions are required to order store and atomic load-store instruc-
tions with respect to each other.

8.4.4.3 Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC-V8 programs. Pro-
grams that execute correctly in either RMO or PSO will execute correctly in the TSO model.

The rules for TSO are:

— Loads are blocking and ordered with respect to earlier loads.

— Stores are ordered with respect to stores.

— Atomic load-stores are ordered with respect to loads and stores.
Thus, TSO ensures that:

— Each load instruction behaves as if it were followed by a MEMBAR with a mask value of
056

— Each store instruction behaves as if it were followed by a MEMBAR with a maskgf 08

— Each atomic load-store behaves as if it were followed by a MEMBAR with a mask of
OD16.

8.4.5 Mode Control

The memory model is specified by the two-bit state in PSTATE.MM, described in 5.2.1.4,
“PSTATE_mem_model (MM).”

Writing a new value into PSTATE.MM causes subsequent memory reference instructions to be
performed with the order constraints of the specified memory model.

SPARC-V9 processors need not provide all three memory models; undefined values of
PSTATE.MM have implementation-dependent effects.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode designation into PSTATE.MM is
implementation-dependent.

Implementation Note:
All SPARC-V9 implementations must provide TSO or a stronger model to maintain SPARC-V8 compatibil-
ity. An implementation may provide PSO, RMO, or neither.

Except when a trap enters RED_state, PSTATE.MM is left unchanged when a trap is entered and
the old value is stacked. When entering RED_ state, the value of PSTATE.MM is set to TSO.

8.4.6 Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to construct mutual-
exclusion mechanisms in software, SPARC-V9 provides three hardware primitives for mutual
exclusion:

— Compare and Swap (CASA, CASXA)
— Load Store Unsigned Byte (LDSTUB, LDSTUBA)
— Swap (SWAP, SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory models.
They are allatomic, in the sense that no other store can be performed between the load and store
elements of the instruction. All of the hardware mutual exclusion operations conform to the mem-
ory models and may require barrier instructions to ensure proper data visibility.

When the hardware mutual-exclusion primitives address I/O locations, the results are implemen-
tation-dependent (impl. dep. #123). In addition, the atomicity of hardware mutual-exclusion prim-
itives is guaranteed only for processor memory references and not when the memory location is
simultaneously being addressed by an 1/0O device such as a channel or DMA (impl. dep. #120).

8.4.6.1 Compare and Swap (CASA, CASXA)

Compare-and-swap is an atomic operation which compares a value in a processor register to a
value in memory, and, if and only if they are equal, swaps the value in memory with the value in a
second processor register. Both 32-bit (CASA) and 64-bit (CASXA) operations are provided. The
compare-and-swap operation is atomic in the sense that once begun, no other processor can access

the memory location specified until the compare has completed and the swap (if any) has also
completed and is potentially visible to all other processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchronization prim-
itives. It has an infinite consensus number; that is, it can resolve, in a wait-free fashion, an infinite
number of contending processes. Because of this property, compare-and-swap can be used to con-
struct wait-free algorithms that do not require the use of locks. See Appendix J, “Programming
With the Memory Models,” for examples.

8.4.6.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in memory.
Swap has a consensus number of two; that is, it cannot resolve more than two contending pro-
cesses in a wait-free fashion.

8.4.6.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the valyg iRte the
addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it has a
consensus number of two and so cannot resolve more than two contending processes in a wait-
free fashion.

8.4.7 Synchronizing Instruction and Data Memory

The SPARC-V9 memory models do not require that instruction and data memory images be con-
sistent at all times. The instruction and data memory images may become inconsistent if a pro-
gram writes into the instruction stream. As a result, whenever instructions are modified by a

program in a context where the data (that is, the instructions) in the memory and the data cache
hierarchy may be inconsistent with instructions in the instruction cache hierarchy, some special
programmatic action must be taken.

The FLUSH instruction will ensure consistency between the instruction stream and the data refer-
ences across any local caches for a particular doubleword value in the processor executing the
FLUSH. It will ensure eventual consistency across all caches in a multiprocessor system. The pro-
grammer must be careful to ensure that the modification sequence is robust under multiple
updates and concurrent execution. Since, in the general case, loads and stores may be performed
out of order, appropriate MEMBAR and FLUSH instructions must be interspersed as needed to
control the order in which the instruction data is mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword target of
the FLUSH by the processor executing the FLUSH appear to execute after any loads, stores, and
atomic load-stores issued by the processor to that address prior to the FLUSH. FLUSH acts as a
barrier for instruction fetches in the processor that executes it and has the properties of a store
with respect to MEMBAR operations.

FLUSH hlas no latency on the issuing processor; the modified instruction stream is immediately
available:

IMPL. DEP. #122: The latency between the execution of FLUSH on one processor and the point at which
the modified instructions have replaced outdated instructions in a multiprocessor is implementation-depen-
dent.

If all caches in a system (uniprocessor or multiprocessor) have a unified cache consistency proto-
col, FLUSH does nothing.

Use of FLUSH in a multiprocessor environment may cause unexpected performance degradation
in some systems, because every processor that may have a copy of the modified data in its instruc-
tion cache must invalidate that data. In the worst case naive syaligonocessors must invalidate

the data. The performance problem is compounded by the doubleword granularity of the FLUSH,
which must be observed even when the actual invalidation unit is larger, for example, a cache line.

Programming Note:
Because FLUSH is designed to act on a doubleword, and because, on some implementations, FLUSH may
trap to system software, it is recommended that system software provide a user-callable service routine for
flushing arbitrarily sized regions of memory. On some implementations, this routine would issue a series of
FLUSH instructions; on others, it might issue a single trap to system software that would then flush the
entire region.

A Instruction Definitions

A.1 Overview

This appendix describes each SPARC-V9 instruction. Related instructions are grouped into sub-
sections. Each subsection consists of these parts:

(1) A table of the opcodes defined in the subsection with the values of the field(s) that
uniquely identify the instruction(s).

(2) An illustration of the applicable instruction format(s). In these illustrations, a dash ‘—’
indicates that the field iseservedfor future versions of the architecture and shall be zero
in any instance of the instruction. If a conforming SPARC-V9 implementation encounters
nonzero values in these fields, its behavior is undefined. See Appendix I, “Extending the
SPARC-V9 Architecture,” for information about extending the SPARC-V9 instruction set.

(3) A list of the suggested assembly language syntax; the syntax notation is described in
Appendix G, “Suggested Assembly Language Syntax.”

(4) A description of the features, restrictions, and exception-causing conditions.

(5) A list of the exceptions that can occur as a consequence of attempting to execute the
instruction(s). Exceptions due to awstruction_access_error, instruction_access_exception,

1. SPARC-V8 specified a five-instruction latency. Invalidation of instructions in execution in the instruction
cache is likely to force an instruction-cache fault.

instruction_access MMU_miss, async_data_error, OF internal_processor_error, and interrupt
requests are not listed, since they can occur on any instruction. Also, any instruction that is

not implemented

in hardware shall generate #gal instruction

exception (or

fo_exception_other exception withftt = unimplemented_FPop for floating-point instructions)

when it is executed.

This appendix does not include any timing information (in either cycles or clock time), since tim-
ing is implementation-dependent.

Table 22 summarizes the instruction set; the instruction definitions follow the table. Within
table 22, throughout this appendix, and in Appendix E, “Opcode Maps,” certain opcodes are
marked with mnemonic superscripts. The superscripts and their meanings are defined in table 21:

Table 21—Opcode Superscripts

Superscrip
t Meaning

D Deprecated instruction

P Privileged opcode

P.si Privileged action if bit 7 of the referenced ASlI is zero

Pasr Privileged opcode if the referenced ASR register is privileped

Pupr Privileged action if PSTATE.PRIV = 0 and TICK.NPT =1

Table 22—Instruction Set
Opcode Name Page

ADD (ADDcc) Add (and modify condition codes) 160
ADDC (ADDCcc) Add with carry (and modify condition codes) 16p
AND (ANDcc) And (and modify condition codes) 204
ANDN (ANDNCcc) And not (and modify condition codes) 208
BPcc Branch on integer condition codes with prediction 1y2
BiccP Branch on integer condition codes 16p
BPr Branch on contents of integer register with prediction 151
CALL Call and link 175
CASAPs! Compare and swap word in alternate space 1476
CASXAPss! Compare and swap doubleword in alternate space | 76
DONE” Return from trap 181
FABS(s,d,q) Floating-point absolute value 18B
FADD(s,d,q) Floating-point add 182
FBfcc® Branch on floating-point condition codes 16B
FBPfcc Branch on floating-point condition codes with prediction 1p6
FCMP(s,d,q) Floating-point compare 18
FCMPE(s,d,q) Floating-point compare (exception if unordered) 183
FDIV(s,d,q) Floating-point divide 189
FdMULq Floating-point multiply double to quad 184
FiTO(s,d,q) Convert integer to floating-point 18Y
FLUSH Flush instruction memory 191
FLUSHW Flush register windows 193

Table 22—Instruction Set (Continued)

Opcode Name Page
FMOV(s,d,q) Floating-point move 188}
FMOV(s,d,q)cc Move floating-point register if condition is satisfied 213
FMOV(s,d,qy Move f-p reg. if integer reg. contents satisfy condition 217
FMUL(s,.d,q) Floating-point multiply 189
FNEG(s,d,q) Floating-point negate 18§
FsMULd Floating-point multiply single to double 184
FSQRT(s,d,q) Floating-point square root 190
F(s,d,q)TOI Convert floating point to integer 18p
F(s,d,q)TO(s,d,q) Convert between floating-point formats 1B6
F(s,d,q)TOx Convert floating point to 64-bit integer 18
FSUB(s,d,q) Floating-point subtract 18]
FxTO(s,d,q) Convert 64-bit integer to floating-point 187
ILLTRAP lllegal instruction 194
IMPDEP1 Implementation-dependent instruction 195
IMPDEP2 Implementation-dependent instruction 195
JMPL Jump and link 196
LDDP Load doubleword 201
LDDAD: Fasi Load doubleword from alternate space 243
LDDF Load double floating-point 197
LDDFAPssi Load double floating-point from alternate space 199
LDF Load floating-point 197
LDFAPss! Load floating-point from alternate space 190
LDFSRP Load floating-point state register lower 19y
LDQF Load quad floating-point 197
LDQFAP:s! Load quad floating-point from alternate space 199
LDSB Load signed byte 201
LDSBAP:s! Load signed byte from alternate space 243
LDSH Load signed halfword 201
LDSHAPs! Load signed halfword from alternate space 243
LDSTUB Load-store unsigned byte 204
LDSTUBAPs! Load-store unsigned byte in alternate space 27
LDSW Load signed word 201
LDSWAPs! Load signed word from alternate space 243
LDUB Load unsigned byte 201
LDUBA Pasi Load unsigned byte from alternate space 293
LDUH Load unsigned halfword 201
LDUHAPssi Load unsigned halfword from alternate space 293
LDUW Load unsigned word 201
LDUWA Psi Load unsigned word from alternate space 203
LDX Load extended 201
LDXA Pasi Load extended from alternate space 293
LDXFSR Load floating-point state register 19¢
MEMBAR Memory barrier 210
MOVcc Move integer register if condition is satisfied 21

Table 22—Instruction Set (Continued)

Opcode Name Page
MOVr Move integer register on contents of integer register 23
MULScc® Multiply step (and modify condition codes) 228
MULX Multiply 64-bit integers 225
NOP No operation 230
OR (ORcc) Inclusive-or (and modify condition codes) 208
ORN (ORNCcc) Inclusive-or not (and modify condition codes) 2@8
POPC Population count 231}
PREFETCH Prefetch data 232
PREFETCHA®s! Prefetch data from alternate space 232
RDASI Read ASI register 241
RDASR™sR Read ancillary state register 24
RDCCR Read condition codes register 2941
RDFPRS Read floating-point registers state register 341
RDPC Read program counter 241
RDPR’ Read privileged register 238
RDTICKPNeT Read TICK register 241
RDYP Read Y register 241
RESTORE Restore caller’s window 243
RESTORED Window has been restored 24
RETRYP Return from trap and retry 181
RETURN Return 243
SAVE Save caller's window 245
SAVEDP Window has been saved 24
SDIVP (SDIVed) 32-bit signed integer divide (and modify condition codes) 1}s
SDIVX 64-bit signed integer divide 225
SETHI Set high 22 bits of low word of integer register 248
SIR Software-initiated reset 251}
SLL Shift left logical 249
SLLX Shift left logical, extended 249
SMULP (SMULc) Signed integer multiply (and modify condition codes) 246
SRA Shift right arithmetic 249
SRAX Shift right arithmetic, extended 244
SRL Shift right logical 249
SRLX Shift right logical, extended 249
STB Store byte 257
STBAPs! Store byte into alternate space 250
STBARP Store barrier 252
STDP Store doubleword 257
STDAD: Psi Store doubleword into alternate space 247
STDF Store double floating-point 253
STDFAPsS! Store double floating-point into alternate space 2b5
STF Store floating-point 253
STFAPs! Store floating-point into alternate space 295
STFSR Store floating-point state register 25|3

Table 22—Instruction Set (Continued)

Opcode Name Page
STH Store halfword 257
STHAPs! Store halfword into alternate space 259
STQF Store quad floating-point 253
STQFAMs! Store quad floating-point into alternate space 2b5
STW Store word 257
STWAP-s! Store word into alternate space 25p
STX Store extended 257
STXAPs! Store extended into alternate space 2%9
STXFSR Store extended floating-point state register 33
SUB (SUBcc) Subtract (and modify condition codes) 2¢1
SUBC (SUBCcc) Subtract with carry (and modify condition codes) y. il
SWAP Swap integer register with memory 26}
SWAPAD: Frsi Swap integer register with memory in alternate space 364
TADDcc (TADDccTVP) | Tagged add and modify condition codes (trap on overflow) 466
Tcc Trap on integer condition codes 27p
TSUBcc (TSUBccTVY) Tagged subtract and modify condition codes (trap on overfloy 268
UDIVP (UDIVccP) Unsigned integer divide (and modify condition codes) 178
UDIVX 64-bit unsigned integer divide 225
UMULP (UMULccP) Unsigned integer multiply (and modify condition codes) 236
WRASI Write ASI register 275
WRASR™ SR Write ancillary state register 275
WRCCR Write condition codes register 27%
WRFPRS Write floating-point registers state register 2¥5
WRPR’ Write privileged register 273
WRYP Write Y register 275
XNOR (XNORcc) Exclusive-nor (and modify condition codes) 2q8
XOR (XORcc) Exclusive-or (and modify condition codes) 208

A.2 Add

Opcode Op3 Operation
ADD 00 0000 Add
ADDcc 01 0000 Add and modify cc’s
ADDC 00 1000 Add with Carry
ADDCcc 01 1000 Add with Carry and modify cc’s
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
add regs1, reg_or_immregy
addcc regs1, reg_or_immregy
addc regs1, reg_or_immregy
addccc regs1, reg_or_immregy
Description:

ADD and ADDcc compute{rsl] + r[rs2]” if i =0, or “r[rs]] + sign_ext6imm13"if i =1, and
write the sum inta[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit caiog(0) bit; that
is, they compute r{rs1] + r[rs2] + icc.c’ or “r[rs1] + sign_ext6imm13 + icc.C’ and write the
sum intor[rd].

ADDcc and ADDCcc modify the integer condition codes (CcR.and CCRxcg. Overflow
occurs on addition if both operands have the same sign and the sign of the sum is different.

Programming Note:

ADDC and ADDCcc read the 32-bit condition codes’ carry bit (CIE&c), not the 64-bit condition codes’
carry bit (CCRxcc.c).

Compatibility Note:
ADDC and ADDCcc were named ADDX and ADDXcc, respectively, in SPARC-V8.

Exceptions:
(none)5

A.3 Branch on Integer Register with Prediction (BPr)

Register
Opcode rcond Operation contents test
— 000 Reserved —
BRZ 001 Branch on Register Zero rirsl] =0
BRLEZ 010 Branch on Register Less Than or Equal to Zero rirs] <0
BRLZ 011 Branch on Register Less Than Zero rirsl] <0
— 100 Reserved —
BRNZ 101 Branch on Register Not Zero rirsl] #0
BRGZ 110 Branch on Register Greater Than Zero rfrs] >0
BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rsl] =0
Format (2):
00 |a|0O]| rcond 011 diéhi | p rsl d16lo
3130 29 28 27 25 24 22 21 20 19 18 14 13 0

Suggested Assembly Language Syntax
brz {,a {.,pt |,pn} regsy, label
briez {,a ¥{ .pt |,pn} regsy, label
briz {,a {.,pt |pn} regsy, label
brnz {,a { ,pt |,pn } regsy, label
brgz {,a { ,pt |pn} regsy, label
brgez {,a ¥{ ,pt |,pn} regs1, label

Programming Note:
To set the annul bit for BPr instructions, append " to the opcode mnemonic. For example, ubez;a
%i3 ,label” The preceding table indicates that th@ ™ is optional by enclosing it in braces. To set the
branch prediction bit §,” append either /pt " for predict taken or pn ” for predict not taken to the
opcode mnemonic. If neitheygt " nor “,pn " is specified, the assembler shall default,mt”.

Description:

These instructions branch based on the content$ref]. They treat the register contents as a
signed integer value.

A BPr instruction examines all 64 bits ofrs1] according to thecond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the instruction
causes a PC-relative, delayed control transfer to the address “PC + (4 * sigii6hit(]
d16lg).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the annul

bit. If the branch is not taken and the annul &} (s 1, the delay instruction is annulled (not exe-
cuted).

The predict bit f) is used to give the hardware a hint about whether the branch is expected to be
taken. A 1 in thep bit indicates that the branch is expected to be taken; a 0 indicates that the
branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described further in
Chapter 6, “Instructions.”

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) bit and Z (zero) bit, the
following table can be used to determineciindis TRUE:

Branch Test
BRNZ not Z
BRZ Z
BRGEZ not N
BRLZ N
BRLEZ Nor Z
BRGZ not (N or 2)

Exceptions:
illegal_instruction (if rcond= 000, or 10Q)

A.4 Branch on Floating-Point Condition Codes (FBfcc)

The FBfcc instructions are deprecated; they are provided only for compatibify
with previous versions of the architecture. They should not be used in new SPAIRC-
V9 software. It is recommended that the FBPfcc instructions be used in their pifice.

Opcode cond Operation fcc test
FBAP 1000 Branch Always 1
FBNP 0000 Branch Never q
FBUP 0111 Branch on Unordered j]
FBGP 0110 Branch on Greater ;]
FBUGP 0101 Branch on Unordered or Greater oJ
FBLP 0100 Branch on Less
FBULP 0011 Branch on Unordered or Less otU
FBLGP 0010 Branch on Less or Greater oG
FBNEP 0001 Branch on Not Equal dr Gor U
FBEP 1001 Branch on Equal 3
FBUEP 1010 Branch on Unordered or Equal oEU
FBGEP 1011 Branch on Greater or Equal 0EG
FBUGE® 1100 Branch on Unordered or Greater or Equal orGorU
FBLEP 1101 Branch on Less or Equal OE L
FBULEP 1110 Branch on Unordered or Less or Equal orfE or U
FBOP 1111 Branch on Ordered @& LorG

Format (2):
00 |a cond 110 disp22

3130 29 28 25 24 22 21

Suggested Assembly Language Syntax

fba {,a} label

fon {,a} label

fou {,a} label

fbg {,a} label

foug {,a} label

fol {,a} label

foul {,a} label

folg {,a} label

fone {,a} label (synonymfbnz)
fbe {,a} label (synonymfbz)
foue {,a} label

fbge {,a} label

fouge {,a} label

fble {,a} label

foule {,a} label

fbo {,a} label

Programming Note:
To set the annul bit for FBfcc instructions, appena " to the opcode mnemonic. For example, ufid,a
label” The preceding table indicates that tha " is optional by enclosing it in braces .

Description:

Unconditional Branches (FBA, FBN)
If its annul field is 0, an FBN (Branch Never) instruction acts like a NOP. If its annul field
is 1, the following (delay) instruction is annulled (not executed) when the FBN is exe-
cuted. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_extfisp29),” regardless of the value of the floating-point condition code
bits. If the annul field of the branch instruction is 1, the delay instruction is annulled (not
executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches
Conditional FBfcc instructions (except FBA and FBN) evaluate floating-point condition
code zerofeccO according to theondfield of the instruction. Such evaluation produces
either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruction
causes a PC-relative, delayed control transfer to the address
“PC + (4 x sign_extfisp29).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the
value of the annul field. If a conditional branch is not taken andattennul) field is 1, the

delay instruction is annulled (not executed). Note that the annul bit kdifegent effect

on conditional branches than it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further in
Chapter 6, “Instructions.”

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare operation
and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF =0 or PSTATE.PEF =0, or if an FPU is not present, the FBfcc instruction is not
executed and instead, generategadthsabled exception.

Exceptions:
fo_disabled

A.5 Branch on Floating-Point Condition Codes with Prediction

(FBPfcc)

Opcode cond Operation fcc test
FBPA 1000 Branch Always]
FBPN 0000 Branch Never D
FBPU 0111 Branch on Unordered J
FBPG 0110 Branch on Greater G
FBPUG 0101 Branch on Unordered or Greater or®
FBPL 0100 Branch on Less R
FBPUL 0011 Branch on Unordered or Less orLU
FBPLG 0010 Branch on Less or Greater oG
FBPNE 0001 Branch on Not Equal dr Gor U
FBPE 1001 Branch on Equal =
FBPUE 1010 Branch on Unordered or Equal (o](=0]
FBPGE 1011 Branch on Greater or Equal orEs
FBPUGE 1100 Branch on Unordered or Greater or Equal or Gor U
FBPLE 1101 Branch on Less or Equal OEL
FBPULE 1110 Branch on Unordered or Less or Equal orEor U
FBPO 1111 Branch on Ordered OEL or G

Format (2):
00 |a cond 101 [cclccO| p disp19
3130 29 28 25 24 22 21 20 19 18

Condition
ccl[] cco code
00 fccO
01 fccl
10 fcc2
11 fcc3

Suggested Assembly Language Syntax

fba {,a {.,pt |pn} %fcc n, label

fon {,a }{ .pt |pn} %fcc n, label

fou {,a }{.,pt |pn} %fcc n, label

fbg {,a {.pt |pn} %fcc n, label

foug {,a { ,pt |,pn } %fcc n, label

fbl {,a }{.pt |pn} %fcc n, label

foul {,a {,pt |,pn} %fcc n, label

fblg {,a {.pt |.pn} %fcc n, label

fone {,a { ,pt |,pn } %fcc n, label (synonymfbnz)
fbe {,a }{.pt |pn} %fcc n, label (synonymfbz)
foue {,a { ,pt |,pn} %fcc n, label

fbge {,a { .pt |.pn } %fcc n, label

fouge {,a {.pt |,pn} %fcc n, label

fble {,a { .pt |.pn} %fcc n, label

foule {,a H{.pt |,pn} %fcc n, label

fbo {,a }{.pt |pn} %fcc n, label

Programming Note:
To set the annul bit for FBPfcc instructions, append ™ to the opcode mnemonic. For example, use
“fbl,a %fcc3,label . The preceding table indicates that tha " is optional by enclosing it in braces.
To set the branch prediction bit, append eithgt “” (for predict taken) or pn” (for predict not taken) to
the opcode mnemonic. If neitherpt ” nor “,pn ” is specified, the assembler shall default tp t". To
select the appropriate floating-point condition code, incluia#ct0 ", "%fccl ", "%fcc2" , or "%fcc3 "
before the label.

Description:

Unconditional Branches (FBPA, FBPN)
If its annul field is 0, an FBPN (Floating-Point Branch Never with Prediction) instruction
acts like a NOP. If the Branch Never’s annul field is O, the following (delay) instruction is
executed,; if the annul field is 1, the following instruction is annulled (not executed). In no
case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-rela-
tive, delayed control transfer to the address “PC % §ign_ext(lisp19).” If the annul

field of the branch instruction is 1, the delay instruction is annulled (not executed). If the
annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches
Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one of the four float-
ing-point condition coded¢cO, fccl, fccz, fcecd) as selected bgcOandccl, according to
the condfield of the instruction, producing either a TRUE or FALSE result. If TRUE, the
branch is taken, that is, the instruction causes a PC-relative, delayed control transfer to the
address “PC + (4 sign_ext(lisp19).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless of the
value of the annul field. If a conditional branch is not taken andttanul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit défegent effect

on conditional branches than it does on unconditional branches.

The predict bit) is used to give the hardware a hint about whether the branch is expected
to be taken. A 1 in the bit indicates that the branch is expected to be taken. A O indicates

that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described further in
Chapter 6, “Instructions.”

If FPRS.FEF =0 or PSTATE.PEF =0, or if an FPU is not present, an FBPfcc instruction is not
executed and instead, generategadhisabled exception.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare operation

and a floating-point branch (FBfcc, FBPfcc).

Exceptions:
fp_disabled

A.6 Branch on Integer Condition Codes (Bicc)

The Bicc instructions are deprecated; they are provided only for compatibility

previous versions of the architecture. They should not be used in new SPARC/9

software. It is recommended that the BPcc instructions be used in their place.

Opcode | cond Operation icc test
BAP 1000 | Branch Always 1
BNP 0000 | Branch Never (
BNEP 1001 | Branch on Not Equal not Z
BEP 0001 | Branch on Equal 1
BGP 1010 | Branch on Greater not (Z or (N xor V))
BLEP 0010 | Branch on Less or Equal oZ (N xor V)
BGEP 1011 | Branch on Greater or Equal not (N xor V)
BLP 0011 | Branch on Less Xor V
BGUP 1100 | Branch on Greater Unsigned not (Cor 2)
BLEUP 0100 | Branch on Less or Equal Unsigned orZ
BCCP 1101 | Branch on Carry Cle#Greater than or Equal, Unsigned not C
BCS 0101 | Branch on Carry Set (Less than, Unsigned)
BPOS 1110 | Branch on Positive not N
BNEGP | 0110 | Branch on Negative
BvCP 1111 | Branch on Overflow Clear not V
BvSP 0111 | Branch on Overflow Set

Format (2):
00 |a cond 010 disp22

3130 29 28 25 24 22 21 0

Suggested Assembly Language Syntax
ba{,a} label
bn{,a} label
bne{,a} label (synonymbnz)
be{,a} label (synonymbz)
bg{,a} label
ble{,a} label
bge{,a} label
bl{,a} label
bgu{,a} label
bleu{,a} label
bccf,a} label (synonymbgeu)
bcs{,a} label (synonymblu)
bpos{,a} label
bneg{,a} label
bvc{,a} label
bvs{,a} label

Programming Note:
To set the annul bit for Bicc instructions, append " to the opcode mnemonic. For example, ubgu,a
label” The preceding table indicates that the * is optional by enclosing it in braces.
Description:
Unconditional Branches (BA, BN)
If its annul field is 0, a BN (Branch Never) instruction acts like a NOP. If its annul field is
1, the following (delay) instruction is annulled (not executed). In neither case does a trans-
fer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer to the
address “PC + (4 sign_ext@isp22).” If the annul field of the branch instruction is 1, the
delay instruction is annulled (not executed). If the annul field is 0, the delay instruction is
executed.

Icc-Conditional Branches
Conditional Bicc instructions (all except BA and BN) evaluate the 32-bit integer condition
codes icc), according to thecondfield of the instruction, producing either a TRUE or
FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-relative,
delayed control transfer to the address “PC «@gn_ext(lisp29).” If FALSE, the
branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the
value of the annul field. If a conditional branch is not taken andatfenul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit défegent effect

on conditional branches than it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described further in
Chapter 6, “Instructions.”

Exceptions:

(none)

A.7 Branch on Integer Condition Codes with Prediction (BPcc)

Opcode | cond Operation icc test

BPA 1000 | Branch Always]
BPN 0000 | Branch Never)]
BPNE 1001 | Branch on Not Equal not Z
BPE 0001| Branch on Equal 4
BPG 1010| Branch on Greater not (Z or (N xor V))
BPLE 0010 | Branch on Less or Equal OZ (N xor V)
BPGE 1011| Branch on Greater or Equal not (N xor V)
BPL 0011 | Branch on Less kor V
BPGU 1100| Branch on Greater Unsigned not (Cor 2)
BPLEU | 0100| Branch on Less or Equal Unsigned orZ
BPCC 1101| Branch on Carry Cle@reater Than or Equal, Unsigned not C
BPCS 0101| Branch on Carry Set (Less than, Unsigned)

BPPOS | 1110 Branch on Positive not N
BPNEG | 0110| Branch on Negative N
BPVC 1111 | Branch on Overflow Clear not VvV
BPVS 0111| Branch on Overflow Set N

Format (2):
00 |a cond 001 [ccccO| p disp19
3130 29 28 25 24 22 21 20 19 18 0

Condition
ccl[] cco code
00 icc
01 —
10 Xcc
11 —

Suggested Assembly Language Syntax
ba{,a { .pt |.pn} i_or_x_cc label
bn{,a { .pt |pn} i_or_x_cc label (or: iprefetch label)
bne{,a { .pt |pn} i_or_x_cc label (synonymbnz)
be{,a { .pt |pn} i_or_x_cc label (synonymbz)
bg{.a { .pt |.pn} i_or_x_cc label
ble {,a { ,pt |.pn} i_or_x_cc label
bge{,a { .pt |.pn} i_or_x_cc label
bl {,a {.pt |pn} i_or_x_cc label
bgu{,a { .pt |.pn} i_or_x_cc label
bleu {,a { ,pt |,pn} i_or_x_cc label
bce {,a { .pt |.pn} i_or_x_cc label (synonymbgeu)
bes{,a { .pt |.pn} i_or_x_cc label (synonymblu)
bpos{,a { .pt |.pn} i_or_x_cc label
bneg{,a { .,pt |,pn } i_or_x_cc label
bvc {,a { .pt |.pn} i_or_x_cc label
bvs {,a { ,pt |,pn} i_or_x_cc label

Programming Note:

To set the annul bit for BPcc instructions, apperal ™ to the opcode mnemonic. For example, ubgu,a
%icc,label " The preceding table indicates that tha * is optional by enclosing it in braces. To set the
branch prediction bit, append to an opcode mnemonic eitjper ™ for predict taken or jpn " for predict
not taken. If neither,pt " nor “,pn " is specified, the assembler shall default fp t". To select the appro-
priate integer condition code, includ®&itc " or “%xcc” before the label.

Description:
Unconditional Branches (BPA, BPN)

A BPN (Branch Never with Prediction) instruction for this branch typp2= 1) is used

in SPARC-V9 as an instruction prefetch; that is, the effective address (PCx+ (4
sign_extfispl9)) specifies an address of an instruction that is expected to be executed
soon. The processor may use this information to begin prefetching instructions from that
address. Like the PREFETCH instruction, this instruction may be treated as a NOP by an
implementation. If the Branch Never’s annul field is 1, the following (delay) instruction is
annulled (not executed). If the annul field is 0, the following instruction is executed. In no
case does a Branch Never cause a transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed con-
trol transfer to the address “PC + fsign_ext(lisp19)).” If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul field is O, the
delay instruction is executed.

Conditional Branches

Conditional BPcc instructions (except BPA and BPN) evaluate one of the two integer con-
dition codes icc or xco), as selected bgcO andccl, according to theondfield of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken; that

is, the instruction causes a PC-relative, delayed control transfer to the address “RC + (4
sign_ext@ispl9).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless of the
value of the annul field. If a conditional branch is not taken andttanul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit défegent effect

for conditional branches than it does for unconditional branches.

The predict bit) is used to give the hardware a hint about whether the branch is expected
to be taken. A 1 in th@ bit indicates that the branch is expected to be takehindicates
that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described fur-
ther in Chapter 6, “Instructions.”

Exceptions:
illegal_instruction (ccl [] ccO= 01, or 11,

A.8 Call and Link

Opcode op Operation

CALL 01 Call and Link

Format (1):

01 disp30
3130 29 0
Suggested Assembly Language Syntax

call label

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to address
PC + (4% sign_extfisp30). Since the word displacementigp30 field is 30 bits wide, the target
address lies within a range of 2120 +23! — 4 bytes. The PC-relative displacement is formed by
sign-extending the 30-bit word displacement field to 62 bits and appending two low-order zeros to
obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL, into
r[15] (outregister 7). The high-order 32-bits of the PC value storedliB] are implementation-
dependent when PSTATE.AM = 1 (impl. dep. #125). The value writtenrifits] is visible to the
instruction in the delay slot.

Exceptions:
(none)

A.9 Compare and Swap

Opcode op3 Operation
CASAPss! 111100| Compare and Swap Word from Alternate space
CASXAMs! | 111110| Compare and Swap Extended from Alternate space

Format (3):
11 rd op3 rsi i=0 imm_asi rs2
11 rd op3 rsi i=1 — rs2
3130 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
casa [regs1] Imm_asj reggo, regy
casa [regsy] %0asi, reggo, regy
casxa [regs1] Imm_asj reggo, regy
casxa [regs1] %asi, reggo, regy
Description:

These instructions are used for synchronization and memory updates by concurrent processes.
Uses of compare-and-swap include spin-lock operations, updates of shared counters, and updates
of linked-list pointers. The latter two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in registes2] with the doubleword in memory
pointed to by the doubleword addressrims1]. If the values are equal, the value rfrd] is
swapped with the doubleword pointed to by the doubleword addregsi. If the values are not
equal, the contents of the doubleword pointed torpgl] replaces the value in[rd], but the
memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of regigtes2] with a word in memory
pointed to by the word addressiifrs]]. If the values are equal, the low-order 32 bits of register
r[rd] are swapped with the contents of the memory word pointed to by the addrgsslijhand

the high-order 32 bits of registejrd] are set to zero. If the values are not equal, the memory loca-
tion remains unchanged, but the zero-extended contents of the memory word pointadirgd]oy
replace the low-order 32 bits did] and the high-order 32 bits of regist@d] are set to zero.

A compare-and-swap instruction comprises three operations: a load, a compare, and a swap. The
overall instruction is atomic; that is, no intervening interrupts or deferred traps are recognized by
the processor, and no intervening update resulting from a compare-and-swap, swap, load, load-
store unsigned byte, or store instruction to the doubleword containing the addressed location, or
any portion of it, is performed by the memory system.

A compare-and-swap operation doest imply any memory barrier semantics. When compare-
and-swap is used for synchronization, the same consideration should be given to memory barriers
as if a load, store, or swap instruction were used.

A compare-and-swap operation behaves as if it performs a store, either of a new valugrdijom
or of the previous value in memory. The addressed location must be writable, even if the values in
memory and[rs2] are not equal.

If i =0, the address space of the memory location is specified imthre asifield; if i = 1, the
address space is specified in the ASI register.

A mem_address _not_aligned exception is generated if the address[ms1] is not properly aligned.
CASXA and CASA cause privileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI
is zero.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).

Implementation Note:

An implementation might cause an exception due to an error during the store memory access, even though
there was no error during the load memory access.

Programming Note:
Compare and Swap (CAS) and Compare and Swap Extended (CASX) synthetic instructions are available for
“big endian” memory accesses. Compare and Swap Little (CASL) and Compare and Swap Extended Little
(CASXL) synthetic instructions are available for “little endian” memory accesses. See G.3, “Synthetic
Instructions,” for these synthetic instructions’ syntax.

The compare-and-swap instructions do not affect the condition codes.

Exceptions:
privileged_action
mem_address_not_aligned
data_access_exception
data_access MMU_miss
data_access_protection
data_access_error
async_data_error

A.10 Divide (64-bit / 32-bit)

The UDIV, UDIVcce, SDIV, and SDIVcc instructions are deprecated; they are pri§-
vided only for compatibility with previous versions of the architecture. They sho
not be used in new SPARC-V9 software. It is recommended that the UDIVX afd
SDIVX instructions be used in their place.

Opcode op3 Operation
uDIVP 001110 | Unsigned Integer Divide
SDIVP 001111 | Signed Integer Divide

uUDIVccP 011110 | Unsigned Integer Divide and modify cc’s
SDived® 011111 | Signed Integer Divide and modify cc’s

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
udiv reggq, reg_or_imm, reg
sdiv regsq, reg_or_imm, reg
udivce reggq, reg_or_imm, reg
sdivce regsq, reg_or_imm, reg
Description:

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit resuit=10, they
compute “(Y [] lower 32 bits of frs1]) + lower 32 bits of [rs2].” Otherwise (i.e., ifi = 1), the

divide instructions compute “(Y] lower 32 bits of [rs1]) + lower 32 bits ofsign_exts§imm13.”

In either case, if overflow does not occur, the less significant 32 bits of the integer quotient are
sign-or zero-extended to 64 bits and are writtenijrt.

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operation.

Unsigned Divide:

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividendi¢wer
32 bits of [rs1]) and an unsigned integer word divisdoWer 32 bits of frs2] or lower 32 bits of
sign_ext6imm13) and computes an unsigned integer word quotigmdl)). Immediate values in
simml13are in the ranges 0122 1 and 22— 212.2%2—1 for unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero .

Programming Note:
Therational quotient is the infinitely precise result quotient. It includes both the integer part and the frac-
tional part of the result. For example, the rational quotient of 11/4 = 2.75 (Integer part = 2, fractional part
=.75).

The result of an unsigned divide instruction can overflow the low-order 32 bits of the destination
registerr[rd] under certain conditions. When overflow occurs the largest appropriate unsigned
integer is returned as the quotientrijrd]. The condition under which overflow occurs and the
value returned im[rd] under this condition is specified in the following table.

Table 23—UDIV / UDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned inr[rd]
2%2-1
(0000 0000 FFFF FFRE)

Rational quotient 232

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into register
r[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bits as
shown in the following table. Note that negative (N) and zero (Z) are set according to the value of
r[rd] after it has been set to reflect overflow, if any.

Bit UDIVcc
icc.N | Setifr[rd]<31>=1
icc.Z | Setifr[rd]<31:0> =0
icc.V | Setif overflow per table 23
icc.C | Zero
xccN | Setifr[rd]<63>=1
xceZ | Setifr[rd]<63:0>=0
xccV | Zero
xccC | Zero

Signed Divide:

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividendi¢wer 32 bits
of r[rsl]) and a signed integer word divisofo(ver 32 bits of [rs2] or lower 32 bits of
sign_ext6imm13) and computes a signed integer word quotignd]].

Signed division rounds an inexact quotient toward zero. For exampte 4-§quals the rational
guotient of —1.75, which rounds to —1 (not —2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination reqgisker

under certain conditions. When overflow occurs the largest appropriate signed integer is returned
as the quotient im[rd]. The conditions under which overflow occurs and the value returned in
r[rd] under those conditions are specified in the following table.

Table 24—SDIV / SDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned inr[rd]
31
. . 31 2>--1
Rational quotient 2 (0000 0000 7FFF FFRE
31
. . _ 31_ _2
Rational quotienk -2°--1 (FEFF FEFF 8000 0009

When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into register
r[rd].
SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bits as

shown in the following table. Note that negative (N) and zero (Z) are set according to the value of
r[rd] after it has been set to reflect overflow, if any.

Bit SDIVce
icc.N | Setifr[rd]<31>=1
icc.Z | Setifr[rd]<31:0> =0
icc.V | Setif overflow per table 24
icc.C | Zero
xccN | Setifr[rd]<63]>=1
xccZ | Setifr[rd]<63:0>=0
xccV | Zero
xccC | Zero

Exceptions:
division_by zero

A.11 DONE and RETRY

Opcode op3 fcn Operation
DONEP 111110 0 Return from Trap (skip trapped instruction)
RETRYP 111110 1 Return from Trap (retry trapped instruction)
— 111110 | 2..31| Reserved
Format (3):
10 fcn op3 —
3130 29 25 24 19 18
Suggested Assembly Language Syntax
done
retry
Description:

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI, CCR, and

PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by settingTHRC[TL]
(the saved value of PC on trap) and nPCNPCJTL] (the saved value of nPC on trap).

The DONE instruction skips the trapped instruction by setting -PNPC[TL] and

nPC~ TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruction pro-

duces undefined results.

Programming Note:

The DONE and RETRY instructions should be used to return from privileged trap handlers.

Exceptions:

privileged _opcode
illegal_instruction (if TL =0 or fcn=2..31)

A.12 Floating-Point Add and Subtract

Opcode op3 opf Operation
FADDs 11 0100| 001000001 Add Single
FADDd 11 0100| 001000010 Add Double
FADD(q 110100| 001000011 Add Quad
FSUBs 110100 00100010 Subtract Single
FSUBd 11 0100; 00100011p Subtract Double
FSUBq 110100 00100011yl Subtract Quad

=)

(=)

Format (3):
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax

fadds fregsy, fregsy, fregq
faddd fregsy, fregsy, fregy
faddq fregsy, fregsy, fregq
fsubs fregsy, fregsy, fregy
fsubd fregsy, fregsy, fregq
fsubq fregsy, fregsy, fregy

Description:

The floating-point add instructions add the floating-point register(s) specified bylfield and
the floating-point register(s) specified by tte2 field, and write the sum into the floating-point
register(s) specified by thd field.

The floating-point subtract instructions subtract the floating-point register(s) specified ts2the
field from the floating-point register(s) specified by tisé field, and write the difference into the
floating-point register(s) specified by trakefield.

Rounding is performed as specified by the FSR.RD field.

Exceptions:
fp_disabled
fo_exception_ieee_754 (OF, UF, NX, NV)
fo_exception_other (invalid_fp_register (only FADDQ and FSUBQ))

A.13 Floating-Point Compare

Opcode op3 opf Operation
FCMPs 110101} 00101 000L Compare Single
FCMPd 110101 00101001p Compare Double
FCMPq 110101 001010011 Compare Quad
FCMPEs | 110101 00101010 Compare Single and Exception if Unordgred
FCMPEd | 110101 001010110 Compare Double and Exception if Unordered
FCMPEq | 110101 001010111 Compare Quad and Exception if Unordefed
Format (3):
10 000 |cclfccO op3 rsl opf rs2
31 30 29 27 26 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fcmps %fcc n, fregg, fregss
fcmpd %fcc n, fregsy, fregso
fcmpq %fcc n, freggq, fregso
fcmpes %fcc n, freggq, fregso
fcmped %fce n, freggq, fregsy
fcmpeq %fcc n, fregsy, fregrsz
ccl[] cco Coggcljtéon
00 fccO
01 fccl
10 fcc2
11 fcc3
Description:

These instructions compare the floating-point register(s) specified bglteld with the float-
ing-point register(s) specified by ths2 field, and set the selected floating-point condition code
(fcc n) according to the following table:

Relation

fregsy = fregrso
freg.s1 < fregyso

fregrs1 > fregrso
fregs1 ? fregso (Unordered

fcc value
0

1
2
3

The “?” in the above table indicates that the comparison is unordered. The unordered condition
occurs when one or both of the operands to the compare is a signaling or quiet NaN.

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEQ) instruc-
tions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signaling NaN.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare operation
and a floating-point branch (FBfcc, FBPfcc).

Compatibility Note:
SPARC-V8 floating-point compare instructions are required to have a zero ifrdjéield. In SPARC-V9,
bits 26 and 25 of the[rd] field are used to specify the floating-point condition code to be set. Legal SPARC-
V8 code will work on SPARC-V9 because the zeroes inhd] field are interpreted agcO , and the
FBfcc instruction branches basedfon0 .

Exceptions:
fp_disabled
fo_exception_ieee_754 (NV)
fo_exception_other (invalid_fp_register (FCMPq, FCMPE(q only))

A.14 Convert Floating-Point to Integer

Opcode op3 opf Operation
FsTOXx 110100, 010000001 Convert Single to 64-bit Integpr
FATOx 110100 010000010 Convert Double to 64-bit Integer
FgQTOXx 110100 010000011 Convert Quad to 64-bit Integey
FsTOi 110100 011010001 Convert Single to 32-bit Integgr
FdTOIi 110100 011010019 Convert Double to 32-bit Inteder
FqTOi 110100| 011010011 Convert Quad to 32-bit Integey
Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4
Suggested Assembly Language Syntax|
fstox fregso fregy
fdtox fregso fregy
fgtox fregso fregy
fstoi fregso fregy
fdtoi fregso fregy
fgtoi fregso, fregy
Description:

FsTOx, FdTOx, and FqQTOx convert the floating-point operand in the floating-point register(s)
specified bys2 to a 64-bit integer in the floating-point register(s) specifiediby

FsTOi, FdTOI, and FqQTOi convert the floating-point operand in the floating-point register(s) spec-

ified byrs2to a 32-bit integer in the floating-point register specifieddby

The result is always rounded toward zero; that is, the rounding direction (RD) field of the FSR

register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the specified size,
or is a NaN or infinity, an invalid (NV) exception occurs. The value written into the floating-point
register(s) specified kg in these cases is defined in B.5, “Integer Overflow Definition.”

Exceptions:

fo_disabled
fo_exception_ieee_754 (NV, NX)
fo_exception_other (invalid_fp_register (FQTOIi, FQTOXx only))

A.15 Convert Between Floating-Point Formats

Opcode op3 opf Operation
FsTOd 11 0100; 01100 100 Convert Single to Douple
FsTOq 110100 01100110 Convert Single to Qualj
FdTOs | 110100/ 011000119 Convert Double to Sinjle
FdTOg | 110100 011001110 Convert Double to Quid
FgqTOs | 110100{ 011000111 Convert Quad to Singlp
FgTOd | 110100 01100101 Convert Quad to Doulje

=TT O T O =T

Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax

fstod fregso fregy
fstoq fregso, fregy
fdtos fregso fregy
fdtoq fregso fregy
fgtos fregso fregy
fgtod fregso, fregy

Description:

These instructions convert the floating-point operand in the floating-point register(s) specified by
rs2 to a floating-point number in the destination format. They write the result into the floating-
point register(s) specified lvg.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FgTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF, and NX
exceptions. FATOQ, FsTOq, and FsTOd (the “widening” conversion instructions) cannot.

Any of these six instructions can trigger an NV exception if the source operand is a signaling
NaN.

B.2.1, “Untrapped Result in Different Format from Operands,” defines the rules for converting
NaNs from one floating-point format to another.

Exceptions:
fp_disabled
fo_exception_ieee_754 (OF, UF, NV, NX)
fo_exception_other (invalid_fp_register) (FSTOq, FATOq, FqTOs, FqTOd)

A.16 Convert Integer to Floating-Point

FxTOs, FXTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point regis-
ter(s) specified bys2 into a floating-point number in the destination format. The source register,
floating-point register(s) specified g2, must be an even-numbered (that is, double-precision)

floating-point register.

FiTOs, FiITOd, and FiTOq convert the 32-bit signed integer operand in floating-point register(s)
specified byrs2 into a floating-point number in the destination format. All write their result into

the floating-point register(s) specified flay
FiTOs, FxXTOs, and FxTOd round as specified by the FSR.RD field.

Exceptions:

fp_disabled
fo_exception_ieee_754 (NX (FITOs, FXTOs, FXTOd only))
fo_exception_other (invalid_fp_register (FiTOq, FXTOQq only))

Opcode op3 opf Operation
FxTOs 11 0100 010000100 Convert 64-bit Integer to Single
FxTOd 11 0100 01000 1000 Convert 64-bit Integer to Double
FXTOq 11 0100 010001100 Convert 64-bit Integer to Quad
FiTOs 11 0100 011000100 Convert 32-bit Integer to Single
FiTOd 11 0100 01100 1000; Convert 32-bit Integer to Double
FiTOq 11 0100 01100 1100] Convert 32-bit Integer to Quad
Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4
Suggested Assembly Language Syntax
fxtos fregso fregy
fxtod fregso fregy
fxtoq fregso fregy
fitos fregso fregy
fitod fregso fregy
fitoq fregso, fregy
Description:

A.17 Floating-Point Move

Opcode op3 opf Operation
FMOVs | 110100| 000000001 Move Single
FMOVd | 110100| 000000010 Move Double
FMOVqg | 110100| 000000011 Move Quad

FNEGs 11 0100 00000010l Negate Single

FNEGd 110100 000000110 Negate Double

FNEGq | 110100/ 00000011f Negate Quad

FABSs 110100{ 000001008 Absolute Value Singke

FABSd 11 0100| 000001010 Absolute Value Douljle

FABSq 110100| 000001011 Absolute Value Quad

Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fmovs fregso fregy
fmovd freggo, fregy
fmovq fregso fregy
fnegs freggo, fregy
fnegd fregso fregy
fnegq freggo, fregy
fabss fregso fregy
fabsd freggo, fregy
fabsq fregrsz, fregyq
Description:

The single-precision versions of these instructions copy the contents of a single-precision float-
ing-point register to the destination. The double-precision forms copy the contents of a double-
precision floating-point register to the destination. The quad-precision versions copy a quad-pre-
cision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.
FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Exceptions:
fp_disabled
fo_exception_other (invalid_fp_register(FMOV(q, FNEGq, FABSq only))

A.18 Floating-Point Multiply and Divide

Opcode op3 opf Operation
FMULs 11 0100| 001001001 Multiply Single
FMULd 110100| 00100101Q Multiply Double
FMULq 110100 001001011 Multiply Quad
FsMULd 11 0100| 001101001 Multiply Single to Doublg
FdMUL(q 110100| 001101110 Multiply Double to Quad

FDIVs 110100 001001101 Divide Single
FDIvd 110100| 00100111Q Divide Double
FDIVq 110100| 001001111 Divide Quad
Format (3):
10 rd op3 rsl opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax
fmuls fregsy, fregsy, fregy
fmuld fregsy, fregsy, fregy
fmulg fregsy, fregsy, fregy
fsmuld fregsy, fregsy, fregy
fdmulq fregsy, fregsy, fregy
fdivs fregsy, fregsy, fregy
fdivd fregsy, fregsy, fregy
fdivqg fregsy, fregsy, fregy
Description:

The floating-point multiply instructions multiply the contents of the floating-point register(s)
specified by thes1 field by the contents of the floating-point register(s) specified byshé&eld,
and write the product into the floating-point register(s) specified b theld.

The FsMULd instruction provides the exact double-precision product of two single-precision
operands, without underflow, overflow, or rounding error. Similarly, FAMULQ provides the exact
guad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s) specified
by thers1field by the contents of the floating-point register(s) specified bydhéeld, and write
the quotient into the floating-point register(s) specified bydHeld.

Rounding is performed as specified by the FSR.RD field.

Exceptions:
fp_disabled
fo_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)
fo_exception_other (invalid_fp_register (FMULQ, FAMULQq, and FDIVq only))

A.19 Floating-Point Square Root

Opcode op3 opf Operation
FSQRTs 110100, 000101001 Square Root Single
FSQRTd 110100 00010101p Square Root Doubl¢
FSQRTq 110100f 000101011 Square Root Quad

Format (3):
10 rd op3 — opf rs2
31 30 29 25 24 19 18 14 13 5 4 0
Suggested Assembly Language Syntax

fsgrts fregso fregy
fsqrtd freg.so fregy
fsgrtq fregso, fregy

Description:

These instructions generate the square root of the floating-point operand in the floating-point reg-
ister(s) specified by thes2 field, and place the result in the destination floating-point register(s)
specified by thed field.

Rounding is performed as specified by the FSR.RD field.

Implementation Note:
See <ltalic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-
ment available from SPARC International, for information on whether the FSQRT instructions are imple-
mented in hardware or software in the various SPARC-V9 implementations.

Exceptions:
fp_disabled
fo_exception_ieee_754 (IEEE_754_exception (NV, NX))
fo_exception_other (invalid_fp_register (FSQRTQ))

A.20 Flush Instruction Memory

Opcode op3 Operation
FLUSH 111011 | Flush Instruction Memory

Format (3):

10 — op3 rsl i=0 — rs2

10 — op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
flush address

Description:

FLUSH ensures that the doubleword specified as the effective address is consistent across any
local caches and, in a multiprocessor system, will eventually become consistent everywhere.

In the following discussion R sy refers to the processor that executed the FLUSH instruction.
FLUSH ensures that instruction fetches from the specified effective address Jay, Bppear to
execute after any loads, stores, and atomic load-stores to that address isspedpgrfor to the
FLUSH. In a multiprocessor system, FLUSH also ensures that these values will eventually
become visible to the instruction fetches of all other processors. FLUSH behaves as if it were a
store with respect to MEMBAR-induced orderings. See A.32, “Memory Barrier.”

FLUSH operates on at least the doubleword containing the addressed location.

The effective address operand for the FLUSH instruction nfgsl] + r[rs2]” if i=0, or

“r[rs1] + sign_ext6imm13” if i = 1. The least significant two address bits of the effective address

are unused and should be supplied as zeros by software. Bit 2 of the address is ignored, because
FLUSH operates on at least a doubleword.

Programming Notes:
(1) Typically, FLUSH is used in self-modifying code. See H.1.6, “Self-Modifying Code,” for information about
use of the FLUSH instruction in portable self-modifying code. The use of self-modifying code is discour-
aged.

(2) The order in which memory is modified can be controlled by using FLUSH and MEMBAR instructions
interspersed appropriately between stores and atomic load-stores. FLUSH is needed only between a store
and a subsequent instruction fetch from the modified location. When multiple processes may concurrently
modify live (that is, potentially executing) code, care must be taken to ensure that the order of update main-
tains the program in a semantically correct form at all times.

(3) The memory model guarantees in a uniprocessodduatioads observe the results of the most recent store,
even if there is no intervening FLUSH.

(4) FLUSH may be time-consuming. Some implementations may trap rather than implement FLUSH in hard-
ware. In a multiprocessor configuration, FLUSH requires all processors that may be referencing the
addressed doubleword to flush their instruction caches, a potentially disruptive activity.

(5) In a multiprocessor system, the time it takes for a FLUSH to take effect is implementation-dependent (impl.
dep. #122). No mechanism is provided to ensure or test completion.

(6) Because FLUSH is designed to act on a doubleword, and because, on some implementations, FLUSH may
trap to system software, it is recommended that system software provide a user-callable service routine for
flushing arbitrarily sized regions of memory. On some implementations, this routine would issue a series of
FLUSH instructions; on others, it might issue a single trap to system software that would then flush the

entire region.

Implementation Notes:

(1) IMPL. DEP. #42: If FLUSH is not implemented in hardware, it causes an illegal_instruction excep-
tion and the function of FLUSH is performed by system software. Whether FLUSH traps is imple-
mentation-dependent.

(2) The effect of a FLUSH instruction as observed frop Ry is immediate. Other processors in a multipro-
cessor system eventually will see the effect of the FLUSH, but the latency is implementation-dependent
(impl. dep. #122).

Exceptions:
(none)

A.21 Flush Register Windows

Opcode op3 Operation
FLUSHW 101011 | Flush Register Windows

Format (3):
10 — op3 — i=0 —
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntax
flushw
Description:

FLUSHW causes all active register windows except the current window to be flushed to memory
at locations determined by privileged software. FLUSHW behaves as a NOP if there are no active
windows other than the current window. At the completion of the FLUSHW instruction, the only
active register window is the current one.

Programming Note:
The FLUSHW instruction can be used by application software to switch memory stacks or examine register

contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS - 2. Otherwise, there is more than one
active window, so FLUSHW causes a spill exception. The trap vector for the spill exception is
based on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with the
CWP set to the window to be spilled (that is, (CWIEANSAVE + 2) mod NWINDOWS). See
6.3.6, “Register Window Management Instructions.”

Programming Note:
Typically, the spill handler will save a window on a memory stack and return to reexecute the FLUSHW

instruction. Thus, FLUSHW will trap and reexecute until all active windows other than the current window
have been spilled.

Exceptions:
spill_n_normal
spill_n_other

A.22 lllegal Instruction Trap

Opcode op op2 Operation
ILLTRAP 00 000 illegal_instruction trap
Format (2):
00 — 000 const22
3130 29 25 24 22 21 0
Suggested Assembly Language Syntax
illtrap const22

Description:

The ILLTRAP instruction causes altegal_instruction exception. Theonst22value is ignored by
the hardware; specifically, this fieldnst reserved by the architecture for any future use.

Compatibility Note:
Except for its name, this instruction is identical to the SPARC-V8 UNIMP instruction.

Exceptions:
illegal_instruction

A.23 Implementation-Dependent Instructions

Opcode op3 Operation
IMPDEP1 110110 | Implementation-Dependent Instruction 1
IMPDEP2 110111 | Implementation-Dependent Instruction 2

Format (3):

10 impl-dep op3 impl-dep

31 30 29 25 24 19 18 0

Description:

IMPL. DEP. #106: The IMPDEP1 and IMPDEP?2 instructions are completely implementation-dependent.
Implementation-dependent aspects include their operation, the interpretation of bits 29..25 and 18..0 in
their encodings, and which (if any) exceptions they may cause.

See 1.1.2, “Implementation-Dependent and Reserved Opcodes,” for information about extending
the SPARC-V9 instruction set using the implementation-dependent instructions.

Compatibility Note:
These instructions replace the CRapstructions in SPARC-V8.

Exceptions:
illegal_instruction (if the implementation does not define the instructions)
implementation-dependent (if the implementation defines the instructions)

A.24 Jump and Link

Opcode op3 Operation
JMPL 11 1000 Jump and Link
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
jmpl address, regy
Description:

The JMPL instruction causes a register-indirect delayed control transfer to the address given by
“r[rs1] + r[rs2]” if i field =0, or ‘t[rs1] + sign_ext6imm13” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction, into
registerr[rd]. The high-order 32-bits of the PC value stored|ird] are implementation-depen-
dent when PSTATE.AM =1 (impl. dep. #125). The value written infal] is visible to the
instruction in the delay slot.

If either of the low-order two bits of the jump address is nonzerejean_address not_aligned
exception occurs.

Programming Note:
A JMPL instruction withrd = 15 functions as a register-indirect call using the standard link register.

JMPL withrd = 0 can be used to return from a subroutine. The typical return addreg813 + 8,” if a
nonleaf routine (one that uses the SAVE instruction) is entered by a CALL instruction[1&] + 8" if a

leaf routine (one that does not use the SAVE instruction) is entered by a CALL instruction or by a JMPL
instruction withrd = 15.

Exceptions:
mem_address _not_aligned

A.25 Load Floating-Point

The LDFSR instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the LDXFSR instruction be used in its place.

Opcode op3 rd Operation
LDF 10000 | 0..31 | Load Floating-Point Register
0
LDDF 10 001 T Load Double Floating-Point Register
1
LDQF 10 001 T Load Quad Floating-Point Register
0
LDFSR 10 000 0 Load Floating-Point State Register Lower
1
LDXFSR 10 000 1 Load Floating-Point State Register
1
— 10000 | 2..31 | Reserved
1
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Id [addres$ fregyq
Idd [addres$ fregy
Idg [addres$ fregyq
Id [addres} %fsr
ldx [addres$ %fsr
Description:

The load single floating-point instruction (LDF) copies a word from memoryf|irdp

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword from
memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from memory
into a quad-precision floating-point register.

The load floating-point state register lower instruction (LDFSR) waits for all FPop instructions
that have not finished execution to complete, and then loads a word from memory into the lower
32 bits of the FSR. The upper 32 bits of FSR are unaffected by LDFSR.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions that
have not finished execution to complete, and then loads a doubleword from memory into the FSR.

Compatibility Note:
SPARC-V9 supports two different instructions to load the FSR; the SPARC-V8 LDFSR instruction is
defined to load only the lower 32 bits into the FSR, whereas LDXFSR allows SPARC-V9 programs to load
all 64 bits of the FSR.

Load floating-point instructions access the primary address space (AS))= 8Bhe effective
address for these instructions §r81] + r[rs2]” if i =0, or r[rs1] + sign_ext6imm13”if i = 1.

LDF, LDFSR, LDDF, and LDQF cause mem_address_not_aligned exception if the effective
memory address is not word-aligned; LDXFSR causesra_address_not_aligned exception if the
address is not doubleword-aligned. If the floating-point unit is not enabled (per FPRS.FEF and
PSTATE.PEF), or if no FPU is present, a load floating-point instruction causes dsabled
exception.

IMPL. DEP. #109(1). LDDF requires only word alignment. However, if the effective address is word-aligned
but not doubleword-aligned, LDDF may cause an LDDF _mem_address _not_aligned exception. In this
case the trap handler software shall emulate the LDDF instruction and return.

IMPL. DEP. #111(1): LDQF requires only word alignment. However, if the effective address is word-aligned
but not quadword-aligned, LDQF may cause an LDQF _mem_address _not_aligned exception. In this case
the trap handler software shall emulate the LDQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not determine
that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of misaligned
loads is expected to be fast, it is recommended that compilers issue sets of single-precision loads only when
they can determine that double- or quadword operandmagproperly aligned.

Implementation Note:
IMPL. DEP. #44: If a load floating-point instruction traps with any type of access error, the contents
of the destination floating-point register(s) remain unchanged or are undefined.

Exceptions:
async_data_error
illegal_instruction (0p3=21;¢ andrd = 2..31)
fp_disabled
LDDF_mem_address_not_aligned (LDDF only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQF only) (impl. dep. #111)
fo_exception_other (invalid_fp_register (LDQF only))
mem_address _not_aligned
data_access MMU_miss
data_access_exception

data_access_error
data_access_protection

A.26 Load Floating-Point from Alternate Space

Opcode op3 rd Operation
LDFAPss! 11000 | 0..31 | Load Floating-Point Register from Alternate space
0
LDDFAPss! 11001 T Load Double Floating-Point Register from Alternate space
1
LDQFAP:s! 11001 T Load QuadFloating-Point Register from Alternate space
0
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
Ida [regadd] imm_asi, fregy
Ida [reg_plus_imrh %asi , fregg
ldda [regadd] imm_asi, fregy
ldda [reg_plus_imrh %asi , fregy
ldga [regadd] imm_asi, fregy
ldga [reg_plus_imrh %asi , fregy

Description:

The load single floating-point from alternate space instruction (LDFA) copies a word from mem-
ory intof[rd].

The load doubleword floating-point from alternate space instruction (LDDFA) copies a word-
aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) copies a word-aligned
guadword from memory into a quad-precision floating-point register.

Load floating-point from alternate space instructions contain the address space identifier (ASI) to
be used for the load in thenm_asifield if i = 0, or in the ASI register if = 1. The access is privi-
leged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for these
instructions is f[rs1] + r[rs2]” if i =0, or “r[rs1] + sign_ext6imm13"if i = 1.

LDFA, LDDFA, and LDQFA cause anem_address_not_aligned exception if the effective memory
address is not word-aligned; If the floating-point unit is not enabled (per FPRS.FEF and
PSTATE.PEF), or if no FPU is present, load floating-point from alternate space instructions cause
an fp_disabled exception. LDFA, LDDFA and LDQFA cause parivileged action exception if
PSTATE.PRIV =0 and bit 7 of the ASl is zero.

IMPL. DEP. #109(2): LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, LDDFA may cause an LDDF _mem_address not_aligned exception.
In this case the trap handler software shall emulate the LDDF instruction and return.

IMPL. DEP. #111(2): LDQFA requires only word alignment. however, if the effective address is word-
aligned but not quadword-aligned, LDQFA may cause an ldqf_mem_address _not_aligned exception. In
this case the trap handler software shall emulate the LDQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not determine
that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of mis-aligned
loads is expected to be fast, it is recommended that compilers issue sets of single-precision loads only when
they can determine that double- or quadword operandwaproperly aligned.

Implementation Note:
If a load floating-point instruction traps with any type of access error, the destination floating-point regis-
ter(s) either remain unchanged or are undefined. (impl. dep. #44)

Exceptions:
async_data_error
fp_disabled
LDDF_mem_address_not_aligned (LDDFA only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQFA only) (impl. dep. #111)
fo_exception_other (invalid_fo_register (LDQFA only))
mem_address _not_aligned
privileged_action
data_access MMU_miss
data_access_exception

data_access_error
data_access_protection

A.27 Load Integer

The LDD instruction is deprecated; it is provided only for compatibility with previ
ous versions of the architecture. It should not be used in new SPARC-V9 softwie.
It is recommended that the LDX instruction be used in its place.

Opcode op3 Operation
LDSB 00 1001 | Load Signed Byte
LDSH 001010 | Load Signed Halfword
LDSW 00 1000 | Load Signed Word
LDUB 000001 | Load Unsigned Byte
LDUH 000010 | Load Unsigned Halfword
LDUW 00 0000 | Load Unsigned Word
LDX 001011 | Load Extended Word
LDDP 000011 | Load Doubleword
Format (3):
11 rd op3 rsi i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Idsb [addres$ regy
Idsh [addres$ regy
Idsw [addres$ regy
Idub [addres$ regy
Iduh [addres$ regy
l[duw [addres$ regy (synonymld)
ldx [addres$ regy
ldd [addres$ regy
Description:

The load integer instructions copy a byte, a halfword, a word, an extended word, or a doubleword
from memory. All except LDD copy the fetched value infad]. A fetched byte, halfword, or

word is right-justified in the destination registdrd]; it is either sign-extended or zero-filled on

the left, depending on whether the opcode specifies a signed or unsigned operation, respectively.

The load doubleword integer instructions (LDD) copy a doubleword from memory intoegis-
ter pair. The word at the effective memory address is copied into therenegyister. The word at

the effective memory address + 4 is copied into the following odd-numbenegister. The upper

32 bits of both the even-numbered and odd-numbenegjisters are zero-filled. Note that a load
doubleword withrd = 0 modifies onlyr[1]. The least significant bit of thed field in an LDD
instruction is unused and should be set to zero by software. An attempt to execute a load double-
word instruction that refers to a misaligned (odd-numbered) destination register causes an
illegal_instruction exception.

IMPL. DEP. #107(1): It is implementation-dependent whether LDD is implemented in hardware. If not, an
attempt to execute it will cause an unimplemented_Ildd exception.

Load integer instructions access the primary address space (AS})=Ble effective address is
“r[rs1] + r[rs2]” if i =0, or “r[rs]] + sign_ext6imm13"if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates atomically.

LDUH and LDSH cause anem_address_not_aligned exception if the address is not halfword-
aligned. LDUW and LDSW causerem_address_not_aligned exception if the effective address is
not word-aligned. LDX and LDD causerm@em_address_not_aligned exception if the address is not
doubleword-aligned.

Programming Note:
LDD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines because
of data path and register-access difficulties. In some systems it may trap to emulation code. It is suggested
that programmers and compilers avoid using these instructions.

If LDD is emulated in software, an LDX instruction should be used for the memory access in order to pre-
serve atomicity.

Compatibility Note:
The SPARC-V8 LD instruction has been renamed LDUW in SPARC-V9. The LDSW instruction is new in
SPARC-V9.

Exceptions:
async_data_error
unimplemented_LDD (LDD only (impl. dep. #107))
illegal_instruction (LDD with oddrd)
mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception
data_access_protection
data_access MMU_miss
data_access_error

A.28 Load Integer from Alternate Space

The LDDA instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the LDXA instruction be used in its place.

Opcode op3 Operation
LDSBAPss! 011001 Load Signed Byte from Alternate space
LDSHAPs! 011010 | Load Signed Halfword from Alternate space
LDSWAPs! 011000 | Load Signed Word from Alternate space
LDUBA Pssi 010001 | Load Unsigned Byte from Alternate space
LDUHA Pasi 010010 | Load Unsigned Halfword from Alternate spafe
LDUWA Pssi 01 0000 | Load Unsigned Word from Alternate space
LDXA Pasi 011011 | Load Extended Word from Alternate space
LDDADP: Psi 01 0011 | Load Doubleword from Alternate space
Format (3):
11 rd op3 rsi i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4
Suggested Assembly Language Syntax

Idsba [regadd] imm_asijreg g

Idsha [regadd] imm_asijreg g

[dswa [regadd] imm_asjregq

Iduba [regadd] imm_asijregq

[duha [regadd] imm_asijreg g

[duwa [regadd] imm_asjregq (synonymida)

ldxa [regadd] imm_asjreg g

ldda [regadd] imm_asijreg g

Idsba [reg_plus_imrh %asi , reg g4

Idsha [reg_plus_imrh %asi , reg g4

[dswa [reg_plus_imrh %asi, regq

Iduba [reg_plus_imrh %asi , reg g4

[duha [reg_plus_imrh %asi , reg g4

[duwa [reg_plus_imrh %asi, regq (synonymida)

ldxa [reg_plus_imrh %asi , reg g4

ldda [reg_plus_imrh %asi , reg g4

Description:

The load integer from alternate space instructions copy a byte, a halfword, a word, an extended
word, or a doubleword from memory. All except LDDA copy the fetched value iftd]. A
fetched byte, halfword, or word is right-justified in the destination regigtel; it is either sign-
extended or zero-filled on the left, depending on whether the opcode specifies a signed or
unsigned operation, respectively.

The load doubleword integer from alternate space instruction (LDDA) copies a doubleword from
memory into arr-register pair. The word at the effective memory address is copied into the even
register. The word at the effective memory address + 4 is copied into the following odd-numbered
r register. The upper 32 bits of both the even-numbered and odd-numbezgisters are zero-

filled. Note that a load doubleword witid = 0 modifies onlyr[1]. The least significant bit of the

rd field in an LDDA instruction is unused and should be set to zero by software. An attempt to
execute a load doubleword instruction that refers to a misaligned (odd-numbered) destination reg-
ister causes atlegal_instruction exception.

IMPL. DEP. #107(2): It is implementation-dependent whether LDDA is implemented in hardware. If not, an
attempt to execute it will cause an unimplemented _Idd exception.

The load integer from alternate space instructions contain the address space identifier (ASI) to be
used for the load in thenm_asifield if i = 0, or in the ASI register if = 1. The access is privi-

leged if bit seven of the ASl is zero; otherwise, it is not privileged. The effective address for these
instructions is f[rs1] + r[rs2]” if i =0, or ‘r[rs1] + sign_ext6imm13" if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates atomically.

LDUHA, and LDSHA cause anem_address_not_aligned exception if the address is not halfword-
aligned. LDUWA and LDSWA cause aem address not _aligned exception if the effective
address is not word-aligned; LDXA and LDDA causei@n_address_not_aligned exception if the
address is not doubleword-aligned.

These instructions causepavileged action exception if PSTATE.PRIV = 0 and bit 7 of the ASl is
Zero.

Programming Note:
LDDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines
because of data path and register-access difficulties. In some systems it may trap to emulation code. It is sug-
gested that programmers and compilers avoid using this instruction.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access in order to
preserve atomicity.

Compatibility Note:
The SPARC-V8 instruction LDA has been renamed LDUWA in SPARC-V9. The LDSWA instruction is new
in SPARC-V9.

Exceptions:
async_data_error
privileged_action
unimplemented_LDD (LDDA only (impl. dep. #107))
illegal_instruction (LDDA with oddrd)
mem_address_not_aligned (all except LDSBA and LDUBA)

data_access_exception
data_access_protection

data_access MMU_miss
data_access_error

A.29 Load-Store Unsigned Byte

Opcode op3 Operation
LDSTUB 001101 | Load-Store Unsigned Byte

Format (3):

11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Idstub [addres} regy

Description:

The load-store unsigned byte instruction copies a byte from memory/[iatlp and then rewrites
the addressed byte in memory to all ones. The fetched byte is right-justified in the destination reg-
isterr[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined but serial order.

The effective address for these instructions isr[rs1]+r[rs2]” if 1=0, or
“r[rs1] + sign_ext6imm13" if i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).

Exceptions:
async_data_error
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss

A.30 Load-Store Unsigned Byte to Alternate Space

Opcode op3 Operation
LDSTUBAPMsI 011101 | Load-Store Unsigned Byte into Alternate spade
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
Idstuba [regaddi imm_asj regyq
Idstuba [reg_plus_imrh %asi, reggy
Description:

The load-store unsigned byte into alternate space instruction copies a byte from memory into
r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is right-justified in
the destination registefrd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or deferred
traps. In a multiprocessor system, two or more processors executing LDSTUB, LDSTUBA,
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doubleword
simultaneously are guaranteed to execute them in an undefined, but serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load imtheasifield

if i =0, or in the ASI register if = 1. The access is privileged if bit seven of the ASlI is zero; oth-
erwise, it is not privileged. The effective address is[rsl]+r[rs2]” if i=0, or
“r[rs1] + sign_ext6imm13” if i = 1.

LDSTUBA causes arivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASl is zero.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).

Exceptions:
async_data_error
privileged_action
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss

A.31 Logical Operations

Opcode op3 Operation
AND 00 0001 And
ANDcc 01 0001 And and modify cc’s
ANDN 000101 And Not
ANDNcc 010101 And Not and modify cc’s
OR 00 0010 Inclusive Or
ORcc 01 0010 Inclusive Or and modify cc’s
ORN 000110 Inclusive Or Not
ORNCcc 010110 Inclusive Or Not and modify cc’
XOR 000011 Exclusive Or
XORcc 01 0011 Exclusive Or and modify cc’s
XNOR 000111 Exclusive Nor
XNORcc 010111 Exclusive Nor and modify cc’s
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
and regsq, reg_or_imm regy
andcc regsy, reg_or_imm regyq
andn regsy, reg_or_imm regyq
andncc regsy, reg_or_imm regyq
or regsy, reg_or_imm regyq
orcc regsy, reg_or_imm regyq
orn regsy, reg_or_imm regyq
orncc regsy, reg_or_imm regyq
Xor regsy, reg_or_imm regyq
xorcc regsy, reg_or_imm regyq
xnor regsy, reg_or_imm regyq
xnorcc regsy, reg_or_imm regy
Description:

These instructions implement bitwise logical operations. They compr&l] op r[rs2]”if i =0,
or “r[rs1] op sign_extéimm13’ if i = 1, and write the result intgrd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition cades (
andxcg). They seicc.y, icc.c, xcc.y andxcc.cto zero,icc.nto bit 31 of the resultxcc.nto bit 63

of the resultjcc.zto 1 if bits 31:0 of the result are zero (otherwise to 0), aod zto 1 if all 64 bits
of the result are zero (otherwise to 0).

ANDN, ANDNcc, ORN, and ORNCcc logically negate their second operand before applying the
main (AND or OR) operation.

Programming Note:
XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc logical operations, respectively.

Exceptions:
(none)

A.32 Memory Barrier

Opcode op3 Operation
MEMBAR 10 1000 Memory Barrier
Format (3):
10 0 op3 01111 i=1 — cmask mmask
31 30 29 25 24 19 18 14 13 12 76 4 3 0
Suggested Assembly Language Syntax
membar membar_mask
Description:

The memory barrier instruction, MEMBAR, has two complementary functions: to express order
constraints between memory references and to provide explicit control of memory-reference com-
pletion. Themembar_maslkield in the suggested assembly language is the bitwise OR of the
cmaskandmmaskinstruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing before
the MEMBAR and memory references following it in a program. The particular classes of mem-
ory references are specified by tnenaslifield. Memory references are classified as loads (includ-

ing load instructions, LDSTUB(A), SWAP(A), CASA, and CASXA) and stores (including store
instructions, LDSTUB(A), SWAP(A), CASA, CASXA, and FLUSH). Timemaskfield specifies

the classes of memory references subject to ordering, as described below. MEMBAR applies to all
memory operations in all address spaces referenced by the issuing processor, but has no effect on
memory references by other processors. Whercthaskfield is nonzero, completion as well as

order constraints are imposed, and the order imposed can be more stringent than that specifiable
by themmaskield alone.

A load has been performed when the value loaded has been transmitted from memory and cannot
be modified by another processor. A store has been performed when the value stored has become
visible, that is, when the previous value can no longer be read by any processor. In specifying the
effect of MEMBAR, instructions are considered to be executed as if they were processed in a
strictly sequential fashion, with each instruction completed before the next has begun.

ThemmasHKield is encoded in bits 3 through 0 of the instruction. Table 25 specifies the order con-
straint that each bit ahmask(selected when set to 1) imposes on memory references appearing
before and after the MEMBAR. From zero to four mask bits may be selectednmmagifield.

Table 25—MEMBAR mmaskEncodings

Mask bit Name Description

mmask3> |#StoreStore The effects of all stores appearing prior to the MEMBAR instrudion
must be visible to all processors before the effect of any stores follgqwing
the MEMBAR. Equivalent to the deprecated STBAR instruction

mmask2> |#LoadStore All loads appearing prior to the MEMBAR instruction must have been
performed before the effect of any stores following the MEMBAR is yis-
ible to any other processor.

mmask1> |#StoreLoad The effects of all stores appearing prior to the MEMBAR instrudion
must be visible to all processors before loads following the MEMBAR
may be performed.

mmask0> |#LoadLoad All loads appearing prior to the MEMBAR instruction must have been
performed before any loads following the MEMBAR may be perforrped.

ThecmaskKield is encoded in bits 6 through 4 of the instruction. Bits inchwaskield, illustrated

in table 26, specify additional constraints on the order of memory references and the processing of
instructions. Ifcmaskis zero, then MEMBAR enforces the partial ordering specified by the
mmasKield; if cmaskis nonzero, then completion as well as partial order constraints are applied.

Table 26—MEMBAR cmaskEncodings

Mask bit Function Name Description
cmask?2>| Synchronizatiom#Sync All operations (including nonmemory reference operatipns)
barrier appearing prior to the MEMBAR must have been perfoTed
and the effects of any exceptions become visible befor¢ any

instruction after the MEMBAR may be initiated.

cmask1l>| Memory issue|#Memlssue [All memory reference operations appearing prior to]the
barrier MEMBAR must have been performed before any merjory
operation after the MEMBAR may be initiated.
cmask0> Lookaside |#Lookaside |A store appearing prior to the MEMBAR must complete

barrier before any load following the MEMBAR referencing te
same address can be initiated.

For information on the use of MEMBAR, see 8.4.3, “The MEMBAR Instruction,” and Appendix
J, “Programming With the Memory Models.” Chapter 8, “Memory Models,” and Appendix F,
“SPARC-V9 MMU Requirements,” contain additional information about the memory models
themselves.

The encoding of MEMBAR is identical to that of the RDASR instruction, except tbiat 15,
rd =0, andi = 1.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).
Compatibility Note:
MEMBAR with mmask= 8,5 andcmask= 0,4 (“membar #StoreStore) is identical in function to the
SPARC-V8 STBAR instruction, which is deprecated.

Exceptions:
(none)

A.33 Move Floating-Point Register on Condition (FMOVcc)

For Integer Condition Codes

Opcode op3 cond Operation icc/xcctest

FMOVA 11 0101| 1000, Move Always

FMOVN 110101 0000 Move Never

FMOVNE | 110101| 1001 Move if Not Equal not Z
FMOVE 11 0101| 0001 Move if Equal

FMOVG 110101f 1010 Move if Greater not (Z or (N xor V))
FMOVLE 11 0101| 001Q Move if Less or Equal o (N xor V)
FMOVGE 11 0101} 1011 Move if Greater or Equal not (N xor V)
FMOVL 11 0101| 0011} Move if Less Mor V
FMOVGU | 110101| 1100 Move if Greater Unsigned not (C or Z)
FMOVLEU | 11 0101| 0100 Move if Less or Equal Unsigned ai2)
FMOVCC | 110101 1101 Move if Carry ClearGreater or Equal, Unsigngd not C
FMOVCS 110101 0101 Move if Carry Set (Less than, Unsigned)

FMOVPOS | 110101 1110 Move if Positive not N
FMOVNEG | 11 0101] 0110 Move if Negative

FMOVVC | 110101| 1111 Move if Overflow Clear not V

FMOVVS 11 0101| 0111 Move if Overflow Set

For Floating-Point Condition Codes

Opcode op3 cond Operation fcc test

FMOVFA 110101 1000 | Move Always

FMOVFN 110101 0000 | Move Never D
FMOVFU 11 0101 0111 | Move if Unordered)
FMOVFG 110101 0110| Move if Greater 5
FMOVFUG 110101 0101| Move if Unordered or Greater oJ
FMOVFL 110101 0100 | Move if Less

FMOVFUL 110101 0011 | Move if Unordered or Less ot U
FMOVFLG 110101 0010 | Move if Less or Greater otLG
FMOVFNE 110101 0001| Move if Not Equal &r Gor U
FMOVFE 110101 1001| Move if Equal E
FMOVFUE 110101 1010 | Move if Unordered or Equal oEU
FMOVFGE 110101 1011| Move if Greater or Equal 0EG
FMOVFUGE | 110101 1100| Move if Unordered or Greater or Equal orE&or U
FMOVFLE 110101 1101 | Move if Less or Equal OE L
FMOVFULE | 110101 1110 | Move if Unordered or Less or Equal orfE or U
FMOVFO 110101 1111 Move if Ordered atLorG

Format (4):

10 rd op3 0 cond opf_cc opf_low rs2

31 30 29 25 24 19 18 17 14 13 11 10 5 4

| Encoding of theopf_ccfield (also see table 38 on page 273):

opf_cc Condition code

000 fccO

001 fccl

010 fcc2

011 fcc3

100 icc

101 —

110 Xcc

111 —

Encoding of opffield (opf_cc [] opf_low)

Instruction variation opf _cc opf_low opf
FMOVScc | %fcc n,rs2,rd Onn 00 0001 Onn00 0001
FMOVDcc | %fcc n,rs2,rd Onn 00 0010 Onn00 0010
FMOVQcc | %fcc n,rs2,rd Onn 000011 Onn00 0011
FMOVScc | %icc, rs2,rd 100 00 0001 1 0000 0001
FMOVDcc | %icc, rs2,rd 100 00 0010 1 0000 0010
FMOVQcc | %icc, rs2rd 100 000011 1 0000 0011
FMOVScc | %xcc, rs2,rd 110 00 0001 1 1000 0001
FMOVDcc | %xcc, rs2rd 110 00 0010 11000 0010
FMOVQcc | %xcc, rs2,rd 110 000011 1 1000 0011

For Integer Condition Codes

Suggested Assembly Language Syntax
fmov{s,d,q}a i_or_x_cg freggo, fregy
fmov{s,d,q}n i_or_x_cG frego fregy
fmov{s,d,q}ne i_or_x_cg freggo, fregy (synonymsfmov {s,d,q }nz)
fmov{s,d,q}e i_or_x_cG frego fregy (synonymsfmov {s,d,q }z)
fmov{s,d,q}g i_or_x_cg freggo, fregy
fmov{s,d,q}le i_or_x_cG frego fregy
fmov{s,d,q}ge i_or_x_cg freggo, fregy
fmov{s,d,q}l i_or_x_cG frego fregy
fmov{s,d,q}gu i_or_x_cg freggo, fregy
fmov{s,d,q}leu i_or_x_cG frego fregy
fmov{s,d,q}cc i_or_x_cg freggo, fregy (synonymsfmov {s,d,q }geu)
fmov{s,d,q}cs i_or_x_cG frego fregy (synonymsfmov {s,d,q }lu)
fmov{s,d,q}pos i_or_x_cg freggo, fregy
fmov{s,d,q}neg i_or_x_cG fregso fregy
fmov{s,d,q}vc i_or_x_cg freggo, fregy
fmov{s,d,q}vs i_or_x_cg fregrsz, fregy

Programming Note:
To select the appropriate condition code, incluidéct ” or “%xcc” before the registers.

For Floating-Point Condition Codes:

Suggested Assembly Language Syntax

fmov{s,d,q}a %fcc n, freggo fregy

fmov{s,d,q}n %fcc n, freggo fregy

fmov{s,d,q}u %fcc n, freggo fregy

fmov{s,d,q}g %fcc n, fregsp, fregy

fmov{s,d,q}ug %fcc n, freggo fregy

fmov{s,d,q}l %fcc n, freggo fregy

fmov{s,d,q}ul %fcc n, freggo fregy

fmov{s,d,q}lg %fcc n, frego fregy

fmov{s,d,q}ne %fcc n, freggo fregy (synonymsfmov {s,d,q }nz)
fmov{s,d,q}e %fcc n, frego fregy (synonymsfmov {s,d,q }z)
fmov{s,d,q}ue %fcc n, freggo fregy

fmov{s,d,q}ge %fcc n, frego fregy

fmov{s,d,qluge %fcc n, freggo fregy

fmov{s,d,q}le %fcc n, frego fregy

fmov{s,d,q}ule %fcc n, freggo fregy

fmov{s,d,q}o %fcc n, freg(S_Z, fregy

Description:

These instructions copy the floating-point register(s) specifiecs®yo the floating-point regis-
ter(s) specified byd if the condition indicated by theondfield is satisfied by the selected condi-
tion code. The condition code used is specified by apé ccfield of the instruction. If the
condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Programming Note:
Branches cause most implementations’ performance to degrade significantly. Frrequently, the MOVcc and
FMOVcc instructions can be used to avoid branches. For example, the following C language segment:

double A, B, X;
if (A>B)then X = 1.03;else X = 0.0;

can be coded as

I'assume A is in %f0; B is in %f2; %xx points to constant area
ldd [%xx+C_1.03],%f4 !X = 1.03
fcmpd %fcc3,%f0,%f2 IA>B
fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 IX =0.0
label....

This takes four instructions including a branch.

Using FMOVcec, this could be coded as

ldd [Yoxx+C_1.03],%f4 !X = 1.03
fsubd %f4,%f4,%f6 IX" = 0.0
fcmpd %fcc3,%f0,%f2 IA>B

fmovdle %fcc3,%f6,%f4 IX =0.0

This also takes four instructions, but requires no branches and may boost performance significantly. It is sug-
gested that MOVcc and FMOVcc be used instead of branches wherever they would improve performance.

Exceptions:
fp_disabled
fo_exception_other (invalid_fp_register (quad forms only))
fo_exception_other (ftt = unimplemented_FPop (opf_cc= 101, or 111)

A.34 Move F-P Register on Integer Register Condition (FMOVr)

Opcode op3 rcond Operation Test
— 11 0101 000 | Reserved —
FMOVRZ 110101 001 Move if Register Zero rirsl] =0
FMOVRLEZ | 110101 010 Move if Register Less Than or Equal to Zero | r[rs1] <0
FMOVRLZ 11 0101 011 Move if Register Less Than Zero rirsl] <0
— 11 0101 100 | Reserved —
FMOVRNZ 110101 101 Move if Register Not Zero rfrs1] #0
FMOVRGZ 110101 110 Move if Register Greater Than Zero rirsl] >0
FMOVRGEZ | 110101 111 Move if Register Greater Than or Equal to Zeror[rs1] =0
Format (4):
10 rd op3 rsl 0| rcond opf_low rs2
31 30 29 25 24 19 18 1413 12 10 9 5 4 0

Encoding ofopf_lowfield:

Instruction variation opf_low
FMOVSrcond rsirs2, rd 00101
FMOVDrcond rslrs2, rd 00110
FMOVQrcond rsl rs2, rd 00111

Suggested Assembly Language Syntax

fmovr{s,d,q}e regs1, fregso, fregy (synonymfmovr{s,d,q}z)
fmovr{s,d,q}lez regs1, fregso, fregy

fmovr{s,d,q}lz reges1, fregso, fregy

fmovr{s,d,q}ne regs1, fregso, fregy (synonymfmovr{s,d,q}nz)
fmovr{s,d,q}gz reges1, fregso, fregy

fmovr{s,d,q}gez reGs1, freg(sg, fregy

Description:

If the contents of integer registefrsl] satisfy the condition specified in threond field, these
instructions copy the contents of the floating-point register(s) specified bysthield to the

floating-point register(s) specified by thefield. If the contents of[rs1] do not satisfy the condi-
tion, the floating-point register(s) specified by ttidéield are not modified.

These instructions treat the integer register contents as a signed integer value; they do not modify
any condition codes.

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negatigde) Zr(zero) bit, use
the following table to determine whetheondis TRUE:

Branch Test
FMOVRNZ not Z
FMOVRZ Z
FMOVGEZ not N
FMOVRLZ N
FMOVRLEZ Nor Z
FMOVRGZ Nnor Z
Exceptions:
fo_disabled

fo_exception_other (invalid_fp_register (quad forms only))
fo_exception_other (unimplemented_FPop (rcond= 000, or 10Q))

A.35 Move Integer Register on Condition (MOVcc)

For Integer Condition Codes

N

Opcode op3 cond Operation icc/xcctest
MOVA 101100 1000| Move Always
MOVN 10 1100{ 0000| Move Never
MOVNE |[101100, 1001| Move if Not Equal not Z
MOVE 101100, 0001 Move if Equal
MOVG 101100, 1010 Move if Greater not (Z or (N xorV))
MOVLE |[101100f 0010| Move if Less or Equal o (N xorV)
MOVGE |101100 1011] Move if Greater or Equal not (N xorV)
MOVL 101100(0011| Move if Less NorV
MOVGU |[101100 1100| Move if Greater Unsigned not (C orz)
MOVLEU |10 1100, 0100| Move if Less or Equal Unsigned d2)
MOVCC |[101100 1101| Move if Carry Clear (Greater or Equal, Unsighed) not C
MOVCS |[101100 0101 Move if Carry Set (Less than, Unsigned)
MOVPOS | 101100 1110 Move if Positive not N
MOVNEG | 101100 0110] Move if Negative
MOVVC (101100 1111| Move if Overflow Clear not V
MOVVS |[101100, 0111| Move if Overflow Set

For Floating-Point Condition Codes

Opcode op3 cond Operation fcc test
MOVFA 101100 1000 | Move Always]
MOVFN 10 1100 0000 | Move Never D
MOVFU 10 1100 0111| Move if Unordered J
MOVFG 101100 0110| Move if Greater 5
MOVFUG 101100 0101| Move if Unordered or Greater oiJ
MOVFL 101100 0100 | Move if Less 4
MOVFUL 101100 0011 | Move if Unordered or Less oLU
MOVFLG 101100 0010 | Move if Less or Greater oLG
MOVFNE 10 1100 0001 | Move if Not Equal or Gor U
MOVFE 10 1100 1001| Move if Equal 3
MOVFUE 101100 1010| Move if Unordered or Equal oEU
MOVFGE 101100 1011| Move if Greater or Equal oEG
MOVFUGE 101100 1100| Move if Unordered or Greater or Equal orBorU
MOVFLE 10 1100 1101 | Move if Less or Equal deL
MOVFULE 10 1100 1110| Move if Unordered or Less or Equal orEE or U
MOVFO 101100 1111| Move if Ordered & LorG

Format (4):

10 rd op3 cc2 cond i=0|ccccO — rs2
10 rd op3 cc2 cond i=1|cclccO simm1l
31 30 29 25 24 19 18 17 14 13 12 11 10 5 4 0
cc2 [] ccl[] ccO Condition code
000 fccO
001 fccl
010 fcc2
011 fcc3
100 icc
101 Reserved
110 Xcc
111 Reserved

For Integer Condition Codes

Suggested Assembly Language Syntax
mova i_or_x_cc, reg_or_imml1, rgg
movn i_or_x_cc, reg_or_imm11, rgg
movne i_or_x_cc, reg_or_immll, rgg (Synonymmovnz)
move i_or_x_cc, reg_or_immll, rgg (Synonymmovz)
movg i_or_x_cc, reg_or_imml1, rgg
movle i_or_x_cc, reg_or_imm11, rgg
movge i_or_x_cc, reg_or_imml1, rgg
movl i_or_x_cc, reg_or_imm11, rgg
movgu i_or_x_cc, reg_or_imml1, rgg
movleu i_or_x_cc, reg_or_imm11, rgg
movcce i_or_x_cc, reg_or_imm11,rgg (Synonymmovgeu)
movcs i_or_x_cc, reg_or_immll,rgg (Synonymmoviu)
Movpos i_or_x_cc, reg_or_immll, rgg
movneg i_or_x_cc, reg_or_imml1, rgg
movvc i_or_x_cc, reg_or_imml1, rgg
movvs i_or_x_cc, reg_or_imm11, rgg

Programming Note:
To select the appropriate condition code, incluidéct ” or “%xcc” before the register or immediate field.

For Floating-Point Condition Codes

Suggested Assembly Language Syntax

mova %fcen, reg_or_immllregy
movn %fccn, reg_or_immllregy
movu %fcen, reg_or_immllregy
movg %fccn, reg_or_immllregy
movug %fce n, reg_or_immllregy
movl %fcc n, reg_or_immllregy
movul %fcc n, reg_or_immllregy
movlg %fcc n, reg_or_immllregy
movne %fce n, reg_or_immllregy (synonymmovnz)
move %fcen, reg_or_immllregy (synonymmovz)

movue %fce n, reg_or_immllregy
movge %fcc n, reg_or_immllregy
movuge %fcc n, reg_or_immllregy
movle %fcc n, reg_or_immllregy
movule %fcc n, reg_or_immllregy
movo %fccn, reg_or_immllregy

Programming Note:
To select the appropriate condition code, inclué&f¢c0 ,” “ %fccl " “ %fcc2 " or “%fcc3 " before the
register or immediate field.

Description:

These instructions test to seedndis TRUE for the selected condition codes. If so, they copy the
value inr[rs2] if i field = 0, or “sign_ext$imm1}” if i = 1 intor[rd]. The condition code used is
specified by thec2, ccl, andccOfields of the instruction. If the condition is FALSE, theimd] is

not changed.

These instructions copy an integer register to another integer register if the condition is TRUE.
The condition code that is used to determine whether the move will occur can be either integer
condition codei€c or xcg or any floating-point condition cod&€0, fccl, fcc2or fccd).

These instructions do not modify any condition codes.

Programming Note:
Branches cause many implementations’ performance to degrade significantly. Frequently, the MOVcc and
FMOVcc instructions can be used to avoid branches. For example, the C language if-then-else statement

if A>B)then X = 1;else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label
or %g0,1,%i3 IX =1
or %g0,0,%i3 IX =0

label:...

This takes four instructions including a branch. Using MOVcc this could be coded as

cmp %:i0,%:i2
or %g0,1,%i3 lassume X = 1
movle %xcc,0,%i3 I overwrite with X = 0

This takes only three instructions and no branches and may boost performance significantly. It is suggested
that MOVcc and FMOVcc be used instead of branches wherever they would increase performance.

Exceptions:
illegal_instruction (cc2 [] ccl[] ccG= 101 or 111)
fo_disabled (cc2 [] ccl[] ccG=000,, 00L, 010, or 011 and the FPU is disabled)

A.36 Move Integer Register on Register Condition (MOVR)

Opcode op3 rcond Operation Test
— 101111 000 | Reserved —
MOVRZ 101111 001 Move if Register Zero rirs=0
MOVRLEZ | 101111 010 Move if Register Less Than or Equal to Zerp r[rs1] <0
MOVRLZ 101111 011 Move if Register Less Than Zero rirs] <0
— 101111 100 | Reserved —
MOVRNZ 101111 101 Move if Register Not Zero rirsl] #0
MOVRGZ 101111 110 Move if Register Greater Than Zero rirsl] >0
MOVRGEZ | 101111 111 Move if Register Greater Than or Equal to Zerfrs1] =0
Format (3):
10 rd op3 rsi i=0[rcond — rs2
10 rd op3 rsi i=1| rcond simm10
31 30 29 25 24 19 18 14 13 12 10 9 5 4
Suggested Assembly Language Syntax

movrz regs1, reg_or_immiQregy (synonymmovre)

movrlez regs1, reg_or_immalQregy

movrlz regs1, reg_or_immiQregy

movrnz regs1, reg_or_immalQregy (synonymmovrne)

movrgz regs1, reg_or_immiQregy

movrgez regs1, reg_or_immaloQregy

Description:

If the contents of integer registejrs1] satisfies the condition specified in theond field, these
instructions copy[rs2] (if i = 0) or sign_ex®&imm10Q (if i = 1) intor[rd]. If the contents of[rs]]
does not satisfy the condition thejrd] is not modified. These instructions treat the register con-

tents as a signed integer value; they do not modify any condition codes.

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negatige Zr(zero) bit, use

the following table to determineii€ondis TRUE:

Branch Test
MOVRNZ not Z
MOVRZ Z
MOVRGEZ not N
MOVRLZ N
MOVRLEZ NorZ
MOVRGZ N nor Z

Exceptions:
illegal_instruction (rcond= 000, or 10Q)

A.37 Multiply and Divide (64-bit)

Opcode op3 Operation
MULX 00 1001 Multiply (signed or unsigned)
SDIVX 101101 Signed Divide
UDIVX 001101 Unsigned Divide
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12
Suggested Assembly Language Syntax
mulx reggy, reg_or_imm, reg
sdivx regsq, reg_or_imm, reg
udivx reggy, reg_or_imm, reg
Description:

MULX computes f[rs1] x r[rs2]” if i =0 or “r[rs1] x sign_ext6imm13" if i = 1, and writes the
64-bit product intor[rd]. MULX can be used to calculate the 64-bit product for signed or

unsigned operands (the product is the same).

SDIVX and UDIVX compute f[rs1] +r[rs2]” if i =0 or “r[rs1] + sign_ext6imm13” if i =1,
and write the 64-bit result intdrd]. SDIVX operates on the operands as signed integers and pro-
duces a corresponding signed result. UDIVX operates on the operands as unsigned integers and

produces a corresponding unsigned result.

For SDIVX, if the largest negative number is divided by —1, the result should be the largest nega-

tive number. That is:

8000 0000 0000 00Qf~+ FFFF FFFF FFFF FFRE= 8000 0000 0000 00GQg

These instructions do not modify any condition codes.

Exceptions:

division_by zero

A.38 Multiply (32-bit)

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated; they a
provided only for compatibility with previous versions of the architecture. Th
should not be used in new SPARC-V9 software. It is recommended that the MURIX
instruction be used in their place.

Opcode op3 Operation
umMuLP 00 1010 Unsigned Integer Multiply
SMuLP 00 1011 Signed Integer Multiply
UMULccP 011010 Unsigned Integer Multiply and modify cc’s
SMULccP 011011 Signed Integer Multiply and modify cc's
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12
Suggested Assembly Language Syntax
umul regsy, reg_or_imm regy
smul reggy, reg_or_imm regy
umulcc regsy, reg_or_imm regy
smulcc reggy, reg_or_imm regy
Description:

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results. They
compute ¥[rs1]<31:0>x r[rs2]<31:0>" if i = 0, or “r[rs1]<31:0> x sign_ext6imm13<31:0>" if
i = 1. They write the 32 most significant bits of the product into the Y register and all 64 bits of

the product inta[rd].

Unsigned multiply (UMUL, UMULcc) operates on unsigned integer word operands and com-
putes an unsigned integer doubleword product. Signed multiply (SMUL, SMULcc) operates on

signed integer word operands and computes a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the integer
condition code bitsicc andxcc as follows. Note that 32-bit negativie€.N) and zeroi€c.Z) con-
dition codes are set according to tlesssignificant word of the product, and not according to the

full 64-bit result.

Bit UMULcc / SMULcc
iccN | Setif product[31] =1
icc.Z | Setif product[31:0]=0
icc.V | Zero
icc.C | Zero
xccN | Set if product[63] =1
xceZ | Setif product[63:0] =0
xceV | Zero
xccC | Zero

Programming Note:
32-bit overflow after UMUL / UMULcc is indicated by # 0.

32-bit overflow after SMUL / SMULcc is indicated by ¥ (r[rd] >> 31), where “>>" indicates 32-bit arith-
metic right shift.

Implementation Note:
An implementation may assume that the smaller operand typically wilt4# or simm13

Implementation Note:
See <lItalic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-
ment available from SPARC International, for information on whether these instructions are implemented by
hardware or software in the various SPARC-V9 implementations.

Exceptions:
(none)

A.39 Multiply Step

The MULScc instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the MULX instruction be used in its place.

Opcode op3 Operation
MULScc? 10 0100 Multiply Step and modify cc’s

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
mulscc reggy, reg_or_imm regy
Description:

MULScc treats the lower 32 bits of botfrs1] and the Y register as a single 64-bit, right-shiftable
doubleword register. The least significant bitrps]] is treated as if it were adjacent to bit 31 of
the Y register. The MULScc instruction adds, based on the least significant bit of Y.

Multiplication assumes that the Y register initially contains the multipligns1] contains the
most significant bits of the product, anjas2] contains the multiplicand. Upon completion of the
multiplication, the Y register contains the least significant bits of the product.

Note that a standard MULScc instruction hsk= rd.
MULScc operates as follows:
(1) The multiplicand is[rs2] if i =0, or sign_exgimm13if i = 1.

(2) A 32-bit value is computed by shiftingr[rsl] right by one bit with
“CCR.cc.nxor CCRicc.V' replacing bit 31 ofr[rs1]. (This is the proper sign for the pre-
vious partial product.)

(3) If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand are
added. If the least significant bit of the Y = 0, then 0 is added to the shifted value from step

(2).

(4) The sum from step (3) is written intrd]. The upper 32-bits of[rd] are undefined. The
integer condition codes are updated according to the addition performed in step (3). The
values of the extended condition codes are undefined.

(5) The Y register is shifted right by one bit, with the least significant bit of the unshifted
r[rs1] replacing bit 31of Y.

Exceptions:
(none)

A.40 No Operation

Opcode op op2 Operation

NOP 00 100 No Operation
Format (2):

00 op op2 0000000000000000000000
31 30 29 2524 2221
Suggested Assembly Language Syntax
nop

Description:

The NOP instruction changes no program-visible state (except the PC and nPC).
Note that NOP is a special case of the SETHI instruction,imith22= 0 andrd = O.

Exceptions:
(none)

A.41 Population Count

Opcode op3 Operation
POPC 101110 Population Count
Format (3):
10 rd op3 0 0000 i=0 — rs2
10 rd op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
popc reg_or_immregy
Description:

POPC counts the number of one bits ifrs2] if i=0, or the number of one bits in
sign_extsimm13if i = 1, and stores the count ifrd]. This instruction does not modify the con-

dition codes.

Implementation Note:
Instruction bits 18 through 14 must be zero for POPC. Other encodings of thisri&)ch{ay be used in

future versions of the SPARC architecture for other instructions.

Programming Note:
POPC can be used to “find first bit set” in a register. A C program illustrating how POPC can be used for this

purpose follows:

int ffs(zz) /* finds first 1 bit, counting from the LSB */

unsigned zz;
{
return popc (zz A (O(=zz))); I* for nonzero zz */
}
Inline assembly language code fts() is
neg %IN, %M _IN I —zz(2's complement)
xnor %IN, %M_IN, %TEMP I~ [-zz (exclusive nor)
popc %TEMP,%RESULT I'result = popc(zz AN [O-zz)
movrz %IN,%g0,%RESULT 1 %RESULT should be 0 for %IN=0

wherelN , M_IN, TEMPandRESUL Tare integer registers.

Example:
IN = ...00101000! 1st 1 bit from rt is 4th bit
—IN = ...11011000
0 —IN = ...00100111
IN ~ O-IN = ...00001111
popc(INA O-IN) =4

Exceptions:
illegal_instruction (instruction<18:14* 0)

A.42 Prefetch Data

Opcode op3 Operation
PREFETCH 101101 Prefetch Data
PREFETCHA®S! 111101 Prefetch Data from Alternate Space

Format (3) PREFETCH:

11 fcn op3 rsl i=0 — rs2
11 fcn op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Format (3) PREFETCHA:

11 fcn op3 rsi i=0 imm_asi rs2

11 fcn op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0

fcn Prefetch function
Prefetch for several reads
Prefetch for one read
Prefetch for several writes
Prefetch for one write

4 Prefetch page
5-15 Reserved
16-31 | Implementation-dependent

WIN|FP]|O

Suggested Assembly Language Syntax
prefetch [addres$, prefetch_fcn
prefetcha [regadd] imm_asj prefetch_fcn
prefetcha [reg_plus_imrh %asi, prefetch_fcn

Description:

In nonprivileged code, a prefetch instruction has the same observable effect as a NOP; its execu-
tion is nonblocking and cannot cause an observable trap. In particular, a prefetch instruction shall
not trap if it is applied to an illegal or nonexistent memory address.

IMPL. DEP. #103(1): Whether the execution of a PREFETCH instruction has observable effects in privi-
leged code is implementation-dependent.

IMPL. DEP. #103(2): Whether the execution of a PREFETCH instruction can cause a
data_access _mmu_miss exception is implementation-dependent.

Whether prefetch always succeeds wheni® is disabled is implementation-dependent (impl.
dep. # 117).

Implementation Note:
Any effects of prefetch in privileged code should be reasonable (e.g., handling ECC errors, no page prefetch-
ing allowed within code that handles page faults). The benefits of prefetching should be available to most
privileged code.

Execution of a prefetch instruction initiates data movement (or preparation for future data move-
ment or address mapping) to reduce the latency of subsequent loads and stores to the specified
address range.

A successful prefetch initiates movement of a block of data containing the addressed byte from
memory toward the processor.

IMPL. DEP. #103(3): The size and alignment in memory of the data block is implementation-dependent;
the minimum size is 64 bytes and the minimum alignment is a 64-byte boundary.

Programming Note:
Software may prefetch 64 bytes beginning at an arbitrary adatidssssby issuing the instructions

prefetch [addresy prefetch_fcn
prefetch [address+63], prefetch_fcn

Implementation Note:
Prefetching may be used to help manage memory cache(s). A prefetch from a nonprefetchable location has
no effect. It is up to memory management hardware to determine how locations are identified as not
prefetchable.

Prefetch instructions that dwot load from an alternate address space access the primary address
space (ASI_PRIMARY{_LITTLE}). Prefetch instructions theb load from an alternate address
space contain the address space identifier (ASI) to be used for the loadimrntheasifield if

i =0, or in the ASI register if = 1. The access is privileged if bit seven of the ASI is zero; other-
wise, itis not privileged. The effective address for these instruction$nsl] + r[rs2]”if i =0, or

“r[rs1] + sign_ext6imm13" if i = 1.

Variants of the prefetch instruction can be used to prepare the memory system for different types
of accesses.

IMPL. DEP. #103(4): An implementation may implement none, some, or all of these variants. A variant not
implemented shall execute as a nop. An implemented variant may support its full semantics, or may sup-
port just the simple common-case prefetching semantics.

A.42.1 Prefetch Variants

The prefetch variant is selected by fica field of the instructionfcnvalues 5..15 are reserved for
future extensions of the architecture.

IMPL. DEP. #103(5): PREFETCH fcn values of 16..31 are implementation-dependent.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is different
from other instructions in SPARC-V9 (except BPN), all of which specify specific actions. An
implementation may implement a prefetch variant by any technique, as long as the intent of the
variant is achieved.

The prefetch instruction is designed to treat the common cases well. The variants are intended to
provide scalability for future improvements in both hardware and compilers. If a variant is imple-
mented, then it should have the effects described below. In case some of the variants listed below
are implemented and some are not, there is a recommended overloading of the unimplemented
variants (see the Implementation Note labeled “Recommended Overloadings” in A.42.2).

A.42.1.1 Prefetch for Several Reads (fcn =0)

The intent of this variant is to cause movement of data into the data cache nearest the processor,
with “reasonable” efforts made to obtain the data.

Implementation Note:
If, for example, some TLB misses are handled in hardware, then they should be handled. On the other hand,
a multiple ECC error is reasonable cause for cancellation of a prefetch.

This is the most important case of prefetching.

If the addressed data is already present (and owned, if necessary) in the cache, then this variant
has no effect.

A.42.1.2 Prefetch for One Read (fcn = 1)

This variant indicates that, if possible, the data cache should be minimally disturbed by the data
read from the given address, because that data is expected to be read once and not reused (read or
written) soon after that.

If the data is already present in the cache, then this variant has no effect.

Programming Note:
The intended use of this variant is in streaming large amounts of data into the processor without overwriting
data in cache memory.

A.42.1.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2)
The intent of this variant is to cause movement of data in preparation for writing.

If the addressed data is already present in the data cache, then this variant has no effect.

Programming Note:
An example use of this variant is to write a dirty cache line back to memory, or to initialize a cache line in
preparation for a partial write.

Implementation Note:
On a multiprocessor, this variant indicates that exclusive ownership of the addressed data is needed, so it
may have the additional effect of obtaining exclusive ownership of the addressed cache line.

Implementation Note:
On a uniprocessor, there is no distinction between Prefetch for Several Reads and this variant.

A.42.1.4 Prefetch for One Write (fcn = 3)

This variant indicates that, if possible, the data cache should be minimally disturbed by the data
written to this address, because that data is not expected to be reused (read or written) soon after it
has been written once.

If the data is already present in the cache, then this variant has no effect.

A.42.1.5 Prefetch Page (fcn=4)

In a virtual-memory system, the intended action of this variant is for the supervisor software or
hardware to initiate asynchronous mapping of the referenced virtual address, assuming that it is
legal to do so.

Programming Note:
The desire is to avoid a later page fault for the given address, or at least to shorten the latency of a page fault.

In a nonvirtual-memory system, or if the addressed page is already mapped, this variant has no
effect.

The referenced page need not be mapped when the instruction completes. Loads and stores issued
before the page is mapped should block just as they would if the prefetch had never been issued.
When the activity associated with the mapping has completed, the loads and stores may proceed.

Implementation Note:
An example of mapping activity is DMA from secondary storage.

Implementation Note:
Use of this variant may be disabled or restricted in privileged code that is not permitted to cause page faults.

A.42.1.6 Implementation-Dependent Prefetch (fcn =16..31)

These values are available for implementations to use. An implementation shall treat any unim-
plemented prefetcttn values as NOPs (impl. dep. #103).

A.42.2 General Comments

There is no variant of PREFETCH for instruction prefetching. Instruction prefetching should be
encoded using the Branch Never (BPN) form of the BPcc instruction (see A.7, “Branch on Integer
Condition Codes with Prediction (BPcc)”).

One error to avoid in thinking about prefetch instructions is that they should have “no cost to exe-
cute.” As long as the cost of executing a prefetch instruction is well less than one-third the cost of
a cache miss, use of prefetching is a net win. It does not appear that prefetching causes a signifi-
cant number of useless fetches from memory, though it may increase the ragefofffetches

(and hence the bandwidth), because it more efficiently overlaps computing with fetching.

Implementation Note:
Recommended OverloadingsThere are four recommended sets of overloadings for the prefetch variants,
based on a simplistic classification of SPARC-V9 systems into cost (lowvsobigh-cost) and processor
multiplicity (uniprocessowrs. multiprocessor) categories. These overloadings are chosen to help ensure effi-
cient portability of software across a range of implementations.

In a uniprocessor, there is no need to support multiprocessor cache protocols; hence, Prefetch for Several
Reads and Prefetch for Several Writes may behave identically. In a low-cost implementation, Prefetch for
One Read and Prefetch for One Write may be identical to Prefetch for Several Reads and Prefetch for Sev-
eral Writes, respectively.

Could be overloaded
to mean the same as
Multiplicity Cost Prefetch for .. Prefetch for ..
One read Several writes
. Several reads Several writes
Uniprocessor Low - -
One write Several writes
Several writes —
One read —
. . Several reads Several writes
Uniprocessor High -
One write —
Several writes —
One read Several reads
. Several reads —
Multiprocessor Low - -
One write Several writes
Several writes —
One read —
. . Several reads —
Multiprocessor High -
One write —
Several writes —

Programming Note:
A SPARC-V9 compiler that generates PREFETCH instructions should generate each of the four variants
where it is most appropriate. The overloadings suggested in the prémiplementation Notd OTE ensure
that such code will be portable and reasonably efficient across a range of hardware configurations.

Implementation Note:
The Prefetch for One Read and Prefetch for One Write variants assume the existence of a “bypass cache,” so
that the bulk of the “real cache” remains undisturbed. If such a bypass cache is used, it should be large
enough to properly shield the processor from memory latency. Such a cache should probably be small,
highly associative, and use a FIFO replacement policy.

Exceptions:

data_access MMU_miss (implementation-dependent (impl. dep. #103))
illegal_instruction (fcn=5..15)

A.43 Read Privileged Register

Opcode op3 Operation
RDPR’ 10 1010 Read Privileged Register
Format (3):
10 rd op3 rsl
31 30 29 25 24 19 18 14 13
rsl Privileged register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 TICK
5 TBA
6 PSTATE
7 TL
8 PIL
9 CWP
10 CANSAVE
11 CANRESTORE
12 CLEANWIN
13 OTHERWIN
14 WSTATE
15 FQ
16..30 | —
31 VER

Suggested Assembly Language Syntax
rdpr %tpc, regy
rdpr %tnpc, regy
rdpr Y%tstate, regq
rdpr O%ptt, regyq
rdpr %tick, regq
rdpr %tha, regy
rdpr Y%pstate, regq
rdpr %l regyq
rdpr %pil, regq
rdpr %cwp, regy

rdpr %cansave, regy
rdpr %canrestore, [(Clo™
rdpr %cleanwin, regyq
rdpr %otherwin, [(Clo™
rdpr Y%wstate, regyq

rdpr %fq, regy

rdpr Y%ver, regy

Description:

Therslfield in the instruction determines the privileged register that is read. There are MAXTL
copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these registers returns
the value in the register indexed by the current value in the trap level register (TL). A read of TPC,
TNPC, TT, or TSTATE when the trap level is zero (TL = 0) causetegan_instruction exception.

RDPR instructions witlis1in the range 16..30 are reserved; executing a RDPR instruction with
rslin that range causes #lagal instruction exception.

A read from the FQ (Floating-Point Deferred-Trap Queue) register copies the front doubleword of
the queue inta[rd]. The semantics of reading the FQ and the data returned are implementation-
dependent (impl. dep. #24). However, the address of a trapping floating-point instruction must be
available to the privileged trap handler. On an implementation with a floating-point queue, an
attempt to execute RDPR of FQ when the queue is empty @®R.0) shall cause an
fo_exception exception with FSRit set to 4 equence_error). In an implementation without a float-
ing-point queue, an attempt to execute RDPR of FQ shall cause eithiaganinstruction excep-

tion or an fp_exception_other exception with FSRtt set to 3 (inimplemented_FPop) (impl. dep.

#25).

Programming Note:
On an implementation with precise floating-point traps, the address of a trapping instruction will be in the
TPC[TL] register when the trap code begins execution. On an implementation with deferred floating-point
traps, the address of the trapping instruction might be a value obtained from the FQ.

Exceptions:
privileged_opcode
illegal_instruction ((rs1=16..30) or ((rs¥3) and (TL = 0)))

fo_exception_other (sequence_error) (RDPR of FQ when FSRne= 0 in a system with an
FQ; (impl. dep. #25)
illegal_instruction (RDPR of FQ in a system without an FQ); (impl. dep. #25)

A.44

Read State Register

The RDY instruction is deprecated; it is provided only for compatibility with prev

It is recommended that all instructions which reference the Y register be avoid

ous versions of the architecture. It should not be used in new SPARC-V9 softwie.

Opcode op3 rsl Operation
RDYP 10 1000 0 Read Y Register
— 10 1000 1 reserved

RDCCR 101000 2 Read Condition Codes Register

RDASI 101000 3 Read ASI Register

RDTICKPNPT |10 1000 4 Read Tick Register

RDPC 101000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Registgr

RDASRASR 10 1000 714 | Read Ancillary State Registeegervedl

See text 10 1000 15 See text

RDASRASR 10 1000 16-31 | Implementation-dependefimpl. dep. #47)

Format (3):
10 rd op3 rsl i=0 —
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntak
rd %y, regy
rd %ccr , regy
rd %asi , regy
rd %tick , regyg
rd %pcC, regy
rd %fprs |, regy
rd asr_regsy, ey
Description:

These instructions read the specified state register|[nafjo

Note that RDY, RDCCR, RDASI, RDPC, RDTICK, RDFPRS, and RDASR are distinguished
only by the value in thes1 field.

If rs1>7, an ancillary state register is read. Valuessdfin the range 7..14 are reserved for future
versions of the architecture; values in the range 16..31 are available for implementations to use
(impl. dep. #8). A RDASR instruction witks1 = 15,rd = 0, andi = 0 is defined to be an STBAR
instruction (see A.51). An RDASR instruction wite1=15,rd = 0, andi = 1 is defined to be a

MEMBAR instruction (see A.32). RDASR witrs1 = 15 andrd#0 is reserved for future versions
of the architecture; it causes deyal_instruction exception.

RDTICK causes arivileged_action exception if PSTATE.PRIV =0 and TICK.NPT = 1.

For RDPC, the high-order 32-bits of the PC value storedrid] are implementation-dependent
when PSTATE.AM =1 (impl. dep. #125).

RDFPRS waits for all pending FPops and loads of floating-point registers to complete before
reading the FPRS register.

IMPL. DEP. #47: RDASR instructions with rd in the range 16..31 are available for implementation-depen-
dent uses (impl. dep. #8. For a RDASR instruction with rs1 in the range 16 .. 31, the following are imple-
mentation-dependent: the interpretation of bits 13:0 and 29:25 in the instruction, whether the instruction is
privileged (impl. dep. #9 and whether the instruction causes an illegal_instruction exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending the
SPARC-V9 instruction set using read/write ASR instructions

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-control reg-
isters. See <ltalic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a
document available from SPARC International, for information on implemented ancillary state registers.

Compatibility Note:
The SPARC-V8 RDPSR, RDWIM, and RDTBR instructions do not exist in SPARC-V9 since the PSR,
WIM, and TBR registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (RDASR only; implementation-dependent (impl. dep. #47))
illegal_instruction (RDASR withrs1=1 or 7..14; RDASR withrs1 = 15 andrd#0; RDASR
with rs1=16..31 and the implementation does not define the instruction as an exten-
sion; implementation-dependent (impl. dep. #47))
privileged_action (RDTICK only)

A.45 RETURN

Opcode op3 Operation
RETURN 11 1001 RETURN

Format (3):
10 — op3 rsl i=0 — rs2
10 — op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
return address
Description:

The RETURN instruction causes a delayed transfer of control to the target address and has the
window semantics of a RESTORE instruction; that is, it restores the register window prior to the
last SAVE instruction. The target address isr[r81]+r[rs2]” if i=0, or

“r[rs1] + sign_ext6imm13” if i = 1. Registers[rs1] andr[rs2] come from theold window.

The RETURN instruction may cause an exception. It may causedaw _fill exception as part of
its RESTORE semantics or it may caus@en_address _not_aligned exception if either of the two
low-order bits of the target address are nonzero.

Programming Note:
To reexecute the trapped instruction when returning from a user trap handler, use the RETURN instruction in
the delay slot of a JMPL instruction, for example:

jmpl %I6,%9g0 ! Trapped PC supplied to user trap handler
return %l7 I Trapped nPC supplied to user trap handler

Programming Note:
A routine that uses a register window may be structured either as

save %sp,- framesize%sp

ret I Same as jmpl %i7 + 8, %g0

restore ! Something useful like “restore %02,%I2,%00"
or as

save %sp,- framesize%sp

return %i7 +8
nop ! Could do some useful work in the caller’s
I window e.g. “or %01, %02,%00"

Exceptions:
mem_address _not_aligned
fill_n_normal (N=0..7)

fill_n_other (N =0..7)

A.46 SAVE and RESTORE

Opcode op3 Operation
SAVE 11 1100 Save caller’'s window
RESTORE 111101 Restore caller's window
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
save regsy, reg_or_imm regy
restore regsq, reg_or_imm regy

Description (Effect on Nonprivileged State):

The SAVE instruction provides the routine executing it with a new register windowolitregis-

ters from the old window become tlveregisters of the new window. The contents of theeand
thelocal registers in the new window are zero or contain values from the executing process; that
is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruction exe-
cuted by the current process. Timeregisters of the old window become tbat registers of the
new window. Then andlocal registers in the new window contain the previous values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE behave like
normal ADD instructions, except that the source operafidd] and/orr[rs2] are read from the

old window (that is, the window addressed by the original CWP) and the sum is writter{iidio

of thenew window (that is, the window addressed by the new CWP).

Note that CWP arithmetic is performed modulo the number of implemented windowgy-
DOWS

Programming Note:
Typically, if a SAVE (RESTORE) instruction traps, the spill (fill) trap handler returns to the trapped instruc-
tion to reexecute it. So, although the ADD operation is not performed the first time (when the instruction
traps), it is performed the second time the instruction executes. The same applies to changing the CWP.

Programming Note:
The SAVE instruction can be used to atomically allocate a new window in the register file and a new soft-
ware stack frame in memory. See H.1.2, “Leaf-Procedure Optimization,” for details.

Programming Note:
There is a performance tradeoff to consider between using SAVE/RESTORE and saving and restoring
selected registers explicitly.

Description (effect on privileged state):

If the SAVE instruction does not trap, it increments the CWidd NWINDOWS) to provide a
new register window and updates the state of the register windows by decrementing CANSAVE
and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The trap
vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap handler
is invoked with the CWP set to point to the window to be spilled (that is, old €2yP

If CANSAVE # 0, the SAVE instruction checks whether the new window needs to be cleaned. It
causes alean_window trap if the number of unused clean windows is zero, that is, (CLEANWIN —
CANRESTORE) = 0. Thelean_window trap handler is invoked with the CWP set to point to the
window to be cleaned (that is, old CWR).

If the RESTORE instruction does not trap, it decrements the CVWRINWINDOWS) to restore

the register window that was in use prior to the last SAVE instruction executed by the current pro-
cess. It also updates the state of the register windows by decrementing CANRESTORE and incre-
menting CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), a fill trap is gener-
ated. The trap vector for the fill trap is based on the values of OTHERWIN and WSTATE, as
described in 7.5.2.1, “Trap Type for Spill/Fill Traps.” The fill trap handler is invoked with CWP
set to point to the window to be filled, that is, old CWP — 1.

Programming Note:
The vectoring of spill and fill traps can be controlled by setting the value of the OTHERWIN and WSTATE
registers appropriately. For details, see the unnumbered subsection titled “Splitting the Register Windows”
in H.2.3, “Client-Server Model.”

Programming Note:
The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by a RETRY
instruction.

Exceptions:
clean_window (SAVE only)
fill_n_normal (RESTORE onlyn=0..7)
fill_n_other RESTORE onlyn=0..7)
spill_n_normal (SAVE only,n=0..7)
spill_n_other (SAVE only,n=0..7)

A.47 SAVED and RESTORED

Opcode op3 fcn Operation
SAVEDP 11 0001 0 Window has been Saved
RESTORED 11 0001 1 Window has been Restored

— 11 0001 2..31 | Reserved

Format (3):
10 fcn op3 —
31 30 29 25 24 19 18 0
Suggested Assembly Language Syntax
saved
restored
Description:

SAVED and RESTORED adjust the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, it decrements CANRESTORE.
If OTHERWIN=2O, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWKN(NWINDOWS-1), RESTORED
increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE.
If OTHERWIN # 0, it decrements OTHERWIN.

Programming Note:
The spill (fill) handlers use the SAVED (RESTORED) instruction to indicate that a window has been spilled
(filled) successfully. See H.2.2, “Example Code for Spill Handler,” for details.

Programming Note:
Normal privileged software would probably not do a SAVED or RESTORED from trap level zero (TL = 0).
However, it is not illegal to do so, and does not cause a trap.

Programming Note:
Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is likely to create
an inconsistent window state. Hardware will not signal an exception, however, since maintaining a consis-
tent window state is the responsibility of privileged software.

Exceptions:
privileged_opcode
illegal_instruction (fcn=2..31)

A.48 SETHI

Opcode op op2 Operation
SETHI 00 100 Set High 22 Bits of Low Word
Format (2):
00 rd 100 imm22
31 30 29 2524 2221 0
Suggested Assembly Language Syntax
sethi const22 regy
sethi %hi (value), regy
Description:

SETHI zeroes the least significant 10 bits and the most significant 32 hifsddfand replaces
bits 31 through 10 afird] with the value from itsmm22field.

SETHI does not affect the condition codes.

A SETHI instruction withrd = 0 andimm22= 0 is defined to be a NOP instruction, which is
defined in A.40.

Programming Note:
The most common form of 64-bit constant generation is creating stack offsets whose magnitude is less than
2%2_The code below can be used to create the constant 0000 0000 ABCRp 1234

sethi %hi(Oxabcd1234),%00
or %00, 0x234, %00

The following code shows how to create a negative constant. Note that the immediate fieldxof the
instruction is sign extended and can be used to get 1s in all of the upper 32 bits. For example, to set the neg-
ative constant FFFF FFFF ABCD 1234

sethi %hi(0x5432edcb),%00! note 0x5432EDCB, not 0XABCD1234
xor %00, Ox1e34, %00 ! part of imm. overlaps upper bits

Exceptions:
(none)

A.49 Shift

Opcode op3 X Operation
SLL 100101 0 Shift Left Logical - 32 Bits
SRL 100110 0 Shift Right Logical - 32 Bits
SRA 10 0111 0 Shift Right Arithmetic - 32 Bits
SLLX 10 0101 1 Shift Left Logical - 64 Bits
SRLX 10 0110 1 Shift Right Logical - 64 Bits
SRAX 100111 1 Shift Right Arithmetic - 64 Bits
Format (3):
10 rd op3 rsl i=0| x — rs2
10 rd op3 rsl i=1|x=Q — shcnt32
10 rd op3 rsl i=1|x=1 — shent64
31 30 29 25 24 19 18 14 13 12 6 5 4 0
Suggested Assembly Language Syntax
sli regsy, reg_or_shent regy
srl reggy, reg_or_shent regy
sra regsy, reg_or_shent regy
slix reggy, reg_or_shent regy
srix regsy, reg_or_shent regy
srax regsy, reg_or_shcntregy
Description:

Wheni =0 andx = 0, the shift count is the least significant five bitsrffs2]. Wheni =0 and
x = 1, the shift count is the least significant six bitsps2]. Wheni = 1 andx = 0, the shift count
is the immediate value specified in bits 0 through 4 of the instruction. Wkehandx = 1, the
shift count is the immediate value specified in bits O through 5 of the instruction.

Shift count
bits 4.. 0 of[rs2]
bits 5.. 0 of[rs2]
bits 4..0 of instruction
bits 5..0 of instruction

k==l &=
k=1 E=] ke

SLL and SLLX shift all 64 bits of the value inrs1] left by the number of bits specified by the
shift count, replacing the vacated positions with zeroes, and write the shifted repdlt to

SRL shifts the low 32 bits of the value mirs]] right by the number of bits specified by the shift
count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is written to
r[rd].

SRLX shifts all 64 bits of the value in[rs1] right by the number of bits specified by the shift
count. Zeroes are shifted into the vacated high-order bit positions, and the shifted result is written
to r[rd].

SRA shifts the low 32 bits of the value nfirs1] right by the number of bits specified by the shift
count, and replaces the vacated positions with bit 3qrsfl]. The high order 32 bits of the result
are all set with bit 31 affrs1], and the result is written tgrd].

SRAX shifts all 64 bits of the value in[rs1] right by the number of bits specified by the shift
count, and replaces the vacated positions with bit 68[i&fl]. The shifted result is written to
r[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 32-bit
shifts as noted above.

These instructions do not modify the condition codes.

Programming Note:
“Arithmetic left shift by 1 (and calculate overflow)” can be effected with the ADDcc instruction.

Programming Note:
The instruction sra rs1,0, rd” can be used to convert a 32-bit value to 64 bits, with sign extension into
the upper word.srl rs1,0, rd” can be used to clear the upper 32 bits[af].

Exceptions:
(none)

A.50 Software-Initiated Reset

Opcode op3 rd Operation
SIR 11 0000 15 Software-initiated reseg

Format (3):

10 01111 op3 0 0000 i=1 simm13
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntax
Sir simm13
Description:

SIR is used to generate a software-initiated reset (SIR). It may be executed in either privileged or
nonprivileged mode, with slightly different effect. As with other traps, a software-initiated reset
performs different actions when TL = MAXTL than it does when<IMAXTL.

When executed in user mode, the action of SIR is conditional on the SIR_enable control flag.

IMPL. DEP. #116: The location of the SIR_enable control flag and the means of accessing the SIR_enable
control flag are implementation-dependent. In some implementations it may be permanently zero.

When SIR_enable is 0, SIR executes without effect (as a NOP) in user mode. When SIR is exe-
cuted in privileged mode or in user mode with SIR_enable = 1, the processor performs a software-
initiated reset. See 7.6.2.5, “Software-Initiated Reset (SIR) Traps,” for more information about
software-initiated resets.

Programming Note:
This instruction is never illegal. It is not a privileged instruction, even though its action in privileged mode is
different than in user mode.

Exceptions:
software_initiated_reset

A.51 Store Barrier

The STBAR instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the MEMBAR instruction be used in its place.

Opcode op3 Operation
STBARP 10 1000 Store Barrier

Format (3):
10 0 op3 01111 0 —
31 30 29 25 24 19 18 14 13 12 0
Suggested Assembly Language Syntax
stbar
Description:

The store barrier instruction (STBAR) forcalf store and atomic load-store operations issued by
a processor prior to the STBAR to complete their effects on memory bafgretore or atomic
load-store operations issued by that processor subsequent to the STBAR are executed by memory.

Note that the encoding of STBAR is identical to that of the RDASR instruction except that
rs1=15 andd = 0, and is identical to that of the MEMBAR instruction except that bit)1:3@.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).

Compatibility Note:
STBAR is identical in function to a MEMBAR instruction withhmask= 8;5. STBAR is retained for com-
patibility with SPARC-V8.

Implementation Note:
For correctness, it is sufficient for a processor to stop issuing new store and atomic load-store operations
when an STBAR is encountered and resume after all stores have completed and are observed in memory by
all processors. More efficient implementations may take advantage of the fact that the processor is allowed
to issue store and load-store operations after the STBAR, as long as those operations are guaranteed not to
become visible before all the earlier stores and atomic load-stores have become visible to all processors.

Exceptions:
(none)

A.52 Store Floating-Point

The STFSR instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the STXFSR instruction be used in its place.

Opcode op3 rd Operation
STF 10 0100 0..31 Store Floating-Point Register
STDF 100111 T Store Double Floating-Point Register
STQF 100110 T Store Quad Floating-Point Register
STFSR 100101 0 Store Floating-Point State Register Lowgr
STXFSR 10 0101 1 Store Floating-Point State Register
— 100101 2..31 | Reserved
T Encoded floating-point register value, as described in 5.1.4.1
Format (3):
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
st freg .4, [addres$
std freg .4, [addres$
stq freg .4, [addres$
st %fsr , [addres$
stx %fsr , [addres$
Description:

The store single floating-point instruction (STF) copied] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double floating-
point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) copies the contents of a quad floating-point reg-
ister into a word-aligned quadword in memory.

The store floating-point state register lower instruction (STFSR) waits for any currently executing
FPop instructions to complete, and then writes the lower 32 bits of the FSR into memory.

The store floating-point state register instruction (STXFSR) waits for any currently executing
FPop instructions to complete, and then writes all 64 bits of the FSR into memory.

Compatibility Note:
SPARC-V9 needs two store-FSR instructions, since the SPARC-V8 STFSR instruction is defined to store
only 32 bits of the FSR into memory. STXFSR allows SPARC-V9 programs to store all 64 bits of the FSR.

STFSR and STXFSR zero F$&Rafter writing the FSR to memory.

Implementation Note:
FSRftt should not be zeroed until it is known that the store will not cause a precise trap.

The effective address for these instructions isr[rs1]+r[rs2]” if i=0, or
“r[rs1] + sign_ext6imm13” if i = 1.

STF, STFSR, STDF, and STQF causean_address_not_aligned exception if the effective mem-

ory address is not word-aligned; STXFSR causesea_address not_aligned exception if the
address is not doubleword-aligned. If the floating-point unit is not enabled for the source register
rd (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, a store floating-point instruc-
tion causes am_disabled exception.

IMPL. DEP. #110(1): STDF requires only word alignment in memory. If the effective address is word-
aligned but not doubleword-aligned, it may cause an STDF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the STDF instruction and return.

IMPL. DEP. #112(1): STQF requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, it may cause an STQF_mem_address not_aligned exception. In this
case the trap handler software shall emulate the STQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not determine that
double- or quadword operands were properly aligned. For SPARC-V9, since emulation of misaligned stores
is expected to be fast, it is recommended that compilers issue sets of single-precision stores only when they
can determine that double- or quadword operandsarproperly aligned.

Exceptions:
async_data_error
fo_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQF only) (impl. dep. #112)
data_access_exception
data_access_protection
data_access MMU_miss
data_access_error
illegal_instruction (0p3= 25, andrd = 2..31)
fo_exception_other (invalid_fp_register (STQF only))

A.53 Store Floating-Point into Alternate Space

Opcode op3 rd Operation

STEAPAS! 11 0100 0..31 Store Floating-Point Register to Alternate Space
STDFAPS! 110111 T Store Double Floating-Point Register to Alternate Sphce
STQFAMs! 110110 T Store Quad Floating-Point Register to Alternate Spatle

T Encoded floating-point register value, as described in 5.1.4.1

Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0

Suggested Assembly Language Syntax
sta freg .4, [regaddi imm_asi
sta freg .4, [reg_plus_imrh %asi
stda freg .4, [regaddi imm_asi
stda freg .4, [reg_plus_imrh %asi
stqa freg .4, [regaddi imm_asi
stqa freg .4, [reg_plus_imrh %asi

Description:
The store single floating-point into alternate space instruction (STFA) dpiEsto memory.

The store double floating-point into alternate space instruction (STDFA) copies a doubleword
from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the contents of a
qguad floating-point register into a word-aligned quadword in memory.

Store floating-point into alternate space instructions contain the address space identifier (ASI) to
be used for the load in thenm_asifield if i = O, or in the ASI register if = 1. The access is privi-

leged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for these
instructions is f[rs1] + r[rs2]” if i =0, or ‘r[rs1] + sign_ext6imm13" if i = 1.

STFA, STDFA, and STQFA causen@em_address_not_aligned exception if the effective memory
address is not word-aligned. If the floating-point unit is not enabled for the source redigber
FPRS.FEF and PSTATE.PEF), or if the FPU is not present, store floating-point into alternate
space instructions cause andisabled exception.

STFA, STDFA, and STQFA causepavileged_action exception if PSTATE.PRIV = 0 and bit 7 of
the ASI is zero.

IMPL. DEP. #110(2): STDFA requires only word alignment in memory. If the effective address is word-
aligned but not doubleword-aligned, it may cause an STDF_mem_address not_aligned exception. In this
case the trap handler software shall emulate the STDFA instruction and return.

IMPL. DEP. #112(2). STQFA requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, it may cause an STQF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the STQFA instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not determine that
double- or quadword operands were properly aligned. For SPARC-V9, since emulation of misaligned stores
is expected to be fast, it is recommended that compilers issue sets of single-precision stores only when they
can determine that double- or quadword operandsairproperly aligned.

Exceptions:
async_data_error
fp_disabled
mem_address _not_aligned
STDF_mem_address_not_aligned (STDFA only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQFA only) (impl. dep. #112)
privileged_action
data_access_exception
data_access_protection
data_access MMU_miss
data_access_error
fo_exception_other (invalid_fp_register (STQFA only))

A.54 Store Integer

The STD instruction isdeprecated,; it is provided only for compatibility with prev
ous versions of the architecture. It should not be used in new SPARC-V9 softwie.
It is recommended that the STX instruction be used in its place.

Opcode op3 Operation
STB 000101 | Store Byte
STH 00 0110 | Store Halfword
STW 000100 | Store Word
STX 001110 | Store Extended Word
STDP 000111 | Store Doubleword
Format (3):
11 rd op3 rsl i=0 — rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
stb reg,q, [addres$ (synonymsstub , stsb)
sth reg,q, [addres} (synonymsstuh , stsh)
stw reg,q, [addres$ (synonymsst , stuw , stsw)
Stx reg,q, [addres$
std reg,q, [addres$
Description:

The store integer instructions (except store doubleword) copy the whole extended (64-bit) integer,
the less-significant word, the least significant halfword, or the least significant byfedpinto
memory.

The store doubleword integer instruction (STD) copies two words from @egister pair into
memory. The least significant 32 bits of the even-numbenegdjister are written into memory at

the effective address, and the least significant 32 bits of the following odd-numbegidter are
written into memory at the “effective address + 4.” The least significant bit ofdhigeld of a

store doubleword instruction is unused and should always be set to zero by software. An attempt
to execute a store doubleword instruction that refers to a misaligned (odd-numitkecadses an
illegal_instruction exception.

IMPL. DEP. #108(1): IT is implementation-dependent whether STD is implemented in hardware. if not, an
attempt to execute it will cause an unimplemented_STD exception.

The effective address for these instructions isr[rs1]+r[rs2]” if i=0, or
“r[rs1] + sign_ext6imm13” if i = 1.

A successful store (notably, store extended and store doubleword) instruction operates atomically.

STH causes aem_address_not_aligned exception if the effective address is not halfword-aligned.
STW causes anem_address_not_aligned exception if the effective address is not word-aligned.
STX and STD causesrmaem_address_not_aligned exception if the effective address is not double-
word-aligned.

Programming Note:
STD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines because
of data path and register-access difficulties. In some SPARC-V9 systems it may cause a trap to emulation
code; therefore, STD should be avoided.

If STD is emulated in software, STX should be used in order to preserve atomicity.

Compatibility Note:
The SPARC-V8 ST instruction has been renamed STW in SPARC-V9.

Exceptions:
async_data_error
unimplemented_STD (STD only) (impl. dep. #108)
illegal_instruction (STD with oddrd)
mem_address_not_aligned (all except STB)
data_access_exception
data_access_error

data_access_protection
data_access MMU_miss

A.55 Store Integer into Alternate Space

The STDA instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the STXA instruction be used in its place.

Opcode op3 Operation
STBA™S! 010101 | Store Byte into Alternate space
STHAPAS! 01 0110 | Store Halfword into Alternate space
STWAPAS! 01 0100 | Store Word into Alternate space
STXAPss! 011110 | Store Extended Word into Alternate spade
STDAP-Psi | 010111 | Store Doubleword into Alternate space
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
stba regq, [regaddi imm_asi (synonymsstuba , stsha)
stha regy. [regaddi imm_asi (synonymsstuha , stsha)
stwa regq, [regaddi imm_asi (synonymssta , stuwa , stswa)
stxa regy. [regaddi imm_asi
stda regq, [regaddi imm_asi
stba regqy. [reg_plus_imrh %asi (synonymsstuba , stsha)
stha regq, [reg_plus_imrh %asi (synonymsstuha , stsha)
stwa regqy. [reg_plus_imrh %asi (synonymssta , stuwa , stswa)
stxa regq, [reg_plus_imrh %asi
stda regqy. [reg_plus_imrh %asi
Description:

The store integer into alternate space instructions (except store doubleword) copy the whole
extended (64-bit) integer, the less-significant word, the least-significant halfword, or the least-sig-
nificant byte ofr[rd] into memory.

The store doubleword integer instruction (STDA) copies two words from @gister pair into
memory. The least-significant 32 bits of the even-numbenegjister are written into memory at

the effective address, and the least-significant 32 bits of the following odd-numbegidter are
written into memory at the “effective address + 4.” The least significant bit ofdheeld of a

store doubleword instruction is unused and should always be set to zero by software. An attempt

to execute a store doubleword instruction that refers to a misaligned (odd-numiakecadyses an
illegal_instruction exception.

IMPL. DEP. #108(2): It is implementation-dependent whether STDA is implemented in hardware. If not, an
attempt to execute it will cause an unimplemented_STD exception.

Store integer to alternate space instructions contain the address space identifier (ASI) to be used
for the store in themm_asifield if i = O, or in the ASI register if = 1. The access is privileged if

bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for these instruc-
tions is ‘f[rs1] + r[rs2]” if i =0, or ‘r[rs1]+sign_ext6imm13’ if i = 1.

A successful store (notably, store extended and store doubleword) instruction operates atomically.

STHA causes anem_address_not_aligned exception if the effective address is not halfword-
aligned. STWA causes mem_address_not_aligned exception if the effective address is not word-
aligned. STXA and STDA causeraem_address_not_aligned exception if the effective address is
not doubleword-aligned.

A store integer into alternate space instruction causegri@leged action exception if
PSTATE.PRIV =0 and bit 7 of the ASl is zero.

Programming Note:
STDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines
because of data path and register-access difficulties. In some SPARC-V9 systems it may cause a trap to emu-
lation code; therefore, STDA should be avoided.

If STDA is emulated in software, STXA should be used in order to preserve atomicity.

Compatibility Note:
The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions:
async_data_error
unimplemented_STD (STDA only) (impl. dep. #108)
illegal_instruction (STDA with oddrd)
privileged_action
mem_address_not_aligned (all except STBA)
data_access_exception
data_access_error

data_access_protection
data_access MMU_miss

A.56 Subtract

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify cc’s

SUBC 001100 Subtract with Carry

SUBCcc 011100 Subtract with Carry and modify cc’s

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
sub gy, reg_or_imm regy
subcc regy, reg_or_imm regy
subc gy, reg_or_imm regy
subccc regsy, reg_or_imm regy
Description:

These instructions compute[fs1] —r[rs2]” if i =0, or “r[rs1] — sign_extsimm13"if i =1, and
write the difference into[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit caay)(
bit; that is, they computerfrsl] —r[rs2] —icc.c’ or “r[rs1] — sign_extéimm13 —icc.c” and write
the difference into[rd].

SUBcc and SUBCcc modify the integer condition codes (G&Rand CCRxcq). 32-bit overflow
(CCRicc.v) occurs on subtraction if bit 31 (the sign) of the operands differ and bit 31 (the sign) of
the difference differs from[rs1]<31>. 64-bit overflow (CCRkccv) occurs on subtraction if bit 63
(the sign) of the operands differ and bit 63 (the sign) of the difference differs[irsljx63>.
Programming Note:

A SUBcc withrd = 0 can be used to effect a signed or unsigned integer comparison. See the CMP synthetic
instruction in Appendix G.

Programming Note:
SUBC and SUBCcc read the 32-bit condition codes’ carry bit (G&eir), not the 64-bit condition codes’
carry bit (CCRxcc.c).

Compatibility Note:
SUBC and SUBCcc were named SUBX and SUBXcc, respectively, in SPARC-V8.

Exceptions:
(none)

A.57 Swap Register with Memory

The SWAP instruction is deprecated; it is provided only for compatibility with pr
vious versions of the architecture. It should not be used in new SPARC-V9 s

ware. It is recommended that the CASA (or CASXA) instruction be used in
place.

Opcode op3 Operation
SWAP 0011112 SWAP register with memory

Format (3):

11 rd op3 rsl i=0 — rs2

11 rd op3 rsl i=1 simm13

31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
swap [addres$ regy

Description:

SWAP exchanges the lower 32 bitsrpfd] with the contents of the word at the addressed memory
location. The upper 32 bits ofrd] are set to zero. The operation is performed atomically, that is,
without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or more
processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructions
addressing any or all of the same doubleword simultaneously are guaranteed to execute them in an
undefined but serial order.

The effective address for these instructions isr[rs1]+r[rs2]” if i=0, or
“r[rs1] + sign_ext6imm13” if i = 1. This instruction causesm@em_address _not_aligned exception
if the effective address is not word-aligned.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).

Implementation Note:
See <lItalic>lImplementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-
ment available from SPARC International, for information on the presence of hardware support for these
instructions in the various SPARC-V9 implementations.

Exceptions:
mem_address _not_aligned
data_access_exception
data_access_error

data_access_protection
data_access MMU_miss

async_data_error

A.58 Swap Register with Alternate Space Memory

The SWAPA instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that the CASXA instruction be used in its place.

Opcode op3 Operation
SWAPAD: PAsi | 011111 | SWAP register with Alternate space memory
Format (3):
11 rd op3 rsl i=0 imm_asi rs2
11 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
swapa [regaddi] imm_asj regyq
swapa [reg_plus_imrh %asi, regy
Description:

SWAPA exchanges the lower 32 bitsrfd] with the contents of the word at the addressed mem-

ory location. The upper 32 bits ofrd] are set to zero. The operation is performed atomically, that

is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or
more processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instruc-
tions addressing any or all of the same doubleword simultaneously are guaranteed to execute them
in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load in the
imm_asiffield if i = 0, or in the ASI register if = 1. The access is privileged if bit seven of the ASI

is zero; otherwise, it is not privileged. The effective address for this instructiofrgl] + r[rs2]”

if i =0, or ‘r[rs1] + sign_ext6imm13"if i = 1.

This instruction causesraem_address_not_aligned exception if the effective address is not word-
aligned. It causesmivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASl is zero.

The coherence and atomicity of memory operations between processors and I/O DMA memory
accesses are implementation-dependent (impl. dep #120).

Implementation Note:
See <lItalic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a docu-
ment available from SPARC International, for information on the presence of hardware support for this
instruction in the various SPARC-V9 implementations.

Exceptions:
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
data_access_protection
data_access MMU_miss
async_data_error

A.59 Tagged Add

The TADDccTV instruction is deprecated; it is provided only for compatibilit
with previous versions of the architecture. It should not be used in new SPARC#9
software. It is recommended that TADDcc followed by BPVS be used in its plafle
(with instructions to save the pre-TADDcc integer condition codes, if necessar

Opcode op3 Operation
TADDcc 10 0000 Tagged Add and modify cc’s
TADDccTVP 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
taddcc gy, reg_or_imm regy
taddcctv regsy, reg_or_imm regy
Description:

These instructions compute a sum thatrigs1] + r[rs2]”if i =0, or “r[rs1] + sign_ext6imm13’

if i =1.

TADDcc modifies the integer condition codasq andxcc, and TADDccTV does so also, if it
does not trap.

A tag_overflow exception occurs if bit 1 or bit O of either operand is nonzero, or if the addition gen-
erates 32-bit arithmetic overflow (i.e., both operands have the same value in bit 31, and bit 31 of
the sum is different).

If TADDccTV causes a tag overflow,ag_overflow exception is generated, anjad] and the inte-

ger condition codes remain unchanged. If a TADDccTV does not cause a tag overflow, the sum is
written intor[rd], and the integer condition codes are updated. @CR.is set to 0 to indicate no
32-bit overflow. If a TADDcc causes a tag overflow, the 32-bit overflow bit (G€&R) is setto 1;

if it does not cause a tag overflow, C€R.vis cleared.

In either case, the remaining integer condition codes (both the otheri€&(is and all the
CCRxccbits) are also updated as they would be for a normal ADD instruction. In particular, the
setting of the CCRcc.vbit is not determined by the tag overflow condition (tag overflow is used
only to set the 32-bit overflow bit). CCRccv is set only based on the normal 64-bit arithemetic
overflow condition, like a normal 64-bit add.
Compatibility Note:

TADDccTV traps based on the 32-bit overflow condition, just as in SPARC-V8. Although the tagged-add

instructions set the 64-bit condition codes C&iR, there is no form of the instruction that traps the 64-bit
overflow condition.

Exceptions:
tag_overflow (TADDccTV only)

A.60 Tagged Subtract

The TSUBccTYV instruction is deprecated; it is provided only for compatibility wit
previous versions of the architecture. It should not be used in new SPARC-V9 sjift-
ware. It is recommended that TSUBcc followed by BPVS be used in its place (Wih
instructions to save the pre-TSUBcc integer condition codes, if necessary).

Opcode op3 Operation
TSUBcc 10 0001 Tagged Subtract and modify cc's
TSUBccTWP 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflqw

Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
tsubcc regs1, reg_or_imm regy
tsubcctv regs, reg_or_imm regy
Description:

These instructions computg{fsl] —r[rs2]” if i =0, or ‘r[rs1] — sign_extimm13” if i = 1.

TSUBcc modifies the integer condition codex@ndxcg; TSUBccTV also modifies the integer
condition codes, if it does not trap.

A tag overflow occurs if bit 1 or bit O of either operand is nonzero, or if the subtraction generates
32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit sign bit)
and the sign of the 32-bit difference in bit 31 differs from bit 3] isfl].

If TSUBCcCTV causes a tag overflow,tag_overflow exception is generated anfgd] and the inte-

ger condition codes remain unchanged. If a TSUBccTV does not cause a tag overflow condition,
the difference is written into[rd], and the integer condition codes are updated. GCRis set to

0 to indicate no 32-bit overflow. If a TSUBcc causes a tag overflow, the 32-bit overflow bit
(CCRIicc.v) is set to 1; if it does not cause a tag overflow, GCR.is cleared.

In either case, the remaining integer condition codes (both the otheri€is and all the
CCRxccbits) are also updated as they would be for a normal subtract instruction. In particular,
the setting of the CCRcc.vbit is not determined by the tag overflow condition (tag overflow is
used only to set the 32-bit overflow bit). CGRcv is set only based on the normal 64-bit
arithemetic overflow condition, like a normal 64-bit subtract.

Compatibility Note:
TSUBccTV traps are based on the 32-bit overflow condition, just as in SPARC-V8. Although the tagged-
subtract instructions set the 64-bit condition codes Ge€&there is no form of the instruction that traps on
64-bit overflow.

Exceptions:
tag_overflow (TSUBCcCTV only)

A.61 Trap on Integer Condition Codes (Tcc)

Opcode| o0p3 cond Operation icc test
TA 111010| 1000| Trap Always
TN 11 1010{ 0000| Trap Never
TNE 111010 1001 Trap on Not Equal not Z
TE 111010, 0001 Trap on Equal
TG 11 1010; 1010 Trap on Greater not (Z or (N xor V))
TLE 111010{ 0010 Trap on Less or Equal ZXbr V)
TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)
TL 11 1010| 0011| Trap on Less Ror vV
TGU 111010, 1100 Trap on Greater Unsigned not (C or Z)
TLEU |111010{ 0100 Trap on Less or Equal Unsigned o(Q)
TCC 111010 1101 Trap on Carry Clg&reater than or Equal, Unsigned not C
TCS 111019 0101 Trap on Carry Set (Less Than, Unsigned)
TPOS | 1110109 1110 Trap on Positive or zero not N
TNEG |111010 0110 Trap on Negative
TVC 11 1010| 1111 Trap on Overflow Clear not vV
TVS 111010, 0111 Trap on Overflow Set
Format (4):
10 |— cond op3 rsl i=0|ccllcco — rs2
10 |— cond op3 rsl i=1|cclcco — sw_trap_#
3130 29 28 25 24 19 18 1413 12 11 10 7 65 4 0
ccl[] ccO | Condition codes

00 icc

01 —

10 Xcc

11 —

Suggested Assembly Language Syntax
ta i_or_x_cc, software_trap_number
tn i_or_x_cc, software_trap_number
tne i_or_x_cc, software_trap_number (synonymtnz)
te i_or_x_cc, software_trap_number (synonymtz)
tg i_or_x_cc, software_trap_number
tle i_or_x_cc, software_trap_number
tge i_or_x_cc, software_trap_number
tl i_or_x_cc, software_trap_number
tgu i_or_x_cc, software_trap_number
tleu i_or_x_cc, software_trap_number
tcc i_or_x_cc, software_trap_number (synonymtgeu)
tcs i_or_x_cc, software_trap_number (synonymtlu)
tpos i_or_x_cc, software_trap_number
tneg i_or_x_cc, software_trap_number
tvc i_or_x_cc, software_trap_number
tvs i_or_x_cc, software_trap_number

Description:

The Tcc instruction evaluates the selected integer condition cactesr(xco according to the
condfield of the instruction, producing either a TRUE or FALSE result. If TRUE and no higher-
priority exceptions or interrupt requests are pending, thespainstruction exception is generated.

If FALSE, atrap_instruction exception does not occur and the instruction behaves like a NOP.

The software trap number is specified by the least significant seven bit§ret]“+ r[rs2]” if
i =0, or the least significant seven bits dfs1] + sw_trap_#if i = 1.

Wheni =1, bits 7 through 10 are reserved and should be supplied as zeros by software. When
i =0, bits 5 through 10 are reserved, and the most significant 57 bits[isfl] + r[rs2]” are
unused, and both should be supplied as zeros by software.

Description (Effect on Privileged State):

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. Then the trap
is taken, and the processor performs the normal trap entry procedure, as described in Chapter 7,
“Traps.”

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. It can also be used for
run-time checks, such as out-of-range array indexes, integer overflow, etc.

Compatibility Note:
Tcc is upward compatible with the SPARC-V8 Ticc instruction, with one qualification: a Ticciwithand
simm13< 0 may execute differently on a SPARC-V9 processor. Use of the form of Ticc is believed to
be rare in SPARC-V8 software, astnm13< 0 is probably not used at all, so it is believed that, in practice,
full software compatibillity will be achieved.

Exceptions:
trap_instruction

illegal_instruction (ccl [] ccO= 01, or 11,

A.62 Write Privileged Register

Opcode op3 Operation
WRPR’ 110010 | Write Privileged Register
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12
rd Privileged register
0 TPC
1 TNPC
2 TSTATE
3 TT
4 TICK
5 TBA
6 PSTATE
7 TL
8 PIL
9 CWP
10 CANSAVE
11 CANRESTORE
12 CLEANWIN
13 OTHERWIN
14 WSTATE
15..31 | Reserved

Suggested Assembly Language Syntax
wrpr regs1, reg_or_imm %tpc
wrpr regsy, reg_or_imm %tnpc
wrpr regs1, reg_or_imm %tstate
wrpr regs1, reg_or_imm 9tt
wrpr regs1, reg_or_imm %tick
wrpr regsy, reg_or_imm %tba
wrpr regs1, reg_or_imm %pstate
wrpr regsy, reg_or_imm %itl
wrpr regs1, reg_or_imm %pil
wrpr regs1, reg_or_imm %cwp
wrpr regs1, reg_or_imm %cansave
wrpr regsy, reg_or_imm %canrestore
wrpr regs1, reg_or_imm %cleanwin
wrpr regs1, reg_or_imm %otherwin
wrpr regs1, reg_or_imm %wstate

Description:

This instruction stores the value[fs1] xor r[rs2]” if i =0, or “r[rs1] xor sign_ext6imm13’ if
i =1 to the writable fields of the specified privileged state register. Note the exclusive-or opera-
tion.

Therd field in the instruction determines the privileged register that is written. There are at least
four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A write to one
of these registers sets the register indexed by the current value in the trap level register (TL). A
write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL=0) causes an
illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other machine state.

Programming Note:
A WRPR of TL cd1 be used to read the values of TPC, TNPC, and TSTATE for any trap level, however, care
must be taken that traps do not occur while the TL register is modified.

The WRPR instruction is aondelayed-write instruction. The instruction immediately following
the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions witld in the range 15..31 are reserved for future versions of the architecture;
executing a WRPR instruction witl in that range causes #agal_instruction exception.

Programming Note:
On an implementation that provides a floating-point queue, supervisor software should be aware of the state
of the FQ before disabling the floating-point unit (changing PSTATE.PEF from 1 to 0 with a WRPR instruc-
tion) (impl. dep. #24). Typically, supervisor software ensures that the FQ is emptyiRSR0) before dis-
abling the floating-point unit.

Exceptions:
privileged _opcode
illegal_instruction ((rd = 15..31) or ({d < 3) and (TL = 0)))

A.63 Write State Register

The WRY instruction is deprecated; it is provided only for compatibility with prev

ous versions of the architecture. It should not be used in new SPARC-V9 softwie.

It is recommended that all instructions which reference the Y register be avoid

Opcode op3 rd Operation
WRYP 11 0000 0 Write Y register
— 11 0000 1 Reserved
WRCCR 11 0000 2 Write Condition Codes Register
WRASI 11 0000 3 Write ASI register
WRASR™ SR | 11 0000 4,5 Write Ancillary State Registezgervedl
WRFPRS 11 0000 6 Write Floating-Point Registers Status regigter
WRASR™ SR | 11 0000 7..14 Write Ancillary State Registezdervedl
See text 11 0000 15 See text
WRASR™ SR | 11 0000 16.31 Implementation-depende(impl. dep. #48)
Format (3):
10 rd op3 rsl i=0 — rs2
10 rd op3 rsl i=1 simm13
31 30 29 25 24 19 18 14 13 12 5 4 0
Suggested Assembly Language Syntax
wr regs1, reg_or_imm %y
wr regsy, reg_or_imm %ccr
wr regs1, reg_or_imm %asi
wr regs1, reg_or_imm %fprs
wr regsy, reg_or_imm asr_regq T
T Syntax for WRASR with rd=16..31 may vary (impl. dep. #48)
Description:

WRY, WRCCR, WRFPRS, and WRASI stores the valdesi] xor r[rs2]”if i =0, or “r[rs1] xor

sign_extéimm13y’if i = 1, to the writable fields of the specified state register. Note the exclusive-
or operation.

Note that WRY, WRCCR, WRASI, WRFPRS, and WRASR are distinguished only byl theld.

WRASR writes a value to the ancillary state register (ASR) indicateddbyhe operation per-
formed to generate the value written may fgedependent or implementation-dependent (see
below). A WRASR instruction is indicated lop = 2, rd = 4, 5, or= 7 andop3= 304

An instruction withop = 2,5, 0p3= 30, rd = 15,rs1= 0, andi = 1 is defined as a SIR instruction.
See A.50, “Software-Initiated Reset.” Whep = 2,5, op3= 30,5 andrd = 15, if eitherrs1#0 or
i£1, then anilegal_instruction exception shall be generated.

IMPL. DEP. #48: WRASR instructions with rd in the range 16..31 are available for implementation-depen-
dent uses (impl. dep. #8. For a WRASR instruction with rd in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, XOR) to generate the value written to the ASR, whether the instruction is privileged (impl. dep.
#9), and whether the instruction causes an illegal_instruction exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending the
SPARC-V9 instruction set using read/write ASR instructions

The WRY, WRCCR, WRFPRS, and WRASI instructions ac¢ delayed-write instructions. The
instruction immediately following a WRY, WRCCR, WRFPRS, or WRASI observes the new
value of the Y, CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the FPRS
register.

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-control reg-
isters. See <ltalic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a
document available from SPARC International, for information on ancillary state registers provided by spe-
cific implementations.

Compatibility Note:
The SPARC-V8 WRIER, WRPSR, WRWIM, and WRTBR instructions do not exist in SPARC-V9, since the
IER, PSR, TBR, and WIM registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (WRASR only; implementation-dependent (impl. dep. #48))
illegal_instruction (WRASR withrd = 16..31 and the implementation does not define the
instruction as an extension; implementation-dependent (impl. dep. #48), or WRASR
with rd equal to 1, 4, 5, or in the range 7..14), WRASR witlrequal to 15 ands1#0
orizl

B IEEE Std 754-1985 Requirements for SPARC-V9

The IEEE Std 754-1985 floating-point standard contains a number of implementation-dependen-
cies. This appendix specifies choices for these implementation-dependencies, to ensure that
SPARC-V9 implementations are as consistent as possible.

B.1 Traps Inhibit Results

As described in 5.1.7, “Floating-Point State Register (FSR),” and elsewhere, when a floating-
point trap occurs:

— The destination floating-point register(s) (thregisters) are unchanged.
— The floating-point condition codef€0, fccl, fcc2, andfccd) are unchanged.
— The FSRaexc(accrued exceptions) field is unchanged.

— The FSRcexc(current exceptions) field is unchanged except/f®E_754_exceptions; in
that casegexccontains a bit set to “1” corresponding to the exception that caused the trap.
Only one bit shall be set mexc.

Instructions causing a#p_exception_other trap due to unfinished or unimplemented FPops execute
as if by hardware; that is, a trap is undetectable by user software, except that timing may be
affected. A user-mode trap handler invoked foriBBE 754 exception, whether as a direct result

of a hardwarefp_exception_ieee_754 trap or as an indirect result of supervisor handling of an
unfinished_FPop Or unimplemented_FPop, can rely on the following:

— The address of the instruction that caused the exception will be available to it.

— The destination floating-point register(s) are unchanged from their state prior to that
instruction’s execution.

— The floating-point condition code&¢O, fccl, fcc2, andfcc3) are unchanged.
— The FSRaexcfield is unchanged.

— The FSRcexcfield contains exactly one bit set to 1, corresponding to the exception that
caused the trap.

— The FSRItt, gne andreservedields are zero.

Supervisor software is responsible for enforcing these requirements if the hardware trap mecha-
nism does not.

B.2 NaN Operand and Result Definitions

An untrapped floating-point result can be in a format that is either the same as, or different from,
the format of the source operands. These two cases are described separately below.

B.2.1 Untrapped Result in Different Format from Operands

F[sdq]TO[sdqg] with a quiet NaN operand
No exception caused; result is a quiet NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are copied to the

most significant bits of the result fraction. When converting to a narrower format, excess
low-order bits of the operand fraction are discarded. When converting to a wider format,
excess low-order bits of the result fraction are set to 0. The quiet bit (the most significant

bit of the result fraction) is always set to 1, so the NaN transformation always produces a
qguiet NaN. The sign bit is copied from the operand to the result without modification.

F[sdq]TO[sdq] with a signaling NaN operand
Invalid exception; result is the signaling NaN operand processed byaNetransforma-
tion above to produce a quiet NaN.

FCMPE[sdq] with any NaN operand
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any signaling NaN operand
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any quiet NaN operand but no signaling NaN operand
No exception; the selected floating-point condition code is set to unordered.

B.2.2 Untrapped Result in Same Format as Operands

No NaN operand
For an invalid operation such agrt(—1.0) or 0.0+ 0.0, the result is the quiet NaN with
sign = zero, exponent = all ones, and fraction = all ones. The sign is zero to distinguish
such results from storage initialized to all ones.

One operand, a quiet NaN
No exception; result is the quiet NaN operand.

One operand, a signaling NaN
Invalid exception; result is the signaling NaN with its quiet bit (most significant bit of frac-
tion field) set to 1.

Two operands, both quiet NaNs
No exception; result is thrs2 (second source) operand.

Two operands, both signaling NaNs
Invalid exception; result is thws2 operand with the quiet bit set to 1.

Two operands, only one a signaling NaN
Invalid exception; result is the signaling NaN operand with the quiet bit set to 1.

Two operands, neither a signaling NaN, only one a quiet NaN
No exception; result is the quiet NaN operand.

Table 27—Untrapped Floating-Point Results

In table 27 NaM means that the NaN is imgQ means quiet, S signaling.

rs2 operand
Number QNaN2 SNaN2
None IEEE 754 QNaN2 QSNaN2
rsi Number IEEE 754 QNaN2 QSNaN2
operand QNaN1 QNaN1 QNaN2 QSNaN2
SNaN1 QSNaN1 QSNaN1 QSNaN2

QSNaN means a quiet NaN produced by tRaN transformation on a signaling NaN from rg

the invalid exception is always indicated. The QNafEsults in the table never generate an excep-
tion, but IEEE 754 specifies several cases of invalid exceptions, and QNaN results from operands
that are both numbers.

B.3 Trapped Underflow Definition (UFM = 1)

Underflow occurs if the exact unrounded result has magnitude between zero and the smallest nor-
malized number in the destination format.

IMPL. DEP. #55: Whether tininess (in IEEE 754 terms) is detected before or after rounding is implementa-
tion-dependent. It is recommended that tininess be detected before rounding.

Note that the wrapped exponent results intended to be delivered on trapped underflows and over-
flows in IEEE 754 are irrelevant to SPARC-V9 at the hardware and supervisor software levels; if
they are created at all, it would be by user software in a user-mode trap handler.

B.4 Untrapped Underflow Definition (UFM = 0)

Underflow occurs if the exact unrounded result has magnitude between zero and the smallest nor-
malized number in the destination formahd the correctly rounded result in the destination for-
mat is inexact.

Table 28 summarizes what happens when an exactinded valueu satisfying
0 < |u| < smallest normalized number

would round, if no trap intervened, toraunded valuer which might be zero, subnormal, or the
smallest normalized value. “UF” means underflow trap (with ufc seexy, “NX” means inexact
trap (with nxc set ircexq, “uf’” means untrapped underflow exception (with ufc set@xcand
ufa inaexg, and “nx” means untrapped inexact exception (with nxc se#xnand nxa iraexg.

Table 28—Untrapped Floating-Point Underflow

Underflow trap: UFM =1 UFM =0 UFM =0
Inexact trap: NXM =7 NXM =1 NXM =0
r is minimum normal None None None
u=r | rissubnormal UF None None
ris zero None None None
r is minimum normal Ud NX uf nx
uzr | rissubnormal UF NX uf nx
ris zero UF NX uf nx
TIftininess is detected after rounding and NXM = 1, then NX, otherwiseri¢ (impl. dep.
#55).

B.5 Integer Overflow Definition

F[sdq]TOi:
When a NaN, infinity, large positive argument2147483648.0, or large negative argu-
ment< —2147483649.0 is converted to an integer, the invalid_currea} bit of FSRcexc
should be set anfh_exception IEEE_754 should be raised. If the floating-point invalid trap
is disabled (FSR.TEM.NVM = 0), no trap occurs and a numerical result is generated: if
the sign bit of the operand is 0, the result is 2147483647; if the sign bit of the operand is 1,
the result is —2147483648.

F[sdq]TOx:
When a NaN, infinity, large positive argument2%3, or large negative argumest —
(283 + 1), is converted to an extended integer, the invalid_curnevd) it of FSRcexc
should be set anfh_exception IEEE_754 should be raised. If the floating-point invalid trap
is disabled (FSR.TEM.NVM = 0), no trap occurs and a numerical result is generated: if
the sign bit of the operand is 0, the result 82 1; if the sign bit of the operand is 1, the
result is —25.

B.6 Floating-Point Nonstandard Mode

SPARC-V9 implementations are permitted but not encouraged to deviate from IEEE Std 754-
1985 requirements when the nonstandard mode (NS) bit of the FSR is set (impl. dep. #18).

C SPARC-V9 Implementation Dependencies

This appendixhaptemprovides a summary of all implementation dependencies in the SPARC-V9
standard. The notationMPL. DEP. #nn:" is used to identify the definition of an implementation
dependency; the notation “(impl. demr}” is used to identify a reference to an implementation
dependency. The numben provides an index into table 29 on page 282.

SPARC International maintains a document, <Italic>Implementation Characteristics of Current
SPARC-V9-based Products, Revision 9.x, which describes the implementation-dependent design
features of SPARC-V9-compliant implementations. Contact SPARC International for this docu-
ment at

SPARC International
535 Middlefield Rd, Suite 210
Menlo Park, CA 94025
(415) 321-8692

C.1 Definition of an Implementation Dependency

The SPARC-V9 architecture israodel that specifies unambiguously the behavior observed by
software on SPARC-V9 systems. Therefore, it does not necessarily describe the operation of the
hardware of any actual implementation.

An implementation ishot required to execute every instruction in hardware. An attempt to exe-
cute a SPARC-V9 instruction that is not implemented in hardware generates a trap. Whether an
instruction is implemented directly by hardware, simulated by software, or emulated by firmware
is implementation-dependent (impl. dep. #1).

The two levels of SPARC-V9 compliance are described in 1.2.6, “SPARC-V9 Compliance.”

Some elements of the architecture are defined to be implementation-dependent. These elements
include certain registers and operations that may vary from implementation to implementation,
and are explicitly identified as such in tajgpendixhapter

Implementation elements (such as instructions or registers) that appear in an implementation but
are not defined in this document (or its updates) are not considered to be SPARC-V9 elements of
that implementation.

C.2 Hardware Characteristics

Hardware characteristics that do not affect the behavior observed by software on SPARC-V9 sys-
tems are not considered architectural implementation dependencies. A hardware characteristic
may be relevant to the user system design (for example, the speed of execution of an instruction)
or may be transparent to the user (for example, the method used for achieving cache consistency).
The SPARC International document, <Italic>Implementation Characteristics of Current SPARC-
V9-based Products, Revision 9.x, provides a useful list of these hardware characteristics, along
with the list of implementation-dependent design features of SPARC-V9-compliant implementa-
tions.

In general, hardware characteristics deal with
— Instruction execution speed

— Whether instructions are implemented in hardware

— The nature and degree of concurrency of the various hardware units comprising a SPARC-
V9 implementation.

C.3 Implementation Dependency Categories

Many of the implementation dependencies can be grouped into four categories, abbreviated by
their first letters throughout thegppendixhapter

Value (v):
The semantics of an architectural feature are well-defined, except that a value associated
with it may differ across implementations. A typical example is the number of imple-
mented register windows (Implementation dependency #2).

Assigned Value (a)
The semantics of an architectural feature are well-defined, except that a value associated
with it may differ across implementations and the actual value is assigned by SPARC
International. Typical examples are thmpl field of Version register (VER) (Implement-
entation dependency #13) and the R@Rifield (Implementation dependency #19).

Functional Choice (f}
The SPARC-V9 architecture allows implementors to choose among several possible
semantics related to an architectural function. A typical example is the treatment of a cata-
strophic error exception, which may cause either a deferred or a disrupting trap (Imple-
mentation dependency #31).

Total Unit (t):
The existence of the architectural unit or function is recognized, but details are left to each
implementation. Examples include the handling of 1/0 registers (Implementation depen-
dency #7) and some alternate address spaces (Implementation dependency #29).

C.4 List of Implementation Dependencies

Table 29 provides a complete list of the implementation dependencies in the architecture, the def-
inition of each, and references to the page numbers in the standard where each is defined or refer-
enced. Most implementation dependencies occur because of the address spaces, /O registers,
registers (including ASRs), the type of trapping used for an exception, the handling of errors, or
miscellaneous non-SPARC-V9-architectural units such as the MMU or caches (which affect the
FLUSH instruction).

Table 29—Implementation Dependencies

Def/ Ref _—
Number| Category page # Description
1 f 8, 281 Software emulation of instructions

Whether an instruction is implemented directly by hardware, gsim-
ulated by software, or emulated by firmware is implementafion-
dependent.

Table 29—Implementation Dependencies (Continued)

Def/ Ref —
Number| Category page # Description
2 % 15, 30, 32, 58 [Number of IU registers
An implementation of the IU may contain from 64 to 528 gengral-
purpose 64-bit registers. This corresponds to a grouping olthe
registers into two sets of eight globalregisters, plus a circulpr
stack of from three to 32 sets of 16 registers each, known as fegis-
ter windows. Since the number of register windows prgsent
(NWINDOWS) is implementation-dependent, the total numbgr of
registers is also implementation-dependent.
3 f 85 Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instrugion
did not produce a correct IEEE Std 754-1985 result by genelfating
a special floating-point unfinished or unimplemented exceptirF. In
this case, privileged mode software shall emulate any functiogality
not present in the hardware.
4-5 — — Reserved
6 f 18,121 I/O registers privileged status
Whether 1/O registers can be accessed by nonprivileged cgde is
implementation-dependent.
7 t 18,121 I/O register definitions
The contents and addresses of 1/O registers are implemenfation-
dependent.
8 t 20, 30, 35, 60,|RDASR/WRASR target registers
214, 215, 245, |Software can use read/write ancillary state register instructigns to
286, 54 read/write implementation-dependent processor registers (ASRs
16-31).
9 f 20, 36, 60, 245/|RDASR/WRASR privileged status
79, 242 Whether each of the implementation-dependent read/write fncil-
lary state register instructions (for ASRs 16-31) is privileged is
implementation-dependent.
10-12 — — Reserved
13 a 57 VER.impl
VER.impl uniquely identifies an implementation or class of Joft-
ware-compatible implementations of the architecture. Vglues
FFFO.. FFFRgare reserved and are not available for assignrpent.
14-15 — — Reserved
16 t 30 IU deferred-trap queue
The existence, contents, and operation of an IU deferreq-trap
queue are implementation-dependent; it is not visible to user gppli-
cation programs under normal operating conditions.
17 — — Reserved
18 f 44, 250 Nonstandard IEEE 754-1985 results

Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set Jo 1,

causes the FPU to produce implementation-defined result

5 that

may not correspond to IEEE Standard 754-1985.

Table 29—Implementation Dependencies (Continued)

Def/ Ref I
Number| Category page # Description

19 a 45 FPU version, FSR.ver
Bits 19:17 of the FSR, FSRer, identify one or more implementg-
tions of the FPU architecture.

20-21 — — Reserved

22 f 50 FPU TEM, cexc, and aexc
An implementation may choose to implement the TEMXG and
aexcfields in hardware in either of two ways (see 5.1.7.11) for
details).

23 f 61, 115, 115 |Floating-point traps

Floating-point traps may be precise or deferred. If deferrqd, a
floating-point deferred-trap queue (FQ) must be present.

24 t 30,212 FPU deferred-trap queue (FQ)
The presence, contents of, and operations on the floatingjpoint
deferred-trap queue (FQ) are implementation-dependent.

25 f 47,212, 213, |RDPR of FQ with nonexistent FQ
213 On implementations without a floating-point queue, an attenfpt to
read the FQ with an RDPR instruction shall cause eithelisyal_
instruction exception or anfp_exception_other exception with
FSRftt set to 4 §equence_error).

26-28 — — Reserved

29 t 18,74, 75 |Address space identifier (ASI) definitions
The following ASI assignments are implementation-depenglent:
restricted ASls 0950316' 05.[6"08167 ODlG"OFlG! 1216"1716’
and 1A.. 7F g and unrestricted ASIs Gf.. FF6.

30 f 74 ASI address decoding
An implementation may choose to decode only a subset of the 8-
bit ASI specifier; however, it shall decode at least enough of the
ASI to distinguishASI_PRIMARY, ASI_PRIMARY_LITTLE, ASI_|
AS_IF_USER_PRIMARY ASI| _AS_IF_USER_PRIMARY_LITTLE
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY ASI_SECONDARY_LITTLE ASI_AS_IF_USER|
SECONDARY ASI_AS_IF_USER_SECONDARY_LITTLE ASI_|
SECONDARY_NOFAULT and ASI_SECONDARY_NOFAULT _LIT
TLE. If ASI_NUCLEUSandASI_NUCLEUS_LITTLE are supportef
(impl. dep. #124), they must be decoded also. Finally, an ifpple-
mentation must always decode ASI bit<7> wrl:ile

PSTATE.PRIV =0, so that an attempt by nonprivileged softyare
to access a restricted ASI will always causervileged _action

exception.
31 f 90, 93, 114, 115|Catastrophic error exceptions
115 The causes and effects of catastrophic error exceptions are Jmple-

mentation-dependent. They may cause precise, deferred, ¢r dis-
rupting traps.

32 t 96 Deferred traps
Whether any deferred traps (and associated deferred-trap gpeues)
are present is implementation-dependent.

Table 29—Implementation Dependencies (Continued)

Number

Category

Def/ Ref
page #

Description

33

f

98, 114, 114,
114, 114, 115,
116

Trap precision

Exceptions that occur as the result of program execution mfy be

precise or deferred, although it is recommended that such &
tions be precise. Examples inclugem_address_not_aligned and
division_by_zero.

Xxcep-

34

100

Interrupt clearing
How quickly a processor responds to an interrupt request ar
method by which an interrupt request is removed are implem
tion-dependent.

d the
enta-

35

93, 102, 103,
104 113, 115

Implementation-dependent traps

Trap type (TT) values 06@..07F ¢ are reserved for implemenfa-

tion-dependent exceptions. The existence implementation
dependent_n traps and whether any that do exist are pre
deferred, or disrupting is implementation-dependent.

Cise,

36

104

Trap priorities

The priorities of particular traps are relative and are implem
tion-dependent, because a future version of the architecturg
define new traps, and implementations may define implem
tion-dependent traps that establish new relative priorities.

pnta-
may
enta-

37

97

Reset trap
Some of a processor’s behavior during a reset trap is implen
tion-dependent.

enta-

38

108

Effect of reset trap on implementation-dependent registers

Implementation-dependent registers may or may not be affected

by the various reset traps.

39

94

Entering error_state on implementation-dependent errors

The processor may enter error_state when an implementhtion-

dependent error condition occurs.

40

94

Error_state processor state

What occurs after error_state is entered is implementation-d|
dent, but it is recommended that as much processor state ag
ble be preserved upon entry to error_state.

bpen-
possi-

41

Reserved

42

t,fv

168

FLUSH instruction

If FLUSH is not implemented in hardware, it causesiteyal_
instruction exception and its function is performed by system
ware. Whether FLUSH traps is implementation-dependent.

oft-

43

Reserved

44

174 177

Data access FPU trap
If a load floating-point instruction traps with any type of acq

eSS

error exception, the contents of the destination floating-point fegis-

ter(s) either remain unchanged or are undefined.

45 - 46

Reserved

Table 29—Implementation Dependencies (Continued)

Def/ Ref -
Number| Category page # Description
47 t 214,215 215, |RDASR
215 RDASR instructions withrd in the range 16..31 are available for

implementation-dependent usépl. dep. #§. For an RDASH
instruction withrs1 in the range 16..31, the following are impje-
mentation-dependent: the interpretation of bits 13:0 and 29:p5 in
the instruction, whether the instruction is privileged (impl. ¢ep.
#9), and whether it causes idiegal_instruction trap.

48 t 244, 244245 |WRASR
245,245 |WRASR instructions withrd in the range 16..31 are available for

implementation-dependent uses (impl. dep. #8). For a WHASR
instruction withrd in the range 16..31, the following are impje-

mentation-dependent: the interpretation of bits 18:0 in the indtruc-
tion, the operation(s) performed (for exampler) to generate the
value written to the ASR, whether the instruction is privileped
(impl. dep. #9), and whether it causesiggal_instruction trap.

49-54 — — Reserved

55 f 49, 49,249 250|Floating-point underflow detection
Whether "tininess" (in IEEE 754 terms) is detected before or pfter
rounding is implementation-dependent. It is recommended that
tininess be detected before rounding.

56-100 — — Reserved
101 % 21,54, 55, 55, |Maximum trap level
56, 57 It is implementation-dependent how many additional levels, iffany,
past level 4 are supported.
102 f 114 Clean windows trap

An implementation may choose either to implement autorpatic
“cleaning” of register windows in hardware, or generatgean
window trap, when needed, for window(s) to be cleaned by foft-

ware.
103 f 206, 206, 207, |Prefetch instructions
207,207, 209, |The following aspects of the PREFETCH and PREFET¢GHA
210 instructions are implementation-dependent: (1) whether theyfhave

an observable effect in privileged code; (2) whether they can gause
a data_access MMU_miss exception; (3) the attributes of the
block of memory prefetched: its size (minimum = 64 bytes) argd its
alignment (minimum = 64-byte alignment); (4) whether each yari-
ant is implemented as a NOP, with its full semantics, or with gom-
mon-case prefetching semantics; (5) whether and how vafiants
16..31 are implemented.

104 a 57 VER.manuf
VER.manufcontains a 16-bit semiconductor manufacturer cpde.
This field is optional, and if not present reads as zero. VitRu
may indicate the original supplier of a second-sourced chjp in
cases involving mask-level second-sourcing. It is intended thit the
contents of VERmanuftrack the JEDEC semiconductor manufac-
turer code as closely as possible. If the manufacturer does ngt have
a JEDEC semiconductor manufacturer code, SPARC Internafional
will assign a VERmanufvalue.

Table 29—Implementation Dependencies (Continued)

Def/Ref -
Number| Category page # Description
105 f 51 TICK register

The difference between the values read from the TICK registpr on
two reads should reflect the number of processor cycles exqcuted
between the reads. If an accurate count cannot always be refurned,
any inaccuracy should be small, bounded, and documentefl. An
implementation may implement fewer than 63 bits| in
TICK.counter however, the counter as implemented must bejable
to count for at least 10 years without overflowing. Any upperjbits
not implemented must read as zero.

106 f 85,171 IMPDEP n instructions
The IMPDEP1 and IMPDEP?2 instructions are completely inple-
mentation-dependent. Implementation-dependent aspects ificlude
their operation, the interpretation of bits 29:25 and 18:0 in fheir
encodings, and which (if any) exceptions they may cause.

107 f 179,179,181, |Unimplemented LDD trap
181 It is implementation-dependent whether LDD and LDDA fare
implemented in hardware. If not, an attempt to execute eithef will
cause amwnimplemented_LDD trap.

108 f 117,229, 230, |Unimplemented STD trap
232 232 It is implementation-dependent whether STD and STDA| are
implemented in hardware. If not, an attempt to execute eithef will
cause amnimplemented_STD trap.

109 f 115,174, 174, |LDDF_mem_address_not_aligned
177 LDDF and LDDFA require only word alignment. However, if the

effective address is word-aligned but not doubleword-alighed,
either may cause ahDDF_mem_address not_aligned trap, in
which case the trap handler software shall emulate the LDDF (or
LDDFA) instruction and return.

110 f 116,226, 226, |STDF_mem_address_not_aligned
228 228 STDF and STDFA require only word alignment in memory. Hpw-

ever, if the effective address is word-aligned but not doubleword-
aligned, either may cause a®TDF_mem_address _not_aligned|
trap, in which case the trap handler software shall emulatg the
STDF or STDFA instruction and return.

111 f 116,174, 174, |LDQF_mem_address_not_aligned
177 LDQF and LDQFA require only word alignment. However, if fhe

effective address is word-aligned but not quadword-aligned, ¢ither
may cause arLDQF_mem_address_not_aligned trap, in which
case the trap handler software shall emulate the LDQH (or
LDQFA) instruction and return.

112 f 117,226, 226, |STQF_mem_address_not_aligned
228 228 STQF and STQFA require only word alignment in memory. Hpw-
ever, if the effective address is word-aligned but not quadword-
aligned, either may cause a®TrQF mem_address _not_aligned
trap, in which case the trap handler software shall emulatp the
STQF or STQFA instruction and return.

Table 29—Implementation Dependencies (Continued)

Def/ Ref I
Number| Category page # Description
113 f 52, <ImplDep-|{Implemented memory models
Def>119 |Whether the Partial Store Order (PSO) or Relaxed Memory Qrder
(RMO) models are supported is implementation-dependent.
114 f 92 RED_state trap vector address (RSTVaddr)
The RED_state trap vector is located at an implementation-dgpen-
dent address referred to as RSTVaddr.
115 f 92 RED_state processor state
What occurs after the processor enters RED_state is implerpenta-
tion-dependent.
116 f 223 SIR_enable control flag
The location of the SIR_enable control flag and the means of
accessing the SIR_enable control flag are implementation-depen-
dent. In some implementations, it may be permanently zero.
117 f 207, <ImplDep{MMU disabled prefetch behavior
Def>282 |Whether Prefetch and Non-faulting Load always succeed whgn the
MMU is disabled is implementation-dependent.
118 f <ImplDep- |ldentifying I/O locations
Def>121 The manner in which 1/O locations are identified is implemgnta-
tion-dependent.
119 f 53,<ImplDep-|{Unimplemented values for PSTATE.MM
Def>129 |The effect of writing an unimplemented memory-mode desipna-
tion into PSTATE.MM is implementation-dependent.
120 f <ImplDep- |Coherence and atomicity of memory operations
Def>121, 130, |The coherence and atomicity of memory operations between pro-
153, 182, 187,|cessors and I/O DMA memory accesses are implementgtion-
224,234, 235 |dependent.
121 f <ImplDep- |Implementation-dependent memory model
Def>121 An implementation may choose to identify certain addresse$ and
use an implementation-dependent memory model for referenfes to
them.
122 f <ImplDep- |FLUSH latency
Def>131, 168, |The latency between the execution of FLUSH on one procgssor
168 and the point at which the modified instructions have replaceq out-
dated instructions in a multiprocessor is implementation-dgpen-
dent.
123 f 18,121, 130 |Input/output (I/O) semantics
The semantic effect of accessing input/output (I/O) registeys is
implementation-dependent.
124 v 75, 74, Implicit ASI when TL >0
<ImplDep- |When TL >0, the implicit ASI for instruction fetches, loads, §nd
Def>122, 96 |stores is implementation-dependent. See F.4.4, “Contexts]” for
more information.
125 f 53, 80, 151, 172|Address masking
215 When PSTATE.AM = 1, the value of the high-order 32-bits of]the
PC transmitted to the specified destination register(s) by CRLL,

JMPL, RDPC, and on a trap is implementation-dependent.

Table 29—Implementation Dependencies (Continued)

Def/Ref -
Number| Category page # Description
126 % 58, 58, 59, 59, |[Register Windows State Registers Width

59, 60 Privileged registers CWP, CANSAVE, CANRESTORE, OTHER-
WIN, and CLEANWIN contain values in the ranpe
0..NWINDOWS-1. The effect of writing a value greater than
NWINDOWS-1 to any of these registers is undefined.Although the
width of each of these five registers is nominally 5 bits, the wWidth
is implementation-dependent and shall be betgeen
Hog,(NWINDOWS)and 5 bits, inclusive. If fewer than 5 bits gre
implemented, the unimplemented upper bits shall read as p and
writes to them shall have no effect. All five registers should have
the same width.

127 f 52,56 PSTATE PID bits
The presence and semantics of PSTATE.PID1 and PSTATE1|PIDO

are implementation-dependent. The presence of TSTATE bjts 19
and 18 is implementation-dependent. If PSTATE bit 11 (1) is
implemented, TSTATE bit 19 (18) shall be implemented and fon-
tain the state of PSTATE bit 11 (10) from the previous trap leyel..
If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implejnen-
tations should only write these bits to values previously read from
PSTATE, or to zeroes.

D Formal Specification of the Memory Models

This appendix provides a formal description of the SPARC-V9 processor’s interaction with mem-
ory. The formal description is more complete and more precise than the description of Chapter 8,
“Memory Models,” and therefore represents the definitive specification. Implementations must
conform to this model, and programmers must use this description to resolve any ambiguity.

This formal specification is not intended to be a description of an actual implementation, only to
describe in a precise and rigorous fashion the behavior that any conforming implementation must
provide.

D.1 Processors and Memory

The system model consists of a collection of processgrP.. B,.1. Each processor executes its
own instruction stream Processors may share address space and access to real memory and /O
locations.

To improve performance, processors may interpasgcheor caches in the path between the pro-
cessor and memory. For data and I/O references, caches are required to be transparent. The mem-
ory model specifies the functional behavior of the entire memory subsystem, which includes any

1. Processors are equivalent to their software abstraction, processes, provided that context switching is properly per-
formed. See Appendix J, “Programming With the Memory Models,” for an example of context switch code.

form of caching. Implementations must use appropriate cache coherency mechanisms to achieve
this transparency.

The SPARC-V9 memory model requires that all data references be consistent but does not require
that instruction references or input/output references be maintained consistent. The FLUSH
instruction or an appropriate operating system call may be used to ensure that instruction and data
spaces are consistent. Likewise, system software is needed to manage the consistency of I/0O oper-
ations.

The memory model is a local property of a processor that determines the order properties of mem-
ory references. The ordering properties have global implications when memory is shared, since
the memory model determines what data is visible to observing processors and in what order.
Moreover, the operative memory model of the observing processor affects the apparent order of
shared data reads and writes that it observes.

D.2 An Overview of the Memory Model Specification

The underlying goal of the memory model is to place the weakest possible constraints on the pro-
cessor implementations and to provide a precise specification of the possible orderings of memory
operations so that shared-memory multiprocessors can be constructed.

An execution traceis a sequence of instructions with a specified initial instruction. An execution
trace constitutes one possible execution of a program and may involve arbitrary reorderings and
parallel execution of instructions. #elf-consistenexecution trace is one that generates precisely
the same results as those produced by a program order execution trace.

A program order execution trace is an execution trace that begins with a specified initial
instruction and executes one instruction at a time in such a fashion that all the semantic effects of
each instruction take effect before the next instruction is begun. The execution trace this process
generates is defined to peogram order.

A program is defined by the collection of all possible program order execution traces.

Dependence orderis a partial order on the instructions in an execution trace that is adequate to
ensure that the execution trace is self-consistent. Dependence order can be constructed using con-
ventional data dependence analysis techniques. Dependence order holds only between instruc-
tions in the instruction trace of a single processor; instructions that are part of execution traces on
different processors are never dependence-ordered.

Memory order is a total order on the memory reference instructions (loads, stores, and atomic
load/stores) which satisfies the dependence order and, possibly, other order constraints such as
those introduced implicitly by the choice of memory model or explicitly by the appearance of
memory barrier (MEMBAR) instructions in the execution trace. The existence of a global mem-
ory order on the performance of all stores implies that memory access is writeatomic.

1. Philip Bitar and Alvin M. Despain, “Multiprocessor Cache Synchronization: Issues, Innovations, Evolution,
Proc. 13th Annual International Symposium on Computer Architec@oenputer Architecture News 14:2, June
1986, pp.424-433.

A memory modelis a set of rules that constrain the order of memory references. The SPARC-V9
architecture supports three memory models: total store order (TSO), partial store order (PSO), and
relaxed memory order (RMO). The memory models are defined only for memory and not for 1/0O
locations. See 8.2, “Memory, Real Memory, and I/O Locations,” for more information.

The formal definition used in the SPARC-V8 specificaﬁmemains valid for the definition of

PSO and TSO, except for the FLUSH instruction, which has been modified sfgfithe
SPARC-V9 architecture introduces a new memory model, RMO, which differs from TSO and
PSO in that it allows load operations to be reordered as long as single thread programs remain
self-consistent.

D.3 Memory Transactions
D.3.1 Memory Transactions

A memory transaction is one of the following:

Store:
A request by a processor to replace the value of a specified memory location. The address
and new value are bound to the store transaction when the processor initiates the store
transaction. A store is complete when the new value is visible to all processors in the sys-
tem.

Load:
A request by a processor to retrieve the value of the specified memory location. The
address is bound to the load transaction when the processor initiates the load transaction.
A load is complete when the value being returned cannot be modified by a store made by
another processor.

Atomic:
A load/storepair with the guarantee that no other memory transaction will alter the state
of the memory between the load and the store. The SPARC-V9 instruction set includes
three atomic instructions: LDSTUB, SWAP and CA®\n atomic transaction is consid-
ered to be both a load and a stbre.

2. W.W. Collier, “Reasoning About Parallel Architectures”, Prentice-Hall, 1992 includes an excellent discussion of
write-atomicity and related memory model topics.

1. Pradeep Sindhu, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Memory Models,” Xerox Palo
Alto Research Center Report CSL-91-11, December.1991

2. In SPARC-V8, a FLUSH instruction needs at least five instruction execution cycles before it is guaranteed to have
local effects; in SPARC-V9 this five-cycle requirement has been removed.

3. There are three generic forms. CASA and CASXA reference 32-bit and 64-bit objects respectively. Both normal
and alternate ASI forms exist for LDSTUB and SWAP. CASA and CASXA only have alternate forms, however, a
CASA (CASXA) with ASI = ASI_PRIMARY{_LITTLE} is equivalent to CAS (CASX). Synthetic instructions
for CAS and CASX are suggested in G.3, “Synthetic Instructions.”

Flush:
A request by a processor to force changes in the data space aliased to the instruction space
to become consistent. Flush transactions are considered to be store operations for memory
model purposes.

Memory transactions are referred to by capital letté§s, which denotes a specific memory
transactiorX by processon to memory addresa. The processor index and the address are speci-
fied only if needed. The predicag{X)is true if and only ifX has store semantics. The predicate
L(X) is true if and only iX has load semantics.

MEMBAR instructions are not memory transactions; rather they convey order information above
and beyond the implicit ordering implied by the memory model in use. MEMBAR instructions
are applied in program order.

D.3.2 Program Order

Theprogram order is a per-processor total order that denotes the sequence in which pratessor
logically executes instructions. The program order relation is denotegh Isyich thatX, <p Y, is

true if and only if the memory transactiof}, is caused by an instruction that is executed before
the instruction that caused memory transacyjon

Program order specifies a unique total order for all memory transactions initiated by one proces-
sor.

Memory barrier (MEMBAR) instructions executed by the processor are ordered with respect to
<p. The predicatM(X,Y)is true if and only ifX <p Y and there exists a MEMBAR instruction

that orders< andY (that is, it appears in program order betweeandY). MEMBAR instructions

can be either ordering or sequencing and may be combined into a single instruction using a bit-
encoded mask.

Ordering MEMBAR instructions impose constraints on the order in which memory transactions
are performed.

Sequencing MEMBARSs introduce additional constraints that are required in cases where the
memory transaction has side-effects beyond storing data. Such side-effects are beyond the scope
of the memory model, which is limited to order and value semantics for mémory.

4. Even though the store part of a CASA is conditional, it is assumed that the store will always take place whether it
does or not in a particular implementation. Since the value stored when the condition fails is the value already
present, and since the CASA operation is atomic, no observing processor can determine whether the store
occurred or not.

1. The Ordering MEMBAR instruction uses 4 bits of its argument to specify the existence of an order relation
depending on whethef andY have load or store semantics. The Sequencing MEMBAR uses three bits to specify
completion conditions. The MEMBAR encoding is specified in A.32.

2. Sequencing constraints have other effects, such as controlling when a memory error is recognized or when an I/O
access reaches global visibility. The need for sequencing constraints is always associated with 1/0 and kernel level
programming and not usually with normal, user-level application programming.

This definition of program order is equivalent to the definition given in the SPARC-V8 memory
model specification.

D.3.3 Dependence Order

Dependence order is a partial order that captures the constraints that hold between instructions
that access the same processor register or memory location. In order to allow maximum concur-
rency in processor implementations, dependence order assumes that registers are dynamically
renamed to avoid false dependences arising from register reuse.

Two memory transactioX andY are dependence ordered, denoteXbyd Y, if and only if they
are program ordered, <p Y, and at least one of the following conditions is true:

(1) The execution oY is conditional orX, and SY) is true.
(2) Y reads a register that is written Xy
(3) XandY access the same memory location &(d)andL(Y) are both true.

The dependence order also holds between the memory transactions associated with the instruc-
tions. It is important to remember that partial ordering is transitive.

Rule (1) includes all control dependences that arise from the dynamic execution of programs. In
particular, a store or atomic memory transaction that is executed after a conditional branch will
depend on the outcome of that branch instruction, which in turn will depend on one or more mem-
ory transactions that precede the branch instruction. Loads after an unresolved conditional branch
may proceed, that is, a conditional branch does not dependence order subsequent loads. Control
dependences always order the initiation of subsequent instructions to the performance of the pre-
ceding instructions.

Rule (2) captures dependences arising from register use. It is not necessary to include an ordering
whenXreads a register that is later written ybecause register renaming will allow out-of-order
execution in this case. Register renaming is equivalent to having an infinite pool of registers and
requiring all registers to be write-once. Observe that the condition code register is set by some
arithmetic and logical instructions and used by conditional branch instructions thus introducing a
dependence order.

Rule (3) captures ordering constraints resulting from memory accesses to the same location and
require that the dependence order reflect the program order for store-load pairs, but not for load-
store or store-store pairs. A load may be executed speculatively, since loads are side-effect free,
provided that Rule (3) is eventually satisfied.

An actual processor implementation will maintain dependence order by score-boarding, hardware
interlocks, data flow techniques, compiler directed code scheduling, and so forth, or, simply, by
sequential program execution. The means by which the dependence order is derived from a pro-
gram is irrelevant to the memory model, which has to specify which possible memory transaction
sequences are legal for a given set of data dependences. Practical implementations will not neces-

1. Self modifying code (use of FLUSH instructions) also causes control dependences.

sarily use the minimal set of constraints: adding unnecessary order relations from the program
order to the dependence order only reduces the available concurrency, but does not impair correct-
ness.

D.3.4 Memory Order

The sequence in which memory transactions are performed by the memory is roathedry
order, which is a total order on all memory transactions.

In general, the memory order cannot be knaypriori. Instead, the memory order is specified as

a set of constraints that are imposed on the memory transactions. The requirement that memory
transactionX must be performed before memory transactfas denoted byX <m Y.Any mem-

ory order that satisfies these constraints is legal. The memory subsystem may choose arbitrarily
among legal memory orders, hence multiple executions of the same programs may result in differ-

ent memory orders.

D.4 Specification of Relaxed Memory Order (RMO)
D.4.1 Value Atomicity

Memory transactions will atomically set or retrieve the value of a memory location as long as the
size of the value is less than or equal to eight bytes, the unit of coherency.

D.4.2 Store Atomicity

All possible execution traces are consistent with the existence of a memory order that totally
orders all transactions including all store operations.

This does not imply that the memory order is observable. Nor does it imply that RMO requires
any central serialization mechanism.

D.4.3 Atomic Memory Transactions

The atomic memory transactions SWAP, LDSTUB, and CAS are performed as one memory trans-
action that is both a load and a store with respect to memory order constraints. No other memory
transaction can separate the load and store actions of an atomic memory transaction. The seman-
tics of atomic instructions are defined in Appendix A, “Instruction Definitions.”

D.4.4 Memory Order Constraints

A memory order is legal in RMO if and only if:
D) X<dY&LX)O X<mY
(2) M(X,Y)O X<mY
(B) Xa<pYa&S(Y X<mY

Rule (1) states that the RMO model will maintain dependence when the preceding transaction is a
load. Preceding stores may be delayed in the implementation, so their order may not be preserved
globally.

Rule (2) states that MEMBAR instructions order the performance of memory transactions.

Rule (3) states that stores to the same address are performed in program order. This is necessary
for processor self-consistency

D.4.5 Value of Memory Transactions

The value of a loadrais the value of the most recent store that was performed with respect to
memory order or the value of the most recently initiated store by the same processor. ASguming
is a load to memory locatian

Value(La) = Value(Max,,{S |Sa <m LaorSa <p La})

whereMax.{..} selects the most recent element with respect to the memory order and where
Value()yields the value of a particular memory transaction. This states that the value returned by
aload is either the result of the most recent store to that address which has been performed by any
processor or which has been initiated by the processor issuing the load. The distinction between
local and remote stores permits use of store-buffers, which are explicitly supported in all SPARC-
V9 memory models.

D.4.6 Termination of Memory Transactions

Any memory transaction will eventually be performed. This is formalized by the requirement that
only a finite number of memory ordered loads can be performed before a pending store is com-
pleted.

D.4.7 Flush Memory Transaction

Flush instructions are treated as store memory transactions as far as the memory order is con-
cerned. Their semantics are defined in A.20, “Flush Instruction Memory.” Flush instructions
introduce a control dependence to any subsequent (in program order) execution of the instruction
that was addressed by the flush.

D.5 Specification of Partial Store Order (PSO)

The specification of Partial Store Order (PSO) is that of Relaxed Memory Order (RMO) with the
additional requirement that all memory transactions with load semantics are followed by an
implied MEMBAR #LoadLoad |#LoadStore

D.6 Specification of Total Store Order (TSO)

The specification of Total Store Order (TSO) is that of Partial Store Order (PSO) with the addi-
tional requirement that all memory transactions with store semantics are followed by an implied
MEMBAR #StoreStore

D.7 Examples Of Program Executions

This subsection lists several code sequences and an exhaustive list of all possible execution
sequences under RMO, PSO and TSO. For each example, the code is followed by the list of order
relations between the corresponding memory transactions. The memory transactions are referred
to by numbers. In each case, the program is executed once for each memory model.

D.7.1 Observation of Store Atomicity

The code example below demonstrates how store atomicity prevents multiple processors from
observing inconsistent sequences of events. In this case, processors 2 and 3 observe changes to the
shared variabled andB, which are being modified by processor 1. Initially both variables are 0.

The stores by processor 1 do not use any form of synchronization, and they may in fact be issued
by two independent processors.

Should processor 2 find to have the new value (1) arigéito have the old value (0), it can infer
thatA was updated beforB. Likewise, processor 3 may firl8l= 1 andA = 0, which implies that

B was changed befor It is impossible for both to occur in all SPARC-V9 memory models since
there cannot exist a total order on all stores. This property of the memory models has been
encoded in the assertion Al.

However, in RMO, the observing processor must separate the load operations with membar
instructions. Otherwise, the loads may be reordered and no inference on the update order can be
made.

Figure 44 is taken from the output of the SPARC-V9 memory model simulator, which enumerates
all possible outcomes of short code sequences and which can be used to prove assertions about
such programs.

D.7.2 Dekker’s Algorithm

The essence of Dekker’s algorithm is shown in figure 45 on page* I88assure mutual exclu-

sion, each processor signals its intent to enter a critical region by asserting a dedicated variable (
for processor 1 an@ for processor 2). It then checks that the other processor does not want to
enter and, if it finds the other signal variable is deasserted, it enters the critical region. This code
does not guarantee that any processor can enter (that requires a retry mechanism which is omitted

1. See also DEC Litmus Test 8 described in fipha Architecture HandbogkDigital Equipment Corporation,
1992, p. 5-14.

Processor 1 Processor 2 Processor 3

ST#1, A LD A, %rl LD B, %rl
T T,P T,P
ST#1,B LD B, %r2 LD A, %r2
T:TSO P:PSO R:RMO —— <m <
/*
* Store atomicity
* Note: will fail in RMO due to lack of membars between loads
*/
Processor 1:
0) st #1,[A]
(1) st #1,[B]
Processor 2:
2) Id [A],%rl
3) Id [B],%r2
Processor 3:
(4) Id [B],%rl
(5) Id [A],%r2
Assertions:
AL 1(P2:%rl = = 1&&P2:%r2 = = 0)||}(P3:%rl = = 1&&P3:%r2 = = 0)

Possible values under all memory models:
2rl 212 3irl 32 A B example sequence of performance in <m

0 0 0 0O 1 1 452031
0 0 0 1 1 1 420531
0 0 1 1 1 1230145
0 1 0 0 1 1452013
0 1 0 1 1 1 420513
0 1 1 1 1 1201345
1 0 0 0 1 1 450231
1 0 0 1 1 1405231
1 0 1 1 1 1 023145
1 1 0 0 1 1 450213
1 1 0 1 1 14051283
1 1 1 1 1 1014253

Possible values under PSO & RMO, but not under TSO:

2rl 22 3irl 32 A B example sequence of performance in <m
0 0 1 0 1 1 231450
0 1 1 0 1 1 214350
1 1 1 0 1 1 145023

Possible values under RMO, but not under PSO & TSO:
2rl 22 3irl 32 A B example sequence of performance in <m
1 0 1 0 1 1530214

Figure 44—Store Atomicity Example

here), but it does guarantee mutual exclusion, which means that it is impossible that each proces-
sor finds the other’s lock idle (= 0) when it enters cthe ritical section.

Processor 1 Processor 2

ST #1, A ST#1,B
T,P R(T,P,R(
LD A, %rl

<m

LD B, %rl

<d

T:TSO P:PSO R:RMO

/*

* Dekker's Algorithm
*/

Processor 1:

0) st #1,[A]
membar #StoreLoad
(2) Id [B],%rl
Processor 2:
2 st #1,[B]
membar #StoreLoad
?3) Id [A],%rl
Assertions:
Al: P1:%rl = = 1|P2:%rl = =1

Possible values under all memory models:

1irl 2r1 A B example sequence of performance in <m
0 1 1 10123
1 0 1 1 2301
1 1 1 12031

Possible values under PSO & RMO, but not under TSO:
--- none ---

Possible values under RMO, but not under PSO & TSO:
--- none ---

Figure 45—Dekker’s Algorithm

D.7.3 Indirection Through Processors

Another property of the SPARC-V9 memory models is that causal update relations are preserved,
which is a side-effect of the existence of a total memory order. In the example below, processor 3
observes updates made by processor 1. Processor 2 simply copies B to C, which does not impact
the causal chain of events.

Again, this example intentionally exposes two potential error sources. In PSO (and RMO), the
stores by processor 1 are not ordered automatically and may be performed out of program order.
The correct code would need to insert a MEMBA#StoreStore between these stores. In
RMO (but not in PSO), the observation process 3 needs to separate the two load instructions by a
MEMBAR #LoadLoad .

Processor 1 Processor 2 Processor 3

ST#1,A LD B, %rl LD C, %rl

T [TPR TP
ST#1,B AN ("ST %r1, C LD A, %r2
T:TSO P:PSO R:RMO — <m

/*

* Indirection through processors

* Note: Assertion will fail for PSO and RMO due to lack of
* membar #StoreStore after P1's first store

*/

Processor 1:

(0) st #1,[A]
Q) st #1,[B]
Processor 2:
2) Id [B],%r1
3) st %rl,[C]
Processor 3:
4) Id [C],%r1
(5) Id [A],%r2
Assertions:
ALl:(P3:%rl = = 1&&P3:%r2 = =0)

Possible values under all memory models:
2l 3r1 3ir2 A B C example sequence of performance in <m

0 0 0 1 1 0 450213
0 0 1 1 1 0 420513
1 0 0 1 1 1 450123
1 0 1 1 1 1 4051283
1 1 1 1 1 1012345

Possible values under PSO & RMO, but not under TSO:
21 3rx1 312 A B C example sequence of performance in <m
1 1 0 1 1 1 123450

Possible values under RMO, but not under PSO & TSO:
--- none ---

Figure 46—Indirection Through Processors

D.7.4 PSO Behavior

The code in figure 47 on page 300 shows how different results can be obtained by allowing out of
order performance of two stores in PSO and RMO models. A store to B is allowed to be per-
formed before a store to A. If two loads of processor 2 are performed between the two stores, then
the assertion below is satisfied for the PSO and RMO models.

D.7.5 Application to Compilers

A significant problem in a multiprocessor environment arises from the fact that normal compiler
optimizations which reorder code can subvert programmer intent. The SPARC-V9 memory model

Processor 1 Processor 2

ST#1,A ~ LD B, %r1
\\ Cr

) P

LD A, %r K< LD A, %r2
T” \‘
ST %r, B)&

T:TSO P:PSO R:RMO <m —— <

/*
* PSO behavior
*/

Processor 1:
(0) st #1, [A]
(2) Id [A], Y%r
(2) st %r, [B]

Processor 2:
(3) Id [B], %r1
(4) Id [A], %r2

Assertions:
E:P2:%rl = = 1&84P2:%r2 = = 0

Possible values under all memory models:

Lir2orl 2r2 A B example sequence of performance in <m
1 0 0 1 1 34012

1 0 1 1 1 03412

1 1 1 1 1 01234

Possible values under PSO & RMO, but not under TSO:
Lir2orl 2r2 A B example sequence of performance in <m
1 1 0 1 1 12340

Possible values under RMO, but not under PSO & TSO:
--- none ---

Figure 47—PSO Behavior

can be applied to the program, rather than an execution, in order to identify transformations that
can be applied, provided that the program has a proper set of MEMBARSs in place. In this case, the
dependence order is a program dependence order, rather than a trace dependence order, and must

include the dependences from all possible executions.

D.7.6 Verifying Memory Models

While defining the SPARC-V9 memory models, software tools were developed that automatically
analyze and formally verify assembly-code sequences running in the models. The core of this col-
lection of tools is the Murphi finite-state verifier developed by David Dill and his students at Stan-

ford University.

For example, these tools can be used to confirm that synchronization routines operate properly in
various memory models and to generate counter example traces when they fail. The tools work by
exhaustively enumerating system states in a version of the memory model, so they can only be
applied to fairly small assembly code examples. We found the tools to be helpful in understanding
the memory models and checking our examples.

Contact SPARC International to obtain the verification tools and a set of examples.

1. For a discussion of an earlier application of similar tools to TSO and PSO, see David Dill, Seungjoon Park, and
Andreas G. Nowatzyk, “Formal Specification of Abstract Memory ModelsRasearch on Integrated Systems:
Proceedings of the 1993 Symposilid. Gaetano Borriello and Carl Ebeling, MIT Press, 1993.

E Opcode Maps

E.1 Overview

This appendix contains the SPARC-V9 instruction opcode maps.

Opcodes marked with a dash ‘—' are reserved; an attempt to execute a reserved opcode shall
cause a trap, unless it is an implementation-specific extension to the instruction set. See 6.3.11,

“Reserved Opcodes and Instruction Fields,” for more information.

In this appendix and in Appendix A, “Instruction Definitions,” certain opcodes are marked with
mnemonic superscripts. These superscripts and their meanings are defined in table 21 on page
133. For deprecated opcodes, see the appropriate instruction pages in Appendix A, “Instruction

Definitions,” for preferred substitute instructions.

E.2 Tables
Table 30—op[1:0]
op [1:0]
0 1 2 3
Branches & SETHI CALL Arithmetic & Misc. Loads/Stores
See table 31 See table 32 See table 33
Table 31—opZ2:0] (op=0)
op2 [2:0]
0 1 2 3 4 5 6
ILLTRAP BPcc BiccP BPr SETHI FBPfcc FBfccP .
See table 42 See table 42 See table 43 NOP' | See table 47 See table 42

Trd =0,imm22=0

Table 32—op35:0] (op=2)

op3 [5:4]
0 1 2 3
WRYP® (rd = 0)
— (d=1)
WRCCR (d=2)
0 ADD ADDcc TADDcc WRASI (rd=3)
WRASR™®sR (seeA.63)
WRFPRS (d=6)
SIR (d=15,rs1=0,i=1)
SAVEDF (fcn = 0),
1 AND ANDcc TSUBcc RESTORES (fcn = 1)
2 OR ORcc TADDccTVP WRPFR
3 XOR XORcc TSUBccTVY —
FPopl
4 SUB SUBcc MULScE See table 34
5| ANDN | ANDNcc SLL (x=0), SLLX (x= 1) FPop2
ek B See table 41
6| orN ORNce SRLX=0), SRLX &= 1) IMPDEP1
7| XNOR | XNORcc SRA k= 0), SRAX &= 1) IMPDEP2
op3 RDYP (rs1=0)
[3:0] — (rs1=1)
RDCCR (s1=2)
RDASI (rs1=3)
RDTICKP™T (rs1=4)
8 ADDC ADDCcc RDPC (s1=5) JMPL
RDFPRS (s1=6)
RDASRP:SR (seeA.44)
MEMBAR (rs1= 15rd=0,i = 1)
STBARP (rs1=15,d=0,i = 0)
9 MULX J— J— RETURN
Tcc
D D
A | UMUL UMULcc RDPR’ See table 42
B SMULP SMULccP FLUSHW FLUSH
C SUBC SUBCcc MOVcc SAVE
D UDIVX — SDIVX RESTORE
POPC (s1= 0) DONEP (fcn = 0)
D D
E | UDIVZ | UDivee — (1s1>0) RETRYP (fcn = 1)
F| sbiv® | spive® MOvr —

See table 43

Table 33—op35:0] (op=3)

op3 [5:4]
0 1 2 3

0 LDUW LDUWA Fasi LDF LDFAPssi

1 LDUB LDUBA Pasi LDFSR®, LDXFSR —

2 LDUH LDUHA Prsi LDQF LDQFAPs!

3 LDDP LDDAPD: Psi LDDF LDDFAPs!

4 STW STWAPS STF STFA»s!

5 STB STBAPs! STFSF, STXFSR —

6 STH STHARs! STQF STQFA:s!
op3 7 STDP STDAPss! STDF STDFA®s
30 | 8 LDSW LDSWAP:s — _

9 LDSB LDSBAPs — _

A LDSH LDSHAP:s — _

B LDX LDXA Pasi — _

C — — — CASAPs!

D LDSTUB LDSTUBAPs! PREFETCH PREFETCHRs'

E STX STXAPss! — CASXAPs!

F SWAP? SWAPAD: Psi — _

This appendix is informative only.

It is not part of the SPARC-V9 specification.

Table 34—opf[8:0] (op= 2,0p3= 34,5= FPopl)

opf[3:0]

1 2 3 4 5 6 7 8 9 A B C D E
FMOVs| FMOvVd| FMOVg — FNEGs| FNEGd FNEGq — FABSs | FABSd| FABSq| — — —
- — — — — — — — | FSQRTs| FSQRTd FSQRTq — — —
FADDs | FADDd| FADDg| — FSUBs| FSUBd FSUBq — FMULs | FMULd | FMULq — FDIVs | FDIVd
— — — — — — — — |FsMULd| — — — — |FdMULq
FSTOx | FdTOx| FQTOx FxTOs — —_ —_ FXxTOd —_ —_ —_ FxTOq| — —_
— — — FiTOs — FdTOs| FqTOs| FiTOd FsTOd — FqTOd | FiTOq| FsTOq FdTOd
FsSTOi | FAdTOi| FqTOi| — — — — — — — — — — —

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

F SPARC-V9 MMU Requirements

F.1 Introduction

This appendix describes the boundary conditions that all SPARC-V9 MMUs must satisfy. The
appendix does not define the architecture of any specific memory management unit. It is possible
to build a SPARC-V9-compliant system without an MMU.

F.1.1 Definitions

address space
A range of locations accessible with a 64-bit virtual address. Different address spaces may
use the same virtual address to refer to different physical locations.

aliases
Two virtual addresses are aliases of each other if they refer to the same physical address.

context
A set of translations used to support a particular address space.

page:
The range of virtual addresses translated by a single translation element. The size of a
page is the size of the range translated by a single translation element. Different pages may
have different sizes. Associated with a page or with a translation element are attributes
(e.g., restricted, permission, etc.) and statistics (e.g., referenced, modified, etc.)

translation element
Used to translate a range of virtual addresses to a range of physical addresses.

F.2 Overview
All SPARC-V9 MMUs must provide the following basic functions:

— Translate 64-bit virtual addresses to physical addresses. This translation may be imple-
mented with one or more page sizes.

— Provide the RED _state operation, as defined in 7.2.1, “RED_state.”

— Provide a method for disabling the MMU. When the MMU is disabled, no translation
occurs: Physical AddresBkO> = Virtual Address&:0>, whereN is implementation-
dependent. Furthermore, the disabled MMU will not perform any memory protection (see
F.4.2, “Memory Protection”) or prefetch and non-faulting load violation (see F.4.3,
“Prefetch and Non-Faulting Load Violation”) checks.

IMPL. DEP. #117: Whether PREFETCH and non-faulting load always succeed when the MMU is
disabled is implementation-dependent.

— Provide page-level protections. Conventional protections (Read, Write, Execute) for both
privileged and nonprivileged accesses may be provided.

— Provide page-level enabling and disabling of prefetch and non-faulting load operation.
The MMU, however, need not provide separate protection mechanisms for prefetch and
non-faulting load.

— Support multiple address spaces (ASIs). The MMU must support the address spaces as
defined in F.3.1, “Information the MMU Expects from the Processor.”

— Provide page-level statistics such as referenced and modified.

The above requirements apply only to those systems that include SPARC-V9 MMUs. See F.8,
“SPARC-V9 Systems without an MMU.”

F.3 The Processor-MMU Interface
A SPARC-V9 MMU must support at least two types of addresses:

(1) Virtual Addresses, which map all system-wide, program-visible memory. A SPARC-V9
MMU may choose not to support translation for the entire 64-bit virtual address space, as
long as addresses outside the supported virtual address range are treated either as
No_translation or Translation_not_valid (see F.3.3, “Information the MMU Sends to the
Processor”).

(2) Physical Addresseswhich map real physical memory and I/O device space. There is no
minimum requirement for how many physical address bits a SPARC-V9 MMU must sup-
port.

A SPARC-V9 MMU translates virtual addresses from the processor into physical addresses, as
illustrated in figure 48.

Data
= > Physical
Address
Space
Processor
Virtual Physical | """ :— ________
—— | T
Address MMU Address Real | 110
Memory : Locations

Figure 48—Logical Diagram of a SPARC-V9 System with aMMU

Figure 48 shows only the address and data paths between the processor and the MMU. The con-
trol interface between the processor and the MMU is discussed in F.3.1, “Information the MMU
Expects from the Processor,” and F.3.3, “Information the MMU Sends to the Processor.”

F.3.1 Information the MMU Expects from the Processor

A SPARC-V9 MMU expects the following information to accompany each virtual address from
the processor:

RED_state
Indicates whether the MMU should operate in RED_state, as defined in 7.2.1,
‘RED_state.”

Data / Instruction:
Indicates whether the access is an instruction fetch or data access (load or store).

Prefetch:
Indicates whether the data (Data / Instruction = Data) access was initiated by one of the
SPARC-V9 prefetch instructions.

Privileged:
Indicates whether this access is privileged.

Read / Write:
Indicates whether this access is a read (instruction fetch or data load) or a write (data
store) operation.

Atomic:
Indicates whether this is an atomic load-store operation. Whenever atomic is asserted, the
value of “Read/Write” is treated by the MMU as “don’t care.”

ASI:
An 8-bit address space identifier. See 6.3.1.3, “Address Space ldentifiers (ASIs),” for the
list of ASlIs that the MMU must support.

F.3.2 Attributes the MMU Associates with Each Mapping

In addition to translating virtual addresses to physical addresses, a SPARC-V9 MMU also stores
associated attributes, either with each mapping or with each page, depending upon the implemen-
tation. Some of these attributes may be associated implicitly, as opposed to explicitly, with the
mapping. This information includes

Restricted:
Only privileged accesses are allowed (see F.3.1, “Information the MMU Expects from the
Processor”); nonprivileged accesses are disallowed.

Read, Write, and Execute Permissions
An MMU may allow zero or more of read, write, and execute permissions, on a per-map-
ping basis. Read permission is necessary for data read accesses and atomic accesses. Write
permission is necessary for data write accesses and atomic accesses. Execute permission is
necessary for instruction accesses. At a minimum, an MMU must allow for “all permis-
sions,” “no permissions,” and “no write permission”; optionally, it can provide “execute
only” and “write only,” or any combination of “read/write/execute” permissions.

Prefetchable
The presence of this attribute indicates that accesses made with the prefetch indication
from the processor are allowed; otherwise, they are disallowed. See F.3.1, “Information
the MMU Expects from the Processor.”

Non-faultable:
The presence of this attribute indicates that accesses made with
ASI_PRIMARY_NOFAULT{ LITTLE} andASI_SECONDARY_NOFAULT{ LITTLE} are allowed;
otherwise, they are disallowed. An implementation may choose to combine the prefetch-
able and non-faultable attributes into a single “No Side Effects” attribute; that is, “reads
from this address do not cause side effects, such as clear on read.”

F.3.3 Information the MMU Sends to the Processor

The processor can expect one and only one of the following signals coming from any SPARC-V9
MMU for each translation requested:

Translation_error:
The MMU has detected an error (for example, parity error) in the translation process. Can
cause alata_access_error OF instruction_access_error exception.

No_translation:
The MMU is unable to translate the virtual address, since no translation exists for it. Some
implementations may not provide this information and provide only
Translation_not_valid. Can cause either @ata access exception Or an
instruction_access_exception exception.

Translation_not_valid:
The MMU is unable to translate the virtual address, since it cannot find a valid translation.
Some implementations may not provide this information and provide only No_translation.
Can cause eitherdata_access_MMU_miss Of @ninstruction_access_MMU_miss exception.

Privilege_violation:
The MMU has detected a privilege violation, i.e., an access to a restricted page when the
access does not have the required privilege (see F.3.1, “Information the MMU Expects
from the Processor’). Can cause either data access protection oOr an
instruction_access_protection exception.

Protection_violation:
The MMU has detected a protection violation, which is defined to be a read, write, or
instruction fetch attempt to a page that does not have read, write, or execute permission,
respectively. Can cause eithet@a access_protection OF aninstruction_access_protection
exception.

Prefetch_violation:
The MMU has detected an attempt to prefetch from a page for which prefetching is dis-
abled.

NF-Load_violation:
The MMU has detected an attempt to perform a non-faulting load from a page for which
non-faulting loads are disabled.

Translation_successful
The MMU has successfully translated the virtual address to a physical address; none of the
conditions described above has been detected.

F.4 Components of the SPARC-V9 MMU Architecture
A SPARC-V9 MMU should contain the following:

— Logic that implements virtual-to-physical address translation

— Logic that provides memory protection
— Logic that supports prefetching as noted in A.42, “Prefetch Data”

— Logic that supports non-faulting loading, as noted in 8.3, “Addressing and Alternate
Address Spaces”

— A method for specifying the primary, secondary and, optionally, nucleus address spaces
— A method for supplying information related to failed translations

— A method for collecting “referenced” and “modified” statistics

F.4.1 Virtual-to-Physical Address Translation

A SPARC-V9 MMU tries to translate every virtual address it receives into a physical address as
long as:

— The MMU is enabled.

— The processor indicates that this is a non-RED_state instruction fetch (see the Data/
Instruction description in F.3.1, “Information the MMU Expects from the Processor”) or a
data access with an ASI that indicates a translatable address space.

Although the MMU will attempt to translate every virtual address that meets the above two condi-
tions, it need not guarantee that it can provide a translation every time. When the MMU encoun-
ters a virtual address that it cannot translate, it asserts either Translation_error, No_translation, or
Translation_not_valid, as discussed in F.3.3, “Information the MMU Sends to the Processor.”

F.4.2 Memory Protection

For each virtual address for which a SPARC-V9 MMU can provide a translation, the MMU
checks whether memory protection would be violated. More specifically, the MMU

— Indicates Privilege_violation (see F.3.3) if the translation information indicates a restricted
page but the access was not privileged (see F.3.1)

— Indicates Protection_violation (see F.3.3) if a read, write, or instruction fetch uses a trans-
lation that does not grant read, write, or execute permission, respectively

— Indicates Protection_violation (see F.3.3) if an atomic load-store uses a translation that
does not grant both read and write permission

F.4.3 Prefetch and Non-Faulting Load Violation
For each virtual address, the MMU checks for prefetch or non-faulting load violation as long as
— The MMU can provide a translation, and

— The MMU does not detect any memory protection violation, as discussed in F.4.2, “Mem-
ory Protection.”

More specifically, the MMU performs the following before sending the physical address to the
rest of the memory system:

— Asserts Prefetch_violation (see F.3.3) if an access with the prefetch indication (see F.3.1)
uses a translation that lacks the prefetchable attribute (see F.3.2)

— Asserts NF-Load_violation (see F.3.3) if the ASI (see F.3.1) indicates this access is a non-
faulting load, but the translation it uses lacks the non-faultable attribute (see F.3.2)

F.4.4 Contexts

The MMU must support two contexts:
(1) Primary Context
(2) Secondary Context

In addition, it is also recommended that the MMU support a third context:
(3) Nucleus Context

On data accesss, the MMU decides which of these three contexts to use based on the ASI field, as
illustrated in table 35. Because the SPARC-V9 MMU cannot determine the instruction opcode, it
treats all data accesses with ASI_PRIMARY{ LITTLE} as normal loads or stores, even though
the processor may issue them with load/store alternate instructions.

Table 35—Context Used for Data Access

MMU Inputs Output

ASI Mode Context
ASI_PRIMARY Either Primary
ASI_PRIMARY_LITTLE Either Primary
ASI_PRIMARY_NOFAULT Either Primary
AS|_PRIMARY_NOFAULT_LITTLE Either Primary
ASI_AS IF_USER_PRIMARY Privileged Primary
ASI_AS_IF_USER_PRIMARY_LITTLE Privileged Primary
AS|I_SECONDARY Either Secondary
AS|_SECONDARY_LITTLE Either Secondary
ASI_SECONDARY_NOFAULT Either Secondary
ASI_SECONDARY_NOFAULT_LITTLE Either Secondary
ASI_AS IF_ USER_SECONDARY Privileged Secondarly
ASI_AS IF_USER_SECONDARY_LITTLE Privileged Secondall/
ASI|_NUCLEUS' Privileged Nucleus
ASI_NUCLEUS_LITTLE" Privileged Nucleus

T Support for the nucleus context is only a recommendation; if an implementation does not support the
nucleus context it may ignore this row.

On instruction fetch, the MMU decides which context to use based on the ASI field, as illustrated
in table 36. Note that the secondary context is never used for instruction fetch.

Table 36—Context Used for Instruction Access

ASI Mode Context
ASI_PRIMARY Either Primary
ASI_NUCLEUST Privileged* Nucleus

T Support for the Nucleus Context is only a recommendation; if an implementation does not support the
Nucleus Context it may ignore this row.

it is implementation-dependent whether instruction fetch using ASI_NUCLEUS in nonprivileged
mode is allowed.

F.4.5 Fault Status and Fault Address
A SPARC-V9 MMU must provide the following:

— Fault status information that specifies which condition listed in F.3.3, “Information the
MMU Sends to the Processor,” has resulted in a translation-related processor trap, and any
other information necessary for privileged software to determine the cause of the trap; for
example, ASI, Read/Write, Data/lnstruction, etc.

— The Fault address associated with the failed translation. Since the address from an instruc-
tion translation failure is available in the processor as the trap PC, the MMU is not
required to save the address of an instruction translation failure.

F.4.6 Referenced and Modified Statistics

A SPARC-V9 MMU shall allow, either through hardware, software, or some combination thereof,

for the collection of “referenced” and “modified” statistics associated with translations and/or
physical pages. That is, there must be a method to determine if a page has been referenced, a
method to determine if a page has been modified, and a method for clearing the indications that a
page has been referenced and/or modified. These statistics may be kept on either a per-translation
basis or a per-physical-page basis.

It is implementation-dependent whether the referenced and/or modified statistics are updated
when an access is performed or when the translation for that access is performed.

F.5 RED_state Processing
It is recommended that the MMU perform as follows when the processor is in RED_ state:

— Instruction address translation is a straight-through physical map; that is, the MMU is
always suppressed for instruction access in RED_ state.

— Data address translation is handled normally; that is, the MMU is used if it is enabled.
Note that any event which causes the processor to enter RED_state also disables the
MMU, however, the handler executing in RED_state may reenable the MMU.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

F.6 Virtual Address Aliasing

Hardware and privileged software must cooperate so that multiple virtual addresses aliased to the
same physical address appear to be consistent as defined by the memory models described in
Chapter 8, “Memory Models.” Depending upon the implementation, this may require allowing
multiple translations to coexist only if they meet some implementation-dependent alignment con-
straint, or it may require that software ensure that only one translation is in effect at any given
time.

F.7 MMU Demap Operation

The SPARC-V9 MMU must provide a mechanism for privileged software to invalidate some or
all of the virtual-to-physical address translations.

F.8 SPARC-V9 Systems without an MMU

It is possible to build a SPARC-V9 system that does not have an MMU. Such a system should
behave as if contains an MMU that is disabled.

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;
it is included for information only.)

G Suggested Assembly Language Syntax

This appendix supports Appendix A, “Instruction Definitions.” Each instruction description in
Appendix A includes a table that describes the suggested assembly language format for that
instruction. This appendix describes the notation used in those assembly language syntax descrip-
tions and lists some synthetic instructions that may be provided by a SPARC-V9 assembler for the
convenience of assembly language programmers.

G.1 Notation Used
The notations defined here are also used in the syntax descriptions in Appendix A.

Items intypewriter font are literals to be written exactly as they appear. Itenitalit font
are metasymbols that are to be replaced by numeric or symbolic values in actual SPARC-V9

assembly language code. For exampimm_asi would be replaced by a number in the range 0
to 255 (the value of thenm_asibits in the binary instruction), or by a symbol bound to such a
number.

Subscripts on metasymbols further identify the placement of the operand in the generated binary
instruction. For examplegg., is areg (register name) whose binary value will be placed in the
rs2 field of the resulting instruction.

G.1.1 Register Names

reg:
A regis an integer register name. It may have any of the following values:
%r0..%r31

%g0..%g7 (global registers; same 86r0..%r7)

%00..%07 (out registers; same &&r8..%r15)
%I0 ..%I7 (local registers; same &6r16..%r23)
%i0 ..%i7 (in registers; same &&24..%r31)
%fp (frame pointer; conventionally same%¢6)
%sp (stack pointer; conventionally same%s6)
Subscripts identify the placement of the operand in the binary instruction as one of the fol-
lowing:
regs1 (rslfield)
re€gso (rs2field)
regyq (rd field)
freg:
An fregis a floating-point register name. It may have the following values:
%f0, %f1, %f2 .. %f63 See 5.1.4, “Floating-Point Registers”
Subscripts further identify the placement of the operand in the binary instruction as one of
the following:
fregsy (rslfield)
freggo (rs2 field)
fregy (rd field)
asr_reg

An asr_regis an Ancillary State Register name. It may have one of the following values:
%asrl6 ..%asr31

Subscripts further identify the placement of the operand in the binary instruction as one of

the following:
asr_regsq (rslfield)
asr_regyq (rd field)

1.In actual usage, tlésp, %fp, %, %, %In, and%in forms are preferred ovésrn.

i_or_x_cc
An i_or_x_ccspecifies a set of integer condition codgwse based on either the 32-bit
result of an operationidc) or on the full 64-bit resultXcc). It may have either of the
following values:

%icc
%%xcc

fcen:
An fccnspecifies a set of floating-point condition codes. It may have any of the following
values:

%fccO
%fccl
%fcc2
%fcc3

G.1.2 Special Symbol Names

Certain special symbols appear in the syntax tabtgpewriter font . They must be written
exactly as they are shown, including the leading percent®gn (

The symbol names and the registers or operators to which they refer are as follows:

%asi Address Space ldentifier register
%canrestore Restorable Windows register
%cansave Savable Windows register
%cleanwin Clean Windows register

%cwp Current Window Pointer register
%fq Floating-Point Queue

%fsr Floating-Point State Register
%otherwin Other Windows register

%pc Program Counter register

Y%pil Processor Interrupt Level register
Y%pstate Processor State register

%tba Trap Base Address register
%tick Tick (cycle count) register

%itl Trap Level register

%tnpc Trap Next Program Counter register
%tpc Trap Program Counter register
Y%tstate Trap State register

%tt Trap Type register

%ccr Condition Codes Register

%fprs Floating-Point Registers State register
Y%ver Version register

Y%wstate Window State register

%y

Y register

The following special symbol names are unary operators that perform the functions described:

%uhi Extracts bits 63..42 (high 22 bits of upper word) of its operand
%ulo Extracts bits 41..32 (low-order 10 bits of upper word) of its operand
%hi Extracts bits 31..10 (high-order 22 bits of low-order word) of its oper-
and
%lo Extracts bits 9..0 (low-order 10 bits) of its operand
Certain predefined value names appear in the syntax tabtpemriter font . They must be

written exactly as they are shown, including the leading sharp#jgn (

The value names and the values to which they refer are as follows:

#n_reads 0 (for PREFETCH instruction)
#one_read 1 (for PREFETCH instruction)
#n_writes 2 (for PREFETCH instruction)
#one_write 3 (for PREFETCH instruction)
#page 4 (for PREFETCH instruction)
#Sync 40,4 (for MEMBAR instructioncmaskfield)
#Memlssue 2045 (for MEMBAR instructioncmaskfield)
#Lookaside 106 (for MEMBAR instructioncmaskfield)
#StoreStore 08¢ (for MEMBAR instructionmmaskield)
#lLoadStore 0445 (for MEMBAR instructionmmaskfield)
#StoreLoad 026 (for MEMBAR instructionmmaskield)
#LoadLoad 016 (for MEMBAR instructionmmaskield)
#ASI_AIUP 106 ASI_AS IF_USER_PRIMARY
#ASI_AIUS 116 ASI_AS_IF_USER_SECONDARY
#ASI_AIUP_L 18, ASI_AS_IF_USER_PRIMARY_LITTLE
#ASI_AIUS L 195 ASI_AS IF_USER_SECONDARY_LITTLE
#ASI_P 8045 ASI_PRIMARY
#ASI_S 815 ASI_SECONDARY
#ASI_PNF 825 ASI_PRIMARY_NOFAULT
#ASI_SNF 835 ASI_SECONDARY_NOFAULT
#ASI_P_L 885 ASI_PRIMARY_LITTLE
#ASI_S_L 8956 AS|I_SECONDARY_LITTLE
#ASI_PNF_L 8A4 ASI_PRIMARY_NOFAULT_LITTLE
#ASI_SNF_L 8By ASI_SECONDARY_NOFAULT_LITTLE
The full names of the ASIs may also be defined:
#ASI_AS_IF_USER_PRIMARY 106
#ASI_AS_IF_USER_SECONDARY 116

#AS|_AS_IF_USER_PRIMARY _LITTLE 18
#AS|_AS_IF_USER_SECONDARY_LITTLE19

#AS|_PRIMARY 80,

#AS|_SECONDARY 81,
#AS|_PRIMARY_NOFAULT 82
#AS|_SECONDARY_NOFAULT 83,
#AS|_PRIMARY_LITTLE 88,
#AS|_SECONDARY_LITTLE 89
#AS|_PRIMARY_NOFAULT_LITTLE 8A

#AS|_SECONDARY_ NOFAULT_LITTLE 8By

G.1.3 Values

Some instructions use operand values as follows:
const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0..255)
simm?7 A signed immediate constant that can be represented in 7 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11l A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0..31
shcnt64 A shift count from 0..63

G.1.4 Labels

A label is a sequence of characters that comprises alphabetic letters (a—z, A—Z [with upper and
lower case distinct]), underscores (), dollar signs ($), periods (.), and decimal digits (0-9). A
label may contain decimal digits, but may not begin with one. A local label contains digits only.

G.1.5 Other Operand Syntax
Some instructions allow several operand syntaxes, as follows:

reg_plus_immmay be any of the following:
regs (equivalent taeg,; + %90
reggy + Simm13
regsi — Simmi3
simm13 (equivalent td%g0 +simm13
simm13+ regg; (equivalent taegg; + SIMM13

addressmay be any of the following:
regs (equivalent taeg,; + %90
reggy + SImm13

regs1 — Simmi3
simm13 (equivalent td%g0 +simm13
simm13+ reg,s; (equivalent taegg; + SImmM13

regrs1t réGrs2

membar_masks the following:

const7 A constant that can be represented in 7 bits. Typically, this is an expres-
sion involving the logicabr of some combination offLookaside
#Memlssue , #Sync, #StoreStore , #LoadStore , #Store-
Load, and#LoadLoad .

prefetch_fcn(prefetch function) may be any of the following:
#n_reads
#one_read
#n_writes
#one_write
#page
0..31

regaddr(register-only address) may be any of the following:
regs1 (equivalent taeg,g; + %90

€Gs1+ MeGrs2
reg_or_imm(register or immediate value) may be either of:

r€grs2
simm13

reg_or_immlQ(register or immediate value) may be either of:

r€grso
simm10

reg_or_imm1ll(register or immediate value) may be either of:

r€grso
simm11l

reg_or_shcnf(register or shift count value) may be any of:
reGrs2
shcnt32
shcnt64

software_trap_numbemay be any of the following:
regs (equivalent taeg,s; + %90
regg, + Simm7
regs1 — Simm?
simm?7 (equivalent td%g0 +simm?
simm7+regg; (equivalent taeggq + Simm7

regrs1t réGrs2

The resulting operand value (software trap number) must be in the range 0..127, inclusive.

G.1.6 Comments

It is suggested that two types of comments be accepted by SPARC-V9 assemblers: C-style “
..[7 comments, which may span multiple lines, and.” " comments, which extend from
the “ ” to the end of the line.

G.2 Syntax Design
The suggested SPARC-V9 assembly language syntax is designed so that

— The destination operand (if any) is consistently specified as the last (rightmost) operand in
an assembly language instruction.

— A reference to theontents of a memory location (in a Load, Store, CASA, CASXA,
LDSTUB(A), or SWAP(A) instruction) is always indicated by square brackgis a ref-
erence to theddressof a memory location (such as in a JMPL, CALL, or SETHI) is
specified directly, without square brackets.

G.3 Synthetic Instructions

Table 37 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual instruc-
tions. These and other synthetic instructions may be provided in a SPARC-V9 assembler for the
convenience of assembly language programmers.

Note that synthetic instructions should not be confused with “pseudo-ops,” which typically pro-
vide information to the assembler but do not generate instructions. Synthetic instructions always
generate instructions; they provide more mnemonic syntax for standard SPARC-V9 instructions.

Table 37—Mapping Synthetic to SPARC-V9 Instructions

Synthetic instruction SPARC-V9 instruction(s) Comment

cmp regsy, reg_or_imm [subcc regsy, reg_or_imm9%g0 compare

jmp address jmpl address%g0

call address jmpl address %07

iprefetch label bn,a,pt %xcc, label instruction prefetch

tst regs1 orcc %90, reggy, %90 test

ret jmpl %i7+8, %g0 return from subroutine

retl impl %07+8, %g0 return from leaf subroutine

restore restore %g0, %g0, %g0 trivial restore

save save %g0, %g0, %g0 trivial save
(Warning: trivial save
should only be used in kerngl
code)

set uw value regy sethi %hi (value), regyq (when ((value&3Fip) = =0))

Table 37—Mapping Synthetic to SPARC-V9 Instructions (Continued)

Synthetic instruction SPARC-V9 instruction(s) Comment
— or—
or %g0, value regyq (when O<value<4095)
—or—
sethi %hi (valug, regy; (otherwise)
or regy, %lo (value), regy Warning: do not useetuw in
the delay slot of a DCTI.
set valug regy synonym forsetuw
set sw value regy sethi %hi (value), regyq (when (value> = 0) and
((value & 3FRg) = =0))
—or—
or %g0, value regyq (when -409&value<4095)
—or—
sethi %hi (value), regyq (otherwise, if (value < 0) and
((value & 3FFRg) = =0))
sra regyq, %90, regq
—or—
sethi %hi (valug), regy; (otherwise, if value> = 0)
or regy, %lo (value, regy
—or—
sethi %hi (valug, regy; (otherwise, if value<0)
or reg, %lo (value), regy
sra regyq, %90, regq Warning: do not useetsw in
the delay slot of a CTI.
setx valug reg, regy sethi %uhi(value), reg create 64-bit constant
or reg, Youlo(value, reg (“reg” is used as a temporary
slix reg,32, reg register)
sethi %hi(valug, regy Note:set x optimizations are
or reGq, reg regq possible but not enumer-
or regg, %l0(valud, regq ated here. The worst-case i

shown.Warning: do not use
set x in the delay slot of a
CTI.

Table 37—Mapping Synthetic to SPARC-V9 Instructions (Continued)

Synthetic instruction SPARC-V9 instruction(s) Comment
signx regs1, reGyq sra regs, %90, regy sign-extend 32-bit value to
sighx regy sra regry, %90, regy 64 bits
not regs1, regq xnor regsy, %90, regyq one’s complement
not regyq xnor regyq, %90, regq one’'s complement
neg regso, Gy sub %90, reggo, regy two’s complement
neg regq sub %090, regy, regyq two’s complement
cas [regsi], regss regq |casa [regs]#ASI_P, regsy regq |compare and swap
casl [regsi], regss regq |casa [regs)#ASI_P_L, regsy regq|compare and swap, little-endign
casx [regsi, regso regq |casxa [regs]#ASI_P, reg¢, regq |compare and swap extended
casxl [regsi, regso regq |casxa [regs]#ASI_P_L, regsy regq|compare and swap extended,
little-endian
inc ey add regq, 1, regyq increment by 1
inc constl3 regy add reg,y, Constl3 regy increment by const13
inccc regyq addcc regq, 1, regyq incr by 1; seticc & xcc
inccc constl3 regy addcc regy, Constl3 regy incr by constl13; seticc & xcc
dec regyq sub regq, 1, regyq decrement by 1
dec constl3 regy sub regy, Constl3 regy decrement by const13
deccc €y subcc regq, 1, regyq decr by 1; set icc & xcc
deccc constl3 regy subcc reg,y, Constl3 regy decr by const13; set icc & xcc
btst reg_or_imm regs; |andcc regsy, reg_or_imm%g0 bit test
bset reg_or_imm regq |or regy, reg_or_imm regy bit set
belr reg_or_imm regq |andn regy, reg_or_imm regy bit clear
btog reg_or_imm regq [xor regy, reg_or_imm regy bit toggle
clr €y or %90, %g0, regyq clear (zero) register
clrb [addres$ stb %40, [addres} clear byte
clrh [addres$ sth %g0, [addres$ clear halfword
clr [addres$ stw %g0, [addres$ clear word
clrx [addres$ stx %g0, [addres$ clear extended word
clruw r€gs1, r€Gyq srl regs1, %90, regy copy and clear upper word
clruw €y srl regq, %90, regy clear upper word
mov reg_or_imm regy |or %g0, reg_or_imm regy
mov %y, regq rd %Yy, regyq
mov %asrn, regq rd %asr n, regy
mov reg_or_imm %y wr %g0, reg_or_imm %y
mov reg_or_imm%asr n |wr %4g0, reg_or_imm%asr n

(This Annex is not a part of SPARC-V9/R1.4.5,
<lItalic>The SPARC Architecture Manual;

it is included for information only.)

This appendix is informative only.

It is not part of the SPARC-V9 specification.

H Software Considerations

This appendix describes how software can use the SPARC-V9 architecture effectively. Examples
do not necessarily conform to any specific Application Binary Interface (ABI).

H.1 Nonprivileged Software

This subsection describes software conventions that have proven or may prove useful, assump-
tions that compilers may make about the resources available, and how compilers can use those
resources. It does not discuss how supervisor software (an operating system) may use the archi-
tecture. Although a set of software conventions is described, software is free to use other conven-
tions more appropriate for specific applications.

The following are the primary goals for many of the software conventions described in this sub-
section:

— Minimizing average procedure-call overhead
— Minimizing latency due to branches

— Minimizing latency due to memory access

H.1.1 Registers

Register usage is a critical resource allocation issue for compilers. The SPARC-V9 architecture
provides windowed integer registerig,(out, local), global integer registers, and floating-point
registers.

H.1.1.1 Inand Out Registers

Thein andout registers are used primarily for passing parameters to and receiving results from
subroutines, and for keeping track of the memory stack. When a procedure is called and executes
a SAVE instruction, the callersuts become the callediss.

One of a procedure’sut registers %06 is used as its stack pointésp. It points to an area in

which the system can sto26r16..%r31 (%I0 ..%I7 and%i0 ..%i7) when the register file over-

flows (spill trap), and is used to address most values located on the stack. A trap can occur at any
time!, which may precipitate a subsequent spill trap. During this spill trap, the contents of the
user’s register window at the time of the original trap are spilled to the memory to whiétsfis

points.

A procedure may store temporary values inatg registers (exceptsp) with the understanding
that those values are volatile across procedure Cakg.cannot be used for temporary values for
the reasons described in H.1.1.3, “Register Windows and %sp.”

Up to six parametefsmay be passed by placing them duit registers%00..%05 additional
parameters are passed in the memory stack. The stack pointer is implicitly padsefl end a
CALL instruction places its own addressn072 Floating-point parameters may also be passed
in floating-point registers.

After a callee is entered and its SAVE instruction has been executed, the calienégisters are
accessible as the calle@¥sregisters.

The caller’s stack pointe®osp (%06 automatically becomes the current procedure’s frame
pointer%fp (%i6) when the SAVE instruction is executed.

The callee finds its first six integer parameter£4i0 ..%i5, and the remainder (if any) on the
stack.

A function returns a scalar integer value by writing it into ins (which are the caller'suts),
starting with%i0 . A scalar floating-point value is returned in the floating-point registers, starting
with %f0.

A procedure’s return address, normally the address of the instruction just after the CALL's delay-
slot instruction, is a%i7+8 .3

H.1.1.2 Local Registers

Thelocals are used for automafivariables and for most temporary values. For access efficiency,
a compiler may also copy parameters (that is, those past the sixth) from the memory stack into the
locals and use them from there.

See H.1.4, “Register Allocation within a Window,” for methods of allocating more or fewer than
eight registers for local values.

1. For example, due to an error in executing an instruction (for examptena address _not_aligned trap), or due
to any type of external interrupt.

1. Six is more than adequate, since the overwhelming majority of procedures in system code take fewer than six
parameters. According to studies cited by Weicker (Weicker, R. P., “Dhrystone: A Synthetic Systems Program-
ming Benchmark,CACM27:10, October 1984), at least 97% (measured statically) take fewer than six parame-
ters. The average number of parameters did not exceed 2.1, measured either statically or dynamically, in any of
these studies.

If a IMPL instruction is used in place of a CALL, it should place its addréssifior consistency.

3. For convenience, SPARC-V9 assemblers may provideeta ™ (return) synthetic instruction that generates a
“impl %i7+8 , %g0 hardware instruction. See G.3, “Synthetic Instructions.”

4. Inthe Clanguage, an automatic variable is a local variable whose lifetime is no longer than that of its containing
procedure.

H.1.1.3 Register Windows and %sp

Some caveats about the usé6ép and the SAVE and RESTORE instructions are appropriate. If
the operating system and user code use register windows, it is essential that

— Y%spalwayscontains a correct value, so that when (and if) a register window spill/fill trap
occurs, the register window can be correctly stored to or reloaded from memory.

— Nonprivileged code uses SAVE and RESTORE instructions carefully. In particular, “walk-
ing” the call chain through the register windows using RESTORES, expecting to be able to
return to where one started using SAVESs, does not work as one might suppose. Since user
code cannot disable traps, a trap (e.g., an interrupt) could write over the contents of a user
register window that has “temporarily” been RESTOREThe safe method is to flush the
register windows to user memory (the stack) by using the FLUSHW instruction. Then,
user code can safely “walk” the call chain through user memory, instead of through the
register windows.

To avoid such problems, consider all data memory at addresses just leS$dh&m be volatile,
and the contents of all register windows “below” the current one to be volatile.

H.1.1.4 Global Registers

Unlike theins, locals, andouts, theglobals are not part of any register window. Tgebals are a

set of eight registers with global scope, like the register sets of more traditional processor archi-
tectures. An ABI may define conventions that tllebals (excepfog0Q must obey. For example,

if the convention assumes thgibbalsare volatile across procedure calls, either the caller or the
callee must take responsibility for saving and restoring their contents.

Global registefogOhas a hardwired value of zero; it always reads as zero, and writes to it have no
program-visible effect.

Typically, theglobal registers other thathgOare used for temporaries, global variables, or global
pointers — either user variables, or values maintained as part of the program'’s execution environ-
ment. For example, one could ugebals in the execution environment by establishing a conven-
tion that global scalars are addressed via offsets from a global base register. In the most general
case, memory accessed at an arbitrary address requires six instructions; for example,

sethi %uhi(address), tmp

or tmp, %ulo(address), tmp
slix tmp, 32, tmp

sethi %hi(address), reg

or reg , %olo(address), reg
Id [reg +tmp], reg

1. Typically, the SAVE instruction is used to generate a A&sp value while shifting to a new register window, all
in one atomic operation. When SAVE is used this way, synchronization of the two operations should not be a
problem.

2. Another reason this might fail is that user code has no way to determine how many register windows are imple-
mented by the hardware.

Use of a global base register for frequently accessed global values would provide faster (single-
instruction) access td-2bytes of those values; for example,

Id [%g n+offset], reg

Additional global registers could be used to provide single-instruction access to correspondingly
more global values.

H.1.1.5 Floating-Point Registers

There are sixteen quad-precision floating-point registers. The registers can also be accessed as
thirty-two double-precision registers. In addition, the first eight quad registers can also be
accessed as thirty-two single-precision registers. Floating-point registers are accessed with differ-
ent instructions than the integer registers; their contents can be moved among themselves, and to
or from memory. See 5.1.4, “Floating-Point Registers,” for more information about floating-point
register aliasing.

Like the global registers, the floating-point registers must be managed by software. Compilers use
the floating-point registers for user variables and compiler temporaries, pass floating-point param-
eters, and return floating-point results in them.

H.1.1.6 The Memory Stack

A stack is maintained to hold automatic variables, temporary variables, and return information for
each invocation of a procedure. When a procedure is calletlack frame is allocated; it is
released when the procedure returns. The use of a stack for this purpose allows simple and effi-
cient implementation of recursive procedures.

Under certain conditions, optimization can allow a leaf procedure to use its caller’s stack frame
instead of one of its own. In that case, the procedure allocates no space of its own for a stack
frame. See H.1.2, “Leaf-Procedure Optimization,” for more information.

The stack pointefosp must always maintain the alignment required by the operating system’s
ABI. This is at least doubleword alignment, possibly with a constant offset to increase stack
addressability using constant offset addressing.

H.1.2 Leaf-Procedure Optimization

A leaf procedureis one that is a “leaf” in the program’s call graph; that is, one that does not call
(e.g., via CALL or JMPL) any other procedures.

Each procedure, including leaf procedures, normally uses a SAVE instruction to allocate a stack
frame and obtain a register window for itself, and a corresponding RESTORE instruction to deal-
locate it. The time costs associated with this are

— Possible generation of register-window spill/fill traps at runtime. This only happens occa-
sionally,1 but when either a spill or fill trap does occur, it costs several machine cycles to
process.

— The cycles expended by the SAVE and RESTORE instructions themselves.

There are also space costs associated with this convention, the cumulative cache effects of which
may be nonnegligible. The space costs include

— The space occupied on the stack by the procedure’s stack frame
— The two words occupied by the SAVE and RESTORE instructions
Of the above costs, the trap-processing cycles typically are the most significant.

Some leaf procedures can be made to operéteout their own register window or stack frame,
using their caller’s instead. This can be done when the candidate leaf procedure meets all of the
following conditionst

— It contains no references %sp, except in its SAVE instruction.
— It contains no references %fp.

— It refers to (or can be made to refer to) no more than eight of the thirty-two integer regis-
ters, includingo7 (the return address).

If a procedure conforms to the above conditions, it can be made to operate using its caller’s stack
frame and registers, an optimization that saves both time and space. This optimization is called
leaf procedure optimization. The optimized procedure may safely use only registers that its
caller already assumes to be volatile across a procedure call.

The optimization can be performed at the assembly language level using the following steps:

(1) Change all references to registers in the procedure to registers that the caller assumes vol-
atile across the call.

(a) Leave references %607 unchanged.
(b) Leave any references%6g0..%g7unchanged.

(c) Change2oi0 ..%i5 to %00..%05 respectively. If ann register is changed to asut
register that was already referenced in the original unoptimized version of the proce-
dure, all original references to thatit register must be changed to refer to an unused
out or global register.

(d) Change references to edoleal register into references to any unused register that is
assumed to be volatile across a procedure call.

(2) Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP instruction. If
its destination register was nétg0 or %sp, convert the SAVE into the corresponding
ADD instruction instead of deleting it.

1. The frequency of overflow and underflow traps depends on the application and on the number of register win-
dows (\wINDOWS) implemented in hardware.

1. Although slightly less restrictive conditions could be used, the optimization would become more complex to per-
form and the incremental gain would usually be small.

(3) If the RESTORE's implicit addition operation is used for a productive purpose (such as
setting the procedure’s return value), convert the RESTORE to the corresponding ADD
instruction. Otherwise, the RESTORE is only used for stack and register-window deallo-
cation; replace it with a NOP instruction (it is probably in the delay slot of the RET, and so
cannot be deleted).

(4) Change the RET (return) synthetic instruction to RETL (return-from-leaf-procedure syn-
thetic instruction).

(5) Perform any optimizations newly made possible, such as combining instructions or filling
the delay slot of the RETL (or the delay slot occupied by the SAVE) with a productive
instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and no references
to in or local registers in the procedure body. All original referenceg®are now toouts. All
other register references are to registers that are assumed to be volatile across a procedure call.

Costs of optimizing leaf procedures in this way include

— Additional intelligence in a peephole optimizer to recognize and optimize candidate leaf
procedures

— Additional intelligence in debuggers to properly report the call chain and the stack trace-
back for optimized leaf procedures

H.1.3 Example Code for a Procedure Call

This subsection illustrates common parameter-passing conventions and gives a simple example of
leaf-procedure optimization.

The code fragment in example 1 shows a simple procedure call with a value returned, and the pro-
cedure itself.

Sincesum3 does not call any other procedures (i.e., it is a leaf procedure), it can be optimized to
become:

suma3:
add %00, %01, %00
retl I (must use RETL, not RET,
add %00, %02, %00 I to return from leaf procedure)

H.1.4 Register Allocation within a Window

The usual SPARC-V9 software convention is to allocate eight regites.(%I7) for local val-
ues. A compiler could allocate more registers for local values at the expense of havingtdsver
andins available for argument passing. For example, if instead of assuming that the boundary

1. A debugger can recognize an optimized leaf procedure by scanning it, noting the absence of a SAVE instruction.
Compilers often constrain the SAVE, if present, to appear within the first few instructions of a procedure; in such
a case, only those instruction positions need be examined.

I CALLER:

! inti; [* compiler assigns "i" to register %I7 */
! i = sum3(1,2,3)
mov 1, %00 I first arg to sum3is 1
mov 2, %01 I second arg to sum3 is 2
call sum3 ! the call to sum3
mov 3, %02 ! last parameter to sum3 in delay slot
mov %00, %I7 ! copy return value to %I7 (variable "i")

#define SA(X)
*/
#define MINFRAME ((16+1+6)*8)

(((x)+15)&(~0x1F)) /* rounds "X" up to extended word boundary

/* minimum size stack frame, in bytes;
* 16 extended words for saving the

current
* register window,
* 1 extended word for “hidden parameter”,
* and 6 extended words in which a callee
* can store its arguments.
*/
| CALLEE:
! intsum3(a, b, c)
! inta, b, c; [* args received in %i0, %il, and %i2 */
! {
! return a+b+c;
! }
suma3:
save %sp,-SA(MINFRAME),%sp! set up new %sp; alloc min. stack frame
add %i0, %il, %lI7 I compute sum in local %I7
add %I7, %i2, %I7 I (or %i0 could have been used directly)
ret I return from sum3, and...
restore %I7, 0, %00 I move result into output reg & restore

Example 1—Simple Procedure Call with Value Returned

between local values and input arguments is between r[23] and ¥2%] and %i0), software
could, by convention, assume that the boundary is between r[25] and #26]dnd%i2). This
would provide ten registers for local values andisiandoutregisters. This is shown in table 38.

Table 38—Register Allocation within a Window

Standard 10 I_ocal Arbit.rary
register register register
model model model
Registers for local values 8 10 n
In / out registers
Reserved fofosp/ %fp 1 1 1
Reserved for return address 1 1 1
Available for argument passing 6 4 th
Totalins/ outs 8 6 16-n

H.1.5 Other Register-Window-Usage Models

So far, this appendix has described SPARC-V9 software conventions that are appropriate for use
in a general-purpose multitasking computer system. However, SPARC-V9 is used in many other
applications, notably embedded and/or real-time systems. In such applications, other schemes for
allocation of SPARC-V9’s register windows might be more nearly optimal than the one described
above.

One possibility is to avoid using the normal register-window mechanism by not using SAVE and
RESTORE instructions. Software would see 32 general-purpose registers instead of SPARC-V9’s
usual windowed register file. In this mode, SPARC-V9 would operate like processors with more
traditional (flat) register architectures. Procedure call times would be more determinate (due to
lack of spillffill traps), but for most types of software, average procedure call time would signifi-
cantly increase, due to increased memory traffic for parameter passing and saving/restoring local
variables.

Effective use of this software convention would require compilers to generate different code
(direct register spills/fills to memory and no SAVE/RESTORE instructions) than for the software
conventions described above.

It would be awkward, at best, to attempt to mix (link) code that uses the SAVE/RESTORE con-
vention with code that does not use it. If both conventiaese used in the same system, two ver-
sions of each library would be required.

It would be possible to run user code with one register-usage convention and supervisor code with
another. With sufficient intelligence in supervisor software, user processes with different register
conventions could be run simultaneouj‘sly.

H.1.6 Self-Modifying Code

If a program includes self-modifying code, it must issue a FLUSH instruction for each modified
doubleword of instructions (or a call to supervisor software having an equivalent effect).

Note that self-modifying code intended to be portahlest use FLUSH instruction(s) (or a call to
supervisor software having equivalent effect) after storing into the instruction stream.

All SPARC-V9 instruction accesses are big-endian. If a program is running in little-endian mode
and wishes to modify instructions, it must do one of the following:

— Use an explicit big-endian ASI to write the modified instruction to memory, or

— Reverse the byte ordering shown in the instruction formats in Appendix A, “Instruction
Definitions,” before doing a little-endian store, since the stored data will be reordered
before the bytes are written to memory.

1. Although technically possible, this is not to suggest that there would be significant utility in mixing user pro-
cesses with differing register-usage conventions.

H.1.7 Thread Management

SPARC-V9 provides support for the efficient management of user-level threads. The cost of
thread switching can be reduced by using the following features:

User Management of FPU:
The FEF bit in the FPRS register allows nonprivileged code to manage the FPU. Thisis in
addition to the management done by the supervisor code via the PEF bit in the PSTATE
register. A thread-management library can implement efficient switching of the FPU
among threads by manipulating the FEF bit in the FPRS register and by providing a user
trap handler (with support from the supervisor software) forftheisabled exception. See
the description of User Traps in H.2.4, “User Trap Handlers.”

FLUSHW Instruction :
The FLUSHW instruction is an efficient way for a thread library to flush the register win-

dows during a thread switch. The instruction executes as a NOP if there are no windows to
flush.

H.1.8 Minimizing Branch Latency

The SPARC-V9 architecture contains several instructions that can be used to minimize branch
latency. These are described below.

Conditional Moves.
The conditional move instructions for both integer and floating-point registers can be used
to eliminate branches from the code generated for simple expressions and/or assignments.
The following example illustrates this.

The C code segment

double X,Y;
int i;

i = x>y)?1:2;

can be compiled to use a conditional move as follows:

fcmp %fccl, X, y I x and y are double regs
mov 1, | liisint; assume x >y
movfle %fccl, 2, i I fix i if wrong

Branch or Move Based on Register Contents
The use of register contents as conditions for branch and move instructions allows any
integer register (other thaf) to hold a boolean value or the results of a comparison. This
allows conditions to be used more efficiently in nested cases. It allows the generation of a
condition to be moved further from its use, thereby minimizing latency. In addition, it can
eliminate the need for additional arithmetic instructions to set the condition codes. This is
illustrated in the following example.

The test for finding the maximum of an array of integers,

if (A[i] > max)
max = A[i];

can be compiled as follows, allowing the condition for the loop to be set before the
sequence and checked after it:

ldx [addr_of A], Ai
sub Ai, max, tmp
movrgz tmp, Ai, max

H.1.9 Prefetch

The SPARC-V9 architecture includes a prefetch instruction intended to help hide the latency of
accessing memory.

As a general rule, given a loop of the following form (using C for assembly language, and assum-
ing a cache line size of 64 bytes and that A and B are arrays of 8-byte values)
for(i = 0;i<N;i++){
load A[i]
load BI[i]

}

which takes C cycles per iteration (assuming all loads hit in cache) and given L cycles of latency
to memory, prefetch instructions may be inserted for data that will be nessiéty(L/C") itera-
tions in the future, where C' is number of cycles per iteration of the modified loop. Thus, the loop
would be transformed into
K = ceiling(L/C;
for i = 0;i<N;i++){
load AJi]
load BYi]
prefetch Afi+K]
prefetch B[i+K]

}

This ensures that the loads will find their data in the cache, and will thus complete more quickly.
The first K iterations will not get any benefit from prefetching, so if the number of iterations is
small (see below), then prefetching will not help.

1. Two papers describing the use of prefetch instructions are Callahan, D., K. Kennedy, A. Porterfield, “Software
Prefetching,”Proceedings of the Fourth International Conference on Architectural Support for Programming
Languages and Operating Systergril 1991, pp. 40-52, and Mowry, T., M. Lam, and A. Gupta, “Design and
Evaluation of a Compiler Algorithm for Prefetching?roceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Sys@etsber 1992, pp. 62-73.

Note that in cases of contiguous access (like this one), many of the prefetch instructions will in
fact be unnecessary and may slow the program down. To avoid this, note that the prefetch instruc-
tion always obtains at least 64 (cache-line-aligned) bytes.
/* Round up access to next cache line. */
K' = (ceiling(L/C") +7) & ~7;
for (i = 0;i<N;i++){
load A[i]
load BYi]
if (((int)(A+i) & 63) = = 0){
prefetch Afi+K']
prefetch B[i+K']

}
or (unrolled eight times, assuming A and B are arrays of 8-byte values)
[* Be sure that we access the next cache line. */
K" = ceiling(L/C") + 7;
for i = 0;i<N;i++){
load AJi]
load BYi]
prefetch Afi+K"]
prefetch B[i+K"]

load Afi+1]
load BJi+2]
... (no prefetching)

load Afi+7]
load BJi+7]

}
In the first case, the prefetching is performed exactly when needed, and thus the distance need not
be adjusted. However, the prefetching may not start on the first iteration, resulting in as many as
K' + 7 iterations without prefetching.

In the second case, the prefetching occurs somewhere within a cache line, and thus, it is not
known exactly how long it will be until the next cache line is needed. However, by prefetching
seven further ahead, we ensure that the next cache line will be prefetched soon enough. In the
worst case, as many as K'K' + 7) iterations will execute without any benefit from prefetching.

Table 39 illustrates the cost tradeoffs between no prefetching, naive prefetching, and smart
prefetching (the second choice) for a small loop (two cycles) with varying uncovered latencies to

memory. Some of the latency may be overlapped with execution of surrounding instructions; that
which is not is uncovered.

Table 39—Prefetch Cost Tradeoffs

Limit cycles/iteration Smart startup costs
No pf Naive Smart Worst Worst
C c L K K" |C+L/8 c (7C+ChH/8 Misses Breakeven
2 4 8 4 11 3 4 2.25 2 N=21
2 4 16 8 15 4 4 2.25 2 N=18
2 4 32 16 23 6 4 2.25 3 N =26

Here, we treat the arrays accessed as if one were not in the cache. Thus, every eight iterations, a
cache line must be fetched from memory in the no-prefetch case; and thus, the amortized cost of
an iteration is C + L/8. The cost estimate for the smart case ignores any benefits from unrolling,
since it is reasonable to expect that the loop would be unrolled or pipelined in this fashion, even if
prefetching were not used. The startup costs assume an alignment within the cache that maxi-
mizes the initial misses. The break-even cost was chosen by solving the following equation for N.

N O(C +L/8)=WMIOL+N O(7C + C')/8 {e.g., 3N = 16 + 2.25N] N =21}
Of course, this is a simplified model.

Another possibility to consider is the worst-case cost of prefetching. If, in the example provided,
everything accessed is always cached, then the smart-prefetching loop takes 12.5% longer. For
each memory latency, there is a break-even point (in terms of how often one of the array operands
is cached) at which the prefetching loop begins to run faster. Table 40 illustrates this.

Table 40—Cache Break-Even Points

Break-even Break-even
% cached loop cache miss
L C-cached C-missed C-smart operands rate
8 2 3 2.25 75% 1.56%
16 2 4 2.25 88% 0.75%
32 2 6 2.25 94% 0.375%
64 2 10 2.25 97% 0.188%

Note that one uncached operand corresponds to one load out of sixteen missing the cache; the
operand miss rate is sixteen times higher than the load miss rate. Note that this is the miss rate for
this loop alone; extrapolation from whole-program miss rates is not advised.

Binaries that run efficiently across different SPARC-V9 implementations can be created for cases
like this (where memory accesses are regular, though not necessarily contiguous) by parameteriz-
ing the prefetch distance by machine type. In privileged code the machine type is available in the
VER register; nonprivileged code should be able to obtain this from the operating system or ABI.
Based on information about known machines and estimated loop execution times, a compiler
could precalculate values for K" (assuming smart prefetching) and store them in a table. At execu-
tion time, the proper value for K" would be fetched from the table before entering the loop.

For regular but noncontiguous accesses, a prefetch would be issued for every load. If cache block-
ing is used, the prefetching strategy must be adjusted accordingly, since there is no point in
prefetching data that is expected to be in the cache already.

The prefetch variant should be chosen based on what is known about the local and global use of
the data prefetched. If the data is not being written locally, then variant O (several reads) should be
used. If it is being written (and possibly also read), then variant 2 (several writes) should be used.
If, in addition, it is known that this is likely to be the last use of the data for some time (for exam-
ple, if the loop iteration count is one million and dependence analysis reveals no reuse of data),
then it is appropriate to use either variant 1 (one read) or 3 (one write). If reuse of data is expected
to occur soon, then use of variants 1 or 3 is not appropriate, because of the risk of increased bus
and memory traffic on a multiprocessor.

If the hardware does not implement all variants, it is expected to provide a sensible overloading of
the unimplemented variants. Thus, correct use of a specific variant need not be tied to a particular
SPARC-V9 implementation or multi/uniprocessor configuration.

H.1.10 Nonfaulting Load

The SPARC-V9 architecture includes a way to specify load instructions that do not generate visi-
ble faults, so that compilers can have more freedom in scheduling instructions. Note that these are
not speculative loads, which may fault if their results are later used; these are normal load instruc-
tions, but tagged to indicate to the kernel and/or hardware that a fault should not be delivered to
the code executing the instruction.

Five important rules govern the use of nonfaulting loads:

(1) Volatile memory references in the source language should not use nonfaulting load
instructions.

(2) Code compiled for debugging should not use nonfaulting loads, because they remove the
ability to detect common errors.

(3) If nonfaulting loads are used, page zero should be a page of zero values, mapped read-
only. Compilers that routinely use negative offsets to register pointers should map page “—
1” similarly, if the operating software permits it.

(4) Any use of nonfaulting loads in privileged code must be aware of how they are treated by
the host SPARC-V9 implementation.

(5) Nonfaulting loads from unaligned addresses may be substantially more expensive than
nonfaulting loads from other addresses.

Nonfaulting loads can be used to solve three scheduling problems.

— On super-scalar machines, it is often desirable to obtain the right mix of instructions to
avoid conflicts for any given execution unit. A nonfaulting load can be moved (backwards)
past a basic block boundary to even out the instruction mix.

— On pipelined machines, there may be latency between loads and uses. A nonfaulting load
can be moved past a block boundary to place more instructions between a load into a reg-
ister and the next use of that register.

— Software pipelining improves the scheduling of loops, but if a loop iteration begins with a
load instruction and contains an early exit, it may not be eligible for pipelining. If the load
is replaced with a nonfaulting load, then the loop can be pipelined.

In the branch-laden code shown in example 2, nonfaulting loads could be used to separate loads
from uses. The result also has a somewhat better mix of instructions and is somewhat pipelined.
The basic blocks are separated.
Source Code
while (x! = 0&& x->key! = goal) x = x->next;

With Normal Loads:

entry:
brnz,a x,loop !
ldx [x],t1 I (pre)loadl (key)
loop:
cmp t1,goal lusel
bpe %xcc,out
nop I no filling from loop.
ldx [x+8],x !'load2 (next)
brnz,a x,loop luse2
ldx [x],t1 I'loadl
out: ...

With Nonfaulting Loads:

entry:
mov x,t2
mov #ASI_PNF, %asi
ldxa [t2]%asi,t1 I (pre)loadl (nf-load for key)
loop:
mov t2,x ! begin loop body
brz,pn t2,out
ldxa [t2+8]%asi,t2 !load2 (nf-load for next)
cmp t1,goal lusel
bpne %xcc,loop
ldxa [t2],%asi,t1 l use2, loadl ! nf-load for x

out: ...
Example 2—Branch-Laden Code with Nonfaulting Loads

In the loop shown in example 3, nonfaulting loads allow pipelining. This loop might be improved
further using unrolling, prefetching, and multiple FCCs, but that is beyond the scope of this dis-
cussion.

Source Code
d_ne_index (double * d1, double * d2) {

inti = 0;
while(d1[i] = = d2[i]) i++;
return i;

}

With Normal Loads:

mov 0.t
mov 0,i

loop:
lddf [d1+t],al
lddf [d2+t],a2 ! load
add t,8,t
fcmpd al,a2 luse
fbe,a loop I fcc use
add i,1,i

With Nonfaulting Loads:

lddf [d1],a1
lddf [d2],a2
mov 8.t
mov 0,i

loop:
fcmpd al,a2 l use, fcc def
lddfa [d1+t],%asi,al
lddfa [d2+t],%asi,a2 ! load
add t,8,t
fbe,a loop I fcc use
add i,1,i

Example 3—Loop with Nonfaulting Loads

H.2 Supervisor Software

This subsection discusses how supervisor software can use the SPARC-V9 privileged architec-
ture. It is intended to illustrate how the architecture can be used in an efficient manner. An imple-
mentation may choose to utilize different strategies based on its requirements and
implementation-specific aspects of the architecture.

H.2.1 Trap Handling

The SPARC-V9 privileged architecture provides support for efficient trap handling, especially for
window traps. The following features of the SPARC-V9 privileged architecture can be used to
write efficient trap handlers:

Multiple Trap Levels:
The trap handlers for trap levels less than MAXTL — 1 can be written to ignore excep-
tional conditions and execute the common case efficiently (without checks and branches).
For example, the fill/spill handlers can access pageable memory without first checking if it

is resident. If the memory is not resident, the access will cause a trap that will be handled
at the next trap level.

Vectoring of Fill/Spill Traps:
Supervisor software can set up the vectoring of fill/spill traps prior to executing code that
uses register windows and may cause spill/fill traps. This feature can be used to support
SPARC-V8 and SPARC-V7 binaries. These binaries create stack frames with save areas
for 32-bit registers. SPARC-V9 binaries create stack frames with save areas for 64-bit reg-
isters. By setting up the spill/fill trap vector based on the type of binary being executed, the
trap handlers can avoid checking and branching to use the appropriate load/store instruc-
tions.

Saved Trap State
Trap handlers need not save (restore) processor state that is automatically saved (restored)
on a trap (return from trap). For example, the fill/spill trap handlers can load
ASI_AS_IF_USER_PRIMARY{ LITTLE} into the ASI register in order to access the
user’s address space without the overhead of having to save and restore the ASI register.

SAVED and RESTORED Instructions.
The SAVED (RESTORED) instruction provides an efficient way to update the state of the
register windows after successfully spilling (filling) a register window. They implement a
default policy of spilling (filling) one register window at a time. If desired, the supervisor
software can implement a different policy by directly updating the state registers.

Alternate Globals:
The alternate global registers can be used to avoid saving and restoring the normal global
registers. They can be used like the local registers of the trap window in SPARC-V8.

Large Trap Vectors for Spill/Fill :
The definition of the spill and fill trap vectors with reserved space between each pair of
vectors allows spill and fill trap handlers to be up to thirty-two instructions long, thus
avoiding a branch in the handler.

H.2.2 Example Code for Spill Handler

The code in example 4 shows a spill handler for a SPARC-V9 user binary. The handler is located
at the vector for trap typsepill_0_normal (080;¢). It is assumed that supervisor software has set the
WSTATE register to O before executing the user binary. The handler is invoked when user code
executes a SAVE instruction that results in a window overflow.

H.2.3 Client-Server Model

SPARC-V9 provides mechanisms to support client-server computing efficiently. A call from a cli-

ent to a server (where the client and server have separate address spaces) can be implemented effi-
ciently using a software trap that switches the address space. This is often referredctoss a

domain call. A system call in most operating systems can be viewed as a special case of a cross-
domain call. The following features are useful in implementing a cross-domain call:

T_NORMAL_SPILL_O:
I1Set ASI to access user addr space

wWr #ASI_AIUP, %asi

stxa %I0, [Yosp+(8* 0)]%asi IStore window in memory stack
stxa %I1, [Yosp+(8* 1)]%asi

stxa %I2, [Yosp+(8* 2)]%asi

stxa %I3, [Yosp+(8* 3)]%asi

stxa %4, [Yosp+(8* 4)]|%asi

stxa %I5, [Yosp+(8* 5)]%asi

stxa %16, [Yosp+(8* 6)]%asi

stxa %I7, [Yosp+(8* 7)]%asi

stxa %i0, [Yosp+(8* 8)]%asi

stxa %il, [Yosp+(8* 9)]%asi

stxa %i2, [Yosp+(8*10)]%asi

stxa %i3, [Yosp+(8*11)]%asi

stxa %i4, [Yosp+(8*12)]%asi

stxa %i5, [Ybsp+(8*13)]%asi

stxa %i6, [Yosp+(8*14)]%asi

stxa %i7, [Yosp+(8*15)]%asi

saved ! Update state

retry ! Retry trapped instruction

! Restores old %asi

Example 4—Spill Handler

Splitting the Register Windows

The register windows can be shared efficiently between multiple address spaces by using the
OTHERWIN register and providing additional trap handlers to handle spill/fill traps for the other
(not the current) address spaces. On a cross-domain call (a software trap), the supervisor can set
the OTHERWIN register to the number of register windows used by the client (equal to CANRE-
STORE) and CANRESTORE to zero. At the same time the WSTATE bit vectors can be set to
vector the spill/fill traps appropriately for each address space.

The sequence in example 5 shows a cross-domain call and return. The example assumes the sim-
ple case, where only a single client-server pair can occupy the register windows. More general
schemes can be developed along the same lines.

ASI_SECONDARY{_LITTLE}

Supervisor software can use these unrestricted ASIs to support cross-address-space access
between clients and nonprivileged servers. For example, some services that are currently provided
as part of a large monolithic supervisor can be separated out as nonprivileged servers (potentially
occupying a separate address space). This is often referred tovasrtkernel approach.

H.2.4 User Trap Handlers

Supervisor software can provide efficient support for user (nonprivileged) trap handlers on
SPARC-V9. The RETURN instruction allows nonprivileged code to retry an instruction pointed

to by the previous stack frame. This provides the semantics required for returning from a user trap
handler without any change in processor state. Supervisor software can invoke the user trap han-

cross_domain_call:
save I create a new register window for the server
! Switch to the execution environment for the server;
| Save trap state as necessary.

1 Set CWP for caller in TSTATE

rdpr %tstate, %gl

rdpr %cwp, %g2

belr TSTATE_CWP, %gl

wrpr %491, %g2, %tstate

rdpr %canrestore, %g1l

wrpr %490, 0, %canrestore

wrpr %g0, %g1, %otherwin

rdpr %wstate, %g1

sll %091, 3, %gl1 I Move WSTATE_NORMAL (client’s
I vector)to WSTATE_OTHER

or %gl, WSTATE_SERVER, %gl ! Set WSTATE_NORMAL to the
! vector for the server

wrpr %490, %g1l, %wstate

. I Load trap state for server

done | Execute server code

cross_domain_return:

rdpr %otherwin, %gl

wrpr %490, %g1, %canrestore

wrpr %g0, 0, %otherwin

rdpr %wstate, %g1

srl %41, 3, %gl

wrpr %40, %g1, %wstate I Reset WSTATE_NORMAL to

I client’s vector
! Restore saved trap state as necessary; this includes
! the return PC for the caller.
restore I Go back to the caller’s register window.

| Set CWP for caller in TSTATE

rdpr %tstate, %gl

rdpr %cwp, %g2

bclr TSTATE_CWP, %g1l
wrpr %491, %g2, %tstate
done I return to the caller

Example 5—Cross-Domain Call and Return

dler by first creating a new register window (and stack frame) on its behalf and passing the neces-
sary arguments (including the PC and nPC for the trapped instruction) in the local registers. The

code in example 6 shows how a user trap handler may be invoked and how it returns:

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;
it is included for information only.)

T_EXAMPLE_TRAP: I Supervisor trap handler for T_EXAMPLE_TRAP trap
save I Create a window for the user trap handler

1ISet CWP for new window in TSTATE

rdpr %tstate, %l6
rdpr %cwp, %I5
belr TSTATE_CWP, %I6
wrpr %I6, %I5, %tstate
rdpr %tpc,%I6 !Put PC for trapped instruction in local register
rdpr %tnpc,%I7 !'Put nPC for trapped instruction in local register
1Get the address of the user trap handler in %l5;
! for example, from a supervisor data structure.
wrpr %I5, %tnpc ! Put PC for user trap handler in %tnpc.
done ! Execute user trap handler.
USER_EXAMPLE_TRAP: IUser trap handler for T_EXAMPLE_TRAP trap
IExecute trap handler logic. Local registers
! can be used as scratch.
jmpl %I6 IReturn to retry the trapped instruction.
return %I7

Example 6—User Trap Handler

This appendix is informative only.

It is not part of the SPARC-V9 specification.

| Extending the SPARC-V9 Architecture

This appendix describes how extensions can be effectively added to the SPARC-V9 architecture.
It describes how new instructions can be added through the use of read and write ancillary state

register (ASR) and implementation-dependent (IMPDEP1/IMPDEP?2) instructions.

— WARNING —
Programs that make use of SPARC-V9 architectural extension

may not be portable and likely will not conform to any current or
future SPARC-V9 binary standards.

1v2}

.1 Addition of SPARC-V9 Extensions

There are two approved methods of adding extensions to an implementation of the SPARC-V9
architecture. An implementor who wishes to define and implement a new SPARC-V9 instruction

should, if possible, use one of the following methods.

I.1.1 Read/Write Ancillary State Registers (ASRS)

The first method of adding instructions to SPARC-V9 is through the use of the implementation-
dependent Write Ancillary State Register (WRASR) and Read Ancillary State Register (RDASR)
instructions operating on ASRs 16..31. Through a read/write instruction pair, any instruction that
requires arrsl, reg_or_immandrd field can be implemented. A WRASR instruction can also
perform an arbitrary operation on two register sources, or on one register source and a signed
immediate value, and place the result in an ASR. A subsequent RDASR instruction can read the
result ASR and place its value in an integer destination register.

1.1.2 Implementation-Dependent and Reserved Opcodes

The meaning of “reserved” for SPARC-V9 opcodes differs from its meaning in SPARC-V8. The
SPARC-V9 definition of “reserved” allows implementations to use reserved opcodes for imple-
mentation-specific purposes. While a hardware implementation that uses reserved opcodes will be
SPARC-V9-compliant, SPARC-V9 ABI-compliant programs cannot use these reserved opcodes
and remain compliant. A SPARC-V9 platform that implements instructions using reserved
opcodes must provide software libraries that provide the interface between SPARC-V9 ABI-com-
pliant programs and these instructions. Graphics libraries provide a good example of this. Hard-
ware platforms have many diverse implementations of graphics acceleration hardware, but
graphics application programs are insulated from this diversity through libraries.

There is no guarantee that a reserved opcode will not be used for additional instructions in a future
version of the SPARC architecture. Implementors who use reserved opcodes should keep this in
mind.

In some cases forward compatibility may not be an issue; for example, in an embedded applica-
tion, binary compatibility may not be an issue. These implementations can use any reserved
opcodes for extensions.

Even when forward compatibility is an issue, future SPARC revisions are likely to contain few
changes to opcode assignments, given that backward compatibility with previous versions must
be maintained. It is recommended that implementations wishing to remain forward-compatible
use the new IMPDEP1 and IMPDEP?2 reserved opcodesopd{s:0] = 11 0119 and 11 0111
Compatibility Note:
IMPDEP1 and IMPDEP2 replace the SPARC-V8 CPopl and CPop2 opcodes. SPARC-V9 includes neither
the SPARC-V8 coprocessor opcodes nor any other SPARC-V8 architectural support for coprocessors. The

coprocessor opcodes were eliminated because they have not been used in SPARC-V7 and SPARC-V8, as
witnessed by the lack of coprocessor implementations.

It is further recommended that SPARC International be notified of any use of IMPDEP1,
IMPDEP2, or other reserved opcodes. When and if future revisions to SPARC are contemplated,
and if any SPARC-V9 implementations have made use of reserved opcodes, SPARC International
will make every effort not to use those opcodes. By going through SPARC International, there can
be feedback and coordination in the choice of opcodes that maximizes the probability of forward
compatibility. Given the historically small number of implementation-specific changes, coordinat-
ing through SPARC International should be sufficient to ensure future compatibility.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;
it is included for information only.)

J Programming With the Memory Models

This appendix describes how to program with the SPARC-V9 memory models. An intuitive
description of the models is provided in Chapter 8, “Memory Models.” A complete formal speci-
fication appears in Appendix D, “Formal Specification of the Memory Models.” In this subsec-
tion, general programming guidelines are given first, followed by specific examples showing how
low-level synchronization can be implemented in TSO, PSO, and RMO.

Note that code written for a weaker memory model will execute correctly in any of the stronger
memory models. Furthermore, the only possible difference between code written for a weaker
memory model and the corresponding code for a stronger memory model is the presence of mem-
ory ordering instructions (MEMBARS) that are not needed for the stronger memory model.
Hence, transforming code from/to a stronger memory model to/from a weaker memory model
means adding/removing certain memory ordering instructiofise required memory ordering
directives are monotonically ordered with respect to the strength of the memory model, with the
weakest memory model requiring the strongest memory ordering instructions.

The code examples given below are written to run correctly using the RMO memory model. The
comments on the MEMBAR instructions indicate which ordering constraints (if any) are required
for the PSO and TSO memory models.

J.1 Memory Operations

Programs access memory via five types of operations, namely, load, store, LDSTUB, SWAP, and
compare-and-swap. Load copies a value from memory or an I/O location to a register. Store cop-
ies a value from a register into memory or an I/O location. LDSTUB, SWAP, and compare-and-

swap are atomic load-store instructions that store a value into memory or an I/O location and
return the old value in a register. The value written by the atomic instructions depends on the
instruction. LDSTUB stores all ones in the accessed byte, SWAP stores the supplied value, and

1. MEMBAR instructions specify seven independent ordering constraints; thus, there are cases where the transition
to a stronger memory model allows the use of a less restrictive MEMBAR instruction, but still requires a MEM-
BAR instruction. To demonstrate this property, the code examples given in this subsection use multiple MEMBAR
instructions if some of the ordering constraints are needed in some but not all memory models. Multiple, adjacent
MEMBAR instructions can always be replaced with a single MEMBAR instructidd®gg the arguments.

compare-and-swap stores the supplied value only if the old value equals the second supplied
value.

Memory order and consistency are controlled by MEMBAR instructions. For example, a MEM-
BAR #StoreStore (equivalent to a STBAR in SPARC-V8) ensures that all previous stores
have been performed before subsequent stores and atomic load-stores are executed by memory.
This particular memory order is guaranteed implicitly in TSO, but PSO and RMO require this
instruction if the correctness of a program depends on the order in which two store instructions
can be observed by another processor.

FLUSH is not a memory operation, but it is relevant here in the context of synchronizing stores
with instruction execution. When a processor modifies an instruction at addregstoes a store

to Afollowed by a FLUSHA. The FLUSH ensures that the change made by the store will become
visible to the instruction fetch units of all processors in the system.

J.2 Memory Model Selection

Given that all SPARC-V9 systems are required to support TSO, programs written for any memory
model will be able to run on any SPARC-V9 system. However, a system running with the TSO
model generally will offer lower performance than PSO or RMO, because less concurrency is
exposed to the CPU and the memory system. The motivation for weakening the memory model is
to allow the CPU to issue multiple, concurrent memory references in order to hide memory
latency and increase access bandwidth. For example, PSO and RMO allow the CPU to initiate
new store operations before an outstanding store has completed.

Using a weaker memory model for an MP (multiprocessor) application that exhibits a high degree
of read-write memory sharing with fine granularity and a high frequency of synchronization oper-
ations may result in frequent MEMBAR instructions.

In general, it is expected that the weaker memory models offer a performance advantage for mul-
tiprocessor SPARC-V9 implementations.

J.3 Processors and Processes

In the SPARC-V9 memory models, the term “processor” may be replaced systematically by the
term “process” or “thread,” as long as the code for switching processes or threads is written prop-
erly. The correct process-switch sequence is given in J.8, “Process Switch Sequence.” If an oper-
ating system implements this process-switch sequence, application programmers may completely
ignore the difference between a process/thread and a processor.

1. Memory order is of concern only to programs containing multiple threads that share writable memory and that
may run on multiple processors, and to those programs which reference I/O locations. Note that from the proces-
sor’s point of view, 1/0 devices behave like other processors.

J.4 Higher-Level Programming Languages and Memory Models

The SPARC-V9 memory models are defined at the machine instruction level. Special attention is
required to write the critical parts of MP/MT (multi-threaded) applications in a higher-level lan-
guage. Current higher-level languages do not support memory ordering instructions and atomic
operations. As a result, MP/MT applications that are written in a higher-level language generally
will rely on a library of MP/MT support functions, for example, tlarmacslibrary from
Argonne National Laborator’yThe details of constructing and using such libraries are beyond the
scope of this document.

Compiler optimizations such as code motion and instruction scheduling generally do not preserve
the order in which memory is accessed but they do preserve the data dependencies of a single
thread. Compilers do not, in general, deal with the additional dependency requirements to support
sharing read-write data among multiple concurrent threads. Hence, the memory semantics of a
SPARC-V9 system in general are not preserved by optimizing compilers. For this reason, and
because memory ordering directives are not available from higher-level languages, the examples
presented in this subsection use assembly language.

Future compilers may have the ability to present the programmer with a sequentially consistent
memory model despite the underlying hardware’s providing a weaker memory%‘nodel.

J.5 Portability And Recommended Programming Style

Whether a program is portable across various memory models depends on how it synchronizes
access to shared read-write data. Two aspects of a program’s style are relevant to portability:

— Good semanticgefers to whether the synchronization primitives chosen and the way in
which they are used are such that changing the memory model does not involve making
any changes to the code that uses the primitives.

— Good structure refers to whether the code for synchronization is encapsulated through
the use of primitives such that when the memory model is changed, required changes to
the code are confined to the primitives.

Good semantics are a prerequisite for portability, while good structure makes porting easier.

Programs that use single-writer/multiple-reader locks to protect all access to shared read-write
data are portable across all memory models. The code that implements the lock primitives them-
selves is portable across all models only if it is written to run correctly on RMO. If the lock prim-
itives are collected into a library, then, at worst, only the library routines must be changed. Note
that mutual exclusion (mutex) locks are a degenerate type of single-writer/multiple-readers lock.

Programs that use write locks to protect write accesses but read without locking are portable
across all memory models only if writes to shared data are separated by MEMB#&dRe-

1. Lusk, E. L., R.A. Overbeek, “Use of Monitors in Fortran: A Tutorial on the Barrier, Self-scheduling Do-Loop, and
Askfor Monitors,” TR# ANL-84-51, Argonne National Laboratory, June 1987.

2. See Gharachorloo, K., S.V. Adve, A. Gupta, J.L. Hennessy, and M.D. Hill, “Programming for Different Memory
Consistency ModelsJournal of Parallel and Distributed Systemi$:4, August 1992.

Store instructions, and if reading the lock is followed by a MEMBAfRoadLoad instruc-

tion. If the MEMBAR instructions are omitted, the code is portable only across TSO and Strong
Consistencﬁ but generally it will not work with PSO and RMO. The code that implements the
lock primitives is portable across all models only if it is written to run correctly on RMO. If the
lock routines are collected into a library, the only possible changes not confined to the library rou-
tines are the MEMBAR instructions.

Programs that do synchronization without using single-writer/multiple-reader locks, write locks,
or their equivalent are, in general, not portable across different memory models. More precisely,
the memory models are ordered from RMO (which is the weakest, least constrained, and most
concurrent), PSO, TSO, to sequentially consistent (which is the strongest, most constrained, and
least concurrent). A program written to run correctly for any particular memory model will also
run correctly in any of the stronger memory models, but not vice versa. Thus, programs written
for RMO are the most portable, those written for TSO are less so, and those written for strong
consistency are the least portable. This general relationship between the memory models is shown
graphically in figure 49.

Strong Consistency
TSO

PSO

Figure 49—Portability Relations among Memory Models

The style recommendations may be summarized as follows: Programs should use single-writer/
multiple-reader locks, or their equivalent, when possible. Other lower-level forms of synchroniza-
tion (such as Dekker’s algorithm for locking) should be avoided when possible. When use of such
low-level primitives is unavoidable, it is recommended that the code be written to work on the
RMO model to ensure portability. Additionally, lock primitives should be collected together into a
library and written for RMO to ensure portability.

1. Programs that assume a sequentially consistent memory are not guaranteed to run correctly on any SPARC-V9-
compliant system, since TSO is the strongest memory model required to be supported. However, sequential con-
sistency is the most natural and intuitive programming model. This motivates the development of compiler tech-
nigues that allow programs written for sequential consistency to be translated into code that runs correctly (and
efficiently) on systems with weaker memory models.

Appendix D, “Formal Specification of the Memory Models,” describes a tool and method that
allows short code sequences to be formally verified for correctness.

J.6 Spin Locks

A spin lock is a lock for which the “lock held” condition is handled by busy waiting. The code in
example 7 shows how spin locks can be implemented using LDSTUB. A nonzero value for the
lock represents the locked condition, while a zero value means that the lock is free. Note that the
code busy waits by doing loads to avoid generating expensive stores to a potentially shared loca-
tion. TheMEMBAR #StoreStore in UnLockWithLDSTUB ensures that pending stores are
completed before the store that frees the lock.

LockWithLDSTUB (lock)

retry:
Idstub [lock 1,%I0
tst %I0
be out
nop
loop:
Idub [lock 1,%I0
tst %I0
bne loop
nop
ba,a retry
out:

membar #lLoadLoad | #LoadStore

UnLockWithLDSTUB (lock)

membar #StoreStore IRMO and PSO only
membar #LoadStore IRMO only
stub %qg0,[lock]

Example 7—Lock and Unlock Using LDSTUB

The code in example 8 shows how spin locks can be implemented using CASA. Again, a nonzero
value for the lock represents the locked condition, while a zero value means the lock is free. The
nonzero lock value (ID) is supplied by the caller and may be used to identify the current owner of
the lock. This value is available while spinning and could be used to maintain a time-out or to ver-
ify that the thread holding the lock is still running. As in the previous case, the code busy-waits by
doing loads, not stores.

J.7 Producer-Consumer Relationship

In a producer-consumer relationship,the producer process generates data and puts it into a buffer,
while the consumer process takes data from the buffer and uses it. If the buffer is full, the producer
process stalls when trying to put data into the buffer. If the buffer is empty, the consumer process
stalls when trying to remove data.

LockWithCAS (lock , ID)

retry:
mov [ID],%I0
cas [lock 1,%90,%I0
tst %I0
be out
nop
loop:
Id [lock 1,%I0
tst %I0
bne loop
nop
ba,a retry
out:
membar #LoadLoad | #LoadStore ISee example 7
UnLockWithCAS (lock)
membar #StoreStore IRMO and PSO only
membar #LoadStore IRMO only
st %g0,[lock]

Example 8—Lock and Unlock Using CAS

Figure 50 shows the buffer data structure and register usage. Example 9 shows the producer and
consumer code. The code assumes the existence of two procddareigad andincrTail

which increment the head and tail pointers of the buffer in a wraparound manner and return the
incremented value, but do not modify the pointers in the buffer.

Buffer Data Structure:

Buffer Empty Condition:

buffer —» bufhead)
(= %i0) bufhead == buftail
. Buffer Full Condition:
buffer+4 —m- buftail IncrTail (buffer) == bufhead
bufdata

Register Usage:

%i0 and%il parameters

%I0 and%l1 local values

%00 result

Figure 50—Data Structures for Producer-Consumer Code

Produce (buffer , data)

call IncrTall
full:
Id [%6i0],%I0
cmp %I0,%00
be full
Id [%6i0+4],%I0
st %i1,[%I0]
membar #StoreStore IRMO and PSO only
st %00,[%i0+4]
Consume(buffer)
Id [%6i0],%I0
empty:
Id [%6i0+4],%I1
cmp %I10,%I1
be empty
call IncrHead
Id [%610],%I0
membar #lLoadStore IRMO only
st %00,[%:i0]
mov %I0,%00

Example 9—Producer and Consumer Code

J.8 Process Switch Sequence

This subsection provides code that must be used during process or thread switching to ensure that
the memory model seen by a process or thread is the one seen by a processteadiBe-

guence must be inserted at the beginning of a process or thread when it starts executing on a
processor. Th&@ailSequence must be inserted at the end of a process or thread when it relin-
quishes a processor.

Example 10 shows the head and tail sequences. The two sequences refer to a per-process variable
tailDone The value 0 fotailDonemeans that the process is running, while the value —1 (all ones)
means that the process has completed its tail sequence and may be migrated to another processor
if the process is runnable. When a new process is creéail@hneis initialized to —1.

HeadSequence (tailDone)

nrdy:
Id [tailDone],%I0
cmp %I0,-1
bne nrdy
st %90, [tailDone]

membar #StoreLoad

TailSequence (tailDone)

mov -1,%I0

membar #StoreStore IRMO and PSO only

membar #LoadStore IRMO only (combine with above)
st %I0,[tailDone]

Example 10—Process or Thread Switch Sequence

The MEMBAR in HeadSequence is required to be able to provide a switching sequence that
ensures that the state observed by a process in its source processor will also be seen by the process
in its destination processor. Since FLUSHes and stores are totally ordered, the head sequence
need not do anything special to ensure that FLUSHes performed prior to the switch are visible by
the new processor.

Programming Note:
A conservative implementation may simply use a MEMBAR with all barriers set.

J.9 Dekker’s Algorithm

Dekker’s algorithm is the classical sequence for synchronizing entry into a critical section using
loads and stores only. The reason for showing this example here is to illustrate how one may
ensure that a store followed by a load in issuing order will be executed by the memory system in
that order. Dekker’s algorithm isot a valid synchronization primitive for SPARC-V9, because it
requires a sequentially consistent (SC) memory model in order to work. Dekker’s algorithm (and
similar synchronization sequences) can be coded on RMO, PSO, and TSO by adding appropriate
MEMBAR instructions. This example also illustrates how future compilers can provide the equiv-
alent of sequential consistency on systems with weaker memory models.

Example 11 shows the entry and exit sequences for Dekker’s algorithm. The lodaaod® are
used for synchronizatiorA = 0 means that process P1 is outside its critical section, while any
other value means that P1 is inside it; similaByr 0 means that P2 is outside its critical section,
and any other value means that P2 is inside it.

P1lEntry ()
mov -1,%I0
busy:
st %I0,[A]
membar #StoreLoad
Id [B, %1
tst %I1
bne,a busy
st %g0,[A
P1Exit ()
membar #StoreStore IRMO and PSO only
membar #LoadStore IRMO only
st %g0,[A
P2Entry ()
mov -1,%I0
busy:
st %I0,[B]
membar #StoreLoad
Id [A%l
tst %I1
bne,a busy
st %g0,[B
P2Exit ()
membar #StoreStore IRMO and PSO only
membar #LoadStore IRMO only
st %g0,[B

Example 11—Dekker’s Algorithm

Dekker’s algorithm guarantees mutual exclusion, but it does not guarantee freedom from dead-
lock. In this case, it is possible that both processors end up trying to enter the critical region with-
out success. The code above tries to address this problem by briefly releasing the lock in each
retry loop. However, both stores are likely to be combined in a store buffer, so the release has no
chance of success. A more realistic implementation would use a probabilistic back-off strategy
that increases the released period exponentially while waiting. If any randomization is used, such
an algorithm will avoid deadlock with arbitrarily high probability.

J.10 Code Patching

The code patching example illustrates how to modify code that is potentially being executed at the
time of modification. Two common uses of code patching are in debuggers and dynamic linking.

Code patching involves a modifying proceBsn and one or more target procesgdsFor sim-

plicity, assume that the sequence to be modified is four instructions long: the old sequence is
(Old1, Old2, Old3, Old4), and the new sequence Ngwl, New2, New3, Newd). There are two
examples:noncooperative modification, in which the changes are made without cooperation
from Pt; andcooperativemodification, in which the changes require explicit cooperation fRim

In noncooperative modification, illustrated in example 12, changes are made in reverse execution
order. The three partially modified sequencédd(, Old2, Old3, New4), (Old1, Old2, New3,

Newd), and Old1, New2, New3, Newd) must be legal sequences Rt in thatPt must do the right

thing if it executes any of them. Additionally, none of the locations to be modified, except the first,
may be the target of a branch. The code assume#&iitatontains the starting address of the area

to be patched aribil, %i2, %i3, and%i4 containNewl, New2, New3, andNew4.

NonCoopPatch (addr , instructions o)
st %i4,[%i0+12]
flush %i0+12
membar #StoreStore IRMO and PSO only
st %i3,[%i0+8]
flush %i0+8
membar #StoreStore IRMO and PSO only
st %i2,[%i0+4]
flush %i0+4
membar #StoreStore IRMO and PSO only
st %i1,[%:i0]
flush %i0

Example 12—Nonxooperative Code Patching

The constraint that all partially modified sequences must be legal is quite restrictive. When this
constraint cannot be satisfied, noncooperative code patching may require the target processor to
execute FLUSH instructions. One method of triggering such a non-local FLUSH would be to send
an interrupt to the target processor.

In cooperative code patching, illustrated in example 13, changes to instructions can be made in
any order. Wher®mis finished with the changes, it writes into the shared varidbleto notify

Pt. Pt waits fordoneto change from 0 to some other value as a signal that the changes have been
completed. The code assumes th@0 contains the starting address of the area to be patched,
%il, %i2, %i3, and%i4 containNewl, New2, New3, andNew4, and%g1 contains the address

of done The FLUSH instructions irPt ensure that the instruction buffer &ft's processor is
flushed so that the old instructions are not executed.

J.11 Fetch_and Add

Fetch_and_Adgerforms the sequenee= a + b atomically with respect to othéetch_and_Adsl

to locationa. Two versions ofetch_and_Addre shown. The first (example 14) uses the routine
LockWithLDSTURIescribed above. This approach uses a lock to guard the value. Since the mem-
ory model dependency is embodied in the lock access routines, the code does not depend on the
memory modet.

CoopPatch (addr , instructions e 19%6i0 = addr , %il..%i4 =

st %i1,[%:i0]

st %i2,[%i0+4]

st %:i3,[%i0+8]

st %i4,[%i0+12]

mov -1,%I0

membar #StoreStore IRMO and PSO only
st %I0,[%qg1]

TargetCode ()

wait:

Id
cmp
be
flush
flush
flush
flush

Old1
Old2
Old3
Old4

[%6g1],%I0
%I0,0
wait
A
A+4
A+8
A+12

Example 13—Cooperative Code Patching

[*Fetch and Add using LDSTUB*/
int Fetch_And_Add(Index, Increment, Lock)

int *Index;

int Increment;

int *Lock;

{
int old_value;
LockWithLDSTUB(Lock);
old_value = *Index;
*Index = old_value + Increment;
UnlockWithLDSTUB(Lock);

Fetch_and_Addriginally was invented to avoid lock contention and to provide an efficient means
to maintain queues and buffers without cumbersome locks. Hence, using a lock is inefficient and
contrary to the intentions of theetch_and_AddThe CAS synthetic instruction allows a more

return(old_value);

Example 14—Fetch and Add Using LDSTUB

efficient version, as shown in example 15.

instruction

1. Inlining of the lock-access functions with subsequent optimization may break this code.

S

FetchAndAddCAS(address , increment) %i0 = address ,%il = increment
retry:

Id [%6i0],%I0

add %I10,%i1,%I1

cas [%6i0],%010,%I1

cmp %I0,%I1

bne retry

mov %I1,%00 Ireturn old value

Example 15—Fetch and Add Using CAS

J.12 Barrier Synchronization

Barrier synchronization ensures that eacNgirocesses is blocked until all of them reach a given
state. The point in the flow of control at which this state is reached is called the barrier; hence the
name. The code uses the variaBleuntinitialized toN. As each process reaches its desired state,

it decrement€ountand waits folCountto reach zero before proceeding further.

Similar to the fetch and add operation, barrier synchronization is easily implemented using a lock
to guard the counter variable, as shown in example 16.

[*Barrier Synchronization using LDSTUB?*/
Barrier(Count,Lock)

int *Count;

int *Lock;

{
LockWithLdstUB(Lock);

*Count = *Count- 1;
UnlockWithLdstUB(Lock);
while(*Count > 0) {; /*busy-wait*/ }

Example 16—Barrier Synchronization Using LDSTUB

The CAS implementation of barrier synchronization, shown in example 17, avoids the extra lock
access.

A practical barrier synchronization must be reusable because it is typically used once per iteration
in applications that require many iterations. Barriers that are based on counters must have means
to reset the counter. One solution to this problem is to alternate between two complementary ver-
sions of the barrier: one that counts down to 0 and the other that counts up to N. In this case, pass-
ing one barrier also initializes the counter for the next barrier.

Passing a barrier can also signal that the results of one iteration are ready for processing by the
next iteration. In this case, RMO and PSO requiEBEMBAR #StoreStore instruction prior to
the barrier code to ensure that all local results become globally visible prior to passing the barrier.

Barrier synchronization among a large number of processors will lead to access contention on the
counter variable, which may degrade performance. This problem can be solved by using multiple

BarrierCAS (Count) 1%i0 = address of counter variable

retry:
Id [%6i0],%I0
add %I0,-1,%I1
cas [%6i0],%010,%I1
cmp %I0,%I1
bne retry
nop

wait:
Id [%6i0],%I0
tst %I0
bne wait
nop

Example 17—Barrier Synchronization Using CAS

counters. The butterfly barrier uses a divide-and-conquer technique to avoid any contention and
can be implemented without atomic operatibns.

J.13 Linked List Insertion and Deletion

Linked lists are dynamic data structures that might be used by a multi-threaded application. As in
the previous examples, a lock can be used to guard access to the entire data structure. However,
single locks guarding large and frequently shared data structures can be inefficient.

In example 18, the CAS synthetic instruction is used to operate on a linked list without explicit
locking. Each list element starts with an address field that contains either the address of the next
list element or zero. The head of the list is the address of a variable that holds the address of the
first list element. The head is zero for empty lists.

In the example, there is little difference in performance between the CAS and lock approaches,
however, more complex data structures can allow more concurrency. For example, a binary tree
allows the concurrent insertion and removal of nodes in different branches.

J.14 Communicating With I/O Devices

I/O accesses may be reordered just as other memory reference are reordered. Because of this, the
programmer must take special care to meet the constraint requirements of physical devices, in
both the uniprocessor and multiprocessor cases.

Accesses to I/O locations require sequencing MEMBARS under certain circumstances to properly
manage the order of accesses arriving at the device, and the order of device accesses with respect
to memory accesses. The following rules describe the use of MEMBARS in these situations.
Maintaining the order of accesses to multiple devices will require higher-level software con-
structs, which are beyond the scope of this discussion.

1. Brooks, E. D., “The Butterfly Barriedhternational Journal of Parallel Programmintb(4), pp. 295-307, 1986.

Listinsert (Head, Element) 1%i0 = Head addr, %il = Element addr

retry:
Id [%0],%I0
st %I0, [%il]
mov %il, %l1
cas [%6i0],%010,%Il1
cmp %I0,%I1
bne retry
nop
ListRemove (Head) 1%i0 = Head addr
retry:
Id [%6i0],%00
tst %00
be empty
nop
Id [%600],%I0
cas [%6i0],%00,%I0
cmp %00,%I0
bne retry
empty:
nop

Example 18—List Insertion and Removal

(1) Accesses to the same I/O location address:
— A store followed by a store is ordered in all memory models.

— A load followed by a load requires a MEMBAR. oadLoad in RMO only..
Compatibility Note:
This MEMBAR is not needed in implementations that provide SPARC-V8 compatibility for 1/
O accesses in RMO.

— A load followed by a store is ordered in all memory models.

— A store followed by a load requires MEMBARLookaside between the accesses
for all memory models; however, implementations that provide SPARC-V8 compatib-
lity for I/O accesses in any of TSO, PSO, and RMO do not need the MEMBAR in any
model that provides this compatibility.

(2) Accesses to different I/O location addresses:

— The appropriate ordering MEMBAR is required to guarantee order within a range of
addresses assigned to a device.

— Device-specific synchronization of completion, such as reading back from an address
after a store, may be required to coordinate accesses to multiple devices. This is
beyond the scope of this discussion.

(3) Accesses to an I/O location address and a memory address.

— A MEMBAR #Memlssue is required between an 1/0O access and a memory access if
it is required that the 1/0 access reaches global visibility before the memory access
reaches global visibility. For example, if the memory location is a lock that controls
access to an I/O address, then MEMBARIemIssue is required between the last
access to the I/0O location and the store that clears the lock.

(4) Accesses to different I/O location addresses within an implementation-dependent range of
addresses are strongly ordered once they reach global visiblity. Beyond the point of global
visibility there is no guarantee of global order of accesses arriving at different devices hav-
ing disjoint implementation-dependent address ranges defining the device. Programmers
can rely on this behavior from implementations.

(5) Accesses to 1/O locations protected by a lock in shared memory that is subsequently
released, with attention to the above barrier rules, are strongly ordered with respect to any
subsequent accesses to those locations that respect the lock.

J.14.1 1/O Registers With Side Effects

I/O registers with side effects are commonly used in hardware devices such as UARTSs. One regis-
ter is used to address an internal register of the I/O device, and a second register is used to transfer
data to or from the selected internal register.

In examples 19 and 20, let X be the address of a device with two such registers; &Xport reg-
ister, and XD is a data register. The address of an internal register is stored iRtdhat internal
register can then be read or written by loading into or storing frdm X

st %il, [X+P]
membar #StoreStore ! PSO and RMO only
st %i2, [X+D]

Example 19—I/O Registers With Side-Effects: Store Followed by Store

st %il, [X+P]
membar #StoreLoad |[#Memlssue I RMO only
Id [X+D], %i2

Example 20—I/O Registers With Side-Effects: Store Followed by Load

Access to these registers, of course, must be protected by a mutual-exclusion lock to ensure that
multiple threads accessing the registers do not interfere. The sequencing MEMBAR is required to
ensure that the store actually completes before the load is issued.

J.14.2 The Control and Status Register (CSR)

A control and status register is an 1/0O location which is updated by an I/O device independent of
access by the processor. For example, such a register might contain the current sector under the
head of a disk drive.

In example 21, let Y be the address of a control and status register that is read to obtain status and
written to assert control. Bits read differ from the last data that was stored to them.

Id [Y], %il | obtain status

st %i2, [Y] ! write a command

membar #Lookaside ! make sure we really read the register
Id [Y], %i3 I obtain new status

Example 21—Accessing a Control/Status Register

Access to these registers, of course, must be protected by a mutual-exclusion lock to ensure that
multiple threads accessing the registers do not interfere. The sequencing MEMBAR is needed to

ensure the value produced by the load comes from the register and not from the write buffer since

the write has side-effects. No MEMBAR is needed between the load and the store, because of the
anti-dependency on the memory address.

J.14.3 The Descriptor

In example 22, let A be the address of a descriptor in memory. After initializing the descriptor
with information, the address of the descriptor is stored into device register D or made available to
some other portion of the program that will make decisions based upon the value(s) in the descrip-
tor. It is important to ensure that the stores of the data have completed before making the address
(and hence the data in the descriptor) visible to the device or program component.

st %il, [A]

st %i2, [A+4]

I more stores
membar #StoreStore ! PSO and RMO only
st A, [D]

Example 22—Accessing a Memory Descriptor

Access must be protected by a mutual-exclusion lock to ensure that multiple threads accessing the
registers do not interfere. In addition, the agent reading the descriptor must use a load-barrier
MEMBAR after reading D to ensure that the most recent values are read.

J.14.4 Lock-Controlled Access to a Device Register

Let A be a lock in memory that is used to control access to a device register D. The code that
accesses the device might look like that show in example 23.

The sequencing MEMBAR is needed to ensure that another CPU which grabs the lock and loads
from the device register will actually see any changes in the device induced by the store. The

set A, %l1 I address of lock

set D, %I2 I address of device register
call lock !'lock(A);
mov %I1, %00
Id [%12], %il ! read the register
I do some computation
st %i2, [%I2] ! write the register
membar #Memlissue ! all memory models
call unlock I'unlock(A);

mov %l1, %00

Example 23—Accessing a Device Register

This appendix is informative only.

It is not part of the SPARC-V9 specification.

ordering MEMBARSs in the lock and unlock code (see J.6, “Spin Locks”), while ensuring correct-
ness when protecting ordinary memory, are insufficient for this purpose when accessing device
registers. Compare with J.14.1, “I/O Registers With Side Effects.”

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;
it is included for information only.)

K Changes From SPARC-V8 to SPARC-V9

SPARC-V9 is complimentary to the SPARC-V8 architecture; it does not replace it. SPARC-V9
was designed to be a higher-performance peer to SPARC-V8.

Application software for the 32-bit SPARC-V8 (Version 8) microprocessor architecture can exe-
cute, unchanged, on SPARC-V9 systems. SPARC-V8 software executes natively on SPARC-V9-
conformant processors; no special compatibility mode is required.

Changes to the SPARC-V9 architecture since SPARC-V8 are in six main areas: the trap model,
data formats, the registers, alternate address space access, the instruction set, and the memory
model.

K.1 Trap Model
The trap model, visible only to privileged software, has changed substantially.

— Instead of one level of traps, four or more levels are now supported. This allows first-level
trap handlers, notably register window spill and fill (formerly called overflow and under-
flow) traps, to execute much faster. This is because such trap handlers can now execute
without costly run-time checks for lower-level trap conditions, such as page faults or a

misaligned stack pointer. Also, multiple trap levels support more robust fault-tolerance
mechanisms.

Most traps no longer change the CWP. Instead, the trap state (including the CWP register)
is saved in register stacks called TSTATE, TT, TPC, and TNPC.

New instructions (DONE and RETRY) are used to return from a trap handler, instead of
RETT.

A new instruction (RETURN) is provided for returning from a trap handler running in
nonprivileged mode, providing support for user trap handlers.

Terminology about privileged-mode execution has changed, from “supervisor/user” to
“privileged/nonprivileged.”

A new processor state, RED_state, has been added to facilitate processing resets and
nested traps that would exceed MAXTL.

K.2 Data Formats

Data formats for extended (64-bit) integers have been added.

K.3 Little-Endian Support

Data accesses can be either big-endian or little-endian. Bits in the PSTATE register control the
implicit endianness of data accesses. Special ASI values are provided to allow specific data
accesses to be in a specific endianness.

K.4 Registers

These privileged SPARC-V8 registers have been deleted:

— PSR: Processor State Register

— TBR: Trap Base Register
— WIM: Window Invalid Mask

These registers have been widened from 32 to 64 bits:

— All integer registers

— All state registers: FSR, PC, nPC, Y

The contents of the following register has changed:

— FSR: Floating-Point State Registéecl, fcc2 andfcc3 (additional floating-point condi-

tion code) bits have been added and the register widened to 64-bits..

These SPARC-V9 registers are fields within a register in SPARC-V8:
— PIL: Processor Interrupt Level register
— CWP: Current Window Pointer register
— TT[MAXTL]: Trap Type register
— TBA: Trap Base Address register
— VER: Version register
— CCR: Condition Codes Register
These registers have been added:

— Sixteen additional double-precision floating-point registeii82]..f[62], which are
aliased with and overlap eight additional quad-precision floating-point registers,
f[32]..f[60]

— FPRS: Floating-Point Register State register
— ASI: ASlI register

— PSTATE: Processor State register

— TL: Trap Level register

— TPC[MAXTL]: Trap Program Counter register
— TNPC[MAXTL]: Trap Next Program Counter register
— TSTATE[MAXTL]: Trap State register

— TICK: Hardware clock-tick counter

— CANSAVE: Savable windows register

— CANRESTORE: Restorable windows register
— OTHERWIN: Other windows register

— CLEANWIN: Clean windows register

— WSTATE: Window State register

The SPARC-V9 CWP register is incremented during a SAVE instruction and decremented during
a RESTORE instruction. Although this is the opposite of PSR.CWP’s behavior in SPARC-V8, the

only software it should affect is a few trap handlers that operate in privileged mode, and that must
be rewritten for SPARC-V9 anyway. This change will have no effect on nonprivileged software.

K.5 Alternate Space Access

In SPARC-V8, access to all alternate address spaces is privileged. In SPARC-V9, loads and stores
to ASIs 0Qg.. 7f,5 are privileged; those to ASIs 8).FF,z are nonprivileged. That is, load- and
store-alternate instructions to one-half of the alternate spaces can now be used in user code.

K.6 Little-Endian Byte Order

In SPARC-V8, all instruction and data accesses were performed in big-endian byte order.
SPARC-V9 supports both big- and little-endian byte orders for data accesses only; instruction
accesses in SPARC-V9 are always performed using big-endian order.

K.7 Instruction Set

All changes to the instruction set were made such that application software written for SPARC-V8
can run unchanged on a SPARC-V9 processor. Application software written for SPARC-V8
should not even be able to detect that its instructions now process 64 bit values.

The definitions of the following instructions were extended or modified to work with the 64-bit
model:

— FCMP, FCMPE: Floating-Point Compare—can set any of the four floating-point condition
codes

— LDUW, LDUWA(same as “LD, LDA” in SPARC-V8)

— LDFSR, STFSR: Load/Store FSR: only affect low-order 32 bits of FSR

— RDASR/WRASR: Read/Write State Registers: access additional registers
— SAVE/RESTORE

— SETHI

— SRA, SRL, SLL: Shifts: split into 32-bit and 64-bit versions

— Tcc: (was Ticc) operates with either the 32-bit integer condition coide}l 6r the 64-bit
integer condition codes¢c)

— All other arithmetic operations now operate on 64-bit operands and produce 64-bit results.
Application software written for SPARC-V8 cannot detect that arithmetic operations are
now 64 bits wide. This is due to retention of the 32-bit integer condition cade)s &ddi-
tion of 64-bit integer condition codegdcc), and the carry-propagation rules of 2’'s-comple-
ment arithmetic.

The following instructions have been added to provide support for 64-bit operations and/or
addressing:

— F[sdqg]TOx: Convert floating point to 64-bit word

— FxTO[sdq]: Convert 64-bit word to floating point

— FMOV[dq]: Floating-point Move, double and quad

— FNEG]Idq]: Floating-point Negate, double and quad

— FABS[dq]: Floating-point Absolute Value, double and quad

— LDDFA, STDFA, LDFA, STFA: Alternate address space forms of LDDF, STDF, LDF, and
STF

— LDSW: Load a signed word
— LDSWA: Load a signed word from an alternate space
— LDX: Load an extended word
— LDXA: Load an extended word from an alternate space
— LDXFSR: Load all 64 bits of the FSR register
— STX: Store an extended word
— STXA: Store an extended word into an alternate space
— STXFSR: Store all 64 bits of the FSR register
The following instructions have been added to support the new trap model:
— DONE: Return from trap and skip instruction that trapped
— RDPR and WRPR: Read and Write privileged registers
— RESTORED: Adjust state of register windows after RESTORE
— RETRY: Return from trap and reexecute instruction that trapped
— RETURN: Return
— SAVED: Adjust state of register windows after SAVE
— SIR: Signal Monitor (generate Software Initiated Reset)

The following instructions have been added to support implementation of higher-performance
systems:

— BPcc: Branch on integer condition code with prediction
— BPr: Branch on integer register contents with prediction
— CASA, CASXA: Compare and Swap from an alternate space

— FBPfcc: Branch on floating-point condition code with prediction

FLUSHW: Flush windows

FMOVcc: Move floating-point register if condition code is satisfied

FMOVr: Move floating-point register if integer register contents satisfy condition
LDQF(A), STQF(A): Load/Store Quad Floating-point (in an alternate space)
MOVcc: Move integer register if condition code is satisfied

MOVr: Move integer register if register contents satisfy condition

MULX: Generic 64-bit multiply

POPC: Population Count

PREFETCH, PREFETCHA: Prefetch Data

SDIVX, UDIVX: Signed and Unsigned 64-bit divide

The definitions of the following instructions have changed:

IMPDEPN: Implementation-Dependent instructions (replace SPARC-V8 CPop instruc-
tions)

The following instruction was added to support memory synchronization:

MEMBAR: Memory barrier

The following instructions have been deleted:

Coprocessor loads and stores

RDTBR and WRTBR: TBR no longer exists. It has been replaced by TBA, which can be
read/written with RDPR/WRPR instructions.

RDWIM and WRWIM: WIM no longer exists. WIM has been subsumed by several regis-
ter-window state registers.

RDPSR and WRPSR: PSR no longer exists. It has been replaced by several separate regis-
ters which are read/written with other instructions.

RETT: Return from trap (replaced by DONE/RETRY).
STDFQ: Store Double from Floating-point Queue (replaced by the RDPR FQ instruction).

K.8 Memory Model

SPARC-V9 defines a new memory model called Relaxed Memory Order (RMO). This very weak
model allows the CPU hardware to schedule memory accesses such as loads and stores in nearly
any order, as long as the program computes the correct answer. Hence, the hardware can instanta-

This bibliography is informative only.

It is not part of the SPARC-V9 specification.

neously adjust to resource contentions and schedule accesses in the most efficient order, leading to
much faster memory operations and better performance.

(This Bibliography is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;
it is included for information only.)

Bibliography

General References

For general information, see the following:
----- . The SPARC Architecture Manual, VersigrP8entice-Hall, Inc., 1992.

Boney, Joel [1992]. “SPARC Version 9 Points the Way to the Next Generation R&@\orld
October 1992, pp. 100-105.

Catanzaro, Ben, edhe SPARC Technical Pape&pringer-Verlag, 1991.

Cmelik, R. F., S. I. Kong, D. R. Ditzel, and E. J. Kelly, “An Analysis of MIPS and SPARC Instruc-
tion Set Utilization on the SPEC BenchmarkBjoceedings of the Fourth International Sympo-
sium on Architectural Support for Programming Languages and Operating Systemis8-11,
1991.

Dewar, R. B. K. and M. Smosn&icroprocessors: A Programmer’s ViewlcGraw-Hill, Inc.,
1990.

Ditzel, David R. [1993]. “SPARC Version 9: Adding 64-Bit Addressing and Robustness to an
Existing RISC Architecture.” Videotape available from University Video Communications, P. O.
Box 5129, Stanford, CA, 94309.

Garner, R. B. [1988]. “SPARC: The Scalable Processor Architect8uyTechnologyol. 1, no.
3, Summer, 1988; also appeared in M. Hall and J. Barry (ed$¢, SunTechnology Papers
Springer-Verlag, 1990, pp. 75-99.

Garner, R. B., A. Agrawal, F. Briggs, E. W. Brown, D. Hough, W. N. Joy, S. Kleiman, S. Much-
nick, M. Namjoo, D. Patterson, J. Pendleton, K. G. Tan, and R. Tuck [1988]. “The Scalable Pro-
cessor ArchitectureSPARQ,” 33rd AnnuallEEE Computer ConferencecOMPCON, February,
1988, San Francisco, CA.

Hennessy, J. and D. Patters@omputer Architecture: A Quantitative Approadiorgan Kauf-
man Publishers, Inc., San Mateo, CA. 1990.

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, IEEE, New York, NY,
1985.

Katevenis, M. [1983]. Reduced Instruction Set Computer Architectureglfer, Ph.D. disserta-
tion, Computer Science Div., Univ. of California, Berkeley, 1983; also published by M.I.T. Press,
Cambridge, MA, 1985.

Kleiman, S. and D. Williams [1988]. “SunOS on SPARG3rd AnnuallEEE Comp. Conf. COM-
PCON), February, 1988, San Francisco, CA; also appeared in M. Hall and J. Barry (Eus.),
SunTechnology PaperSpringer-Verlag, 1990, pp. 13-27.

Muchnick, S. [1988]. “Optimizing Compilers for SPARCSunTechnologysummer 1988, pp. 64-
71; also appeared in W. Stallings (edReduced Instruction Set Computé2nd edition), IEEE
Computer Society Press, 1990, pp. 160-173, and in M. Hall and J. Barry (Eds.jsunTechnol-
ogy PapersSpringer-Verlag, 1990, pp. 41-68.

Patterson, D. [1985]. “Reduced Instruction Set Computé&srhmunications of th&eCwm, vol. 28,
no. 1, January, 1985.

Patterson, D., and D. R. Ditzel, “The Case for the Reduced Instruction Set Comg@uaerguter
Architecture Newsvol 8, no. 7, 1980.

Memory Model References

The concept of a memory model has become a significant one as shared memory multiprocessors
are more widely used. The issues are complex and interesting, and have created an active and
extensive literature. A partial annotated list of references is as follows:

Collier, W. W.Reasoning About Parallel Architecturdrentice Hall, 1992.

Provides a mathematical framework for the study of parallel processors and their interaction
with memory.

Dill, David, Seungjoon Park, and Andreas G. Nowatzyk, “Formal Specification of Abstract Mem-
ory Models” inResearch on Integrated Systems: Proceedings of the 1993 SympBsiu@aet-
ano Borriello and Carl Ebeling, MIT Press, 1993.

Describes an application of software tools to the verification of the TSO and PSO memory
models.

Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbon, A. Gupta, and J. Hennessy. “Memory Con-
sistency and Event Ordering in Scalable Shared-Memory Multiprocesstrs;éedings of the
17th Annual International Symposium on Computer ArchitecMay 1990, pp. 15-29.

Provides an overview of contemporary research in memory models.

Gharachorloo, K., S. Adve, A. Gupta, J. Hennessy, and M. Hill. “Programming for Different
Memory Consistency ModelsJournal of Parallel and Distributed Processind5:4, August
1992.

This paper proposes a new programming model which allows programmers to reason about
programs that have not been reduced to sequential consistency.

Gharachorloo, K., A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Consistency
Models for Shared Memory Multiprocessor®toceedings of the 4th International Conference

on Architectural Support for Programming Languages and Operating Systems245-257,
ACM, New York, 1991.

This paper discusses the performance benefits that can be obtained when a relaxed memory
model is used in a shared-memory model processor.

Lamport, Leslie. “How to Make a Multiprocessor Computer That Correctly Executes Multipro-
cess ProgramidEEE Transactions on Computer€-28, 9, September 1979, pp. 690-691.

Defines sequential consistency and shows how it can be used in simple shared-memory sys-
tems.

Reynal, M.Algorithms for Mutual ExclusigrMIT Press, 1986.

Provides an overview of the mutual exclusion problem and the extensive literature associated
with it.

Scheurich, C., and M. Dubois. “Dependency and Hazard Resolution in MultiprocesBams,”
ceedings of the 14th International Symposium on Computer Archite@pre34-243, IEEE CS
Press, Los Alamitos, CA, 1987.

Sindhu, Predeep, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Memory
Models,” Xerox Palo Alto Research Center Report CSL-91-11, December 1991

Introduces the formal framework used to define the SPARC-V8 TSO and PSO memory mod-
els.

Treiber, R. Kent. “Systems Programming: Coping with Parallelism,” IBM Research Report
RJ5118 (53162), 1986.

Provides an overview of the operational issues for systems programming in a multiprocessing
environment.

Prefetching

Callahan, D., K. Kennedy, A. Porterfield. “Software Prefetchingrbceedings of the Fourth
International Conference on Architectural Support for Programming Languages and Operating
SystemsApril 1991, pp. 40-52.

Mowry, T., M. Lam, and A. Gupta. “Design and Evaluation of a Compiler Algorithm for Prefetch-
ing.” Proceedings of the Fifth International Conference on Architectural Support for Program-
ming Languages and Operating Syste@®stober 1992, pp. 62-73.

A

afield of instructions 66, 138, 141, 144, 147, 148, 152
ABI, seeSPARC-V9 Application Binary Interface (ABI)
accrued exceptioraéxq field of FSR register46, 48, 100, 247, 254
activation record, sestack frame
ADD instruction 137, 299
ADDC instruction 137
ADDcc instruction 137, 222, 299
ADDCcc instruction 137
address 120
aliased 120
physical 120, 281
virtual, 120, 281
address 295
address aliase281
address mask (AM) field of PSTATE registé3, 151, 172, 215
address spacdl, 281, 282
address space identifier (ASBH, 16, 17, 50, 63, 67, 69, 73, 120, 121, 174, 179, 207, 227, 254, 283, 317, 341
architecturally specified122
restricted 74, 122, 254
unrestricted 74, 122, 254
address space identifier (ASI) regist&6, 21, 50, 56, 73, 89, 122, 157, 176, 181, 183, 207, 227, 232, 235, 245,
316
addressing conventiond?, 70
addressing modeg
ADDX instruction (SPARC-V8) 137
ADDXcc instruction (SPARC-V8)137
aexc seeaccrued exception (aexc) field of FSR register
AG, seealternate globals enable (AG) field of PSTATE register
aggregate data values, sizda aggregates
alias
address 120
floating-point register,s36
alignment 304
data (load/store)17, 69, 121
doubleword 17, 69, 121
extended-word69
halfword, 17, 69, 121
instructions 17, 69, 121
integer registersl79, 181
memory 121
guadword 17, 69, 121
stack pointer 304
word, 17, 69, 121
alternate address spa@97
alternate globakegisters 15, 30, 30, 316

alternate globals enable (AG) field of PSTATE reqis8f), 31, 54
alternate space instructignks8, 50, 341
AM, seeaddress mask (AM) field of PSTATE register
ancillary state registers (ASR<)8, 35, 36, 60, 214, 215, 244, 245, 252, 253, 292, 321
AND instruction 184
ANDcc instruction 184, 299
ANDN instruction 184, 299
ANDNCcc instruction 184
annul bit 35, 138

in conditional branchesl41
annulled branchesl38
application program9, 14, 16, 30, 46, 47, 50, 61, 104, 341
architectural extensiong, 321
arguments to a subroutind02
arithmetic overflow 41
ASI register, seaddress space identifier (ASI) register
ASI, seeaddress space identifier (ASI)
ASI_AS_IF_USER_PRIMARY 75, 123, 254, 287, 316
ASI_AS_IF_USER_PRIMARY_LITTLE 75, 123, 254, 287, 316
ASI_AS_IF_USER_SECONDARY75, 123, 254, 287
ASI_AS_IF_USER_SECONDARY_LITTLE75, 123 254, 287
ASI_NUCLEUS 75, 75, 122, 254, 287
ASI_NUCLEUS_LITTLE, 75, 122, 254, 287
ASI_PRIMARY, 73, 75, 75, 122, 123 254, 287
ASI_PRIMARY_LITTLE, 52, 75, 122, 254, 287
ASI_PRIMARY_NOFAULT, 75, 75, 123, 254, 284, 287
ASI_PRIMARY_NOFAULT_LITTLE, 75, 254
ASI_SECONDARY, 75, 75, 123, 254, 287, 317
ASI_SECONDARY_LITTLE, 75, 254, 287, 317
ASI_SECONDARY_NOFAULT 75, 75, 123, 254, 284, 287
ASI_SECONDARY_NOFAULT_LITTLE 75, 254, 287
asr_reg 292
assembler

synthetic instructions297
assigned value

implementation-dependgn252
async_data_error exception 113, 133 153 174, 177, 179, 181, 182, 183, 226, 228 230, 232, 234, 236
atomig 130, 230, 232

memory operationsl27, 130
atomic load-store instruction§9, 152

compare and swa®8, 152

load-store unsigned bytd82, 234, 235

load-store unsigned byte to alternate spd&3

swapr register with alternate space memo?g5

swapr register with memory152, 234
atomicity, 121, 224, 258
automatic variables302

BA instruction 147, 278

BCC instruction 146, 278
BCLR synthetic instruction299
BCS instruction 146, 278

BE instruction 146, 278
Berkeley RISCsxiv, 5
BG instruction 146, 278
BGE instruction 146, 278
BGU instruction 146, 278
bibliography, 345
Bicc instructions 35, 42, 146, 273, 278
big-endian btye orde©
big-endian byte orderl7, 52, 70
binary compatibility 6
bit vector concatenatior8
BL instruction 278
BLE instruction 146, 278
BLEU instruction 146, 278
BN instruction 146, 147, 209, 278, 297
BNE instruction 146, 278
BNEG instruction 146, 278
BPA instruction 148, 278
BPCC instruction 148, 278
BPcc instructions35, 41, 42, 66, 67, 148, 209
BPCS instruction 148, 278
BPE instruction 148, 278
BPG instruction 148, 278
BPGE instruction 148, 278
BPGU instruction 148, 278
BPL instruction 148, 278
BPLE instruction 148, 278
BPLEU instructiony 148, 278
BPN instruction 148, 278
BPNE instruction 148, 278
BPNEG instruction 148, 278
BPOS instruction146, 278
BPPOS instruction148, 278
BPr instructions 35, 66, 67, 138, 273, 278
BPVC instruction 148, 278
BPVS instruction 148, 278
branch
annulled 138
delayed 63
elimination 81
fcc-conditional 141, 144
icc-conditional 147
prediction bit 138
unconditiona) 141, 144, 147, 149
with prediction 5
branch if contents of integer register match condition instrugtib®3
branch on floating-point condition codes instructioh40
branch on floating-point condition codes with prediction instructidds
branch on integer condition codes instructjoh46
branch on integer condition codes with prediction instrucfidds
BRGEZ instruction 138
BRGZ instruction 138
BRLEZ instruction 138
BRLZ instruction 138

BRNZ instruction 138
BRZ instruction 138
BSET synthetic instructign299
BTOG synthetic instructign299
BTST synthetic instructign299
BVC instruction 146, 278
BVS instruction 146, 278
byte, 9

addressing70, 71

data format 23

order, 17, 70

order, big-endian17, 52

order, implicit 52

order, little-endian 17, 52

C

C condition code bit, semarry (C) bit of condition fields of CCR
cache

coherence in RED_stgt62

datg 125

in RED_state 92

instruction 125

memory, 253

miss 209

non-consistent instruction caghkE25

system 6
call chain

walking, 303
CALL instruction 19, 33, 34, 35, 151, 172, 302, 304
CALL synthetic instruction297
CANRESTORE, seeestorable windows (CANRESTORE) register
CANSAVE, seesavable windows (CANSAVE) register
carry (C) bit of condition fields of CCR41
CAS synthetic instructign127, 299
CASA instruction 98, 130, 152, 182, 183 234, 235, 299
CASX synthetic instruction127, 130, 299
CASXA instruction 98, 130, 152, 182, 183, 234, 235, 299
catastrophic_error exception 89, 91, 98, 99, 113 114, 115
ccOfield of instructions 66, 144, 148, 159, 195
cclfield of instructions 66, 144, 148, 159, 195
cc2field of instructions 66, 195
CCR, seeondition codes (CCR) register
certificate of compliance3
cexg seecurrent exception (cexc) field of FSR register
CLE, seecurrent_little-endian (CLE) field of PSTATE register
clean register window9, 33, 58, 60, 82, 86, 88, 114, 217
clean windows (CLEANWIN) registei58, 60, 82, 83, 86, 87, 88, 211, 242, 259
clean_window exception 60, 82, 87, 98, 101, 114, 218 256
clock cycle 51
clock-tick register (TICK) 51, 116, 211, 242, 257
CLR synthetic instruction299
CMP synthetic instructign233, 297
coherenceg120, 258

memory, 121, 224
unit, memory 122
compare and swap instructiqQré8, 152
comparison instructign76, 233
compatibility note 4
compatibility with SPARC-V84, 19, 30, 40, 43, 54, 58, 76, 78, 85, 104, 114, 115, 116, 121, 142, 145, 160,
170, 171, 174, 179, 181, 187, 215, 224, 226, 230, 232, 233, 237, 239, 241, 245, 322, 336
compatibility with SPARC-V9 137
compliance 8
certificate of 8
certification process8
Level |, 7
Level Il, 8
compliant SPARC-V9 implementatip@
concatenation of bit vectar8
concurrency 15
condfield of instructions 66, 141, 144, 147, 148, 189, 195
condition codes153
floating-point 141
integer 41
condition codes (CCR) registe21, 89, 137, 157, 202, 245
conditional branchesl4l, 144, 147
conditional move instruction20
conforming SPARC-V9 implementatip@
const22field of instructions 170
constants
generating 220
contexts
Nucleus 122, 287
control and status register35
control-transfer instructions (CTIs)9, 157
conventions
software 301
convert between floating-point formats instructiph62, 248
convert floating-point to integer instructigns6l, 250
convert integer to floating-point instructigns63
coprocessqr322
counterfield of TICK register 51
CPom instructions (SPARC-V§)171, 322
cross-domain cgll316
CTI, seecontrol-transfer instructions (CTIs)
current exceptioncgxq field of FSR registerd4, 46, 48, 84, 115, 247, 254
current window 9
current window pointer (CWP) registe®, 15, 21, 33, 56, 58, 58, 60, 82, 87, 89, 157, 169, 211, 217, 218, 242,
259
current_little_endian (CLE) field of PSTATE regist&2, 52, 122
CWP, seeurrent window pointer (CWP) register

D

di6hifield of instructions 66, 138
di6lofield of instructions 66, 138
data access

RED_state 92

data aggregate
argument passed by valug02
examples qf 302
data alignment, sesdignment
data cachel25
data flow order constraints
memory reference instruction$24
register reference instruction¥24
data formats
byte, 23
doubleword 23
extended word23
halfword, 23
guadword 23
tagged word 23
word, 23
data memory131
data types23
floating-point 23
signed integer23
unsigned integer23
data_access_error exception 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_exception exception 114, 153, 174, 177, 179, 181, 182, 183 226, 228, 230, 232, 234, 236
data_access_MMU_miss exception 114, 153, 174, 177, 179, 181, 182, 183, 210, 226, 228, 230, 232, 234, 236,
256
data_access_protection exception 114, 153, 175, 177, 179, 181, 182, 183, 226, 228, 230, 232
data_protection exception 234, 236
DEC synthetic instructign299
DECcc synthetic instructiqr299
deferred trap95, 95, 96, 99, 254
avoiding 96
floating-point 212
deferred-trap quey®5
floating-point (FQ) 47, 61, 96, 211, 243
integer unif 61
Dekker's algorithm326
delay instruction 19, 35, 138, 141, 144, 150, 157, 216, 302, 306
delayed branch63
delayed control transfeB5, 138
deprecated instructions
BCC, 146
BCS, 146
BE, 146
BG, 146
BGE, 146
BGU, 146
Bicc, 146
BLE, 146
BLEU, 146
BN, 146
BNE, 146
BNEG, 146
BPOS 146
BVC, 146

BVS, 146

FBE, 140

FBfcc, 140

FBG, 140

FBGE, 140

FBL, 140

FBLE, 140

FBLG, 140

FBN, 140

FBNE, 140

FBO, 140

FBU, 140

FBUE, 140

FBUGE, 140

FBUL, 140

FBULE, 140

LDDA, 180

LDFSR, 173

MULScc, 202

SDIV, 154

SDIVcc, 154

SMULcgc, 200

STFSR 225

SWAP, 234

SWAPA, 235

TSUBccTV, 237, 238

UDIVce, 154

UMULcc, 200
destination registerl3
dirty bits, sedower and upper registers dirty (DL and DU) fields of FPRS register
disp19field of instructions 66, 144, 148
disp22field of instructions 66, 141, 147
disp30field of instructions 66, 151
disrupting traps 95, 96, 97, 98, 254
divide instructions 19, 154, 199
divide-by-zero mask¥zZM) bit of TEM field of FSR register48
division_by_zero exception 77, 98, 104, 114, 156, 199
division-by-zero accruedigd bit of aexcfield of FSR register49
division-by-zero currentdzg bit of cexcfield of FSR register49
DL, seelower registers dirty (DL) field of FPRS register
DONE instruction 20, 41, 42, 89, 91, 95
doublet 9
doubleword 9, 17, 69, 121

addressing70, 72

in memory 35
doubleword data forma@3
DU, seeupper registers dirty (DU) field of FPRS register
dza seedivision-by-zero accrued (dza) bit of aexc field of FSR register
dzg seedivision-by-zero current (dzc) bit of cexc field of FSR register
DZM, seedivide-by-zero mask (DZM) bit of TEM field of FSR register

E

emulating multiple unsigned condition cod&d

enable floating-point (FEF) field of FPRS registéR, 53, 84, 99, 114, 142, 145, 174, 176, 226, 227, 243
enable floating-point (PEF) field of PSTATE registd®, 53, 84, 99, 114, 142 145, 174, 176, 226, 227, 309
enable RED_state (RED) field of PSTATE regist@t
error_state processor staf, 90, 91, 94, 105, 106, 109, 110, 111, 112, 117, 255
exceptions 21, 89
async_data_error, 113, 133, 153 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
catastrophic 98
catastrophic_error, 89, 91, 99, 113 114, 115
clean_window, 60, 82, 87, 98, 101, 114, 218, 256
data_access_error, 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_exception, 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_ MMU_mis414, 153 174, 177, 179, 181, 182, 183, 210, 226, 228, 230, 232, 234, 236, 256
data_access_protection, 114, 153 175, 177, 179, 181, 226, 228, 230, 232
data_protection, 234, 236
division_by zero, 77, 98, 104, 114, 156, 199
externally initiated_reset (XIR), 56, 108, 110
fill_n_normal, 98, 114, 216, 218
fill_n_other, 98, 114, 216, 218
floating-point 10, 99
fo_disabled, 16, 42, 84, 98, 114, 142, 145, 158, 160, 161, 162 163 164, 165 166, 174, 176, 177, 191,
193, 197, 226, 227, 228, 309
fo_exception, 45
fo_exception_ieee_75444, 48, 99, 100, 104, 115, 158, 160, 161, 162, 163, 165, 166, 247
fo_exception_other, 40, 47, 61, 85, 104, 115, 158, 160, 161, 162, 163, 164, 165, 166, 174, 177, 191, 193
213 226, 228, 247
illegal_instruction, 35, 47, 58, 85, 115, 133 139, 150, 157, 168, 170, 171, 174, 179, 181, 197, 198, 205,
212, 213, 215, 219, 226, 229, 230, 231, 232, 241, 243, 245, 254, 255, 256
implementation_dependent_n, 91, 104, 255
instruction_access, 97
instruction_access_error, 98, 115, 133
instruction_access_exception 115 133
instruction_access_ MMU_miss 115, 133
internal_processor_error, 91, 115, 133
invalid_exception, 161
LDDF_mem_address_not_aligned, 70, 98, 115, 174, 177, 226, 228, 257
LDQF_mem_address_not_aligned, 70, 116, 174, 177, 257
mem_address_not_aligned, 69, 98, 116, 153, 172, 174, 177, 179, 181, 216, 226, 228, 230, 232, 234, 236
persistencel100
power_on_reset (POR) 108, 116
privileged_action, 51, 73, 97, 116, 153 176, 177, 181, 183, 215, 227, 228, 232, 236
privileged_instruction (SPARC-V8) 116
privileged_opcode, 98, 116, 157, 212, 215, 219, 243 245
r_register_access_error (SPARC-V8) 115
software_initiated reset (SIR), 105
software_initiated_reset, 97
software_initiated_reset (SIR), 97, 111, 116, 223
spill_n_normal, 98, 116, 169, 218
spill_n_other, 116, 169, 218
STDF_mem_address_not_aligned, 70, 98, 116, 226, 228, 257
STQF_mem_address_not_aligned, 70, 116, 226, 228, 257
tag overflow, 77, 98, 104, 117, 237, 239
trap_instruction, 98, 117, 241
unimplemented_LDD, 98, 117, 179, 181, 257
unimplemented_STD, 98, 117, 230, 232, 257

watchdog_reset (WDR), 108
window_fill, 58, 59, 60, 82, 216, 305
window_overflow, 301
window_spill, 58, 60, 305
exceptions, also semp types
execute protectiqri282
execute unjt123
execute_state90, 105, 106, 110, 111, 117
extended word10
extended word addressing0, 72
extended word data forma23
extensions
architectural 7, 321
externally initiated_reset (XIR), 56, 91, 93, 97, 108, 110, 111

F

f registers 16, 36, 100, 247, 255
FABSd instruction 164, 275, 276, 277
FABSq instruction 164, 275, 276, 277
FABSs instruction 164, 275

FADDd instruction 158, 275

FADDq instruction 158, 275

FADDs instruction 158, 275

FBA instruction 141, 278

FBE instruction 140, 278

FBfcc instructions 35, 43, 84, 99, 114, 140, 142, 273, 278
FBG instruction 140, 278

FBGE instruction 140, 278

FBL instruction 140, 278

FBLE instruction 140, 278

FBLG instruction 140, 278

FBN instruction 140, 141, 278

FBNE instruction 140, 278

FBO instruction 140, 278

FBPA instruction 143, 144, 278
FBPcc instructions66

FBPE instruction 143, 278

FBPfcc instructions35, 43, 66, 67, 84, 99, 142, 143, 273, 278
FBPG instruction 143, 278

FBPGE instruction143, 278

FBPL instruction 143, 278

FBPLE instruction 143, 278

FBPLG instruction 143, 278

FBPN instruction 143, 144, 278
FBPNE instruction 143, 278

FBPO instruction 143, 278

FBPU instruction 143, 278

FBPUE instruction 143, 278

FBPUG instruction 143, 278
FBPUGE instruction143, 278
FBPUL instruction 143, 278

FBPULE instruction 143, 278

FBU instruction 140, 278

FBUE instruction 140, 278
FBUG instruction 140, 278
FBUGE instruction 140, 278
FBUL instruction 140, 278
FBULE instruction 140, 278
fcc, sedfloating-point condition codes (fcc) fields of FSR register
fcc-conditional branchesl41, 144
fceN, 10
FCMP* instructions 43, 159
FCMPd instruction 159, 248, 277
FCMPE?* instructions 43, 159
FCMPEd instruction159, 248, 277
FCMPE(q instruction159, 248 277
FCMPEs instruction159, 248, 277
FCMPq instruction 159, 248, 277
FCMPs instruction159, 248, 277
fenfield of instructions 157, 206
FDIVd instruction 165, 275
FDIVq instruction 165, 275
FDIVs instruction 165, 275
FdMUL(q instruction 165, 275
FdTOi instruction 161, 250, 275
FdTOq instruction 162, 248, 275
FdTOs instruction162, 248, 275
FdTOX instruction 161, 275, 276, 277
FEF, seeenable floating-point (FEF) field of FPRS register
fill register window 33, 58, 59, 82, 83, 86, 87, 88, 114, 217, 218, 219, 316
fill_n_normal exception 98, 114, 216, 218
fill_n_other exception 98, 114, 216, 218
FiTOd instruction 163, 275
FiTOq instruction 163, 275
FiTOs instruction 163, 275
floating-point add and subtract instructipi$8
floating-point compare instructiond3, 159, 159, 248
floating-point condition code bits141
floating-point condition codeddg) fields of FSR registerd3, 46, 100, 141, 144, 159, 247, 292
floating-point data type23
floating-point deferred-trap queue (FQ@)7, 61, 96, 211, 212, 243 254
floating-point enable (FEF) field of FPRS regist209
floating-point exception10, 99
floating-point move instructionsl 64
floating-point multiply and divide instructiond65
floating-point operate (FPop) instructiqri0, 20, 36, 45, 48, 67, 84, 99, 114, 115, 174
floating-point queue, sd®ating-point deferred-trap queue (FQ)
floating-point registers40, 247, 255 304
floating-point registers state (FPRS) regisé, 215, 245
floating-point square root instruction$66
floating-point state (FSR) registe43, 48, 50, 174, 225 226, 247, 250, 254
floating-point trap typeftt) field of FSR registerl0, 43, 45, 48, 61, 84, 85, 115, 212, 226, 247
floating-point trap types
fo_disabled, 53
FPop_unfinished, 85
FPop_unimplemented, 85
hardware_error, 10, 45, 47

IEEE_754 exception, 10, 46, 46, 48, 50, 100, 115, 247
invalid fo_register, 10, 40, 46, 158, 160, 161, 162, 163, 164, 165, 166, 174, 177, 191, 193 226, 228
numeric values45
sequence_error, 45, 46, 47, 61, 212, 213
unfinished_FPop, 10, 46, 46, 50, 247, 253
unimplemented_FPop, 10, 46, 46, 50, 85, 191, 212, 247, 253

floating-point traps
deferred 212
precise 212

floating-point unit (FPU) 10, 16

FLUSH instruction 131, 167, 253, 258, 308, 324
in multiprocess environmeni.32

flush instruction memory instructiori67, 324

FLUSH latency 258

flush register windows instructiori69

FLUSHW instruction 20, 83, 86, 87, 116, 169, 303

FMOVA instruction 188

FMOVCC instruction 188

FMOVecc instructions 41, 42, 43, 66, 67, 80, 84, 188, 191, 196, 197, 278

FMOVccd instruction 277

FMOVccq instruction 277

FMOVccs instruction 277

FMOVCS instruction 188

FMOVd instruction 164, 275, 276, 277

FMOVE instruction; 188

FMOVFA instruction 188

FMOVFE instructior 188

FMOVFG instruction 188

FMOVFGE instruction 188

FMOVFL instruction 188

FMOVFLE instruction 188

FMOVFLG instruction 188

FMOVEN instruction 188

FMOVFENE instructior 188

FMOVFO instruction 188

FMOVFU instruction 188

FMOVFUE instructior 188

FMOVFUG instruction 188

FMOVFUGE instruction 188

FMOVFUL instruction 188

FMOVFULE instruction 188

FMOVG instruction 188

FMOVGE instruction 188

FMOVGU instruction 188

FMOVL instruction 188

FMOVLE instruction 188

FMOVLEU instruction 188

FMOVWN instruction 188

FMOVNE instructionp 188

FMOVNEG instructior 188

FMOVPOS instruction188

FMOV(q instruction 164, 275, 276, 277

FMOVr instructions 67, 84, 192

FMOVRGEZ instruction 192

FMOVRGZ instruction 192

FMOVRLEZ instruction 192

FMOVRLZ instruction 192

FMOVRNZ instruction 192

FMOVRZ instruction 192

FMOVs instruction 164, 275

FMOVVC instruction 188

FMOVVS instruction 188

FMUL instruction 165, 275

FMUL(q instruction 165, 275

FMULSs instruction 165, 275

FNEGd instruction 164, 275, 276, 277

FNEGq instruction 164, 275, 276, 277

FNEGSs instruction164, 275

formats
instruction 63

fo_disabled floating-point trap type 16, 42, 53, 84, 98, 114, 142, 145, 158, 160, 161, 162, 163 164, 165, 166,
174, 176, 177, 191, 193, 197, 226, 227, 228, 309

fo_exception exception 45, 48

fo_exception_ieee_754 exception 44, 48, 99, 100, 104, 115, 158, 160, 161, 162, 163, 165, 166, 247

fo_exception_other exception 40, 47, 61, 85, 104, 115, 158 160, 161, 162, 163, 164, 165, 166, 174, 177, 191,
193, 212, 213, 226, 228, 247

FPop instructions, sdkating-point operate (FPop) instructions

FPop_unimplemented floating-point trap type85

FPop1 instructions10

FPop2 instructions10

FPRS, se#loating-point register state (FPRS) register

FPU, sedloating-point unit

FQ, sedloating-point deferred-trap queue (FQ)

FqTOd instruction 162, 248, 275

FgTOi instruction 161, 250, 275

FgTOs instruction162, 248, 275

FqTOx instruction 161, 275, 276, 277

frame pointer register302

freg, 292

FsMULd instruction 165, 275

FSQRTd instruction166, 275

FSQRT(q instruction166, 275

FSQRTs instruction166, 275

FsTOd instruction162, 248, 275

FsTOi instruction 161, 250, 275

FsTOq instruction162, 248, 275

FsTOx instruction 161, 275, 276, 277

FSUBd instruction 158, 275

FSUB(instruction 158, 275

FSUBSs instruction158, 275

ftt, seefloating-point trap type (ftt) field of FSR register

function return valug302

functional choice
implementation-dependgn252

FxTOd instruction 163, 275, 276, 277

FxTOq instruction 163, 275, 276, 277

FxTOs instruction 163, 275, 276, 277

generating constant220
globalregisters 4, 15, 30, 30, 30, 303

halfword, 10, 17, 69, 121
addressing70, 72
data format 23
halt, 105
hardware
dependency251
traps 101
hardware_error floating-point trap typel0, 45, 47
has 7
hexlet 10

i field of instructions 66, 137, 154, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 195, 198, 199, 200, 202,
205, 206, 214, 216
I/O, seeinput/output (I/O)
i_or_x_cg 292
icc field of CCR regqister4l, 42, 137, 147, 149, 155, 156, 184, 196, 200, 202, 203, 233, 237, 241
icc-conditional branchesl47
IE, seenterrupt enable (IE) field of PSTATE register
IEEE Std 754-198510, 15, 44, 46, 48, 50, 85, 247, 249, 250, 253 254
IEEE_754_exception floating-point trap typel0, 46, 46, 48, 50, 100, 115, 247
IER register (SPARC-V8)245
illegal_instruction exception 35, 47, 58, 85, 115, 133 139, 150, 157, 168, 170, 171, 174, 179, 181, 197, 198
205, 210, 212, 213, 215, 219, 226, 229, 230, 231, 232, 241, 243 245, 254, 255, 256
ILLTRAP instruction 115 170, 273
imm_asifield of instructions 67, 73, 152, 173, 176, 178, 180, 182, 183 206
imm22field of instructions 67
IMPDEP instructions, seenplementation-dependent (IMPDEPN) instructions
IMPL, 171
impl field of VER registey 45
impl_dep (PID) fields of PSTATE registeb2
implementation 10
implementation dependency, 251
implementation note4
implementation numbeingpl) field of VER registey 57
implementation_dependent_n exception 91, 104, 115, 255
implementation-dependgntO
assigned value (aR52
functional choice (g)252
total unit (t) 252
trap, 108
value (v) 252
implementation-dependent (IMPDBFnstructions 85, 171, 257, 321
implicit
ASI, 73
byte order 52

in registers 15, 30, 33, 217, 301
INC synthetic instruction299
INCcc synthetic instructign299
inexact accruednka) bit of aexcfield of FSR register49, 250
inexact currentr(xg bit of cexcfield of FSR register48, 49, 249, 250
inexact maskNXM) bit of TEM field of FSR register48, 48
inexact quotient154, 155
infinity, 250
initiated, 11
input/output (1/0) 6, 18
input/output (1/O) locations120, 121, 130, 253, 258
order, 121
value semantigsl21
instruction
access in RED_stat®2
alignment 17, 69, 121
cache 125
dispatch 98
execution 98
fetch, 69
formats 4, 63
memory 131
reordering 124
instruction fields 11
a, 66, 138, 141, 147, 148, 152
ccO, 66, 144, 148, 159, 195
ccl, 66, 144, 148, 159, 195
cc2, 66, 195
cond 66, 141, 144, 147, 148, 189, 195
const22 170
d16hi, 66, 138
di6lo, 66, 138
displ9 66, 144, 148
disp22 66, 141, 147
disp3Q 66, 151
fcn, 157, 206
i, 66, 137, 154, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 195, 198, 199, 200, 202, 205, 206, 214,
216
imm_asj 67, 73, 152, 173, 176, 178, 180, 206
imm22 67
mmask 67, 224
op3, 67, 137, 152, 154, 157, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200, 202, 206, 211,
214, 216
opf, 67, 158, 159, 161, 162 163 164, 165 166
opf_cg 67, 189
opf_low, 67, 189, 192
p, 67, 138 139, 144, 148
rcond, 67, 138, 192, 198
rd, 13, 68, 137, 152, 154, 158, 161, 162, 163, 164, 165, 166, 172, 173, 176, 178, 180, 182, 183, 184, 189,
192, 195, 198, 199, 200, 202, 205, 211, 214, 321
reg_or_imm 321
reserved 133
rsl, 13, 68, 137, 138, 152, 154, 158, 159, 165, 167, 172, 173, 176, 178, 180, 182, 183, 184, 192, 198,
199, 200, 202, 206, 211, 214, 216, 321

rs2, 13, 68, 137, 152, 154, 158, 159, 161, 162 163, 164, 165, 166, 167, 172, 173, 176, 178, 180, 182,
183, 184, 189, 192, 195, 198, 199, 200, 202, 205, 206, 216
simm1Q 68, 198
simm1] 68, 195
simm13 68, 137, 154, 167, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200, 202, 205, 206, 216
Sw_trap# 68
undefineqg 171
instruction set architectur®, 10, 11
instruction_access exception 97
instruction_access_error exception 98, 115 133
instruction_access_exception exception 115 133
instruction_access_MMU_miss exception, 115, 133
instructions
atomig 152
atomic load-storg69, 98, 152, 182, 183, 234, 235
branch if contents of integer register match condjtitiz8
branch on floating-point condition codek40
branch on floating-point condition codes with predicti@d3
branch on integer condition cogeist6
branch on integer condition codes with predictitA8
compare and swa®8, 152
comparison 76, 233
conditional move 20
control-transfer (CTls)19, 157
convert between floating-point formats62, 248
convert floating-point to integed 61, 250
convert integer to floating-poinfL63
divide, 19, 154, 199
floating-point add and subtract58
floating-point comparg43, 159, 159, 248
floating-point move 164
floating-point multiply and divide165
floating-point operate (FPopR0, 45, 48, 99, 174
floating-point square roptL66
flush instruction memoryl167, 324
flush register windows169
implementation-dependent (IMPDER 85, 171
jump and link 19, 172
load, 323
load floating-point 69, 173
load floating-point from alternate spack’6
load integey 69, 178
load integer from alternate spade80
load-store unsigned byt®8, 152, 182, 234, 235
load-store unsigned byte to alternate spd&3
logical, 184
move floating-point register if condition is tru88
move floating-point register if contents of integer register satisfy conditi®?
move integer register if condition is satisfiek®4
move integer register if contents of integer register satisfies conditééh
move on condition5
multiply, 19, 199, 200, 200
multiply step 19, 202
prefetch data206

read privileged registe211

read state registeR0, 214

register window managemerzO

reservedg 85

reserved fields133

shift, 19, 221

software-initiated resef23

store 323

store floating point69

store floating-point 225

store floating-point into alternate spa@27

store integer69, 229, 231

subtract 233

swapr register with alternate space memo?g5

swapr register with memory234

synthetiGg 297

tagged add237

tagged arithmetic19

test-and-set131

timing, 133

trap on integer condition code240

write privileged register242

write state register244
integer condition codes, sae field of CCR register
integer divide instructions, sekvide instructions
integer multiply instructions, serultiply instructions
integer unit (IU) 11, 11, 15
integer unit deferred-trap queugl
internal_processor_error exception 91, 115, 133

and RED_state93
interrupt enable (IE) field of PSTATE registé4, 96, 99, 115
interrupt leve] 54
interrupt requestll, 21, 89, 133
interrupts 54
invalid accruedrfva) bit of aexcfield of FSR register49
invalid current Qv bit of cexcfield of FSR register49, 250
invalid mask NVM) bit of TEM field of FSR register48
invalid_exception exception 161
invalid_fp_register floating-point trap typel0, 40, 46, 158, 160, 161, 162 163, 164, 165, 166, 174, 177, 191,

193 226, 228
IPREFETCH synthetic instructior297
ISA, seenstruction set architecture
issue unif 123, 124
issued 11
italic font

in assembly language synta291
IU, seeinteger unit

J

JMP synthetic instructign297
JMPL instruction 19, 33, 35, 116, 172, 216, 297, 304
jump and link instruction19, 172

LD instruction (SPARC-V8)179
LDA instruction (SPARC-V8) 181
LDD instruction 35, 98, 117, 178, 257
LDDA instruction, 35, 61, 98, 180, 257
LDDF instruction 70, 98, 115, 173
LDDF _mem_address_not_aligned exception 70, 98, 115, 174, 177, 228, 257
LDDFA instruction 70, 98, 176
LDF instruction 173
LDFSR instruction 43, 45, 48, 50, 173
LDQF instruction 70, 116, 173
LDQF_mem_address_not_aligned exception 70, 116, 174, 177, 257
LDQFA instruction 70, 176
LDSB instruction 178
LDSBA instruction 180
LDSH instruction 178
LDSHA instruction 180
LDSTUB insruction 69
LDSTUB instruction 98, 127, 131, 182, 327
LDSTUBA instruction 98, 183
LDSW instruction 178
LDSWA instruction 180
LDUB instruction 178
LDUBA instruction, 180
LDUH instruction 178
LDUHA instruction, 180
LDUW instruction 178
LDUWA instruction, 180
LDX instruction, 98, 178
LDXA instruction, 98, 180
LDXFSR instruction 43, 45, 48, 50, 173
leaf procedurgll, 82, 304, 304
optimization 305, 306
Level | compliance7
Level Il compliance 8
little-endian byte orderll, 17, 52
load floating-point from alternate space instructjohs6
load floating-point instructionsl73
load instructions 69, 323
load integer from alternate space instructjat0
load integer instructionsl78
LoadLoad MEMBAR relationship127, 187
loads
non-faulting 123, 123
loads from alternate spac#8, 50, 73, 341
load-store alignmentl7, 69, 121
load-store instructionsl7, 98
compare and swa®8, 152
load-store unsigned bytd52, 182, 234, 235
load-store unsigned byte to alternate spd&3
swapr register with alternate space memo2g5
swapr register with memory152, 234
LoadStore MEMBAR relationshjpl27, 128, 187

local registers 15, 30, 33, 217, 302, 307

logical instructions 184

Lookaside MEMBAR relationshipl87

lower registers dirty (DL) field of FPRS registei2

manual
audience 1
fonts, 3
where to startl
manufacturerrfanuj field of VER register 57, 256
mask numbermfash field of VER register 57
maximum trap levelsnfaxt) field of VER registey 57
MAXTL , 54, 90, 106, 223
maxt] seemaximum trap levels (maxtl) field of VER register
may, 11
mem_address_not_aligned exception 69, 98, 116, 153, 172, 174, 177, 179, 181, 216, 226, 228, 230, 232, 234,
236
MEMBAR instruction 67, 76, 121, 125, 126-128 129, 131, 167, 186, 214, 224, 324
membar_mask295
Memlssue MEMBAR relationshjpl87
memory
alignment 121
atomicity, 258
coherencel20, 121, 258
coherency unjt122
datg 131
instruction 131
ordering unit 121
page 281
real, 120, 121
stack layout 304
memory access instructigns7
memory management unit (MMUB, 114, 115 253 291
address translatiQr286
ASl input, 283
atomic input 283
context 281
Data / Instr input 283
diagram 283
disabled 207
disabling 282
fault address288
fault status 288
in RED_state 92
memory protection286
modified statistics 282, 288
NF-Load_violation outpyt285
No_translation output284
Non-faultable attribute284
Nucleus Context287
Prefetch input283
Prefetch_violation outpu285

Prefetchable attribufe284
Primary Context 286
Privilege input 283
Privilege_violation outpyt285, 286
Protection_violation output285, 286
Read / Write inpyt283
Read, Write, and Execute attribyt@84
RED_state 92, 288
RED_state inpyt283
referenced statistic282, 288
Restricted attribute284
Secondary ContexR86
Translation_error outpu84
Translation_not_valid outpuP84
Translation_successful outp85
memory model 119-132
barrier synchronizatign333, 334
Dekker's algorithm326
issuing order 330
mode contral 129
mutex (mutual exclusion) lock826
operations 323
overview, 119
partial store order (PSQ)19, 128 130, 257, 323
portability and recommended programming styd24
processors and process824
programming with 323-335
relaxed memory order (RMQYL19, 128, 130, 257, 323
sequential consistency 20
SPARC-V9 128
spin lock 327
strong 120
strong consistengyl20, 325, 330
total store order (TSQP2, 119, 129, 130, 323
weak 120
memory operations
atomig 130
memory order 125
program order124
memory reference instructions
data flow order constraint424
memory_model (MM) field of PSTATE registeb2, 92, 125, 129, 130, 258
microkerne) 317
MM, seememory_model (MM) field of PSTATE register
mmaskield of instructions 67, 224
MMU, seememory management unit (MMU)
mode
nonprivileged 6, 15, 75
privileged 15, 51, 85, 122
uset 30, 50, 303
MOV synthetic instruction299
MOVA instruction, 194
MOVCC instruction 194
MOVcc instructions 41, 42, 43, 66, 68, 80, 191, 194, 196, 197, 278

MOVCS instruction 194
move floating-point register if condition is tru88
move floating-point register if contents of integer register satisfy conditi®?
MOVE instruction 194
move integer register if condition is satisfied instructjat4
move integer register if contents of integer register satisfies condition instrydtfiths
move on condition instruction®
MOVFA instruction 194
MOVFE instruction 194
MOVFG instruction 194
MOVFGE instruction 194
MOVFL instruction 194
MOVFLE instruction 194
MOVFLG instruction 194
MOVEN instruction 194
MOVENE instruction 194
MOVFO instruction 194
MOVFU instruction 194
MOVFUE instruction 194
MOVFUG instruction 194
MOVFUGE instruction 194
MOVFUL instruction 194
MOVFULE instruction 194
MOVG instruction 194
MOVGE instruction 194
MOVGU instruction 194
MOVL instruction, 194
MOVLE instruction 194
MOVLEU instruction 194
MOVN instruction 194
MOVNE instruction 194
MOVNESG instruction 194
MOVPOS instruction 194
MOVr instruction 67
MOVr instructions 68, 81, 198
MOVRGEZ instruction 198
MOVRG?Z instruction 198
MOVRLEZ instruction 198
MOVRLZ instruction 198
MOVRNZ instruction 198
MOVRZ instruction 198
MOVVC instruction 194
MOVVS instruction 194
MULScc (multiply step) instruction19, 202
multiple unsigned condition codes
emulating 81
multiply instructions 19, 199, 200, 200
multiply step instruction, sedULScc (multiply step) instruction
multiply/divide register, Se¥ register
multiprocessor synchronization instructiois 152, 234, 235
multiprocessor systen®d, 125, 167, 208, 210, 234, 235, 258
MULX instruction, 199
must 11
mutex (mutual exclusion) lock826

N

N condition code bit, semegative (N) bit of condition fields of CCR
NaN (hot-a-number)161, 248, 250

quiet, 159, 160, 248

signaling 43, 159, 160, 162, 248
NEG synthetic instruction299
negative) bit of condition fields of CCR41
negative infinity 250
nested trapsb
next program counter (nPC)1, 21, 35, 35, 55, 63, 95, 97, 157, 204, 318
non-faulting loag 11, 123, 123, 123
non-leaf routing 172
nonprivileged

modeg 6, 9, 12, 15, 45, 75

registers 30

software 42
nonprivileged trap (NPT) field of TICK registe®1, 215
nonstandard floating-point (NS) field of FSR registét, 44, 250, 254
nonstandard modes

in FPU, 44
non-virtual memory 209
NOP instruction 141, 144, 147, 204, 206, 220, 241
normal traps 90, 101, 106, 106, 108
NOT synthetic instruction299
note

compatibility, 4

implementation 4

programming 4
nPC, seamext program counter (nPC)
NPT, seenonprivileged trap (NPT) field of TICK register)
NS, sesonstandard floating-point (NS) field of FSR register
Nucleus Context122, 287
number of windowsrfaxwin field of VER registey 58, 87
nva seeinvalid accrued (nva) bit of aexc field of FSR register
nvg seenvalid current (nvc) bit of cexc field of FSR register
NVM, seeinvalid mask (NVM) bit of TEM field of FSR register
NWINDOWS, 12, 15, 32, 33, 58, 217, 218, 253, 259
nxa seeinexact accrued (nxa) bit of aexc field of FSR register
nxc seenexact current (nxc) bit of cexc field of FSR register
NXM, seeinexact mask (NXM) bit of TEM field of FSR register

O

object-oriented programmind

octlet, 12

ofa, seeoverflow accrued (ofa) bit of aexc field of FSR register

ofc, seeoverflow current (ofc) bit of cexc field of FSR register

OFM, seeoverflow mask (OFM) bit of TEM field of FSR register

op3field of instructions 67, 137, 152, 154, 157, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200,
202, 206, 211, 214, 216

opcode 12
reserveq 321

opffield of instructions 67, 158, 159, 161, 162 163 164, 165, 166

opf_ccfield of instructions 67, 189
opf_lowfield of instructions 67, 189, 192
optimized leaf procedure, skmaf procedure (optimized)
OR instruction 184, 299
ORcc instruction 184, 297
ordering unit
memory 121
ORN instruction 184
ORNCcec instruction 184
other windows (OTHERWIN) registeb8, 59, 60, 83, 86, 87, 169, 211, 218 242, 259, 317
outregister #7 34, 151, 172, 215
outregisters 15, 30, 33, 217, 301
overflow, 86
window, 316
overflow (V) bit of condition fields of CCR41, 77
overflow accrueddfa) bit of aexcfield of FSR register49
overflow current ¢fc) bit of cexcfield of FSR register48, 49
overflow mask QFM) bit of TEM field of FSR register48, 48

P

p field of instructions 67, 138, 139, 144, 148
page attributes281
page descriptor cache (PQQ)14, 115
page fault 209
page-level protection82
parameters to a subroutin&02
parity errof 115
partial store order (PSO) memory made?, 119, 120, 128 130, 257, 323
PC, serogram counter (PC)
PDC, segage descriptor cache (PDC)
PEF, seenable floating-point (PEF) field of PSTATE register
physical addressl20, 281, 282
PIDO, PID1 fields of PSTATE registeb2
PIL, seeprocessor interrupt level (PIL) register
POPC instruction205
positive infinity, 250
power failure 97, 110
power-on reset51, 92, 93, 97, 109
power-on reset (POR) trap08
power-on_resetol
precise floating-point trap12
precise trap94, 95, 95, 96, 254
predict bit 139
prefetch
for one reagd 208
for one write 209
for several reads208
for several writes208
implementation dependeri209
instruction 209
page 209
prefetch data instructior206
PREFETCH instruction69, 149, 206, 256

prefetch_fcn 295
PREFETCHA instruction206, 256
prefetchable 12
PRIV, seeprivileged (PRIV) field of PSTATE register
privileged 11, 12
modeg 12, 15, 51, 85, 122, 223
registers 51
software 6, 33, 45, 53, 73, 101, 169, 256, 288
privileged (PRIV) field of PSTATE registefi4, 53, 116, 122, 153 176, 183 215, 227, 232 235
privileged_action exception 51, 73, 97, 116, 153 176, 177, 181, 183 215, 227, 228 232, 236
privileged_instruction exception (SPARC-V§)116
privileged_opcode exception 98, 116, 157, 212, 215, 219, 243, 245
processqrl2, 15
execute unjt123
halt, 94, 105
issue unif 123, 124
model 123
reorder unif 123
self-consistencyl124
state diagram90
processor interrupt level (PIL) registérd, 96, 99, 100, 115, 211, 242
processor state (PSTATE) registd, 30, 51, 52, 56, 89, 91, 157, 211, 242
processor states
error_state 56, 91, 94, 105, 106, 109, 110, 111, 112, 117, 255
execute_statel05, 106, 110, 111, 117
RED_state 90, 91, 94, 101, 105, 106, 108, 109, 110, 111, 112, 117, 130, 258
program counter (PCYL2, 21, 35, 35, 55, 63, 89, 95, 97, 151, 157, 172, 204, 318
program order124, 124
programming note4
protection
execute 282
read 282
write, 282
PSO, segartial store ordering (PSO) memory model
PSR register (SPARC-V8p45
PTD, seeage table descriptor (PTD)
PTE, segage table entry (PTE)

Q

gne seequeue not empty (gne) field of FSR register
quadlet 12
quadword 12, 17, 69, 121
addressing71, 73
data format 23
gueue not emptyghe field of FSR registerd?, 47, 61, 212, 213, 243, 247
quiet NaN (not-a-number3, 159, 160, 248

R
r register 30
#15, 34, 151, 172
alignment 179, 181

r registers 253
r_register_access_error exception (SPARC-V8)115
rcondfield of instructions 67, 138, 192, 198
rd field of instructions 13, 68, 137, 152, 154, 158, 161, 162, 163, 164, 165, 166, 172, 173, 176, 178, 180, 182,
183, 184, 189, 192 195, 198, 199, 200, 202, 205, 211, 214, 321
RD, seerounding direction (RD) field of FSR register
RDASI instruction 214
RDASR instruction 18, 61, 214, 224, 256, 299, 321
RDCCR instruction214
RDFPRS instruction214
RDPC instruction 35, 214
RDPR instruction47, 51, 52, 58, 61, 85, 211, 215
RDTICK instruction 214, 215
RDY instruction 36, 214, 299
read privileged register instructip@11
read protection282
read state register instructiqriz, 214
read-after-write memory hazardi24
real memory 120, 121
real-time softwarg308
RED, seeenable RED_state (RED) field of PSTATE register
RED_state 13, 90, 91, 94, 101, 105, 106, 108, 109, 110, 111, 112 117, 282
andinternal_processor_error exception 93
cache behavigro2
cache coherence,i®2
data acces92
instruction acces92
memory management unit (MMU),i®2
restricted environmen®2
RED_state (RED) field of PSTATE registés3, 91, 93
RED_state processor state30, 258
RED_state trap tablel01
RED_state trap vectp®1, 92, 258
RED_state trap vector address (RSTVagdab3
reference MMU 6, 291
references345
reg, 291
reg_or_imm 296
reg_or_immfield of instructions 296, 321
reg_plus_imm295
regaddr, 295
register
allocation within a window307
destination 13
renaming mechanisni24
sets 29, 33
window usage models308
register reference instructions
data flow order constraint424
register window management instructip@¢
register windows4, 5, 15, 33, 301, 303
clean 9, 58, 60, 82, 86, 88, 114
fill, 33, 58, 59, 82, 83, 86, 87, 88, 114, 218, 219
spill, 33, 58, 59, 82, 83, 85, 86, 87, 88, 116, 218 219

registers
address space identifier (ASB9, 122, 157, 176, 181, 183, 207, 227, 232, 235, 245, 316
alternate global 15, 30, 30, 316
ancillary state registers (ASR<)8, 36, 60, 252, 321
ASI, 50, 56
clean windows (CLEANWIN) 58, 60, 82, 83, 86, 87, 88, 211, 242, 259
clock-tick (TICK), 116
condition codes register (CCR)6, 89, 137, 157, 202, 245
control and statys29, 35
current window pointer (CWRL5, 33, 56, 58, 58, 60, 87, 89, 157, 169, 211, 217, 218 242, 259
f, 36, 100, 247, 255
floating-point 16, 40, 255, 304
floating-point deferred-trap queue (F@12
floating-point registers state (FPRER, 215, 245
floating-point state (FSR®¥3, 48, 50, 174, 225, 247, 250, 254
frame pointer 302
global, 4, 15, 30, 30, 30, 303
IER (SPARC-V8) 245
in, 15, 30, 33, 217, 301
input/output (1/0) 18, 252
local, 15, 30, 33, 217, 302, 307
nonprivileged 30
other windows (OTHERWIN)58, 59, 60, 83, 86, 87, 169, 211, 218, 242, 259, 317
out, 15, 30, 33, 217, 301
out#7, 34, 151, 172 215
privileged 51
processor interrupt level (P1Lb4, 211, 242
processor state (PSTATE30, 51, 52, 56, 89, 157, 211, 242
PSR (SPARC-V8)245
PSTATE 91
r, 30, 253
r register
#15, 34, 151, 172, 215
restorable windows (CANRESTORE)6, 33, 58, 59, 60, 82, 83, 86, 87, 211, 218 219, 242, 259, 317
savable windows (CANSAVE)16, 33, 58, 59, 82, 83, 86, 87, 169, 211, 218 219, 242, 259
stack pointer301, 303
TBR (SPARC-V8) 245
TICK, 51, 211, 242
trap base address (TBA)4, 57, 89, 100, 211, 242
trap level (TL) 54, 54, 55, 56, 57, 60, 89, 94, 157, 211, 212, 219, 223, 242, 243
trap next program counter (TNPG5, 95, 113 211, 242
trap program counter (TPC)5, 95, 113 211, 212, 242
trap state (TSTATE)52, 56, 157, 211, 242
trap type (TT) 56, 57, 60, 101, 105, 110, 111, 211, 241, 242, 255
version register (VER)57, 211
WIM (SPARC-V8), 245
window state (WSTATE)58, 60, 87, 169, 211, 218 242, 316, 317
working, 29
Y, 35, 36, 154, 200, 202, 245
relaxed memory order (RMO) memory modg] 52, 119, 128 130, 257, 323
renaming mechanism
register 124
reorder unit 123
reordering

instruction 124
reserved 13
fields in instructions 133
instructions 85
opcodes 321
reset
externally initiated (XIR) 91, 93, 97, 111
externally _initiated (XIR), 91
externally initiated_reset (XIR), 56, 110
power_on_reset (POR) trap 116
power-on 51, 91, 92, 93, 97, 109
processing 91
request 91, 116
reset
trap, 51, 56, 96, 97
software_initiated (SIR), 91
software_initiated_reset (SIR), 97, 111, 116
software-initiateg 93, 97, 105
trap, 13, 51, 95, 97, 105, 255
trap table 13
watchdog 56, 91, 93, 94, 97, 109, 110, 111
Reset, Error, and Debug stag®
restorable windows (CANRESTORE) regist&6, 33, 58, 59, 60, 82, 83, 86, 87, 211, 218, 219, 242, 259, 317
RESTORE instruction6, 20, 33, 35, 58, 59, 82, 86, 114, 217, 303, 305, 306, 308
RESTORE synthetic instructior297
RESTORED instruction20, 83, 88, 218, 219, 316
restricted 13
restricted address space identifiéB, 74, 254
RET synthetic instruction297, 306
RETL synthetic instruction297, 306
RETRY instruction 20, 41, 42, 88, 89, 91, 95, 96, 97, 157, 218
return address302, 305
return from trap (DONE) instruction, sB®NE instruction
return from trap (RETRY) instruction, sSB&TRY instruction
RETURN instruction 19, 35, 114, 116, 216, 317
RMO, seeelaxed memory ordering (RMO) memory model
rounding
in signed division 155
rounding direction (RD) field of FSR registet4, 158, 161, 162, 163, 165, 166
routine
non-leaf 172
rslfield of instructions 13, 68, 137, 138, 152, 154, 158, 159, 165, 167, 172, 173, 176, 178, 180, 182, 183, 184,
192, 198, 199, 200, 202, 206, 211, 214, 216, 321
rs2field of instructions 13, 68, 137, 152, 154, 158, 159, 161, 162, 163, 164, 165, 166, 167, 172, 173, 176, 178,
180, 184, 189, 192 195, 198, 199, 200, 202, 205, 206
RSTVaddr 92, 101, 258

S

savable windows (CANSAVE) registet6, 33, 58, 59, 82, 83, 86, 87, 169, 211, 218 219, 242, 259

SAVE instruction 6, 20, 33, 35, 58, 59, 60, 82, 85, 86, 87, 114, 116, 172, 216, 217, 302, 303, 305, 306, 308
SAVE synthetic instruction297

SAVED instruction 20, 83, 88, 218, 219, 316

SDIV instruction 36, 154
SDIVce instruction 36, 154
SDIVX instruction 199
self-consistency
processagrl124
self-modifying code 167, 308
sequence_error floating-point trap typel0, 45, 46, 47, 61, 115, 212, 213
sequential consistency memory mqde20
SET synthetic instructigni297
SETHI instruction 19, 67, 76, 204, 220, 273, 297, 304
shall (special term)13
shared memoryl19, 325, 326, 327, 332
shift instructions 19, 76, 221
should (special term)13
side effects 13, 120, 121, 123
signal handler, seteap handler
signal monitor instruction223
signaling NaN (not-a-number3, 159, 160, 162, 248
signed integer data typ@3
sign-extended 64-bit constar@8
sign-extension299
SIGNX synthetic instruction299
simm10field of instructions 68, 198
simm11field of instructions 68, 195
simm1Jield of instructions 68, 137, 154, 167, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200, 202, 205, 206,
216
SIR instruction 89, 97, 111, 116, 223
SIR, seesoftware_initiated_reset (SIR)
SIR_enable control flag223, 258
SLL instruction 221
SLLX instruction 221, 297
SMUL instruction 36, 200
SMULcc instruction 36, 200
software conventions301
software trap 101, 101, 241
software_initiated_reset (SIR), 91, 97, 105, 108, 111, 116, 223
software_trap_number296
software-initiated_reseB3, 97
SPARC Architecture Committed
SPARC-V8 compatibility 4, 19, 30, 40, 43, 54, 58, 76, 78, 104, 114, 115, 116, 121, 137, 142, 145, 160, 170,
171, 174, 179, 181, 187, 215, 224, 226, 230, 232, 233, 237, 239, 241, 245, 322, 336
SPARC-V8 compatiblity 85
SPARC-V9 Application Binary Interface (ABIB, 7, 75
SPARC-V9 features4
SPARC-V9 memory modelsl28
SPARC-V9-NR 7
special terms
shall, 13
should 13
special traps90, 101
speculative load13
spill register window 33, 58, 59, 82, 83, 85, 86, 87, 88, 116, 218 219, 316
spill windows 217
spill_n_normal exception98, 116, 169, 218

spill_n_other exception116, 169, 218

spin lock 327

SRA instruction 221, 299

SRAX instruction 221

SRL instruction 221

SRLX instruction 221

ST instruction 299

stack frame 217

stack pointer alignmenB04

stack pointer registe301, 303

STB instruction 229, 231, 299

STBA instruction 229, 231

STBAR instruction 76, 125, 127, 187, 214, 224

STD instruction 35, 98, 117, 229, 231, 257

STDA instruction 35, 61, 98, 229, 231, 257

STDF instruction 70, 116, 225
STDF_mem_address_not_aligned exception 70, 98, 116, 226, 228, 257
STDFA instruction 70, 98, 227

STF instruction 225

STFSR instruction43, 45, 48, 50, 225

STH instruction 229, 231, 299

STHA instruction 229, 231

store floating-point instruction®225

store floating-point into alternate space instructj&#/
store instructions69, 323

store integer instruction®29, 231

StoreLoad MEMBAR relationshjpl27, 187

stores to alternate spachs, 50, 73, 341

StoreStore MEMBAR relationshjil27, 187

STQF instruction 70, 116, 225
STQF_mem_address_not_aligned exception 70, 116, 226, 228, 257
STQFA instruction 70, 227

strong consistency memory modé&R0, 325, 330
strong ordering, sesrong consistency memory model
STW instruction 229, 231

STWA instruction 229, 231

STX instruction 98, 229, 231

STXA instruction 98, 229, 231

STXFSR instruction43, 45, 48, 50, 225

SUB instruction 233, 299

SUBC instruction 233

SUBcc instruction 76, 233, 297

SUBCcc instruction233

subtract instructions233

SUBX instruction (SPARC-V8)233

SUBXcc instruction (SPARC-V8)233

supervisor softwarel3, 18, 30, 31, 46, 47, 48, 61, 89, 95, 105, 111, 243 249, 253 301, 315, 316, 317
supervisor-mode trap hand|er01

sw_trap#field of instructions 68

SWAP instruction 69, 127, 131, 182, 183, 234, 327
swapr register with alternate space memory instructi@s
swapr register with memory instruction452, 234
SWAPA instructionp 182, 183, 235

Sync MEMBAR relationship187

synthetic instructions2
BCLR, 299
BSET, 299
BTOG, 299
BTST, 299
CALL, 297
CAS, 299
CASX, 299
CLR, 299
CMP, 233, 297
DEC, 299
DECcg 299
INC, 299
INCcc, 299
IPREFETCH 297
JMP, 297
MOV, 299
NEG, 299
NOT, 299
RESTORE 297
RET, 297, 306
RETL, 297, 306
SAVE, 297
SET, 297
SIGNX, 299
TST, 297
synthetic instructions in assemhl&; 297
system call 316
system softwarel16, 122, 123, 132, 168, 255, 303, 304, 308, 309, 316, 317

T

TA instruction 278

TADDcc instruction 77, 237

TADDccTV instruction 77, 117, 237

tag overflow 77

tag_overflow exception 77, 98, 104, 117, 237, 239
tagged add instruction®37

tagged arithmetic77

tagged arithmetic instruction49

tagged word data formaP3

task switching, seeontext switching

TBR register (SPARC-V§)245

Tcc instructions 21, 41, 42, 66, 89, 101, 117, 240, 278
TCS instruction 278

TE instruction 278

TEM, seetrap enable mask (TEM) field of FSR register
test-and-set instructiori31

TG instruction 278

TGE instruction 278

TGU instruction 278

threads, semultithreaded software

Ticc instruction (SPARC-V§)241

TICK, seeclock-tick register (TICK)

timing
instruction 133
tininess (floating-point)49, 249, 256
TL instruction 278
TLB, seepage descriptor cache (PDC)
TLE instruction 278
TLE, seetrap_little_endian (TLE) field of PSTATE register
TLEU instruction 278
TN instruction 278
TNE instruction 278
TNEG instruction 278
total order 126
total store order (TSO) memory mogd8éP, 92, 119, 129, 130, 323
total unit
implementation-dependgn252
TPOS instruction278
Translation Lookaside Buffer (TLB), spage descriptor cache (PDC)
trap, 14, 21, 21, 89, 302
trap base address (TBA) registéd, 57, 89, 100, 211, 242
trap categories
deferred 95, 96, 99
disrupting 96, 97, 98
precise 95, 95, 96
reset 97
trap enable mask (TEM) field of FSR registé4, 48, 99, 100, 115, 254
trap handler 157
supervisor-model01
uset 46, 249, 317
trap leve] 54
trap level (TL) register54, 54, 55, 56, 57, 60, 89, 94, 157, 211, 212, 219, 223, 242, 243
trap mode| 97
trap next program counter (TNPC) registgb, 95, 113, 211, 242
trap on integer condition codes instructip@40
trap priorities 104
trap processing91, 105
trap program counter (TPC) registé&b, 95, 113 211, 212, 242
trap stack 5, 106
trap state (TSTATE) registeb2, 56, 157, 211, 242
trap type (TT) registers6, 57, 60, 90, 101, 105, 110, 111, 211, 241, 242, 255
trap types, also sesceptions
trap vector
RED_state 91
trap_instruction exception 98, 117, 241
trap_little_endian (TLE) field of PSTATE registé52, 52
traps
also seexceptions
causes?21
deferred 95, 254
disrupting 95, 254
hardware 101
implementation-dependegnt08
nesteqd 5
normal 90, 101, 106, 106, 108
precise 94, 95, 254

reset 56, 95, 96, 97, 105, 255
software 101, 241
software-initiated reset (SIR108
specia) 90, 101
window fill, 101
window spill, 101
TSO, sedotal store ordering (TSO) memory model
TST synthetic instruction297
TSUBcc instruction 77
TSUBccTV instruction 77, 117
TVC instruction 278
TVS instruction 278
typewriter font
in assembly language synta291

UDIV instruction, 36
UDIVcc instruction 36, 154
UDIVX instruction, 199
ufa, seeunderflow accrued (ufa) bit of aexc field of FSR register
ufc, seeunderflow current (ufc) bit of cexc field of FSR register
UFM, seeunderflow mask (UFM) bit of TEM field of FSR register
UMUL instruction, 36, 200
UMULcc instruction 36, 200
unassigned14
unconditional branched41, 144, 147, 149
undefined 14
underflow; 86
underflow accruedufa) bit of aexcfield of FSR register49, 249
underflow currentiffc) bit of cexcfield of FSR register48, 49, 249
underflow maskFM) bit of TEM field of FSR registerd8, 48, 49, 249
unfinished_FPop floating-point trap typel0, 46, 46, 50, 85, 247, 253
UNIMP instruction (SPARC-V8)170
unimplemented_FPop floating-point trap typel0, 46, 46, 50, 85, 191, 212, 247, 253
unimplemented_LDD exception 98, 117, 179, 181, 257
unimplemented_STD exception 98, 117, 230, 232, 257
unrestricte¢l 14
unrestricted address space identjfie4, 254, 317
unsigned integer data typ23
upper registers dirty (DU) field of FPRS registé?
user

mode 30, 48, 50, 223, 303

program 253

software 308

trap handler 46, 249, 317
user application program, sapplication program

V

V condition code bit, seaverflow (V) bit of condition fields of CCR
value
implementation-dependgr252

value semantics of input/output (1/O) locatipi®1
variables

automatic 302
ver, seeversion (ver) field of FSR register
version yer) field of FSR register45, 254
version register (VER)57, 211
virtual address120, 281, 282
virtual address aliasin@®88
virtual memory 209

walking the call chain303
watchdog resets6, 91, 93, 94, 97, 109, 110, 111
watchdog timer 109
watchdog_reset91
watchdog_reset (WDR), 108
WIM register (SPARC-V8) 245
window

clean 217
window fill exception 58, 60
window fill trap, 101
window fill trap handler 20
window overflow 33, 86, 316
window spill trap 101
window spill trap handler20
window state (WSTATE) registeb8, 60, 87, 169, 211, 218, 242, 316, 317
window underflow 33, 86
window _fill exception 59, 82, 216, 305
window_overflow exception 301
window_spill exception 58, 60
windows

register 303
windows, seeegister windows
word, 14, 17, 69, 121
word data format23
WRASI instruction 244
WRASR instruction 18, 61, 244, 256, 299, 321
WRCCR instruction41, 42, 244
WRFPRS instruction243, 244
WRIER instruction (SPARC-V8)245
write privileged register instructior242
write protection 282
write state register instruction244
write-after-read memory hazardi24
write-after-write memory hazayd 24
WRPR instruction 51, 52, 58, 85, 91, 242
WRPSR instruction (SPARC-V8p45
WRTBR instruction (SPARC-V8§)245
WRW!IM instruction (SPARC-V8) 245
WRY instruction 36, 244, 299
WTYPE subfield field of trap type fie|dl04

X

xccfield of CCR register4l, 137, 149, 155 156, 184, 196, 200, 203, 233, 237
XIR, seeexternally_initiated_reset (XIR)

XNOR instruction 184, 299

XNORCcec instruction 184

XOR instruction 184, 299

XORcc instruction 184

Y register 35, 36, 154, 200, 202, 245

Z

Z condition code bit, sezero (Z) bit of condition fields of CCR
zero) bit of condition fields of CCR41

	The SPARC Architecture Manual
	Contents
	Table 1— Double- and Quadwords in Memory & Registers
	Table 2— Signed Integer, Unsigned Integer, and Tagged Format Ranges
	Table 3— Floating-Point Single-Precision Format Definition
	Table 4— Floating-Point Double-Precision Format Definition
	Table 5— Floating-Point Quad-Precision Format Definition
	Table 6— Window Addressing
	Table 7— Floating-Point Register Number Encoding
	Table 8— Floating-Point Condition Codes (fccn) Fields of FSR
	Table 9— Rounding Direction (RD) Field of FSR
	Table 10— Floating-Point Trap Type (ftt) Field of FSR
	Table 11— Allowed Accesses to ASIs
	Table 12— Address Space Identifiers (ASIs)
	Table 13— Control Transfer Characteristics
	Table 14— Exception and Interrupt Requests, Sorted by TT Value
	Table 15— Exception and Interrupt Requests, Sorted by Priority (0 = Highest; 31 = Lowest)
	Table 16— Trap Received While in execute_state
	Table 17— Trap Received While in RED_state
	Table 18— Reset Received While in error_state
	Table 19— Ordering Relationships Selected by Mask
	Table 20— Sequencing Barrier Selected by Mask
	Table 21— Opcode Superscripts
	Table 22— Instruction Set �
	Table 23— UDIV / UDIVcc Overflow Detection and Value Returned
	Table 24— SDIV / SDIVcc Overflow Detection and Value Returned
	Table 25— MEMBAR mmask Encodings
	Table 26— MEMBAR cmask Encodings
	Table 27— Untrapped Floating-Point Results
	Table 28— Untrapped Floating-Point Underflow
	Table 29— Implementation Dependencies �
	Table 30— op[1:0]
	Table 31— op2[2:0]�(op�=�0)
	Table 32— op3[5:0]�(op�=�2)
	Table 33— op3[5:0]�(op�=�3)
	Table 34— opf[8:0]�(op�=�2,�op3�=�3416�=�FPop1)
	Table 35— Context Used for Data Access
	Table 36— Context Used for Instruction Access
	Table 37— Mapping Synthetic to SPARC-V9 Instructions �
	Table 38— Register Allocation within a Window
	Table 39— Prefetch Cost Tradeoffs
	Table 40— Cache Break-Even Points

