
32
The SPARC Architecture Manual

Version 9

SPARC International, Inc.
San Jose, California

David L. Weaver / Tom Germond

Editors

SAV09R1459912

PT R Prentice Hall, Englewood Cliffs, New Jersey 076

n any
t the

 to
r

SPARC® is a registered trademark of SPARC International, Inc.

The SPARC logo is a registered trademark of SPARC International, Inc.

UNIX® is a registered trademark of UNIX System Laboratories, Inc.

Copyright © 1994 SPARC International, Inc.

Published by PTR Prentice Hall
Prentice-Hall, Inc.
A Paramount Communications Company
Englewood Cliffs, New Jersey 07632

The publisher offers discounts on this book when ordered in bulk quantities. For more
information, contact:

Corporate Sales Department
PT R Prentice Hall
113 Sylvan Avenue
Englewood Cliffs, NJ 07632

Phone: (201) 592-2863
Fax: (201) 592-2249

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted i
form or by any means, electronic, mechanical, photocopying, recording or otherwise, withou
prior permission of the copyright owners.

Restricted rights legend: use, duplication, or disclosure by the U. S. Government is subject
restrictions set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Compute
Software clause atDFARS 52.227-7013 and in similar clauses in theFAR andNASA FAR Sup-
plement.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-825001-4

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto
PRENTICE-HALL HISPANOAMERICANA, S.A.,Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER ASIA PTE. LTD., Singapore
EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

Contents

Introduction ... xiii
0.1 SPARC .. xiii
0.2 Processor Needs for the 90s and Beyond .. xiv
0.3 SPARC-V9: A Robust RISC for the Next Century xiv

0.3.1 64-bit Data and Addresses ... xiv
0.3.2 Improved System Performance .. xv
0.3.3 Advanced Optimizing Compilers .. xvi
0.3.4 Advanced Superscalar Processors .. xvii
0.3.5 Advanced Operating Systems .. xvii
0.3.6 Fault Tolerance .. xviii
0.3.7 Fast Traps and Context Switching ... xviii
0.3.8 Big- and Little-Endian Byte Orders ... xix

0.4 Summary ... xix

Editors’ Notes .. xxi
Acknowledgments ... xxi
Personal Notes .. xxi

1 Overview .. 1
1.1 Notes About this Book .. 1

1.1.1 Audience .. 1
1.1.2 Where to Start .. 1
1.1.3 Contents ... 1
1.1.4 Editorial Conventions .. 3

1.2 The SPARC-V9 Architecture ... 4
1.2.1 Features .. 4
1.2.2 Attributes .. 5
1.2.3 System Components .. 6
1.2.4 Binary Compatibility ... 6
1.2.5 Architectural Definition ... 7
1.2.6 SPARC-V9 Compliance .. 7

2 Definitions .. 9

3 Architectural Overview .. 15
3.1 SPARC-V9 Processor ... 15

3.1.1 Integer Unit (IU) .. 15
3.1.2 Floating-Point Unit (FPU) .. 16

3.2 Instructions .. 16
3.2.1 Memory Access ... 17

3.2.2 Arithmetic/Logical/Shift Instructions 19
3.2.3 Control Transfer ... 19
3.2.4 State Register Access ... 20
3.2.5 Floating-Point Operate ... 20
3.2.6 Conditional Move .. 20
3.2.7 Register Window Management .. 20

3.3 Traps ... 21

4 Data Formats ... 23
4.1 Signed Integer Byte ... 23
4.2 Signed Integer Halfword ... 24
4.3 Signed Integer Word ... 24
4.4 Signed Integer Double .. 24
4.5 Signed Extended Integer ... 24
4.6 Unsigned Integer Byte .. 24
4.7 Unsigned Integer Halfword ... 24
4.8 Unsigned Integer Word ... 25
4.9 Unsigned Integer Double .. 25
4.10 Unsigned Extended Integer ... 25
4.11 Tagged Word .. 25
4.12 Floating-Point Single Precision .. 25
4.13 Floating-Point Double Precision ... 26
4.14 Floating-Point Quad Precision .. 26

5 Registers... 29
5.1 Nonprivileged Registers .. 30

5.1.1 General Purposer Registers ... 30
5.1.2 Specialr Registers ... 34
5.1.3 IU Control/Status Registers ... 35
5.1.4 Floating-Point Registers .. 36
5.1.5 Condition Codes Register (CCR) .. 40
5.1.6 Floating-Point Registers State (FPRS) Register 42
5.1.7 Floating-Point State Register (FSR) .. 43
5.1.8 Address Space Identifier Register (ASI) 50
5.1.9 TICK Register (TICK) ... 50

5.2 Privileged Registers .. 51
5.2.1 Processor State Register (PSTATE) .. 51
5.2.2 Trap Level Register (TL) ... 54
5.2.3 Processor Interrupt Level (PIL) ... 54
5.2.4 Trap Program Counter (TPC) .. 55
5.2.5 Trap Next Program Counter (TNPC) 55

5.2.6 Trap State (TSTATE) .. 56
5.2.7 Trap Type Register (TT) .. 56
5.2.8 Trap Base Address (TBA) ... 57
5.2.9 Version Register (VER) ... 57
5.2.10 Register-Window State Registers .. 58
5.2.11 Ancillary State Registers (ASRs) ... 60
5.2.12 Floating-Point Deferred-Trap Queue (FQ) 61
5.2.13 IU Deferred-Trap Queue .. 61

6 Instructions .. 63
6.1 Instruction Execution .. 63
6.2 Instruction Formats ... 63

6.2.1 Instruction Fields ... 66
6.3 Instruction Categories ... 68

6.3.1 Memory Access Instructions .. 69
6.3.2 Memory Synchronization Instructions 76
6.3.3 Integer Arithmetic Instructions .. 76
6.3.4 Control-Transfer Instructions (CTIs) 77
6.3.5 Conditional Move Instructions .. 80
6.3.6 Register Window Management Instructions 82
6.3.7 State Register Access ... 84
6.3.8 Privileged Register Access .. 84
6.3.9 Floating-Point Operate (FPop) Instructions 84
6.3.10 Implementation-Dependent Instructions 85
6.3.11 Reserved Opcodes and Instruction Fields 85

6.4 Register Window Management ... 85
6.4.1 Register Window State Definition ... 85
6.4.2 Register Window Traps ... 86

7 Traps .. 89
7.1 Overview ... 89
7.2 Processor States, Normal and Special Traps ... 90

7.2.1 RED_state .. 90
7.2.2 Error_state .. 94

7.3 Trap Categories ... 94
7.3.1 Precise Traps .. 95
7.3.2 Deferred Traps ... 95
7.3.3 Disrupting Traps .. 96
7.3.4 Reset Traps ... 97
7.3.5 Uses of the Trap Categories ... 97

7.4 Trap Control .. 99

7.4.1 PIL Control .. 99
7.4.2 TEM Control .. 100

7.5 Trap-Table Entry Addresses ... 100
7.5.1 Trap Table Organization .. 101
7.5.2 Trap Type (TT) .. 101
7.5.3 Trap Priorities .. 104

7.6 Trap Processing ... 105
7.6.1 Normal Trap Processing ... 106
7.6.2 Special Trap Processing ... 108

7.7 Exception and Interrupt Descriptions ... 113

8 Memory Models .. 119
8.1 Introduction ... 119
8.2 Memory, Real Memory, and I/O Locations .. 120
8.3 Addressing and Alternate Address Spaces ... 121
8.4 The SPARC-V9 Memory Model .. 123

8.4.1 The SPARC-V9 Program Execution Model 123
8.4.2 The Processor/Memory Interface Model 125
8.4.3 The MEMBAR Instruction .. 126
8.4.4 Memory Models ... 128
8.4.5 Mode Control ... 129
8.4.6 Hardware Primitives for Mutual Exclusion 130
8.4.7 Synchronizing Instruction and Data Memory 131

A Instruction Definitions (Normative) .. 133
A.1 Overview ... 133
A.2 Add .. 137
A.3 Branch on Integer Register with Prediction (BPr) 138
A.4 Branch on Floating-Point Condition Codes (FBfcc) 140
A.5 Branch on Floating-Point Condition Codes with Prediction (FBPfcc) ... 143
A.6 Branch on Integer Condition Codes (Bicc) ... 146
A.7 Branch on Integer Condition Codes with Prediction (BPcc) 148
A.8 Call and Link ... 151
A.9 Compare and Swap ... 152
A.10 Divide (64-bit / 32-bit) .. 154
A.11 DONE and RETRY ... 157
A.12 Floating-Point Add and Subtract .. 158
A.13 Floating-Point Compare .. 159
A.14 Convert Floating-Point to Integer ... 161
A.15 Convert Between Floating-Point Formats .. 162
A.16 Convert Integer to Floating-Point ... 163

A.17 Floating-Point Move ... 164
A.18 Floating-Point Multiply and Divide .. 165
A.19 Floating-Point Square Root ... 166
A.20 Flush Instruction Memory .. 167
A.21 Flush Register Windows .. 169
A.22 Illegal Instruction Trap ... 170
A.23 Implementation-Dependent Instructions ... 171
A.24 Jump and Link ... 172
A.25 Load Floating-Point .. 173
A.26 Load Floating-Point from Alternate Space ... 176
A.27 Load Integer .. 178
A.28 Load Integer from Alternate Space ... 180
A.29 Load-Store Unsigned Byte .. 182
A.30 Load-Store Unsigned Byte to Alternate Space 183
A.31 Logical Operations .. 184
A.32 Memory Barrier .. 186
A.33 Move Floating-Point Register on Condition (FMOVcc) 188
A.34 Move F-P Register on Integer Register Condition (FMOVr) 192
A.35 Move Integer Register on Condition (MOVcc) 194
A.36 Move Integer Register on Register Condition (MOVR) 198
A.37 Multiply and Divide (64-bit) ... 199
A.38 Multiply (32-bit) ... 200
A.39 Multiply Step .. 202
A.40 No Operation ... 204
A.41 Population Count .. 205
A.42 Prefetch Data ... 206

A.42.1 Prefetch Variants .. 207
A.42.2 General Comments ... 209

A.43 Read Privileged Register ... 211
A.44 Read State Register ... 214
A.45 RETURN ... 216
A.46 SAVE and RESTORE ... 217
A.47 SAVED and RESTORED ... 219
A.48 SETHI ... 220
A.49 Shift ... 221
A.50 Software-Initiated Reset .. 223
A.51 Store Barrier .. 224
A.52 Store Floating-Point .. 225
A.53 Store Floating-Point into Alternate Space .. 227
A.54 Store Integer .. 229

A.55 Store Integer into Alternate Space .. 231
A.56 Subtract ... 233
A.57 Swap Register with Memory .. 234
A.58 Swap Register with Alternate Space Memory .. 235
A.59 Tagged Add .. 237
A.60 Tagged Subtract .. 238
A.61 Trap on Integer Condition Codes (Tcc) .. 240
A.62 Write Privileged Register .. 242
A.63 Write State Register .. 244

B IEEE Std 754-1985 Requirements for SPARC-V9 (Normative).................. 247
B.1 Traps Inhibit Results ... 247
B.2 NaN Operand and Result Definitions ... 248

B.2.1 Untrapped Result in Different Format from Operands 248
B.2.2 Untrapped Result in Same Format as Operands 248

B.3 Trapped Underflow Definition (UFM = 1) ... 249
B.4 Untrapped Underflow Definition (UFM = 0) ... 249
B.5 Integer Overflow Definition ... 250
B.6 Floating-Point Nonstandard Mode .. 250

C SPARC-V9 Implementation Dependencies (Normative).............................. 251
C.1 Definition of an Implementation Dependency .. 251
C.2 Hardware Characteristics .. 251
C.3 Implementation Dependency Categories .. 252
C.4 List of Implementation Dependencies .. 252

D Formal Specification of the Memory Models (Normative)........................... 261
D.1 Processors and Memory .. 261
D.2 An Overview of the Memory Model Specification 262
D.3 Memory Transactions ... 263

D.3.1 Memory Transactions .. 263
D.3.2 Program Order ... 263
D.3.3 Dependence Order ... 264
D.3.4 Memory Order ... 265

D.4 Specification of Relaxed Memory Order (RMO) 265
D.4.1 Value Atomicity ... 265
D.4.2 Store Atomicity .. 266
D.4.3 Atomic Memory Transactions ... 266
D.4.4 Memory Order Constraints .. 266
D.4.5 Value of Memory Transactions ... 266
D.4.6 Termination of Memory Transactions 267

D.4.7 Flush Memory Transaction .. 267
D.5 Specification of Partial Store Order (PSO) ... 267
D.6 Specification of Total Store Order (TSO) ... 267
D.7 Examples Of Program Executions .. 267

D.7.1 Observation of Store Atomicity ... 267
D.7.2 Dekker’s Algorithm ... 269
D.7.3 Indirection Through Processors ... 269
D.7.4 PSO Behavior ... 270
D.7.5 Application to Compilers ... 271
D.7.6 Verifying Memory Models .. 272

E Opcode Maps (Normative)... 273
E.1 Overview ... 273
E.2 Tables .. 273

F SPARC-V9 MMU Requirements (Informative) ... 281
F.1 Introduction ... 281

F.1.1 Definitions .. 281
F.2 Overview ... 281
F.3 The Processor-MMU Interface ... 282

F.3.1 Information the MMU Expects from the Processor 283
F.3.2 Attributes the MMU Associates with Each Mapping 284
F.3.3 Information the MMU Sends to the Processor 284

F.4 Components of the SPARC-V9 MMU Architecture 285
F.4.1 Virtual-to-Physical Address Translation 285
F.4.2 Memory Protection .. 286
F.4.3 Prefetch and Non-Faulting Load Violation 286
F.4.4 Contexts ... 286
F.4.5 Fault Status and Fault Address .. 287
F.4.6 Referenced and Modified Statistics ... 288

F.5 RED_state Processing ... 288
F.6 Virtual Address Aliasing ... 288
F.7 MMU Demap Operation ... 288
F.8 SPARC-V9 Systems without an MMU .. 289

G Suggested Assembly Language Syntax (Informative).................................. 291
G.1 Notation Used ... 291

G.1.1 Register Names .. 291
G.1.2 Special Symbol Names .. 292
G.1.3 Values .. 294
G.1.4 Labels ... 295

G.1.5 Other Operand Syntax .. 295
G.1.6 Comments .. 296

G.2 Syntax Design ... 296
G.3 Synthetic Instructions ... 297

H Software Considerations (Informative) ... 301
H.1 Nonprivileged Software .. 301

H.1.1 Registers ... 301
H.1.2 Leaf-Procedure Optimization .. 304
H.1.3 Example Code for a Procedure Call ... 306
H.1.4 Register Allocation within a Window 307
H.1.5 Other Register-Window-Usage Models 308
H.1.6 Self-Modifying Code .. 308
H.1.7 Thread Management .. 309
H.1.8 Minimizing Branch Latency .. 309
H.1.9 Prefetch .. 310
H.1.10 Nonfaulting Load ... 313

H.2 Supervisor Software .. 315
H.2.1 Trap Handling .. 315
H.2.2 Example Code for Spill Handler .. 316
H.2.3 Client-Server Model ... 316
H.2.4 User Trap Handlers .. 317

I Extending the SPARC-V9 Architecture (Informative) 321
I.1 Addition of SPARC-V9 Extensions ... 321

I.1.1 Read/Write Ancillary State Registers (ASRs) 321
I.1.2 Implementation-Dependent and Reserved Opcodes 321

J Programming With the Memory Models (Informative) 323
J.1 Memory Operations .. 323
J.2 Memory Model Selection ... 324
J.3 Processors and Processes .. 324
J.4 Higher-Level Programming Languages and Memory Models 325
J.5 Portability And Recommended Programming Style 325
J.6 Spin Locks .. 327
J.7 Producer-Consumer Relationship ... 327
J.8 Process Switch Sequence .. 329
J.9 Dekker’s Algorithm .. 330
J.10 Code Patching ... 330
J.11 Fetch_and_Add ... 333
J.12 Barrier Synchronization .. 333

J.13 Linked List Insertion and Deletion ... 335
J.14 Communicating With I/O Devices .. 335

J.14.1 I/O Registers With Side Effects ... 337
J.14.2 The Control and Status Register (CSR) 337
J.14.3 The Descriptor ... 338
J.14.4 Lock-Controlled Access to a Device Register 338

K Changes From SPARC-V8 to SPARC-V9 (Informative) 339
K.1 Trap Model .. 339
K.2 Data Formats ... 340
K.3 Little-Endian Support .. 340
K.4 Registers .. 340
K.5 Alternate Space Access ... 341
K.6 Little-Endian Byte Order .. 341
K.7 Instruction Set ... 341
K.8 Memory Model ... 344

Bibliography .. 345
General References ... 345
Memory Model References ... 346
Prefetching .. 347

Index ... 349

t was
ber of

y the
it is
uring a

pany
ate on
ee has

en the
etitors.
rchi-
expect
oming

es-
ember
PARC
om-

rams.
ery

e same
ight to

1980s.
struc-
early
Introduction

Welcome to SPARC-V9, the most significant change to the SPARC architecture since i
announced in 1987. SPARC-V9 extends the addresses of SPARC to 64 bits and adds a num
new instructions and other enhancements to the architecture.1

SPARC-V9, like its predecessor SPARC-V8, is a microprocessor specification created b
SPARC Architecture Committee of SPARC International. SPARC-V9 is not a specific chip;
an architectural specification that can be implemented as a microprocessor by anyone sec
license from SPARC International.

SPARC International is a consortium of computer makers, with membership open to any com
in the world. Executive member companies each designate one voting member to particip
the SPARC Architecture Committee. Over the past several years, the architecture committ
been hard at work designing the next generation of the SPARC architecture.

Typically, microprocessors are designed and implemented in secret by a single company. Th
company spends succeeding years defending its proprietary rights in court against its comp
With SPARC, it is our intention to make it easy for anyone to design and implement to this a
tectural specification. Several SPARC-V9 implementations are already underway, and we
many more companies to design systems around this microprocessor standard in the c
years.

0.1 SPARC

SPARC stands for aScalableProcessorARChitecture. SPARC has been implemented in proc
sors used in a range of computers from laptops to supercomputers. SPARC International m
companies have implemented over a dozen different compatible microprocessors since S
was first announced—more than any other microprocessor family with this level of binary c
patibility. As a result, SPARC today boasts over 8000 compatible software application prog
SPARC-V9 maintains upwards binary compatibility for application software, which is a v
important feature.

Throughout the past six years, the SPARC architecture has served our needs well. But at th
time, VLSI technology, compiler techniques and users’ needs have changed. The time is r
upgrade SPARC for the coming decade.

0.2 Processor Needs for the 90s and Beyond

The design of Reduced Instruction Set Processors (RISC) began in earnest in the early
Early RISC processors typically were characterized by a load-store architecture, single in
tion-per-cycle execution, and 32-bit addressing. The instruction set architecture of these

1.For a complete list of changes between SPARC-V8 and SPARC-V9, see Appendix K.

80s,

ore for
nd yet
o the
plat-
rfaces.
eads,
liably

tion
aces or
nged
ht to
long

tury.
plicit

s. All
al new
n be

s com-
ade
RISC chips was well matched to the level of computer optimization available in the early 19
and provided a minimal interface for the UNIX™ operating system.

The computer industry has grown significantly in the last decade. Computer users need m
the 1990s than these early RISCs provided; they demand more powerful systems today, a
they continue to want their systems to have good performance growth and compatibility int
future.The applications of the future—highly interactive and distributed across multiple
forms—will require larger address spaces and more sophisticated operating system inte
Tomorrow’s architectures must provide better support for multiprocessors, lightweight thr
and object oriented programming. Modern computer systems must also perform more re
than in the past.

It is interesting to observe the evolution of RISC architectures. Without sufficient instruc
encoding, some microprocessors have been unable to provide for either larger address sp
new instruction functionality. Others have provided 64-bit addressing, but still have not cha
much from the RISCs of the 1980s. Fortunately, SPARC’s designers had sufficient foresig
allow for all of the changes we felt were needed to keep SPARC a viable architecture for the
term.

0.3 SPARC-V9: A Robust RISC for the Next Century

SPARC-V9 is a robust RISC architecture that will remain competitive well into the next cen
The SPARC-V9 architecture delivers on this promise by enhancing SPARC-V8 to provide ex
support for:

— 64-bit virtual addresses and 64-bit integer data

— Improved system performance

— Advanced optimizing compilers

— Superscalar implementations

— Advanced operating systems

— Fault tolerance

— Extremely fast trap handling and context switching

— Big- and little-endian byte orders

0.3.1 64-bit Data and Addresses

SPARC-V9 directly supports 64-bit virtual addresses and integer data sizes up to 64 bit
SPARC-V8 integer registers have been extended from 32 to 64 bits. There are also sever
instructions that explicitly manipulate 64-bit values. For example, 64-bit integer values ca
loaded and stored directly with the LDX and STX instructions.

Despite these changes, 64-bit SPARC-V9 microprocessors will be able to execute program
piled for 32-bit SPARC-V8 processors. The principles of two’s complement arithmetic m

eci-
its of
oces-
s will
pre-
2-bits
s. For

ilities,
f the
ll of the

We’ve
er per-
isters,

s to
gisters.
.

orted
ne by
ould
e new
ting-

ity of

ction.
ntial

t we
upward compatibility straightforward to accomplish. Arithmetic operations, for example, sp
fied arithmetic on registers, independent of the length of the register. The low order 32-b
arithmetic operations will continue to generate the same values they did on SPARC-V8 pr
sors. Since SPARC-V8 programs paid attention to only the low order 32-bits, these program
execute compatibly. Compatibility for SPARC-V9 was accomplished by making sure that all
viously existing instructions continued to generate exactly the same result in the low order 3
of registers. In some cases this meant adding new instructions to operate on 64-bit value
example, shift instructions now have an additional 64-bit form.

In order to take advantage of SPARC-V9’s extended addressing and advanced capab
SPARC-V8 programs must be recompiled. SPARC-V9 compilers will take full advantage o
new features of the architecture, extending the addressing range and providing access to a
added functionality.

0.3.2 Improved System Performance

Performance is one of the biggest concerns for both computer users and manufacturers.
changed some basic things in the architecture to allow SPARC-V9 systems to achieve high
formance. The new architecture contains 16 additional double-precision floating-point reg
bringing the total to 32. These additional registers reduce memory traffic, allowing program
run faster. The new floating-point registers are also addressable as eight quad-precision re
SPARC-V9’s support for a 128-bit quad floating-point format is unique for microprocessors

SPARC-V9 supports four floating-point condition code registers, where SPARC-V8 supp
only one. SPARC-V9 processors can provide more parallelism for a Superscalar machi
launching several instructions at a time. With only one condition code register, instructions w
have a serial dependence waiting for the single condition code register to be updated. Th
floating-point condition code registers allow SPARC-V9 processors to initiate up to four floa
point compares simultaneously.

We’ve also extended the instruction set to increase performance by adding:

— 64-bit integer multiply and divide instructions.

— Load and store floating-point quadword instructions.

— Software settable branch prediction, which gives the hardware a greater probabil
keeping the processor pipeline full.

— Branches on register value, which eliminate the need to execute a compare instru
This provides the appearance of multiple integer condition codes, eliminating a pote
bottleneck and creating similar possibilities for parallelism in integer calculations tha
obtained from multiple floating-point condition codes.

— Conditional move instructions, which allow many branches to be eliminated.

luded
ance.
mory
de to

program

e way
cision
tures,
load.

se the
ligned,
t the

his net

tions
loads
-out-of-
to make
larly

for
e the

one of
turn
n the
ces-
etter
xam-

her
s up
neck.
s, and
and
0.3.3 Advanced Optimizing Compilers

We expect to see many new optimizing compilers in the coming decade, and we have inc
features in SPARC-V9 that these compilers will be able to use to provide higher perform
SPARC-V9 software can explicitly prefetch data and instructions, thus reducing the me
latency, so a program need not wait as long for its code or data. If compilers generate co
prefetch code and data far enough in advance, the data can be available as soon as the
needs to use it, reducing cache miss penalties and pipeline stalls.

SPARC-V9 has support for loading data not aligned on “natural” boundaries. Because of th
the FORTRAN language is specified, compilers often cannot determine whether double-pre
floating-point data is aligned on doubleword boundaries in memory. In many RISC architec
FORTRAN compilers generate two single-precision loads instead of one double-precision
This can be a severe performance bottleneck. SPARC-V9 allows the compiler to always u
most efficient load and store instructions. On those rare occasions when the data is not a
the underlying architecture provides for a fast trap to return the requested data, withou
encumbrances of providing unaligned accesses directly in the memory system hardware. T
effect is higher performance on many FORTRAN programs.

SPARC-V9 also supports non-faulting loads, which allow compilers to move load instruc
ahead of conditional control structures that guard their use. The semantics of non-faulting
are the same as for other loads, except when a nonrecoverable fault such as an address
range error occurs. These faults are ignored, and hardware and system software cooperate
the load appear to complete normally, returning a zero result. This optimization is particu
useful when optimizing for superscalar processors. Consider this C program fragment:

if (p != NULL) x = *p + y;

With non-faulting loads, the load of*p can be moved up by the compiler to before the check
p != NULL , allowing overlapped execution. A normal load on many processors would caus
program to be aborted if this optimization was performed andp wasNULL. The effect is equiva-
lent to this transformation:

temp_register = *p;

if (p != NULL) x = temp_register + y;

Imagine a superscalar processor that could execute four instructions per cycle, but only
which could be a load or store. In a loop of eight instructions containing two loads, it might
out that without this transformation it would not be possible to schedule either of the loads i
first group of four instructions. In this case a third or possibly fourth clock cycle might be ne
sary for each loop iteration instead of the minimal two cycles. Improving opportunities for b
instruction scheduling could have made a factor of two difference in performance for this e
ple. Good instruction scheduling is critical.

Alias detection is a particularly difficult problem for compilers. If a compiler cannot tell whet
two pointers might point to the same value in memory, then it is not at liberty to move load
past previous store instructions. This can create a difficult instruction scheduling bottle
SPARC-V9 contains specific instructions to enable the hardware to detect pointer aliase
offers the compiler a simple solution to this difficult problem. Two pointers can be compared

xam-
his

ed up
ll pro-

gister
perfor-

ers are
three

eight
ade

nstru-
ARC’s

lend

ads,
All of
we’ve
pecify

upport
those

hine.
ftware;
ompila-

esign.
well.
than
r win-
ide a
t switch
r sup-
ss dif-
spaces
the results of this comparison stored in an integer register. The FMOVRZ instruction, for e
ple, will conditionally move a floating-point register based on the result of this prior test. T
instruction can be used to correct aliasing problems and allow load instructions to be mov
past stores. As with the previous example, this can make a significant difference in overa
gram performance.

Finally, we’ve added a TICK register, which is incremented once per machine cycle. This re
can be read by a user program to make simple and accurate measurements of program
mance.

0.3.4 Advanced Superscalar Processors

SPARC-V9 includes support for advanced Superscalar processor designs. CPU design
learning to execute more instructions per cycle every year with new pipelines. Two to
instructions at a time is becoming commonplace. We eventually expect to be able to execute
to sixteen instructions at a time with the SPARC architecture. To accomplish this, we’ve m
enhancements to provide better support for Superscalar execution.

Many of these changes were driven by the experience gained from implementing Texas I
ments’ SuperSPARC and Ross Technologies’ HyperSPARC, both Superscalar chips. SP
simple-to-decode, fixed-length instructions, and separate integer and floating-point units
themselves to Superscalar technology.

In addition, SPARC-V9 provides more floating-point registers, support for non-faulting lo
multiple condition codes, branch prediction, and branches on integer register contents.
these features allow for more parallelism within the processor. For the memory system,
added a sophisticated memory barrier instruction, which allows system programmers to s
the minimum synchronization needed to ensure correct operation.

0.3.5 Advanced Operating Systems

The operating system interface has been completely redesigned in SPARC-V9 to better s
operating systems of the 1990s. There are new privileged registers and a new structure to
registers, which makes it much simpler to access important control information in the mac
Remember, the change in the operating system interface has no effect on application so
user-level programs do not see these changes, and thus, are binary compatible without rec
tion.

Several changes were made to support the new microkernel style of operating system d
Nested trap levels allow more modular structuring of code, and are more efficient as
SPARC-V9 provides improved support for lightweight threads and faster context switching
was possible in previous SPARC architectures. We’ve accomplished this by making registe
dows more flexible than they were in earlier SPARC processors, allowing the kernel to prov
separate register bank to each running process. Thus, the processor can perform a contex
with essentially no overhead. The new register window implementation also provides bette
port for object-oriented operating systems by speeding up interprocess communication acro
ferent domains. There is a mechanism to provide efficient server access to client address

perating

very
el we
mory
pera-

gister
data
ent a

and
, but

First,
t fea-

cover
traps

rophic
ess is

. We
very

has a
e it can
onse

ine to
cause
om one
ment,
using user address space identifiers. The definition of a nucleus address space allows the o
system to exist in a different address space than that of the user program.

Earlier SPARC implementations supported multiprocessors; now we’ve added support for
large-scale multiprocessors, including a memory barrier instruction and a new memory mod
call relaxed memory order (RMO). These features allow SPARC-V9 CPUs to schedule me
operations to achieve high performance, while still doing the synchronization and locking o
tions needed for shared-memory multiprocessing.

Finally we’ve added architectural support that helps the operating system provide “clean” re
windows to its processes. A clean window is guaranteed to contain zeroes initially, and only
or addresses generated by the process during its lifetime. This makes it easier to implem
secure operating system, which must provide absolute isolation between its processes.

0.3.6 Fault Tolerance

Most existing microprocessor architectures do not provide explicit support for reliability
fault-tolerance. You might build a reliable and fault-tolerant machine without explicit support
providing it saves a lot of work, and the machine will cost less in the long run.

We’ve incorporated a number of features in SPARC-V9 to address these shortcomings.
we’ve added a compare-and-swap instruction. This instruction has well-known fault-toleran
tures and is also an efficient way to do multiprocessor synchronization.

We’ve also added support for multiple levels of nested traps, which allow systems to re
gracefully from various kinds of faults, and to contain more efficient trap handlers. Nested
are described in the next section.

Finally, we’ve added a special new processor state called RED_state, short forReset,Error and
Debug state. It fully defines the expected behavior when the system is faced with catast
errors, and during reset processing when it is returning to service. This level of robustn
required to build fault-tolerant systems.

0.3.7 Fast Traps and Context Switching

We have also worked hard to provide very fast traps and context switching in SPARC-V9
have re-architected the trap entry mechanism to transfer control into the trap handlers
quickly. We’ve also added eight new registers called “alternate globals,” so the trap handler
fresh register set to use immediately upon entry; the software need not store registers befor
begin to do its work. This allows very fast instruction emulation and very short interrupt resp
times.

We have also added support for multiple levels of nested traps. It is very useful for the mach
allow a trap handler to generate a trap. SPARC-V8 trap handlers were not allowed to
another trap. With support for nested traps, we have seen some trap handlers reduced fr
hundred instructions to less than twenty. Obviously, this creates a big performance improve
but it also allows a much simpler operating system design.

rocess
ty bits
ified

80x86
little-
mode
rder

ed 64-
anced
r mod-
lica-

stel-
has

9, we
We’ve also found a way to reduce the number of registers saved and restored between p
executions, which provides faster context switching. The architecture provides separate dir
for the original (lower) and the new (upper) floating-point registers. If a program has not mod
any register in one of the sets, there is no need to save that set during a context switch.

0.3.8 Big- and Little-Endian Byte Orders

Finally, we have provided support for data created on little-endian processors such as the
family. The architecture allows both user and supervisor code to explicitly access data in
endian byte order. It is also possible to change the default byte order to little-endian in user
only, in supervisor mode only, or in both. This allows SPARC-V9 to support mixed byte o
systems.

0.4 Summary

As you can see, SPARC-V9 is a significant advance over its predecessors. We have provid
bit data and addressing, support for fault tolerance, fast context switching, support for adv
compiler optimizations, efficient design for Superscalar processors, and a clean structure fo
ern operating systems. And we’ve done it all with 100% upwards binary compatibility for app
tion programs. We believe that this is a significant achievement.

In the future, we envision superior SPARC-V9 implementations providing high performance,
lar reliability, and excellent cost efficiency—just what computer users are asking for. SPARC
been the RISC leader for the last five years. With the changes we have made in SPARC-V
expect it to remain the RISC leader well into the next century.

Speaking for the Committee members, we sincerely hope that you profit from our work.

— David R. Ditzel

Chairman, SPARC Architecture Committee

over
mittee
avid
son,

l for

ugh-
rac-
ng,
uck
Steve
ann, J.

“Ace”
ion.

book

ief!)

archi-
of the
terests,
y
ave

mental
ecifi-
tless

s open
ithout
Editors’ Notes

Acknowledgments

The members of SPARC International’s Architecture Committee devoted a great deal of time
a period of three years designing the SPARC-V9 architecture. As of Summer 1993, the com
membership was: Dennis Allison, Hisashige Ando, Jack Benkual, Joel Boney (vice-chair), D
Ditzel (chair), Hisakazu Edamatsu, Kees Mage, Steve Krueger, Craig Nelson, Chris Thom
David Weaver, and Winfried Wilcke.

Joel Boney wrote the original “V9 Delta Documents” that supplied much of the new materia
this specification.

Others who have made significant contributions to SPARC-V9 include Greg Blanck, Jeff Bro
ton (former vice-chair), David Chase, Steve Chessin, Bob Cmelik, David Dill, Kourosh Gha
horloo, David Hough, Bill Joy, Ed Kelly, Steve Kleiman, Jaspal Kohli, Les Kohn, Shing Ko
Paul Loewenstein, Guillermo “Matute” Maturana, Mike McCammon, Bob Montoye, Ch
Narad, Andreas Nowatzyk, Seungjoon Park, David Patterson, Mike Powell, John Platko,
Richardson, Robert Setzer, Pradeep Sindhu, George Taylor, Marc Tremblay, Rudolf Usselm
J. Whelan, Malcolm Wing, and Robert Yung.

Joel Boney, Dennis Allison, Steve Chessin, and Steve Muchnick deserve distinction as
reviewers. They performed meticulous reviews, eliminating countless bugs in the specificat

Our thanks to all of the above people for their support, critiques, and contributions to this
over the last three years!

Personal Notes

Three years — that’s a long time to be in labor! It is with a great deal of pride (and frankly, rel
that I see this book go to print.

The SPARC Architecture Committee comprised roughly a dozen people, all top computer
tects in the industry, from diverse companies. Yet — and this was the most incredible part
whole process — this group was able to set aside personal egos and individual company in
and work not just as a committee, but as a realTeam. This kind of cooperation and synerg
doesn’t happen every day. Years from now, I’ll look back at this work and still be proud to h
been a part of this group, and of what we created. . . . “Way to go, gang — we done good!”

Special kudos are due Tom Germond, whose expertise and sharp eye for detail were instru
in preparing this book. He fearlessly performed a complex but accurate conversion of this sp
cation from one document-preparation system to a wildly different one. Tom made coun
improvements to the specification’s substance and style, and tenaciously followed numerou
technical issues through to resolution. This book would simply not have been the same w
him. Thanks for being there, Tom.

— David Weaver, Editor

ll-
been

special
stant
tails.
itor at

cre-
th all
Well, it’s three o’clock in the morning and I’m in the middle of yet another SPARC-V9 a
nighter. I haven’t lost this much sleep since my firstborn was first born. But I must say, it’s
great fun bringing this baby to life.

My deepest gratitude to every member of our team, and a tiny extra measure of thanks to a
few. To Joel Boney for his generous and unwavering support. To Dennis Allison for his con
striving for excellence and clarity. To Steve Muchnick for his astonishing mastery of the de
To Steve Chessin for always going to the heart of the issues. And to Jane Bonnell, our ed
Prentice-Hall, for helping us turn a technical specification into a real book.

And finally,warm thanks to Dave Weaver, a good friend and an easy person to work for. You
ated the opportunity for me to join the team, and you got me through the rough times wi
those great movie-and-hot-tub parties. Until next time....

— Tom Germond, Co-editor

tible
, but
tion

puter
ggers,
ftware

, then
ou.

en-
ng

.

l fea-

ion,
1 Overview
This specification defines a 64-bit architecture called SPARC-V9, which is upward-compa
with the existing 32-bit SPARC-V8 microprocessor architecture. This specification includes
is not limited to, the definition of the instruction set, register model, data types, instruc
opcodes, trap model, and memory model.

1.1 Notes About this Book

1.1.1 Audience

Audiences for this specification include implementors of the architecture, students of com
architecture, and developers of SPARC-V9 system software (simulators, compilers, debu
and operating systems, for example). Software developers who need to write SPARC-V9 so
in assembly language will also find this information useful.

1.1.2 Where to Start

If you are new to the SPARC architecture, read Chapter 2 and Chapter 3 for an overview
look into the subsequent chapters and appendixes for more details in areas of interest to y

If you are already familiar with SPARC-V8, you will want to review the list of changes in App
dix K, “Changes From SPARC-V8 to SPARC-V9.” For additional detail, review the followi
chapters:

— Chapter 5, “Registers,” for a description of the register set.

— Chapter 6, “Instructions,” for a description of the new instructions.

— Chapter 7, “Traps,” for a description of the trap model.

— Chapter 8, “Memory Models,” for a description of the memory models.

— Appendix A, “Instruction Definitions,” for descriptions of new or changed instructions

1.1.3 Contents

The manual contains these chapters:

— Chapter 1, “Overview,” describes the background, design philosophy, and high-leve
tures of the architecture.

— Chapter 2, “Definitions,” defines some of the terms used in the specification.

— Chapter 3, “Architectural Overview,” is an overview of the architecture: its organizat
instruction set, and trap model.

— Chapter 4, “Data Formats,” describes the supported data types.

— Chapter 5, “Registers,” describes the register set.

s,
struc-

ion

out

ion

RC-

tions
ts syn-
ce of

ider-

an

m-

ces
— Chapter 6, “Instructions,” describes the instruction set.

— Chapter 7, “Traps,” describes the trap model.

— Chapter 8, “Memory Models,” describes the memory models.

These appendixes follow the chapters:

— Appendix A, “Instruction Definitions,” contains definitions of all SPARC-V9 instruction
including tables showing the recommended assembly language syntax for each in
tion.

— Appendix B, “IEEE Std 754-1985 Requirements for SPARC-V9,” contains informat
about the SPARC-V9 implementation of the IEEE 754 floating-point standard.

— Appendix C, “SPARC-V9 Implementation Dependencies,” contains information ab
features that may differ among conforming implementations.

— Appendix D, “Formal Specification of the Memory Models,” contains a formal descript
of the memory models.

— Appendix E, “Opcode Maps,” contains tables detailing the encoding of all opcodes.

— Appendix F, “SPARC-V9 MMU Requirements,” describes the requirements that SPA
V9 imposes on Memory Management Units.

— Appendix G, “Suggested Assembly Language Syntax,” defines the syntactic conven
used in the appendixes for the suggested SPARC-V9 assembly language. It also lis
thetic instructions that may be supported by SPARC-V9 assemblers for the convenien
assembly language programmers.

— Appendix H, “Software Considerations,” contains general SPARC-V9 software cons
ations.

— Appendix I, “Extending the SPARC-V9 Architecture,” contains information on how
implementation can extend the instruction set or register set.

— Appendix J, “Programming With the Memory Models,” contains information on progra
ming with the SPARC-V9 memory models.

— Appendix K, “Changes From SPARC-V8 to SPARC-V9,” describes the differen
between SPARC-V8 and SPARC-V9.

A bibliography and an index complete the book.

. For

ome
struc-

he

. Note
phen.

“r[0]

ithin

ing

ent. For

tation
in
en-
1.1.4 Editorial Conventions

1.1.4.1 Fonts and Notational Conventions

Fonts are used as follows:

— Italic font is used for register names, instruction fields, and read-only register fields
example: “Thers1 field contains....”

— Typewriter font is used for literals and for software examples.

— Bold font is used for emphasis and the first time a word is defined. For example: “Apre-
cise trap is induced....”

— UPPER CASE items are acronyms, instruction names, or writable register fields. S
common acronyms appear in the glossary in Chapter 2. Note that names of some in
tions contain both upper- and lower-case letters.

— Italic sans serif font is used for exception and trap names. For example, “T
privileged_action exception....”

— Underbar characters join words in register, register field, exception, and trap names
that such words can be split across lines at the underbar without an intervening hy
For example: “This is true whenever the integer_condition_code field....”

— Reduced-size font is used in informational notes. See 1.1.4.4, “Informational Notes.”

The following notational conventions are used:

— Square brackets ‘[]’ indicate a numbered register in a register file. For example:
contains....”

— Angle brackets ‘< >’ indicate a bit number or colon-separated range of bit numbers w
a field. For example: “Bits FSR<29:28> and FSR<12> are....”

— Curly braces ‘{ }’ are used to indicate textual substitution. For example, the str
“ASI_PRIMARY{_LITTLE}” expands to “ASI_PRIMARY” and
“ASI_PRIMARY_LITTLE”.

— The symbol designates concatenation of bit vectors. A comma ‘,’ on the left side of an
assignment separates quantities that are concatenated for the purpose of assignm
example, if X, Y, and Z are 1-bit vectors, and the 2-bit vector T equals 112, then

(X, Y, Z) ← 0 T

results in X = 0, Y = 1, and Z = 1.

1.1.4.2 Implementation Dependencies

Definitions of SPARC-V9 architecture implementation dependencies are indicated by the no
“ IMPL. DEP. #nn : Some descriptive text.” The numbernn is used to enumerate the dependencies
Appendix C, “SPARC-V9 Implementation Dependencies.” References to SPARC-V9 implem

mbers
001
char-
e pre-

s in a

enta-

ple-

d on
per-

“reg-

oper-

egis-
used
tation dependencies are indicated by the notation “(impl. dep. #nn).” Appendix C lists the page
number on which each definition and reference occurs.

1.1.4.3 Notation for Numbers

Numbers throughout this specification are decimal (base-10) unless otherwise indicated. Nu
in other bases are followed by a numeric subscript indicating their base (for example, 12,
FFFF 000016). Long binary and hex numbers within the text have spaces inserted every four
acters to improve readability. Within C or assembly language examples, numbers may b
ceded by “0x” to indicate base-16 (hexadecimal) notation (for example,0xffff0000).

1.1.4.4 Informational Notes

This manual provides several different types of information in notes; the information appear
reduced-size font. The following are illustrations of the various note types:

Programming Note:
These contain incidental information about programming using the SPARC-V9 architecture.

Implementation Note:
These contain information that may be specific to an implementation or may differ in different implem
tions.

Compatibility Note:
These contain information about features of SPARC-V9 that may not be compatible with SPARC-V8 im
mentations.

1.2 The SPARC-V9 Architecture

1.2.1 Features

SPARC-V9 includes the following principal features:

— A linear address space with 64-bit addressing.

— Few and simple instruction formats: All instructions are 32 bits wide, and are aligne
32-bit boundaries in memory. Only load and store instructions access memory and
form I/O.

— Few addressing modes: A memory address is given as either “register + register” or
ister + immediate.”

— Triadic register addresses: Most computational instructions operate on two register
ands or one register and a constant, and place the result in a third register.

— A large windowed register file: At any one instant, a program sees 8 global integer r
ters plus a 24-register window of a larger register file. The windowed registers can be
as a cache of procedure arguments, local values, and return addresses.

ruc-
it), 32

ead-
mory
and

l; two
by pro-

sem-
ill be

ches
ce in

tains
makes

re to
he cor-

-
C-V9

ing,

ware
and

ARC
from
eley
— Floating-point: The architecture provides an IEEE 754-compatible floating-point inst
tion set, operating on a separate register file that provides 32 single-precision (32-b
double-precision (64-bit), 16 quad-precision (128-bit) registers, or a mixture thereof.

— Fast trap handlers: Traps are vectored through a table.

— Multiprocessor synchronization instructions: One instruction performs an atomic r
then-set-memory operation; another performs an atomic exchange-register-with-me
operation; another compares the contents of a register with a value in memory
exchanges memory with the contents of another register if the comparison was equa
others are used to synchronize the order of shared memory operations as observed
cessors.

— Predicted branches: The branch with prediction instructions allow the compiler or as
bly language programmer to give the hardware a hint about whether a branch w
taken.

— Branch elimination instructions: Several instructions can be used to eliminate bran
altogether (e.g., move on condition). Eliminating branches increases performan
superscalar and superpipelined implementations.

— Hardware trap stack: A hardware trap stack is provided to allow nested traps. It con
all of the machine state necessary to return to the previous trap level. The trap stack
the handling of faults and error conditions simpler, faster, and safer.

— Relaxed memory order (RMO) model: This weak memory model allows the hardwa
schedule memory accesses in almost any order, as long as the program computes t
rect result.

1.2.2 Attributes

SPARC-V9 is a CPUinstruction set architecture (ISA) derived from SPARC-V8; both architec
tures come from a reduced instruction set computer (RISC) lineage. As architectures, SPAR
and SPARC-V8 allow for a spectrum of chip and systemimplementationsat a variety of price/
performance points for a range of applications, including scientific/engineering, programm
real-time, and commercial.

1.2.2.1 Design Goals

SPARC-V9 is designed to be a target for optimizing compilers and high-performance hard
implementations. SPARC-V9 implementations provide exceptionally high execution rates
short time-to-market development schedules.

1.2.2.2 Register Windows

SPARC-V9 is derived from SPARC, which was formulated at Sun Microsystems in 1985. SP
is based on the RISC I and II designs engineered at the University of California at Berkeley
1980 through 1982. SPARC’s “register window” architecture, pioneered in the UC Berk

on in
. For
result

ervisor
ereby

pro-
RC-

return
and

priv-
.”

U),
fined by
r pro-
erating

ions.
or no
nd-

tware.
ed to
iffer-

ged
identi-
wn to

t is the
designs, allows for straightforward, high-performance compilers and a significant reducti
memory load/store instructions over other RISCs, particularly for large application programs
languages such as C++, where object-oriented programming is dominant, register windows
in an even greater reduction in instructions executed.

Note that supervisor software, not user programs, manages the register windows. The sup
can save a minimum number of registers (approximately 24) during a context switch, th
optimizing context-switch latency.

One major difference between SPARC-V9 and the Berkeley RISC I and II is that SPARC-V9
vides greater flexibility to a compiler in its assignment of registers to program variables. SPA
V9 is more flexible because register window management is not tied to procedure call and
instructions, as it is on the Berkeley machines. Instead, separate instructions (SAVE
RESTORE) provide register window management. The management of register windows by
ileged software is very different too, as discussed in Appendix H, “Software Considerations

1.2.3 System Components

The architecture allows for a spectrum of input/output (I/O), memory-management unit (MM
and cache system subarchitectures. SPARC-V9 assumes that these elements are best de
the specific requirements of particular systems. Note that they are invisible to nearly all use
grams, and the interfaces to them can be limited to localized modules in an associated op
system.

1.2.3.1 Reference MMU

The SPARC-V9 ISA does not mandate a single MMU design for all system implementat
Rather, designers are free to use the MMU that is most appropriate for their application,
MMU at all, if they wish. Appendix F, “SPARC-V9 MMU Requirements,” discusses the bou
ary conditions that a SPARC-V9 MMU is expected to satisfy.

1.2.3.2 Privileged Software

SPARC-V9 does not assume that all implementations must execute identical privileged sof
Thus, certain traits of an implementation that are visible to privileged software can be tailor
the requirements of the system. For example, SPARC-V9 allows for implementations with d
ent instruction concurrency and different trap hardware.

1.2.4 Binary Compatibility

The most important SPARC-V9 architectural mandate is binary compatibility of nonprivile
programs across implementations. Binaries executed in nonprivileged mode should behave
cally on all SPARC-V9 systems when those systems are running an operating system kno
provide a standard execution environment. One example of such a standard environmen
SPARC-V9 Application Binary Interface (ABI).

ates,
el. See

pli-

of this
ing to
ses of

These
ple-

,”

f any
porta-
the

an

only
ivileged

tips,
n imple-

n of

RC-
tified

any
user
Although different SPARC-V9 systems may execute nonprivileged programs at different r
they will generate the same results, as long as they are run under the same memory mod
Chapter 8, “Memory Models,” for more information.

Additionally, SPARC-V9 is designed to be binary upward-compatible from SPARC-V8 for ap
cations running in nonprivileged mode that conform to the SPARC-V8 ABI.

1.2.5 Architectural Definition

The SPARC Version 9 Architecture is defined by the chapters and normative appendixes
document. A correct implementation of the architecture interprets a program strictly accord
the rules and algorithms specified in the chapters and normative appendixes. Only two clas
deviations are permitted:

(1) Certain elements of the architecture are defined to be implementation-dependent.
elements include registers and operations that may vary from implementation to im
mentation, and are explicitly identified in this document using the notation “IMPL. DEP.
#NN: Some descriptive text.” Appendix C, “SPARC-V9 Implementation Dependencies
describes each of these references.

(2) Functional extensions are permitted, insofar as they do not change the behavior o
defined operation or register. Such extensions are discouraged, since they limit the
bility of applications from one implementation to another. Appendix I, “Extending
SPARC-V9 Architecture,” provides guidelines for incorporating enhancements in
implementation.

This document defines a nonprivileged subset, designated SPARC-V9-NP. This includes
those elements that may be executed or accessed while the processor is executing in nonpr
mode.

The informative appendixes provide supplementary information such as programming
expected usage, and assembly language syntax. These appendixes are not binding on a
mentation or user of a SPARC-V9 system.

The Architecture Committee of SPARC International has sole responsibility for clarificatio
the definitions in this document.

1.2.6 SPARC-V9 Compliance

SPARC International is responsible for certifying that implementations comply with the SPA
V9 Architecture. Two levels of compliance are distinguished; an implementation may be cer
at either level.

Level 1:
The implementation correctly interprets all of the nonprivileged instructions by
method, including direct execution, simulation, or emulation. This level supports
applications and is the architecture component of the SPARC-V9 ABI.

s by
nta-
com-

rrent
ted in

pects
epen-

om-

st:

licly.
Level 2:
The implementation correctly interprets both nonprivileged and privileged instruction
any method, including direct execution, simulation, or emulation. A Level 2 impleme
tion includes all hardware, supporting software, and firmware necessary to provide a
plete and correct implementation.

Note that a Level-2-compliant implementation is also Level-1-compliant.

IMPL. DEP. #1: Whether an instruction is implemented directly by hardware, simulated by software, or
emulated by firmware is implementation-dependent.

SPARC International publishes a document, <Italic>Implementation Characteristics of Cu
SPARC-V9-based Products, Revision 9.x, listing which instructions are simulated or emula
existing SPARC-V9 implementations.

Compliant implementations shall not add to or deviate from this standard except in as
described as implementation-dependent. See Appendix C, “SPARC-V9 Implementation D
dencies.”

An implementation may be claimed to be compliant only if it has been

(1) Submitted to SPARC International for testing, and

(2) Issued a Certificate of Compliance by S. I.

A system incorporating a certified implementation may also claim compliance. A claim of c
pliance must designate the level of compliance.

Prior to testing, a statement must be submitted for each implementation; this statement mu

— Resolve the implementation dependencies listed in Appendix C

— Identify the presence (but not necessarily the function) of any extensions

— Designate any instructions that require emulation

These statements become the property of SPARC International, and may be released pub

in this

ach

ot be

the
ddress

lid
e.

has
pleted

store
erwrit-

n-

ting

ni-
essor
2 Definitions
The following subsections define some of the most important words and acronyms used
manual

2.1 address space identifier: An eight-bit value that identifies an address space. For e
instruction or data access, theinteger unit appends an ASI to the address.See also:
implicit ASI .

2.2 ASI: Abbreviation foraddress space identifier.

2.3 application program: A program executed with the processor innonprivileged mode.
Note that statements made in this document regarding application programs may n
applicable to programs (for example, debuggers) that have access toprivileged processor
state (for example, as stored in a memory-image dump).

2.4 big-endian: An addressing convention. Within a multiple-byte integer, the byte with
smallest address is the most significant; a byte’s significance decreases as its a
increases.

2.5 byte: Eight consecutive bits of data.

2.6 clean window: A register window in which all of the registers contain either zero, a va
address from the current address space, or valid data from the current address spac

2.7 completed: A memory transaction is said to be completed when an idealized memory
executed the transaction with respect to all processors. A load is considered com
when no subsequent memory transaction can affect the value returned by the load. A
is considered completed when no subsequent load can return the value that was ov
ten by the store.

2.8 current window : The block of 24r registersthat is currently in use. The Current Window
Pointer (CWP) register points to the current window.

2.9 dispatch: Issue a fetched instruction to one or more functional units for execution.

2.10 doublet: Two bytes (16 bits) of data.

2.11 doubleword: An alignedoctlet. Note that the definition of this term is architecture-depe
dent and may differ from that used in other processor architectures.

2.12 exception: A condition that makes it impossible for the processor to continue execu
the current instruction stream without software intervention.

2.13 extended word: An aligned octlet, nominally containing integer data. Note that the defi
tion of this term is architecture-dependent and may differ from that used in other proc
architectures.

eci-

g-

td

he

-
clude

er-

n-

f an

ry
in the
from

-
e to the

ed
2.14 f register: A floating-point register. SPARC-V9 includes single- double- and quad- pr
sionf registers.

2.15 fccn: One of the floating-point condition code fields:fcc0, fcc1, fcc2, or fcc3.

2.16 floating-point exception: An exception that occurs during the execution of a floatin
point operate (FPop) instruction. The exceptions are:unfinished_FPop,
unimplemented_FPop, sequence_error, hardware_error, invalid_fp_register, and
IEEE_754_exception.

2.17 floating-point IEEE-754 exception: A floating-point exception, as specified by IEEE S
754-1985. Listed within this manual asIEEE_754_exception.

2.18 floating-point trap type : The specific type of floating-point exception, encoded in t
FSR.ftt field.

2.19 floating-point operate (FPop) instructions: Instructions that perform floating-point cal
culations, as defined by the FPop1 and FPop2 opcodes. FPop instructions do not in
FBfcc instructions, or loads and stores between memory and thefloating-point unit .

2.20 floating-point unit : A processing unit that contains the floating-point registers and p
forms floating-point operations, as defined by this specification.

2.21 FPU: Abbreviation forfloating-point unit .

2.22 halfword : An aligneddoublet. Note that the definition of this term is architecture-depe
dent and may differ from that used in other processor architectures.

2.23 hexlet: Sixteen bytes (128 bits) of data.

2.24 implementation: Hardware and/or software that conforms to all of the specifications o
ISA.

2.25 implementation-dependent: An aspect of the architecture that may legitimately va
among implementations. In many cases, the permitted range of variation is specified
standard. When a range is specified, compliant implementations shall not deviate
that range.

2.26 implicit ASI : Theaddress space identifierthat is supplied by the hardware on all instruc
tion accesses, and on data accesses that do not contain an explicit ASI or a referenc
contents of the ASI register.

2.27 informative appendix: An appendix containing information that is useful but not requir
to create an implementation that conforms to the SPARC-V9 specification.See also: nor-
mative appendix.

2.28 initiated . See issued.

d
algo-

es,

on-
by this

vice.

to be
e com-

hat

the
ddress

y”

be

of

hen
s

rivi-
privi-
2.29 instruction field: A bit field within an instruction word.

2.30 instruction set architecture (ISA): An ISA defines instructions, registers, instruction an
data memory, the effect of executed instructions on the registers and memory, and an
rithm for controlling instruction execution. An ISA does not define clock cycle tim
cycles per instruction, data paths, etc. This specification defines an ISA.

2.31 integer unit: A processing unit that performs integer and control-flow operations and c
tains general-purpose integer registers and processor state registers, as defined
specification.

2.32 interrupt request: A request for service presented to the processor by an external de

2.33 IU : Abbreviation forinteger unit.

2.34 ISA: Abbreviation forinstruction set architecture.

2.35 issued: In reference to memory transaction, a load, store, or atomic load-store is said
issued when a processor has sent the transaction to the memory subsystem and th
pletion of the request is out of the processor’s control.Synonym: initiated .

2.36 leaf procedure: A procedure that is a leaf in the program’s call graph; that is, one t
does not call (using CALL or JMPL) any other procedures.

2.37 little-endian: An addressing convention. Within a multiple-byte integer, the byte with
smallest address is the least significant; a byte’s significance increases as its a
increases.

2.38 may: A key word indicating flexibility of choice with no implied preference. Note: “ma
indicates that an action or operation is allowed, “can” indicates that it is possible.

2.39 must: Synonym: shall.

2.40 next program counter (nPC): A register that contains the address of the instruction to
executed next, if a trap does not occur.

2.41 non-faulting load: A load operation that will either complete correctly (in the absence
any faults) or will return a value (nominally zero) if a fault occurs.Seespeculative load.

2.42 nonprivileged: An adjective that describes (1) the state of the processor w
PSTATE.PRIV = 0, that is,nonprivileged mode; (2) processor state information that i
accessible to software while the processor is in eitherprivileged mode or nonprivileged
mode, for example, nonprivileged registers, nonprivileged ASRs, or, in general, nonp
leged state; (3) an instruction that can be executed when the processor is in either
leged mode or nonprivileged mode.

2.43 nonprivileged mode: The processor mode when PSTATE.PRIV = 0.See also: nonprivi-
leged.

an

een

at
able.
xternal

RIV
ft-

ters,
uted

tly

n-

ter.

1.
when

ruc-
chi-
on
liant
unde-

served
2.44 normative appendix: An appendix containing specifications that must be met by
implementation conforming to the SPARC-V9 specification.See also: informative
appendix.

2.45 NWINDOWS : The number of register windows present in an implementation.

2.46 octlet: Eight bytes (64 bits) of data. Not to be confused with an “octet,” which has b
commonly used to describe eight bits of data. In this document, the termbyte, rather than
octet, is used to describe eight bits of data.

2.47 opcode: A bit pattern that identifies a particular instruction.

2.48 prefetchable: An attribute of a memory location which indicates to an MMU th
PREFETCH operations to that location may be applied. Normal memory is prefetch
Nonprefetchable locations include those that, when read, change state or cause e
events to occur.See also: side effect.

2.49 privileged: An adjective that describes (1) the state of the processor when PSTATE.P
= 1, that is ,privileged mode; (2) processor state information that is accessible to so
ware only while the processor is in privileged mode, for example, privileged regis
privileged ASRs, or, in general, privileged state; (3) an instruction that can be exec
only when the processor is in privileged mode.

2.50 privileged mode: The processor mode when PSTATE.PRIV = 1.See also: nonprivileged.

2.51 processor: The combination of theinteger unit and thefloating-point unit .

2.52 program counter (PC): A register that contains the address of the instruction curren
being executed by theIU .

2.53 quadlet: Four bytes (32 bits) of data.

2.54 quadword: An alignedhexlet. Note that the definition of this term is architecture-depe
dent and may be different from that used in other processor architectures.

2.55 r register: An integer register. Also called a general purpose register or working regis

2.56 RED_state: Reset,Error, andDebug state. The processor state when PSTATE.RED =
A restricted execution environment used to process resets and traps that occur
TL = MAXTL – 1.

2.57 reserved: Used to describe an instruction field, certain bit combinations within an inst
tion field, or a register field that is reserved for definition by future versions of the ar
tecture. Reserved instruction fields shall read as zero, unless the implementati
supports extended instructions within the field. The behavior of SPARC-V9-comp
processors when they encounter non-zero values in reserved instruction fields is
fined.Reserved bit combinations within instruction fieldsare defined in Appendix A;
in all cases, SPARC-V9-compliant processors shall decode and trap on these re

s
zero

sume
l, fig-
s and

ess

uch
ant

a-

pri-
n I/O
have
en a

t is,
ula-
rent to

s,
n-

se to
ed
ci-

mple-
combinations.Reserved register fieldsshould always be written by software with value
of those fields previously read from that register, or with zeroes; they should read as
in hardware. Software intended to run on future versions of SPARC-V9 should not as
that these field will read as zero or any other particular value. Throughout this manua
ures and tables illustrating registers and instruction encodings indicate reserved field
combinations with an em dash ‘—’.

2.58 reset trap: A vectored transfer of control to privileged software through a fixed-addr
reset trap table. Reset traps cause entry intoRED_state.

2.59 restricted: An adjective used to describe anaddress space identifier(ASI) that may be
accessed only while the processor is operating inprivileged mode.

2.60 rs1, rs2, rd: The integer register operands of an instruction, wherers1 and rs2 are the
source registers andrd is the destination register.

2.61 shall: A key word indicating a mandatory requirement. Designers shall implement all s
mandatory requirements to ensure interoperability with other SPARC-V9-conform
products.Synonym: must.

2.62 should: A key word indicating flexibility of choice with a strongly preferred implement
tion. Synonym: it is recommended.

2.63 side effect: An operation has a side effect if it induces a secondary effect as well as its
mary effect. For example, access to an I/O location may cause a register value in a
device to change state or initiate an I/O operation. A memory location is deemed to
side effects if additional actions beyond the reading or writing of data may occur wh
memory operation on that location is allowed to succeed.See also: prefetchable.

2.64 speculative load: A load operation that is issued by the processor speculatively, tha
before it is known whether the load will be executed in the flow of the program. Spec
tive accesses are used by hardware to speed program execution and are transpa
code. Contrast withnon-faulting load, which is an explict load that always complete
even in the presence of faults.Warning: some authors confuse speculative loads with no
faulting loads.

2.65 supervisor software: Software that executes when the processor is inprivileged mode.

2.66 trap : The action taken by the processor when it changes the instruction flow in respon
the presence of anexception, a Tcc instruction, or an interrupt. The action is a vector
transfer of control tosupervisor softwarethrough a table, the address of which is spe
fied by the privileged Trap Base Address (TBA) register.

2.67 unassigned: A value (for example, anaddress space identifier), the semantics of which
are not architecturally mandated and may be determined independently by each i
mentation within any guidelines given.

Soft-
d fea-

cause
nta-

ll not
e pro-

ent

and
orms
992.
egister
ess a

ncy
float-
gister

eged

of the
resses

ion for
2.68 undefined: An aspect of the architecture that has deliberately been left unspecified.
ware should have no expectation of, nor make any assumptions about, an undefine
ture or behavior. Use of such a feature may deliver random results, may or may not
a trap, may vary among implementations, and may vary with time on a given impleme
tion. Notwithstanding any of the above, undefined aspects of the architecture sha
cause security holes such as allowing user software to access privileged state, put th
cessor into supervisor mode, or put the processor into an unrecoverable state.

2.69 unrestricted: An adjective used to describe anaddress space identifierthat may be used
regardless of the processor mode, that is, regardless of the value of PSTATE.PRIV.

2.70 user application program: Synonym: application program.

2.71 word: An alignedquadlet. Note that the definition of this term is architecture-depend
and may differ from that used in other processor architectures.

3 Architectural Overview

SPARC-V9 is an instruction set architecture (ISA) with 32- and 64-bit integer and 32-, 64-
128-bit floating-point as its principal data types. The 32- and 64- bit floating point types conf
to IEEE Std 754-1985. The 128-bit floating-point type conforms to IEEE Std 1596.5-1
SPARC-V9 defines general-purpose integer, floating-point, and special state/status r
instructions, all encoded in 32-bit-wide instruction formats. The load/store instructions addr
linear, 264-byte address space.

3.1 SPARC-V9 Processor

A SPARC-V9 processor logically consists of an integer unit (IU) and a floating-point unit (FPU),
each with its own registers. This organization allows for implementations with concurre
between integer and floating-point instruction execution. Integer registers are 64 bits wide;
ing-point registers are 32, 64, or 128 bits wide. Instruction operands are single registers, re
pairs, register quadruples, or immediate constants.

The processor can be in either of two modes:privileged or nonprivileged. In privileged mode,
the processor can execute any instruction, including privileged instructions. In nonprivil
mode, an attempt to execute a privileged instruction causes a trap to privileged software.

3.1.1 Integer Unit (IU)

The integer unit contains the general-purpose registers and controls the overall operation
processor. The IU executes the integer arithmetic instructions and computes memory add
for loads and stores. It also maintains the program counters and controls instruction execut
the FPU.

to 8
ble

ssor
pec-
dows

field
cess.
or lit-
nging

sion)
hich
quad-
ingle-
quad-
nd the
ingle-
ision,
loat-

y. The

dard
ype

ener-
IMPL. DEP. #2: An implementation of the IU may contain from 64 to 528 general-purpose 64-bit r registers.
this corresponds to a grouping of the registers into 8 global r registers, 8 alternate global r registers, plus a
circular stack of from 3 to 32 sets of 16 registers each, known as register windows. Since the number of
register windows present (NWINDOWS) is implementation-dependent, the total number of registers is
implementation-dependent.

At a given time, an instruction can access the 8globals (or the 8alternate globals) and a register
window into ther registers. The 24-register window consists of a 16-register set — divided in
in and 8local registers — together with the 8in registers of an adjacent register set, addressa
from the current window as itsout registers. See figure 2 on page 32.

The current window is specified by the current window pointer (CWP) register. The proce
detects window spill and fill exceptions via the CANSAVE and CANRESTORE registers, res
tively, which are controlled by hardware and supervisor software. The actual number of win
in a SPARC-V9 implementation is invisible to a user application program.

Whenever the IU accesses an instruction or datum in memory, it appends anaddress space iden-
tifier (ASI), to the address. All instruction accesses and most data accesses append animplict
ASI, but some instructions allow the inclusion of an explict ASI, either as an immediate
within the instruction, or from the ASI register. The ASI determines the byte order of the ac
All instructions are accessed in big-endian byte order; data can be referenced in either big-
tle-endian order. See 5.2.1, “Processor State Register (PSTATE),” for information about cha
the default byte order.

3.1.2 Floating-Point Unit (FPU)

The FPU has 32 32-bit (single-precision) floating-point registers, 32 64-bit (double-preci
floating-point registers, and 16 128-bit (quad-precision) floating-point registers, some of w
overlap. Double-precision values occupy an even-odd pair of single-precision registers, and
precision values occupy a quad-aligned group of four single-precision registers. The 32 s
precision registers, the lower half of the double-precision registers, and the lower half of the
precision registers overlay each other. The upper half of the double-precision registers a
upper half of the quad-precision registers overlay each other, but do not overlay any of the s
precision registers. Thus, the floating-point registers can hold a maximum of 32 single-prec
32 double-precision, or 16 quad-precision values. This is described in more detail in 5.1.4, “F
ing-Point Registers.”

Floating-point load/store instructions are used to move data between the FPU and memor
memory address is calculated by the IU. Floating-Pointoperate (FPop) instructions perform the
floating-point arithmetic operations and comparisons.

The floating-point instruction set and 32- and 64-bit data formats conform to the IEEE Stan
for Binary Floating-Point Arithmetic, IEEE Std 754-1985. The 128-bit floating-point data t
conforms to the IEEE Standard for Shared Data Formats, IEEE Std 1596.5-1992.

If an FPU is not present or is not enabled, an attempt to execute a floating-point instruction g
ates anfp_disabled trap. In either case, privileged-mode software must:

only
t
ASI to

word
-, 16-,
store

r syn-

uc-
es shall
daries.
occur,
”

— Enable the FPU and reexecute the trapping instruction, or

— Emulate the trapping instruction.

3.2 Instructions

Instructions fall into the following basic categories:

— Memory access

— Integer operate

— Control transfer

— State register access

— Floating-point operate

— Conditional move

— Register window management

These classes are discussed in the following subsections.

3.2.1 Memory Access

Load and store instructions and the atomic operations, CASX, SWAP, and LDSTUB, are the
instructions that access memory. They use twor registers or anr register and a signed 13-bi
immediate value to calculate a 64-bit, byte-aligned memory address. The IU appends an
this address.

The destination field of the load/store instruction specifies either one or twor registers, or one,
two, or fourf registers, that supply the data for a store or receive the data from a load.

Integer load and store instructions support byte, halfword (16-bit), word (32-bit), and double
(64-bit) accesses. Some versions of integer load instructions perform sign extension on 8
and 32-bit values as they are loaded into a 64-bit destination register. Floating-point load and
instructions support word, doubleword, and quadword memory accesses.

CAS, SWAP, and LDSTUB are special atomic memory access instructions that are used fo
chonization and memory updates by concurrent processes.

3.2.1.1 Memory Alignment Restrictions

Halfword accesses shall bealigned on 2-byte boundaries; word accesses (which include instr
tion fetches) shall be aligned on 4-byte boundaries; extended-word and doubleword access
be aligned on 8-byte boundaries; and quadword quantities shall be aligned on 16-byte boun
An improperly aligned address in a load, store, or load-store instruction causes a trap to
with the possible exception of cases described in 6.3.1.1, “Memory Alignment Restrictions.

word,
ing the

endian
ddress
reas-
rocessor
ian.

y

il-
imple-
rol, and
Address

TUB,

. The
ing are
es use
in mem-
d and
their
ilar

uctions,
SR,
3.2.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order by default: the address of a quadword, doubleword,
or halfword is the address of its most significant byte. Increasing the address means decreas
significance of the unit being accessed. All instruction accesses are performed using big-
byte order. SPARC-V9 also can support little-endian byte order for data accesses only: the a
of a quadword, doubleword, word, or halfword is the address of its least significant byte. Inc
ing the address means increasing the significance of the unit being accessed. See 5.2.1, P
State Register (PSTATE), for information about changing the implicit byte order to little-end

Addressing conventions are illustrated in figure 35 on page 71 and figure 36 on page 73.

3.2.1.3 Load/Store Alternate

Versions of load/store instructions, theload/store alternateinstructions, can specify an arbitrar
8-bit address space identifier for the load/store data access. Access to alternate spaces 0016..7F16

is restricted, and access to alternate spaces 8016..FF16 is unrestricted. Some of the ASIs are ava
able for implementation-dependent uses (impl. dep. #29). Supervisor software can use the
mentation-dependent ASIs to access special protected registers, such as MMU, cache cont
processor state registers, and other processor- or system-dependent values. See 6.3.1.3, “
Space Identifiers (ASIs),” for more information.

Alternate space addressing is also provided for the atomic memory access instructions, LDS
SWAP, and CASX.

3.2.1.4 Separate I and D Memories

Most of the specifications in this manual ignore the issues of memory mapping and caching
interpretation of addresses can be unified, in which case the same translations and cach
applied to both instructions and data, or they can be split, in which case instruction referenc
one translation mechanism and cache and data references another, although the same ma
ory is shared. In such split-memory systems, the coherency mechanism may be unifie
include both instructions and data, or it may be split. For this reason, programs that modify
own code (self-modifying code) must issue FLUSH instructions, or a system call with a sim
effect, to bring the instruction and data memories into a consistent state.

3.2.1.5 Input/Output

SPARC-V9 assumes that input/output registers are accessed via load/store alternate instr
normal load/store instructions, or read/write Ancillary State Register instructions (RDA
WRASR).

IMPL. DEP. #123: The semantic effect of accessing input/output (I/O) locations is implementation-depen-
dent.

AR.
r,”

shift
f two
eption,
a 32-

,
d.
et the

d are a
e (

ect
, the
hed

in log-
y.

e
if the
IMPL. DEP. #6: Whether the I/O registers can be accessed by nonprovileged code is implementation-
dependent.

IMPL. DEP. #7: The addresses and contents of I/O registers are implementation-dependent.

3.2.1.6 Memory Synchronization

Two instructions are used for synchronization of memory operations: FLUSH and MEMB
Their operation is explained in A.20, “Flush Instruction Memory,” and A.32, “Memory Barrie
respectively.

3.2.2 Arithmetic/Logical/Shift Instructions

The arithmetic/logical/shift instructions perform arithmetic, tagged arithmetic, logical, and
operations. With one exception, these instructions compute a result that is a function o
source operands; the result is either written into a destination register or discarded. The exc
SETHI, may be used in combination with another arithmentic or logical instruction to create
bit constant in anr register.

Shift instructions are used to shift the contents of anr register left or right by a given count. The
shift distance is specified by a constant in the instruction or by the contents of anr register.

The integer multiply instruction performs a 64× 64 → 64-bit operation. The integer division
instructions perform 64÷ 64 → 64-bit operations. In addition, for compatibility with SPARC-V8
32 × 32 → 64-bit multiply, 64÷ 32 → 32-bit divide, and multiply step instructions are include
Division by zero causes a trap. Some versions of the 32-bit multiply and divide instructions s
condition codes.

The tagged arithmetic instructions assume that the least-significant two bits of each operan
data-type tag. The nontrapping versions of these instructions set the integer condition codicc)
and extended integer condition code (xcc) overflow bits on 32-bit (icc) or 64-bit (xcc) arithmetic
overflow. In addition, if any of the operands’ tag bits are nonzero,icc is set. Thexccoverflow bit
is not affected by the tag bits.

3.2.3 Control Transfer

Control-transfer instructions (CTI s) include PC-relative branches and calls, register-indir
jumps, and conditional traps. Most of the control-transfer instructions are delayed; that is
instruction immediately following a control-transfer instruction in logical sequence is dispatc
before the control transfer to the target address is completed. Note that the next instruction
ical sequence may not be the instruction following the control-transfer instruction in memor

The instruction following a delayed control-transfer instruction is called adelay instruction. A bit
in a delayed control-transfer instruction (theannul bit) can cause the delay instruction to b
annulled (that is, to have no effect) if the branch is not taken (or in the “branch always” case,
branch is taken).

nulled
if it is

and
target

dis-
dis-
nt of
r to
led
o an

get

visible
ged
soft-
-

egis-
/shift
pecific
.

ation
inte-

.

Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an an
instruction could not cause any traps. SPARC-V9 does not require the delay instruction to be fetched
annulled.

Branch and CALL instructions use PC-relative displacements. The jump and link (JMPL)
return (RETURN) instructions use a register-indirect target address. They compute their
addresses as either the sum of twor registers, or the sum of anr register and a 13-bit signed
immediate value. The branch on condition codes without prediction instruction provides a
placement of±8 Mbytes; the branch on condition codes with prediction instruction provides a
placement of±1 Mbyte; the branch on register contents instruction provides a displaceme
±128 Kbytes, and the CALL instruction’s 30-bit word displacement allows a control transfe
any address within±2 gigabytes (±231 bytes). Note that when 32-bit address masking is enab
(see 5.2.1.7, “PSTATE_address_mask (AM)”), the CALL instruction may transfer control t
arbitrary 32-bit address. The return from privileged trap instructions (DONE and RETRY)
their target address from the appropriate TPC or TNPC register.

3.2.4 State Register Access

The read and write state register instructions read and write the contents of state registers
to nonprivileged software (Y, CCR, ASI, PC, TICK, and FPRS). The read and write privile
register instructions read and write the contents of state registers visible only to privileged
ware (TPC, TNPC, TSTATE, TT, TICK, TBA, PSTATE, TL, PIL, CWP, CANSAVE, CANRE
STORE, CLEANWIN, OTHERWIN, WSTATE, FPQ, and VER).

IMPL. DEP. #8: Software can use read/write ancillary state register instructions to read/write implementa-
tion-dependent processor registers (ASRs 16..31).

IMPL. DEP. #9: Which if any of the implementation-dependent read/write ancillary state register instruc-
tions (for ASRS 16..31) is privileged is implementation-dependent.

3.2.5 Floating-Point Operate

Floating-point operate (FPop) instructions perform all floating-point calculations; they are r
ter-to-register instructions that operate on the floating-point registers. Like arithmetic/logical
instructions, FPops compute a result that is a function of one or two source operands. S
floating-point operations are selected by a subfield of the FPop1/FPop2 instruction formats

3.2.6 Conditional Move

Conditional move instructions conditionally copy a value from a source register to a destin
register, depending on an integer or floating-point condition code or upon the contents of an
ger register. These instructions increase performance by reducing the number of branches

nprivi-
causes
D are

con-
ress
TBA).
of the
e traps
archi-

causes
ATE
l to the
ister,
mally,
ed to

duced
t-
excep-
eption
3.2.7 Register Window Management

These instructions are used to manage the register windows. SAVE and RESTORE are no
leged and cause a register window to be pushed or popped. FLUSHW is nonprivileged and
all of the windows except the current one to be flushed to memory. SAVED and RESTORE
used by privileged software to end a window spill or fill trap handler.

3.3 Traps

A trap is a vectored transfer of control to privileged software through a trap table that may
tain the first eight instructions (thirty-two for fill/spill traps) of each trap handler. The base add
of the table is established by software in a state register (the Trap Base Address register,
The displacement within the table is encoded in the type number of each trap and the level
trap. One half of the table is reserved for hardware traps; one quarter is reserved for softwar
generated by trap (Tcc) instructions; the final quarter is reserved for future expansion of the
tecture.

A trap causes the current PC and nPC to be saved in the TPC and TNPC registers. It also
the CCR, ASI, PSTATE, and CWP registers to be saved in TSTATE. TPC, TNPC, and TST
are entries in a hardware trap stack, where the number of entries in the trap stack is equa
number of trap levels supported (impl. dep. #101). A trap also sets bits in the PSTATE reg
one of which can enable an alternate set of global registers for use by the trap handler. Nor
the CWP is not changed by a trap; on a window spill or fill trap, however, the CWP is chang
point to the register window to be saved or restored.

A trap may be caused by a Tcc instruction, an asynchronous exception, an instruction-in
exception, or aninterrupt request not directly related to a particular instruction. Before execu
ing each instruction, the processor behaves as though it determines if there are any pending
tions or interrupt requests. If any are pending, the processor selects the highest-priority exc
or interrupt request and causes a trap.

See Chapter 7, “Traps,” for a complete description of traps.

4 Data Formats

The SPARC-V9 architecture recognizes these fundamental data types:

— Signed Integer: 8, 16, 32, and 64 bits

— Unsigned Integer: 8, 16, 32, and 64 bits

— Floating Point: 32, 64, and 128 bits

The widths of the data types are:

— Byte: 8 bits

— Halfword: 16 bits

surate
values
h their
rith-
g; the

rmats.
4, the
of the
ables 2
— Word: 32 bits

— Extended Word: 64 bits

— Tagged Word: 32 bits (30-bit value plus 2-bit tag)

— Doubleword: 64 bits

— Quadword: 128 bits

The signed integer values are stored as two’s-complement numbers with a width commen
with their range. Unsigned integer values, bit strings, boolean values, strings, and other
representable in binary form are stored as unsigned integers with a width commensurate wit
range. The floating-point formats conform to the IEEE Standard for Binary Floating-Point A
metic, IEEE Std 754-1985. In tagged words, the least significant two bits are treated as a ta
remaining 30 bits are treated as a signed integer.

Subsections 4.1 through 4.11 illustrate the signed integer, unsigned integer, and tagged fo
Subsections 4.12 through 4.14 illustrate the floating-point formats. In 4.4, 4.9, 4.13, and 4.1
individual subwords of the multiword data formats are assigned names. The arrangement
subformats in memory and processor registers based on these names is shown in table 1. T
through 5 define the integer and floating-point formats.

4.1 Signed Integer Byte

4.2 Signed Integer Halfword

4.3 Signed Integer Word

7 6 0

S

15 14 0

S

31 30 0

S

4.4 Signed Integer Double

4.5 Signed Extended Integer

SX

4.6 Unsigned Integer Byte

4.7 Unsigned Integer Halfword

4.8 Unsigned Integer Word

31 30 0

S signed_dbl_integer[62:32]

SD–0

SD–1

31 0

signed_dbl_integer[31:0]

63 62 0

S signed_ext_integer

7 0

15 0

31 0

4.9 Unsigned Integer Double

4.10 Unsigned Extended Integer

UX

4.11 Tagged Word

4.12 Floating-Point Single Precision

4.13 Floating-Point Double Precision

31 0

unsigned_dbl_integer[63:32]

UD–0

UD–1

31 0

unsigned_dbl_integer[31:0]

63 0

unsigned_ext_integer

31 0

tag

2 1

31 30 0

S exp[7:0] fraction[22:0]

2223

31 30 0

S exp[10:0] fraction[51:32]

1920

FD–0

FD–1
31 0

fraction[31:0]

t

4.14 Floating-Point Quad Precision

† Although a floating-point doubleword is only required to be word-aligned in memory, it is recommended
that it be doubleword-aligned (i.e., the address of its FD-0 word should be 0mod 8).

‡ Although a floating-point quadword is only required to be word-aligned in memory, it is recommended tha
it be quadword-aligned (i.e., the address of its FQ-0 word should be 0mod 16).

Table 1—Double- and Quadwords in Memory & Registers

Subformat
Name Subformat Field

Required
Address

Alignment

Memory
Address

Register
Number

Alignment

Register
Number

SD-0 signed_dbl_integer[63:32] 0mod 8 n 0 mod 2 r

SD-1 signed_dbl_integer[31:0] 4mod 8 n + 4 1mod 2 r + 1

SX signed_ext_integer[63:0] 0mod 8 n — r

UD-0 unsigned_dbl_integer[63:32] 0mod 8 n 0 mod 2 r

UD-1 unsigned_dbl_integer[31:0] 4mod 8 n + 4 1mod 2 r + 1

UX unsigned_ext_integer[63:0] 0mod 8 n — r

FD-0 s:exp[10:0]:fraction[51:32] 0mod 4 † n 0 mod 2 f

FD-1 fraction[31:0] 0mod 4 † n + 4 1mod 2 f + 1

FQ-0 s:exp[14:0]:fraction[111:96] 0mod 4 ‡ n 0 mod 4 f

FQ-1 fraction[95:64] 0mod 4 ‡ n + 4 1mod 4 f + 1

FQ-2 fraction[63:32] 0mod 4 ‡ n + 8 2mod 4 f + 2

FQ-3 fraction[31:0] 0mod 4 ‡ n + 12 3mod 4 f + 3

31 30 0

S exp[14:0] fraction[111:96]

1516

FQ–0

FQ–1

FQ–2

FQ–3

31 0

fraction[95:64]

31 0

fraction[63:32]

31 0

fraction[31:0]

Table 2—Signed Integer, Unsigned Integer, and Tagged Format Ranges

Data type Width (bits) Range

Signed integer byte 8 −27 to 27 − 1

Signed integer halfword 16 −215 to 215 − 1

Signed integer word 32 −231 to 231 − 1

Signed integer tagged word 32 −229 to 229 − 1

Signed integer double 64 −263 to 263− 1

Signed extended integer 64 −263 to 263 − 1

Unsigned integer byte 8 0 to 28 − 1

Unsigned integer halfword 16 0 to 216 − 1

Unsigned integer word 32 0 to 232 − 1

Unsigned integer tagged word 32 0 to 230 − 1

Unsigned integer double 64 0 to 264 − 1

Unsigned extended integer 64 0 to 264 − 1

Table 3—Floating-Point Single-Precision Format Definition

s = sign (1 bit)

e = biased exponent (8 bits)

f = fraction (23 bits)

u = undefined

Normalized value (0 < e < 255): (−1)s × 2e−127× 1.f

Subnormal value (e = 0): (−1)s × 2−126× 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s =u; e = 255 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e = 255 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 255 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 255 (max); f = .000--00

regis-
5 Registers

A SPARC-V9 processor includes two types of registers: general-purpose, or working data
ters, and control/status registers.

Working registers include:

— Integer working registers (r registers)

— Floating-point working registers (f registers)

Control/status registers include:

— Program Counter register (PC)

— Next Program Counter register (nPC)

Table 4—Floating-Point Double-Precision Format Definition

s = sign (1 bit)

e = biased exponent (11 bits)

f = fraction (52 bits)

u = undefined

Normalized value (0 < e < 2047): (−1)s × 2e−1023× 1.f

Subnormal value (e = 0): (−1)s × 2−1022× 0.f

Zero (e = 0) (−1)s × 0

Signalling NaN s =u; e = 2047 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e = 2047 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 2047 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 2047 (max); f = .000--00

Table 5—Floating-Point Quad-Precision Format Definition

s = sign (1 bit)

e = biased exponent (15 bits)

f = fraction (112 bits)

u = undefined

Normalized value (0 < e < 32767): (-1)s × 2e−16383× 1.f

Subnormal value (e = 0): (-1)s × 2−16382× 0.f

Zero (e = 0) (-1)s × 0

Signalling NaN s =u; e = 32767 (max); f = .0uu--uu
(At least one bit of the fraction must be nonzero)

Quiet NaN s =u; e = 32767 (max); f = .1uu--uu

− ∞ (negative infinity) s = 1; e = 32767 (max); f = .000--00

+ ∞ (positive infinity) s = 0; e = 32767 (max); f = .000--00

4)

ny bits
zeroes
usly
— Processor State register (PSTATE)

— Trap Base Address register (TBA)

— Y register (Y)

— Processor Interrupt Level register (PIL)

— Current Window Pointer register (CWP)

— Trap Type register (TT)

— Condition Codes Register (CCR)

— Address Space Identifier register (ASI)

— Trap Level register (TL)

— Trap Program Counter register (TPC)

— Trap Next Program Counter register (TNPC)

— Trap State register (TSTATE)

— Hardware clock-tick counter register (TICK)

— Savable windows register (CANSAVE)

— Restorable windows register (CANRESTORE)

— Other windows register (OTHERWIN)

— Clean windows register (CLEANWIN)

— Window State register (WSTATE)

— Version register (VER)

— Implementation-dependent Ancillary State Registers (ASRs) (impl. dep. #8)

— Implementation-dependent IU Deferred-Trap Queue (impl. dep. #16)

— Floating-Point State Register (FSR)

— Floating-Point Registers State register (FPRS)

— Implementation-dependent Floating-Point Deferred-Trap Queue (FQ) (impl. dep. #2

For convenience, some registers in this chapter are illustrated as fewer than 64 bits wide. A
not shown are reserved for future extensions to the architecture. Such reserved bits read as
and, when written by software, should always be written with the values of those bits previo
read from that register, or with zeroes.

user-

ure 1.

n-

gisters.
the

e AG

soft-
privi-
5.1 Nonprivileged Registers

The registers described in this subsection are visible to nonprivileged (application, or “
mode”) software.

5.1.1 General Purpose r Registers

At any moment, general-purpose registers appear to nonprivileged software as shown in fig

An implementation of the IU may contain from 64 to 528 general-purpose 64-bitr registers. They
are partitioned into 8global registers, 8alternate globalregisters, plus an implementation-depe
dent number of 16-register sets (impl. dep. #2). A register window consists of the current 8in reg-
isters, 8local registers, and 8out registers. See table 6.

5.1.1.1 Global r Registers

Registersr[0]..r[7] refer to a set of eight registers called the global registers (g0..g7). At any
time, one of two sets of eight registers is enabled and can be accessed as the global re
Which set of globals is currently enabled is selected by the AG (alternate global) field in
PSTATE register. See 5.2.1, “Processor State Register (PSTATE),” for a description of th
field.

Global register zero (g0) always reads as zero; writes to it have no program-visible effect.

Compatibility Note:
Since the PSTATE register is only writable by privileged software, existing nonprivileged SPARC-V8
ware will operate correctly on a SPARC-V9 implementation if supervisor software ensures that non
leged software sees a consistent set of global registers.

pendent
nor-

er
Figure 1—General-Purpose Registers (Nonprivileged View)

Programming Note:
The alternate global registers are present to give trap handlers a set of scratch registers that are inde
of nonprivileged software’s registers. The AG bit in PSTATE allows supervisor software to access the
mal global registers if required (for example, during instruction emulation).

5.1.1.2 Windowed r Registers

At any time, an instruction can access the 8globalsand a 24-registerwindow into ther registers.
A register window comprises the 8in and 8local registers of a particular register set, togeth

i7 r[31]

i6 r[30]

i5 r[29]

i4 r[28]

i3 r[27]

i2 r[26]

i1 r[25]

i0 r[24]

r[23]

r[22]

r[21]

r[20]

r[19]

r[18]

r[17]

r[16]

r[15]

r[14]

r[13]

r[12]

r[11]

r[10]

r[9]

r[8]

r[7]

r[6]

r[5]

r[4]

r[3]

r[2]

r[1]

r[0]

l7

l6

l5

l4

l3

l2

l1

l0

o7

o6

o5

o4

o3

o2

o1

o0

g7

g6

g5

g4

g3

g2

g1

g0

indow

es
e

with the 8in registers of an adjacent register set, which are addressable from the current w
asout registers. See figure 2 and table 6.

Figure 2—Three Overlapping Windows and the Eight Global Registers

The number of windows or register sets,NWINDOWS, is implementation-dependent and rang
from 3 to 32 (impl. dep. #2). The total number ofr registers in a given implementation is 8 (for th

Window (CWP – 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

Window (CWP + 1)

r[31]

r[24]

ins
.
.

r[23]

r[16]

locals
.
.

r[15]

r[8]

outs
.
.

r[7]

r[1]

globals
.
.

r[0] 0

63 0

the

er.
ction.
via

ver-

ss
-

nted

called

ber of

e that
exe-

SAVE
AN-
globals), plus 8 (for the alternateglobals), plus the number of sets times 16 registers/set. Thus,
minimum number ofr registers is 64 (3 sets plus the 16globalsand alternateglobals) and the
maximum number is 528 (32 sets plus the 16globals and alternateglobals).

The current window into ther registers is given by the current window pointer (CWP) regist
The CWP is decremented by the RESTORE instruction and incremented by the SAVE instru
Window overflow is detected via the CANSAVE register and window underflow is detected
the CANRESTORE register, both of which are controlled by privileged software. A window o
flow (underflow) condition causes a window spill (fill) trap.

5.1.1.3 Overlapping Windows

Each window shares itsins with one adjacent window and itsouts with another. Theouts of the
CWP–1 (modulo NWINDOWS) window are addressable as theins of the current window, and the
outs in the current window are theins of the CWP+1 (modulo NWINDOWS) window. Thelocals
are unique to each window.

An r register with addresso, where 8≤ o ≤ 15, refers to exactly the same register as (o+16) does
after the CWP is incremented by 1 (modulo NWINDOWS). Likewise, a register with addrei,
where 24≤ i ≤ 31, refers to exactly the same register as address (i −16) does after the CWP is dec
remented by 1 (modulo NWINDOWS). See figures 2 and 3.

Since CWP arithmetic is performed modulo NWINDOWS, the highest numbered impleme
window overlaps with window 0. Theouts of window NWINDOWS−1 are theins of window 0.
Implemented windows must be numbered contiguously from 0 through NWINDOWS−1.

Programming Note:
Since the procedure call instructions (CALL and JMPL) do not change the CWP, a procedure can be
without changing the window. See H.1.2, “Leaf-Procedure Optimization.”

Because the windows overlap, the number of windows available to software is one less than the num
implemented windows, or NWINDOWS−1. When the register file is full, theouts of the newest window are
the ins of the oldest window, which still contains valid data.

The local andout registers of a register window are guaranteed to contain either zeroes or an old valu
belongs to the current context upon reentering the window through a SAVE instruction. If a program
cutes a RESTORE followed by a SAVE, the resulting window’slocals andouts may not be valid after the
SAVE, since a trap may have occurred between the RESTORE and the SAVE. However, if theclean_window
protocol is being used, system software must guarantee that registers in the current window after a
will always contain only zeroes or valid data from that context. See 5.2.10.6, “Clean Windows (CLE
WIN) Register.”

Table 6—Window Addressing

Windowed Register Address r Register Address

in[0] – in[7] r[24] – r[31]

local[0] – local[7] r[16] – r[23]

out[0] – out[7] r[8] – r[15]

global[0] – global[7] r[0] – r[7]

isters
Subsection 6.4, “Register Window Management,” describes how the windowed integer reg
are managed.

Figure 3—The Windowedr Registers for NWINDOWS = 8

5.1.2 Special r Registers

The usage of two of ther registers is fixed, in whole or in part, by the architecture:

— The value ofr[0] is always zero; writes to it have no program-visible effect.

CWP = 0
(current window pointer)

w1 outs

w2 outs

w3 outs

w4 outs

w5 outs

w6 outs

w7 outs

w0 outsw0 locals

w0 ins

w1 locals

w1 ins

w3 locals

w3 ins

w5 locals

w5 ins

w4 locals

w4 ins

w6 locals

w2 locals

w2 ins

w7 locals

w7 ins

RESTORESAVE

w6 ins

(Overlap)

OTHERWIN = 2

CANRESTORE = 1

CANSAVE = 3

CANSAVE + CANRESTORE + OTHERWIN = NWINDOWS – 2

The current window (window 0) and the overlap window (window 4) account for the two windows
in the right-hand side of the equation. The “overlap window” is the window that must remain
unused because its ins and outs overlap two other valid windows.

32-

ned

,

he 32-
tate

holds
o bits

on is
nsfer
elay
ts to

fcc,
— The CALL instruction writes its own address into registerr[15] (out register 7).

5.1.2.1 Register-Pair Operands

LDD, LDDA, STD, and STDA instructions access a pair of words in adjacentr registers and
require even-odd register alignment. The least-significant bit of anr register number in these
instructions is reserved, and should be supplied as zero by software.

When ther[0] – r[1] register pair is used as a destination in LDD or LDDA, onlyr[1] is modified.
When ther[0] – r[1] register pair is used as a source in STD or STDA, a zero is written to the
bit word at the lowest address and the least significant 32 bits ofr[1] are written to the 32-bit word
at the highest address (in big-endian mode).

An attempt to execute an LDD, LDDA, STD, or STDA instruction that refers to a misalig
(odd) destination register number causes anillegal_instruction trap.

5.1.2.2 Register Usage

See H.1.1, “Registers,” for information about the conventional usage of ther registers.

In figure 3, NWINDOWS = 8. The 8globals are not illustrated. CWP = 0, CANSAVE = 3
OTHERWIN = 2, and CANRESTORE = 1. If the procedure using windoww0 executes a
RESTORE, windoww7becomes the current window. If the procedure using windoww0executes
a SAVE, windoww1 becomes the current window.

5.1.3 IU Control/Status Registers

The nonprivileged IU control/status registers include the program counters (PC and nPC), t
bit multiply/divide (Y) register (and possibly optional) implementation-dependent Ancillary S
Registers (ASRs) (impl. dep. #8).

5.1.3.1 Program Counters (PC, nPC)

The PC contains the address of the instruction currently being executed by the IU. The nPC
the address of the next instruction to be executed, if a trap does not occur. The low-order tw
of PC and nPC always contain zero.

For a delayed control transfer, the instruction that immediately follows the transfer instructi
known as the delay instruction. This delay instruction is executed (unless the control tra
instruction annuls it) before control is transferred to the target. During execution of the d
instruction, the nPC points to the target of the control transfer instruction, while the PC poin
the delay instruction. See Chapter 6, “Instructions.”

The PC is used implicitly as a destination register by CALL, Bicc, BPcc, BPr, FBfcc, FBP
JMPL, and RETURN instructions. It can be read directly by an RDPC instruction.

d of
iply
-

eger

may
,” for

d. The
e the
ting-
load/
5.1.3.2 32-Bit Multiply/Divide Register (Y)

Figure 4—Y Register

The low-order 32 bits of the Y register, illustrated in figure 4, contain the more significant wor
the 64-bit product of an integer multiplication, as a result of either a 32-bit integer mult
(SMUL, SMULcc, UMUL, UMULcc) instruction or an integer multiply step (MULScc) instruc
tion. The Y register also holds the more significant word of the 64-bit dividend for a 32-bit int
divide (SDIV, SDIVcc, UDIV, UDIVcc) instruction.

Although Y is a 64-bit register, its high-order 32 bits are reserved and always read as 0.

The Y register is read and written with the RDY and WRY instructions, respectively.

5.1.3.3 Ancillary State Registers (ASRs)

SPARC-V9 provides for optional ancillary state registers (ASRs). Access to a particular ASR
be privileged or nonprivileged (impl. dep. #9); see 5.2.11, “Ancillary State Registers (ASRs)
a more complete description of ASRs.

5.1.4 Floating-Point Registers

The FPU contains:

— 32 single-precision (32-bit) floating-point registers, numberedf[0], f [1], .. f[31].

— 32 double-precision (64-bit) floating-point registers, numberedf[0], f[2], .. f[62].

— 16 quad-precision (128-bit) floating-point registers, numberedf[0], f [4], .. f[60].

The floating-point registers are arranged so that some of them overlap, that is, are aliase
layout and numbering of the floating-point registers are shown in figures 5, 6, and 7. Unlik
windowedr registers, all of the floating-point registers are accessible at any time. The floa
point registers can be read and written by FPop (FPop1/FPop2 format) instructions, and by
store single/double/quad floating-point instructions.

The Y register is deprecated; it is provided only for compatibility with previous ver-
sions of the architecture. It should not be used in new SPARC-V9 software. It is
recommended that all instructions that reference the Y register (i.e., SMUL,
SMULcc, UMUL, UMULcc, MULScc, SDIV, SDIVcc, UDIV, UDIVcc, RDY, and
WRY) be avoided. See the appropriate pages in Appendix A, “Instruction Defini-
tions,” for suitable substitute instructions.

63 032 31

— product<63:32> or dividend<63:32>

Figure 5—Single-Precision Floating-Point Registers, with Aliasing

Operand
 register ID

Operand
from

f31 f31<31:0>
f30 f30<31:0>
f29 f29<31:0>
f28 f28<31:0>
f27 f27<31:0>
f26 f26<31:0>
f25 f25<31:0>
f24 f24<31:0>
f23 f23<31:0>
f22 f22<31:0>
f21 f21<31:0>
f20 f20<31:0>
f19 f19<31:0>
f18 f18<31:0>
f17 f17<31:0>
f16 f16<31:0>
f15 f15<31:0>
f14 f14<31:0>
f13 f13<31:0>
f12 f12<31:0>
f11 f11<31:0>
f10 f10<31:0>
f9 f9<31:0>
f8 f8<31:0>
f7 f7<31:0>
f6 f6<31:0>
f5 f5<31:0>
f4 f4<31:0>
f3 f3<31:0>
f2 f2<31:0>
f1 f1<31:0>
f0 f0<31:0>

Figure 6—Double-Precision Floating-Point Registers, with Aliasing

Operand
 register ID

Operand
field

From
register

f62 <63:0> f62<63:0>
f60 <63:0> f60<63:0>
f58 <63:0> f58<63:0>
f56 <63:0> f56<63:0>
f54 <63:0> f54<63:0>
f52 <63:0> f52<63:0>
f50 <63:0> f50<63:0>
f48 <63:0> f48<63:0>
f46 <63:0> f46<63:0>
f44 <63:0> f44<63:0>
f42 <63:0> f42<63:0>
f40 <63:0> f40<63:0>
f38 <63:0> f38<63:0>
f36 <63:0> f36<63:0>
f34 <63:0> f34<63:0>
f32 <63:0> f32<63:0>

f30
<31:0> f31<31:0>
<63:32> f30<31:0>

f28
<31:0> f29<31:0>
<63:32> f28<31:0>

f26
<31:0> f27<31:0>
<63:32> f26<31:0>

f24
<31:0> f25<31:0>
<63:32> f24<31:0>

f22
<31:0> f23<31:0>
<63:32> f22<31:0>

f20
<31:0> f21<31:0>
<63:32> f20<31:0>

f18
<31:0> f19<31:0>
<63:32> f18<31:0>

f16
<31:0> f17<31:0>
<63:32> f16<31:0>

f14
<31:0> f15<31:0>
<63:32> f14<31:0>

f12
<31:0> f13<31:0>
<63:32> f12<31:0>

f10
<31:0> f11<31:0>
<63:32> f10<31:0>

f8
<31:0> f9<31:0>
<63:32> f8<31:0>

f6
<31:0> f7<31:0>
<63:32> f6<31:0>

f4
<31:0> f5<31:0>
<63:32> f4<31:0>

f2
<31:0> f3<31:0>
<63:32> f2<31:0>

f0
<31:0> f1<31:0>
<63:32> f0<31:0>

Figure 7—Quad-Precision Floating-Point Registers, with Aliasing

Operand
 register ID

Operand
field

From
register

f60
<63:0> f62<63:0>
<127:64> f60<63:0>

f56
<63:0> f58<63:0>
<127:64> f56<63:0>

f52
<63:0> f54<63:0>
<127:64> f52<63:0>

f48
<63:0> f50<63:0>
<127:64> f48<63:0>

f44
<63:0> f46<63:0>
<127:64> f44<63:0>

f40
<63:0> f42<63:0>
<127:64> f40<63:0>

f36
<63:0> f38<63:0>
<127:64> f36<63:0>

f32
<63:0> f34<63:0>
<127:64> f32<63:0>

f28

<31:0> f31<31:0>
<63:32> f30<31:0>
<95:64> f29<31:0>
<127:96> f28<31:0>

f24

<31:0> f27<31:0>
<63:32> f26<31:0>
<95:64> f25<31:0>
<127:96> f24<31:0>

f20

<31:0> f23<31:0>
<63:32> f22<31:0>
<95:64> f21<31:0>
<127:96> f20<31:0>

f16

<31:0> f19<31:0>
<63:32> f18<31:0>
<95:64> f17<31:0>
<127:96> f16<31:0>

f12

<31:0> f15<31:0>
<63:32> f14<31:0>
<95:64> f13<31:0>
<127:96> f12<31:0>

f8

<31:0> f11<31:0>
<63:32> f10<31:0>
<95:64> f9<31:0>
<127:96> f8<31:0>

f4

<31:0> f7<31:0>
<63:32> f6<31:0>
<95:64> f5<31:0>
<127:96> f4<31:0>

f0

<31:0> f3<31:0>
<63:32> f2<31:0>
<95:64> f1<31:0>
<127:96> f0<31:0>

regis-
led:

float-

to be
enta-

res an

n, 16
file,

res of

mory
ctions.

erand
5.1.4.1 Floating-Point Register Number Encoding

Register numbers for single, double, and quad registers are encoded differently in the 5-bit
ter number field in a floating-point instruction. If the bits in a register number field are labe
b<4>..b<0> (where b<4> is the most-significant bit of the register number), the encoding of
ing-point register numbers into 5-bit instruction fields is as given in table 7.

Compatibility Note:
In SPARC-V8, bit 0 of double and quad register numbers encoded in instruction fields was required
zero. Therefore, all SPARC-V8 floating-point instructions can run unchanged on a SPARC-V9 implem
tion using the encoding in table 7.

5.1.4.2 Double and Quad Floating-Point Operands

A single f register can hold one single-precision operand, a double-precision operand requi
aligned pair off registers, and a quad-precision operand requires an aligned quadruple off regis-
ters. At a given time, the floating-point registers can hold a maximum of 32 single-precisio
double-precision, or 8 quad-precision values in the lower half of the floating-point register
plus an additional 16 double-precision or 8 quad-precision values in the upper half, or mixtu
the three sizes.

Programming Note:
Data to be loaded into a floating-point double or quad register that is not doubleword-aligned in me
must be loaded into the lower 16 double registers (8 quad registers) using single-precision LDF instru
If desired, it can then be copied into the upper 16 double registers (8 quad registers).

An attempt to execute an instruction that refers to a misaligned floating-point register op
(that is, a quad-precision operand in a register whose 6-bit register number is not 0mod 4) shall
cause anfp_exception_other trap, with FSR.ftt = 6 (invalid_fp_register).

Programming Note:
Given the encoding in table 7, it is impossible to specify a misaligned double-precision register.

5.1.5 Condition Codes Register (CCR)

Figure 8—Condition Codes Register

Table 7—Floating-Point Register Number Encoding

Register
operand

type 6-bit register number

Encoding in a
5-bit register field
in an instruction

Single f.p. or
32-bit integer

0 b<4> b<3> b<2> b<1> b<0> b<4> b<3> b<2> b<1> b<0>

Double f.p. or
64-bit integer

b<5> b<4> b<3> b<2> b<1> 0 b<4> b<3> b<2> b<1> b<5>

Quad f.p. b<5> b<4> b<3> b<2> 0 0 b<4> b<3> b<2> 0 b<5>

7 4 03

xcc iccCCR

, if an

re 9.

tion

inte-

4-bit
on-

truc-
of bit

with
tic and
the
ces
use a
nally
ruction
bits.
The Condition Codes Register (CCR) holds the integer condition codes.

5.1.5.1 CCR Condition Code Fields (xcc and icc)

All instructions that set integer condition codes set both thexccandicc fields. Thexcccondition
codes indicate the result of an operation when viewed as a 64-bit operation. Theicc condition
codes indicate the result of an operation when viewed as a 32-bit operation. For example
operation results in the 64-bit value 0000 0000 FFFF FFFF16, the 32-bit result is negative (icc.N is
set to 1) but the 64-bit result is nonnegative (xcc.N is set to 0).

Each of the 4-bit condition-code fields is composed of four 1-bit subfields, as shown in figu

Figure 9—Integer Condition Codes (CCR_icc and CCR_xcc)

Then bits indicate whether the 2’s-complement ALU result was negative for the last instruc
that modified the integer condition codes. 1 = negative, 0 = not negative.

Thez bits indicate whether the ALU result was zero for the last instruction that modified the
ger condition codes. 1 = zero, 0 = nonzero.

Thev bits indicate whether the ALU result was within the range of (was representable in) 6
(xcc) or 32-bit (icc) 2’s complement notation for the last instruction that modified the integer c
dition codes. 1 = overflow, 0 = no overflow.

Thec bits indicate whether a 2’s complement carry (or borrow) occurred during the last ins
tion that modified the integer condition codes. Carry is set on addition if there is a carry out
63 (xcc) or bit 31 (icc). Carry is set on subtraction if there is a borrow into bit 63 (xcc) or bit 31
(icc). 1 = carry, 0 = no carry.

5.1.5.1.1 CCR_extended_integer_cond_codes (xcc)

Bits 7 through 4 are the IU condition codes that indicate the results of an integer operation
both of the operands considered to be 64 bits long. These bits are modified by the arithme
logical instructions the names of which end with the letters “cc” (e.g., ANDcc) and by
WRCCR instruction. They can be modified by a DONE or RETRY instruction, which repla
these bits with the CCR field of the TSTATE register. The BPcc and Tcc instructions may ca
transfer of control based on the values of these bits. The MOVcc instruction can conditio
move the contents of an integer register based on the state of these bits. The FMOVcc inst
can conditionally move the contents of a floating-point register based on the state of these

7 5 4

0

6

13 2

xcc:
icc:

cvn z

with
d logi-
CR
bits

se a
nally
ruction
bits.

ting-

point
e-

d

et
; that
nly by

ver
may
ftware.

modifi-
5.1.5.1.2 CCR_integer_cond_codes (icc)

Bits 3 through 0 are the IU condition codes, which indicate the results of an integer operation
both of the operands considered to be 32 bits. These bits are modified by the arithmetic an
cal instructions the names of which end with the letters “cc” (e.g., ANDcc) and by the WRC
instruction. They can be modified by a DONE or RETRY instruction, which replaces these
with the CCR field of the TSTATE register. The BPcc, Bicc, and Tcc instructions may cau
transfer of control based on the values of these bits. The MOVcc instruction can conditio
move the contents of an integer register based on the state of these bits. The FMOVcc inst
can conditionally move the contents of a floating-point register based on the state of these

5.1.6 Floating-Point Registers State (FPRS) Register

Figure 10—Floating-Point Registers State Register

The Floating-Point Registers State (FPRS) register holds control information for the floa
point register file; this information is readable and writable by nonprivileged software.

5.1.6.1 FPRS_enable_fp (FEF)

Bit 2, FEF, determines whether the FPU is enabled. If it is disabled, executing a floating-
instruction causes anfp_disabled trap. If this bit is set but the PSTATE.PEF bit is not set, then ex
cuting a floating-point instruction causes anfp_disabled trap; that is, both FPRS.FEF an
PSTATE.PEF must be set to enable floating-point operations.

5.1.6.2 FPRS_dirty_upper (DU)

Bit 1 is the “dirty” bit for the upper half of the floating-point registers; that is, f32..f62. It is s
whenever any of the upper floating-point registers is modified. Its setting may be pessimistic
is, it may be set in some cases even though no register was actually modified. It is cleared o
software.

5.1.6.3 FPRS_dirty_lower (DL)

Bit 0 is the “dirty” bit for the lower 32 floating-point registers; that is, f0..f31. It is set whene
any of the lower floating-point registers is modified. Its setting may be pessimistic; that is, it
be set in some cases even though no register was actually modified. It is cleared only by so

Implementation Note:
The pessimistic setting of FPRS.DL and FPRS.DU allows hardware to set these bits even though the
cation of a floating-point register might be cancelled before data is written.

012

DLFEF DUFPRS

. The
its of

se bits
e bits,

are
e
ec-
and
truc-

gis-
5.1.7 Floating-Point State Register (FSR)

The FSR register fields, illustrated in figure 11, contain FPU mode and status information
lower 32 bits of the FSR are read and written by the STFSR and LDFSR instructions; all 64 b
the FSR are read and written by the STXFSR and LDXFSR instructions, respectively. Thever, ftt,
andreserved fields are not modified by LDFSR or LDXFSR.

Figure 11—FSR Fields

Bits 63..38, 29..28, 21..20, and 12 are reserved. When read by an STXFSR instruction, the
shall read as zero. Software should only issue LDXFSR instructions with zero values in thes
unless the values of these bits are exactly those derived from a previous STFSR.

Subsections 5.1.7.1 through 5.1.7.10.5 describe the remaining fields in the FSR.

5.1.7.1 FSR_fp_condition_codes (fcc0 , fcc1 , fcc2 , fcc3)

There are four sets of floating-point condition code fields, labeledfcc0, fcc1, fcc2, andfcc3.

Compatibility Note:
SPARC-V9’sfcc0 is the same as SPARC-V8’sfcc.

The fcc0field consists of bits 11 and 10 of the FSR,fcc1consists of bits 33 and 32,fcc2consists
of bits 35 and 34, and fcc3 consists of bits 37 and 36. Execution of a floating-point comp
instruction (FCMP or FCMPE) updates one of thefccn fields in the FSR, as selected by th
instruction. Thefccn fields are read and written by STXFSR and LDXFSR instructions, resp
tively. Thefcc0field may also be read and written by STFSR and LDFSR, respectively. FBfcc
FBPfcc instructions base their control transfers on these fields. The MOVcc and FMOVcc ins
tions can conditionally copy a register based on the state of these fields.

In table 8,frs1 andfrs2 correspond to the single, double, or quad values in the floating-point re
ters specified by a floating-point compare instruction’srs1 andrs2 fields. The question mark (‘?’)
indicates an unordered relation, which is true if eitherfrs1 or frs2 is a signalling NaN or quiet NaN.
If FCMP or FCMPE generates anfp_exception_ieee_754 exception, thenfccn is unchanged.

63 3235 34 3338 37

31 141923 13 12 11 5 4 091017 162730 29 28 22 21 20

36

fcc3 fcc2 fcc1—

RD — TEM NS — ver ftt qne — fcc0 aexc cexc

754-

t can
t
of the

e-

ating-
itted

of the
bit of

n 9.x,
d in
5.1.7.2 FSR_rounding_direction (RD)

Bits 31 and 30 select the rounding direction for floating-point results according to IEEE Std
1985. Table 9 shows the encodings.

5.1.7.3 FSR_trap_enable_mask (TEM)

Bits 27 through 23 are enable bits for each of the five IEEE-754 floating-point exceptions tha
be indicated in the current_exception field (cexc). See figure 12 on page 67. If a floating-poin
operate instruction generates one or more exceptions and the TEM bit corresponding to any
exceptions is 1, anfp_exception_ieee_754 trap is caused. A TEM bit value of 0 prevents the corr
sponding exception type from generating a trap.

5.1.7.4 FSR_nonstandard_fp (NS)

IMPL. DEP. #18: When set to 1, bit 22 causes the FPU to produce implementation-defined results that
may not correspond to IEEE Std 754-1985.

For instance, to obtain higher performance, implementations may convert a subnormal flo
point operand or result to zero when FSR.NS is set. SPARC-V9 implementations are perm
but not encouraged to deviate from IEEE 754 requirements when the nonstandard mode bit
FSR is 1. For implementations in which no nonstandard floating-point mode exists, the NS
the FSR should always read as 0, and writes to it should be ignored.

See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revisio
a document available from SPARC International, for a description of how this field is use
existing implementations.

Table 8—Floating-Point Condition Codes (fccn) Fields of FSR

Content of
fccn Indicated relation

0 frs1 = frs2

1 frs1 < frs2

2 frs1 > frs2

3 frs1 ? frs2 (unordered)

Table 9—Rounding Direction (RD) Field of FSR

RD Round toward

0 Nearest (even if tie)

1 0

2 + ∞
3 − ∞

ation
ller is
, Revi-
f this

n trap
oint
-

FSR

R) to

-

7” is
5.1.7.5 FSR_version (ver)

IMPL. DEP. #19: Bits 19 through 17 identify one or more particular implementations of the FPU architec-
ture.

For each SPARC-V9 IU implementation (as identified by its VER.impl field), there may be one or
more FPU implementations, or none. This field identifies the particular FPU implement
present. Version number 7 is reserved to indicate that no hardware floating-point contro
present. See <Italic>Implementation Characteristics of Current SPARC-V9-based Products
sion 9.x, a document available from SPARC International, for a description of the values o
field in existing implementations.

Thever field is read-only; it cannot be modified by the LDFSR and LDXFSR instructions.

5.1.7.6 FSR_floating-point_trap_type (ftt)

Several conditions can cause a floating-point exception trap. When a floating-point exceptio
occurs,ftt (bits 16 through 14 of the FSR) identifies the cause of the exception, the “floating-p
trap type.” After a floating-point exception occurs, theftt field encodes the type of the floating
point exception until an STFSR or an FPop is executed.

The ftt field can be read by the STFSR and STXFSR instructions. The LDFSR and LDX
instructions do not affectftt.

Privileged software that handles floating-point traps must execute an STFSR (or STXFS
determine the floating-point trap type. STFSR and STXFSR shall zeroftt after the store completes
without error. If the store generates an error and does not complete,ftt shall remain unchanged.

Programming Note:
Neither LDFSR nor LDXFSR can be used for this purpose, since both leaveftt unchanged. However, execut
ing a nontrapping FPop such as “fmovs %f0,%f0 ” prior to returning to nonprivileged mode will zeroftt.
Theftt remains valid until the next FPop instruction completes execution.

The ftt field encodes the floating-point trap type according to table 10. Note that the value “
reserved for future expansion.

Table 10—Floating-Point Trap Type (ftt) Field of FSR

ftt Trap type

0 None

1 IEEE_754_exception

2 unfinished_FPop

3 unimplemented_FPop

4 sequence_error

5 hardware_error

6 invalid_fp_register

7 —

of
s. In

regis-

nalled,

sing

n-
r

m-

le to
. In the

ded

e-
The sequence_error and hardware_error trap types are unlikely to arise in the normal course
computation. They are essentially unrecoverable from the point of view of user application
contrast,IEEE_754_exception, unfinished_FPop, andunimplemented_FPop will likely arise occasion-
ally in the normal course of computation and must be recoverable by system software.

When a floating-point trap occurs, the following results are observed by user software:

(1) The value ofaexc is unchanged.

(2) The value ofcexcis unchanged, except that for anIEEE_754_exception a bit corresponding
to the trapping exception is set. Theunfinished_FPop, unimplemented_FPop, sequence_error,
andinvalid_fp_register floating-point trap types do not affectcexc.

(3) The source registers are unchanged (usually implemented by leaving the destination
ters unchanged).

(4) The value offccn is unchanged.

The foregoing describes the result seen by a user trap handler if an IEEE exception is sig
either immediately from anIEEE_754_exception or after recovery from anunfinished_FPop or
unimplemented_FPop. In either case,cexcas seen by the trap handler reflects the exception cau
the trap.

In the cases ofunfinished_FPop andunimplemented_FPop exceptions that do not subsequently ge
erate IEEE traps, the recovery software should definecexc, aexc, and the destination registers o
fccs, as appropriate.

5.1.7.6.1 ftt = IEEE_754_exception

The IEEE_754_exception floating-point trap type indicates that a floating-point exception confor
ing to IEEE Std 754-1985 has occurred. The exception type is encoded in thecexcfield. Note that
aexc, thefccs, and the destinationf register are not affected by anIEEE_754_exception trap.

5.1.7.6.2 ftt = unfinished_FPop

Theunfinished_FPop floating-point trap type indicates that an implementation’s FPU was unab
generate correct results, or that exceptions as defined by IEEE Std 754-1985 have occurred
latter case, thecexc field is unchanged.

5.1.7.6.3 ftt = unimplemented_FPop

Theunimplemented_FPop floating-point trap type indicates that an implementation’s FPU deco
an FPop that it does not implement. In this case, thecexc field is unchanged.

Programming Note:
For theunfinished_FPop andunimplemented_FPop floating-point traps, software should emulate or reex
cute the exception-causing instruction and update the FSR, destinationf register(s), andfccs.

the

men-

ble to
e
e, the

DPR

con-
.

rnal

te to

; that
n

ter a
that
5.1.7.6.4 ftt = sequence_error

Thesequence_error floating-point trap type indicates one of three abnormal error conditions in
FPU, all caused by erroneous supervisor software:

— An attempt was made to read the floating-point deferred-trap queue (FQ) on an imple
tation without an FQ.

Implementation Note:
IMPL. DEP #25: On implementations without a floating-point queue, an attempt to read the fq with
an RDPR instruction shall cause either an illegal_instruction exception or an fp_exception_other
exception with FSR.ftt set to 4 (sequence_error).

— An attempt was made to execute a floating-point instruction when the FPU was una
accept one. This type ofsequence_error arises from a logic error in supervisor softwar
that has caused a previous floating-point trap to be incompletely serviced (for exampl
floating-point queue was not emptied after a previous floating-point exception).

— An attempt was made to read the floating-point deferred-trap queue (FQ) with a R
instruction when the FQ was empty; that is, when FSR.qne= 0. Note that generation of
sequence_error is recommended but not required in this case.

Programming Note:
If a sequence_error floating-point exception occurs while executing user code due to any of the above
ditions, it may not be possible to recover sufficient state to continue execution of the user application

5.1.7.6.5 ftt = hardware_error

Thehardware_error floating-point trap type indicates that the FPU detected a catastrophic inte
error, such as an illegal state or a parity error on anf register access.

Programming Note:
If a hardware_error occurs while executing user code, it may not be possible to recover sufficient sta
continue execution of the user application.

5.1.7.6.6 ftt = invalid_fp_register

The invalid_fp_register trap indicates that one (or more) operands of an FPop are misaligned
is, a quad-precision register number is not 0mod 4. An implementation shall generate a
fp_exception_other trap with FSR.ftt = invalid_fp_register in this case.

5.1.7.7 FSR_FQ_not_empty (qne)

Bit 13 indicates whether the optional floating-point deferred-trap queue (FQ) is empty af
deferred floating-point exception trap or after a read privileged register (RDPR) instruction
reads the queue has been executed. Ifqne= 0, the queue is empty; ifqne= 1, the queue is not
empty.

FSR

n
s zero

tion
s, the

accu-

ed by
espond-

ution

n

s

defini-
The qne bit can be read by the STFSR and STXFSR instructions. The LDFSR and LDX
instructions do not affectqne. However, executing successive “RDPR %fpq” instructions will
(eventually) cause the FQ to become empty (qne= 0). If an implementation does not provide a
FQ, this bit shall read as zero. Supervisor software must arrange for this bit to always read a
to user-mode software.

5.1.7.8 FSR_accrued_exception (aexc)

Bits 9 through 5 accumulate IEEE_754 floating-point exceptions while floating-point excep
traps are disabled using the TEM field. See figure 13 on page 68. After an FPop complete
TEM andcexcfields are logically ANDed together. If the result is nonzero,aexcis left unchanged
and anfp_exception_ieee_754 trap is generated; otherwise, the newcexcfield is ORed into theaexc
field and no trap is generated. Thus, while (and only while) traps are masked, exceptions are
mulated in theaexc field.

5.1.7.9 FSR_current_exception (cexc)

Bits 4 through 0 indicate that one or more IEEE_754 floating-point exceptions were generat
the most recently executed FPop instruction. The absence of an exception causes the corr
ing bit to be cleared. See figure 14 on page 68.

Thecexcbits are set as described in 5.1.7.10, “Floating-Point Exception Fields,” by the exec
of an FPop that either does not cause a trap or causes anfp_exception_ieee_754 trap with
FSR.ftt = IEEE_754_exception. An IEEE_754_exception that traps shall cause exactly one bit i
FSR.cexc to be set, corresponding to the detected IEEE Std 754-1985 exception.

In the case of an overflow (underflow)IEEE_754_exception that doesnot trap (because neither
OFM (UFM) nor NXM is set), more than one bit incexcis set: such an overflow (underflow) set
bothofc (ufc) andnxc. An overflow (underflow)IEEE_754_exception thatdoestrap (because OFM
(UFM) or NXM or both are set) shall setofc (ufc), but notnxc.

If the execution of an FPop causes a trap other than anfp_exception_ieee_754 due to an IEEE Std
754-1985 exception, FSR.cexc is left unchanged.

5.1.7.10 Floating-Point Exception Fields

The current and accrued exception fields and the trap enable mask assume the following
tions of the floating-point exception conditions (per IEEE Std 754-1985):

Figure 12—Trap Enable Mask (TEM) Fields of FSR

24 2327 26 25

NVM OFM UFM DZM NXM

e than

alized

ini-
ccu-

re or

exact
Figure 13—Accrued Exception Bits (aexc) Fields of FSR

Figure 14—Current Exception Bits (cexc) Fields of FSR

5.1.7.10.1 FSR_invalid (nvc , nva)

An operand is improper for the operation to be performed. For example, 0.0÷ 0.0 and∞ – ∞ are
invalid. 1 = invalid operand(s), 0 = valid operand(s).

5.1.7.10.2 FSR_overflow (ofc , ofa)

The result, rounded as if the exponent range were unbounded, would be larger in magnitud
the destination format’s largest finite number. 1 = overflow, 0 = no overflow.

5.1.7.10.3 FSR_underflow (ufc , ufa)

The rounded result is inexact and would be smaller in magnitude than the smallest norm
number in the indicated format. 1 = underflow, 0 = no underflow.

Underflow is never indicated when the correct unrounded result is zero. Otherwise:

If UFM = 0 : Underflow occurs if a nonzero result is tiny and a loss of accuracy occurs. T
ness may be detected before or after rounding (impl. dep. #55). Loss of a
racy may be either a denormalization loss or an inexact result.

If UFM = 1 : Underflow occurs if a nonzero result is tiny. Tininess may be detected befo
after rounding (impl. dep. #55).

5.1.7.10.4 FSR_division-by-zero (dzc, dza)

X ÷ 0.0, where X is subnormal or normalized. Note that 0.0÷ 0.0 doesnot set thedzcor dzabits.
1 = division by zero, 0 = no division by zero.

5.1.7.10.5 FSR_inexact (nxc , nxa)

The rounded result of an operation differs from the infinitely precise unrounded result. 1 = in
result, 0 = exact result.

6 59 8 7

nva ofa ufa dza nxa

1 04 3 2

nvc ofc ufc dzc nxc

5.

value

e
y an

ular
lue

the

ternate
re
SIs.
0, a

” for
5.1.7.11 FSR Conformance

IMPL. DEP. #22: An implementation may choose to implement the TEM, cexc, and aexc fields in hardware
in either of two ways (both of which comply with IEEE Std 754-1985):

(1) Implement all three fields conformant to IEEE Std 754-1985.

(2) Implement the NXM,nxa, andnxcbits of these fields conformant to IEEE Std 754-198
Implement each of the remaining bits in the three fields either

(a) Conformant to IEEE Std 754-1985, or

(b) As a state bit that may be set by software that calculates the IEEE Std 754-1985
of the bit. For any bit implemented as a state bit:

[1] The IEEE exception corresponding to the state bit mustalwayscause an exception
(specifically, anunfinished_FPop exception). During exception processing in th
trap handler, the bit in the state field can be written to the appropriate value b
LDFSR or LDXFSR instruction.

[2] The state bit must be implemented in such a way that if it is written to a partic
value by an LDFSR or LDXFSR instruction, it will be read back as the same va
by a subsequent STFSR or STXFSR.

Programming Note:
Software must be capable of simulating the operation of the FPU in order to handle
unimplemented_FPop, unfinished_FPop, andIEEE_754_exception floating-point trap types properly. Thus, a
user application program always sees an FSR that is fully compliant with IEEE Std 754-1985.

5.1.8 Address Space Identifier Register (ASI)

Figure 15—ASI Register

The ASI register specifies the address space identifier to be used for load and store al
instructions that use the “rs1 + simm13” addressing form. Nonprivileged (user-mode) softwa
may write any value into the ASI register; however, values with bit 7 = 0 indicate restricted A
When a nonprivileged instruction makes an access that uses an ASI with bit 7 =
privileged_action exception is generated. See 6.3.1.3, “Address Space Identifiers (ASIs),
details.

5.1.9 TICK Register (TICK)

Figure 16—TICK Register

7 0

ASI

063 62

TICK NPT counter

of
ister
r the
the

PT
ister

one
. The
mber of
unts of

curacy
read

ode;
and

of the
Thecounterfield of the TICK register is a 63-bit counter that counts CPU clock cycles. Bit 63
the TICK register is the Nonprivileged Trap (NPT) bit, which controls access to the TICK reg
by nonprivileged software. Privileged software can always read the TICK register with eithe
RDPR or RDTICK instruction. Privileged software can always write the TICK register with
WRPR instruction; there is no WRTICK instruction.

Nonprivileged software can read the TICK register using the RDTICK instruction; TICK.N
must be 0. When TICK.NPT = 1, an attempt by nonprivileged software to read the TICK reg
causes aprivileged_action exception. Nonprivileged software cannot write the TICK register.

TICK.NPT is set to 1 by a power-on reset trap. The value of TICK.counteris undefined after a
power-on reset trap.

After the TICK register is written, reading the TICK register returns a value incremented (by
or more) from the last value written, rather than from some previous value of the counter
number of counts between a write and a subsequent read need not accurately reflect the nu
processor cycles between the write and the read. Software may only rely on read-to-read co
the TICK register for accurate timing, not on write-to-read counts.

IMPL. DEP. #105: The difference between the values read from the TICK register on two reads should
reflect the number of processor cycles executed between the reads. If an accurate count cannot always be
returned, any inaccuracy should be small, bounded, and documented. An implementation may implement
fewer than 63 bits in TICK.counter; however, the counter as implemented must be able to count for at least
10 years without overflowing. Any upper bits not implemented must read as zero.

Programming Note:
TICK.NPT may be used by a secure operating system to control access by user software to high-ac
timing information. The operation of the timer might be emulated by the trap handler, which could
TICK.counter and “fuzz” the value to lower accuracy.

5.2 Privileged Registers

The registers described in this subsection are visible only to software running in privileged m
that is, when PSTATE.PRIV = 1. Privileged registers are written using the WRPR instruction
read using the RDPR instruction.

5.2.1 Processor State Register (PSTATE)

Figure 17—PSTATE Fields

The PSTATE register holds the current state of the processor. There is only one instance
PSTATE register. See Chapter 7, “Traps,” for more details.

4 0

PSTATE PEF AM PRIV IE AG

3 2 16 5

MM RED

7

TLECLE

9 8

PID0PID1

11 10

the
d and

some

ttle-
ta
I of

d the
tem
.TLE
iginal
trap

TSO
PSO)
Writing PSTATE is nondelayed; that is, new machine state written to PSTATE is visible to
next instruction executed. The privileged RDPR and WRPR instructions are used to rea
write PSTATE, respectively.

Implementation Note:
To ensure the nondelayed semantics, a write to PSTATE may take multiple cycles to complete on
implementations.

5.2.1.2 through 5.2.1.10 describe the fields contained in the PSTATE register.

5.2.1.1 PSTATE_impldep (PID1, PID0)

IMPL. DEP. #127: The presence and semantics of PSTATE.PID1 and PSTATE.PID0 are implementation-
dependent. Software intended to run on multiple implementations should only write these bits to values
previously read from PSTATE, or to zeroes.

See also TSTATE bits 19..18.

5.2.1.2 PSTATE_current_little_endian (CLE)

When PSTATE.CLE = 1, all data reads and writes using an implicit ASI are performed in li
endian byte order with an ASI of ASI_PRIMARY_LITTLE. When PSTATE.CLE = 0, all da
reads and writes using an implicit ASI are performed in big-endian byte order with an AS
ASI_PRIMARY. Instruction accesses are always big-endian.

5.2.1.3 PSTATE_trap_little_endian (TLE)

When a trap is taken, the current PSTATE register is pushed onto the trap stack an
PSTATE.TLE bit is copied into PSTATE.CLE in the new PSTATE register. This allows sys
software to have a different implicit byte ordering than the current process. Thus, if PSTATE
is set to 1, data accesses using an implicit ASI in the trap handler are little-endian. The or
state of PSTATE.CLE is restored when the original PSTATE register is restored from the
stack.

5.2.1.4 PSTATE_mem_model (MM)

This 2-bit field determines the memory model in use by the processor. Its values are:

An implementation must provide a memory model that allows programs conforming to the
model to run correctly; that is, TSO or a stronger model. Whether the Partial Store Order (

Value Memory model

00 Total Store Order (TSO)

01 Partial Store Order (PSO)

10 Relaxed Memory Order (RMO)

11 —

ndent

tting

state.
o sets
by

and

ded that
new
PR in

nage
e set.

der 32
o-bit

L, and
men-
trap
model or the Relaxed Memory Ordering (RMO) model is supported is implementation-depe
(impl. dep. #113).

The current memory model is determined by the value of PSTATE.MM. The effect of se
PSTATE.MM to an unsupported value is implementation-dependent (impl. dep. #119).

5.2.1.5 PSTATE_RED_state (RED)

When PSTATE.RED is set to 1, the processor is operating in RED (Reset, Error, and Debug)
See 7.2.1, “RED_state.” The IU sets PSTATE.RED when any hardware reset occurs. It als
PSTATE.RED when a trap is taken while TL = (MAXTL – 1). Software can exit RED_state
one of two methods:

(1) Execute a DONE or RETRY instruction, which restores the stacked copy of PSTATE
clears PSTATE.RED if it was 0 in the stacked copy.

(2) Write a 0 to PSTATE.RED with a WRPR instruction.

Programming Note:
Changing PSTATE.RED may cause a change in address mapping on some systems. It is recommen
writes of PSTATE.RED be placed in the delay slot of a JMPL; the target of this JMPL should be in the
address mapping. The JMPL sets the nPC, which becomes the PC for the instruction that folows the W
its delay slot. The effect of the WPR instruction is immediate.

5.2.1.6 PSTATE_enable_floating-point (PEF)

When set to 1, this bit enables the floating-point unit, which allows privileged software to ma
the FPU. For the floating-point unit to be usable, both PSTATE.PEF and FPRS.FEF must b
Otherwise, a floating-point instruction that tries to reference the FPU will cause anfp_disabled
trap.

5.2.1.7 PSTATE_address_mask (AM)

When PSTATE.AM = 1, both instruction and data addresses are interpreted as if the high-or
bits were masked to zero before being presented to the MMU or memory system. Thirty-tw
application software must run with this bit set.

Branch target addresses (sent to the nPC) and addresses sent to registers by CALL, JMP
RDPC instructions are always 64-bit values, but the value of the high-order 32-bits are imple
tation-dependent. Similarly, the value of the high-order 32-bits of TPC and TNPC after a
taken while PSTATE.AM = 1 is implementation-dependent.

IMPL. DEP. #125: When PSTATE.AM = 1, the value of the high-order 32-bits of the PC transmitted to the
specified destination register(s) by CALL, JMLP, RDPC, and on a trap is implementation-dependent.

5.2.1.8 PSTATE_privileged_mode (PRIV)

When PSTATE.PRIV = 1, the processor is in privileged mode.

..7 as
teger

oper-
e that
trap

ple-

not

pt an
inter-
ies.

seman-
other
5.2.1.9 PSTATE_interrupt_enable (IE)

When PSTATE.IE = 1, the processor can accept interrupts.

5.2.1.10 PSTATE_alternate_globals (AG)

When PSTATE.AG = 0, the processor interprets integer register numbers in the range 0
referring to the normal global register set. When PSTATE.AG = 1, the processor interprets in
register numbers in the range 0..7 as referring to the alternate global register set.

5.2.2 Trap Level Register (TL)

Figure 18—Trap Level Register

The trap level register specifies the current trap level. TL = 0 is the normal (nontrap) level of
ation. TL > 0 implies that one or more traps are being processed. The maximum valid valu
the TL register may contain is “MAXTL.” This is always equal to the number of supported
levels beyond level 0. See Chapter 7, “Traps,” for more details about the TL register. An im
mentation shall support at least four levels of traps beyond level 0; that is, MAXTL shall be≥ 4.

IMPL. DEP. #101: How many additional trap levels, if any, past level 4 are supported is implementation-
dependent.

The remainder of this subsection assumes that there are four trap levels beyond level 0.

Programming Note:
Writing the TL register with awrpr %tl instruction does not alter any other machine state; that is, it is
equivalent to taking or returning from a trap.

5.2.3 Processor Interrupt Level (PIL)

Figure 19—Processor Interrupt Level Register

The processor interrupt level (PIL) is the interrupt level above which the processor will acce
interrupt. Interrupt priorities are mapped such that interrupt level 2 has greater priority than
rupt level 1, and so on. See table 15 on page 103 for a list of exception and interrupt priorit

Compatibility Note:
On SPARC-V8 processors, the level 15 interrupt is considered to be nonmaskable, so it has different
tics from other interrupt levels. SPARC-V9 processors do not treat level 15 interrupts differently from

2 0

TL TL

3 0

PIL PIL

t is

e are
cur-

e. An

e are
cur-

e. An
interrupt levels. See 7.6.2.4, “Externally Initiated Reset (XIR) Traps,” for a facility in SPARC-V9 tha
similar to a nonmaskable interrupt.

5.2.4 Trap Program Counter (TPC)

Figure 20—Trap Program Counter Register

The TPC register contains the program counter (PC) from the previous trap level. Ther
MAXTL instances of the TPC (impl. dep. #101), but only one is accessible at any time. The
rent value in the TL register determines which instance of the TPC register is accessibl
attempt to read or write the TPC register when TL = 0 shall cause anillegal_instruction exception.

5.2.5 Trap Next Program Counter (TNPC)

Figure 21—Trap Next Program Counter Register

The TNPC register is the next program counter (nPC) from the previous trap level. Ther
MAXTL instances of the TNPC (impl. dep. #101), but only one is accessible at any time. The
rent value in the TL register determines which instance of the TNPC register is accessibl
attempt to read or write the TNPC register when TL = 0 shall cause anillegal_instruction exception.

TPC1 PC from trap while TL = 0

2

00

63 1 0

TPC2 PC from trap while TL = 1 00

TPC3 PC from trap while TL = 2 00

TPC4 PC from trap while TL = 3 00

TNPC1 nPC from trap while TL = 0

2

00

63 1 0

TNPC2 nPC from trap while TL = 1 00

TNPC3 nPC from trap while TL = 2 00

TNPC4 nPC from trap while TL = 3 00

, ASI,
f the
eter-
ister

t trap
te Trap
pro-
xcep-

at a
cessi-
5.2.6 Trap State (TSTATE)

Figure 22—Trap State Register

TSTATE contains the state from the previous trap level, comprising the contents of the CCR
CWP, and PSTATE registers from the previous trap level. There are MAXTL instances o
TSTATE register, but only one is accessible at a time. The current value in the TL register d
mines which instance of TSTATE is accessible. An attempt to read or write the TSTATE reg
when TL = 0 causes anillegal_instruction exception.

TSTATE bits 19 and 18 are implementation-dependent.IMPL.DEP. #127: If PSTATE bit 11 (10) is
implemented, TSTATE bit 19 (18) shall be implemented and contain the state of PSTATE bit 11 (10) from
the previous trap level. If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18) shall read as zero.
Software intended to run on multiple implementations should only write these bits to values previously read
from PSTATE, or to zeroes.

5.2.7 Trap Type Register (TT)

Figure 23—Trap Type Register

The TT register normally contains the trap type of the trap that caused entry to the curren
level. On a reset trap the TT field contains the trap type of the reset (see 7.2.1.1, “RED_sta
Table”), except when a watchdog (WDR) or externally initiated (XIR) reset occurs while the
cessor is in error_state. When this occurs, the TT register will contain the trap type of the e
tion that caused entry into error_state.

There are MAXTL instances of the TT register (impl. dep. #101), but only one is accessible
time. The current value in the TL register determines which instance of the TT register is ac
ble. An attempt to read or write the TT register when TL = 0 shall cause anillegal_instruction
exception.

39 0

TSTATE1 CCR from TL = 0 CWP from TL = 0ASI from TL = 0 PSTATE from TL = 0— —

432 31 24 23 20 8 7 519

TSTATE2 CCR from TL = 1 CWP from TL = 1ASI from TL = 1 PSTATE from TL = 1— —

TSTATE3 CCR from TL = 2 CWP from TL = 2ASI from TL = 2 PSTATE from TL = 2— —

TSTATE4 CCR from TL = 3 CWP from TL = 3ASI from TL = 3 PSTATE from TL = 3— —

TT1 Trap type from trap while TL = 0

8 0

TT2 Trap type from trap while TL = 1

TT3 Trap type from trap while TL = 2

TT4 Trap type from trap while TL = 3

a trap.

ap
traps

tation

ego-

erally
increase

mpl.
5.2.8 Trap Base Address (TBA)

Figure 24—Trap Base Address Register

The TBA register provides the upper 49 bits of the address used to select the trap vector for
The lower 15 bits of the TBA always read as zero, and writes to them are ignored.

The full address for a trap vector is specified by the TBA, TL, TT[TL], and five zeroes:

Figure 25—Trap Vector Address

Note that the “(TL>0)” bit is 0 if TL = 0 when the trap was taken, and 1 if TL > 0 when the tr
was taken. This implies that there are two trap tables: one for traps from TL = 0 and one for
from TL > 0. See Chapter 7, “Traps,” for more details on trap vectors.

5.2.9 Version Register (VER)

Figure 26—Version Register

The version register specifies the fixed parameters pertaining to a particular CPU implemen
and mask set. The VER register is read-only.

IMPL. DEP. #104: VER.manuf contains a 16-bit manufacturer code. This field is optional and, if not
present, shall read as 0. VER.manuf may indicate the original supplier of a second-sourced chip. It is
intended that the contents of VER.manuf track the JEDEC semiconductor manufacturer code as closely as
possible. If the manufacturer does not have a JEDEC semiconductor manufacturer code, SPARC Interna-
tional will assign a value for VER.manuf.

IMPL. DEP. #13: VER.impl uniquely identifies an implementation or class of software-compatible imple-
mentations of the architecture. Values FFF016..FFFF16 are reserved and are not available for assignment.

The value of VER.impl is assigned as described in C.3, “Implementation Dependency Cat
ries.”

VER.maskspecifies the current mask set revision, and is chosen by the implementor. It gen
increases numerically with successive releases of the processor, but does not necessarily
by one for consecutive releases.

VER.maxtlcontains the maximum number of trap levels supported by an implementation (i
dep. #101), that is, MAXTL, the maximum value of the contents of the TL register.

63 15 14 0

000000000000000Trap Base Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

63 48 47 24 23 16 15 8 7 05 432 31

maxwin—maxtl—maskimplmanuf

n an

read/
sters
t allow

n 6.3.6,

sters.
tion

dep.

they

site is

aused

ple-
-

VER.maxwincontains the maximum index number available for use as a valid CWP value i
implementation; that is, VER.maxwin contains the value “NWINDOWS – 1” (impl. dep. #2).

5.2.10 Register-Window State Registers

The state of the register windows is determined by a set of privileged registers. They can be
written by privileged software using the RDPR/WRPR instructions. In addition, these regi
are modified by instructions related to register windows and are used to generate traps tha
supervisor software to spill, fill, and clean register windows.

IMPL. DEP. #126: Privileged registers CWP, CANSAVE, CANRESTORE, OTHERWIN, and CLEANWIN
contain values in the range 0..NWINDOWS-1. The effect of writing a value greater than NWINDOWS-1 to
any of these registers is undefined. Although the width of each of these five registers is nominally 5 bits,
the width is implementation-dependent and shall be between log2(NWINDOWS) and 5 bits, inclusive. If
fewer than 5 bits are implemented, the unimplemented upper bits shall read as 0, and writes to them shall
have no effect. All five registers should have the same width.

The details of how the window-management registers are used by hardware are presented i
“Register Window Management Instructions.”

5.2.10.1 Current Window Pointer (CWP)

Figure 27—Current Window Pointer Register

The CWP register is a counter that identifies the current window into the set of integer regi
See 6.3.6, “Register Window Management Instructions,” and Chapter 7, “Traps,” for informa
on how hardware manipulates the CWP register.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl.
#126).

Compatibility Note:
The following differences between SPARC-V8 and SPARC-V9 are visible only to privileged software;
are invisible to nonprivileged software:

1) In SPARC-V9, SAVE increments CWP and RESTORE decrements CWP. In SPARC-V8, the oppo
true: SAVE decrements PSR.CWP and RESTORE increments PSR.CWP.

2) PSR.CWP in SPARC-V8 is changed on each trap. In SPARC-V9, CWP is affected only by a trap c
by a window fill or spill exception.

3) In SPARC-V8, writing a value into PSR.CWP that is greater than or equal to the number of im
mented windows causes anillegal_instruction exception. In SPARC-V9, the effect of writing an out-of
range value to CWP is undefined.

4 0

CWP Current Window #

ot in
indow

dep.

are in
nerat-

dep.

g a
zero,

of

dress

dep.
5.2.10.2 Savable Windows (CANSAVE) Register

Figure 28—CANSAVE Register

The CANSAVE register contains the number of register windows following CWP that are n
use and are, hence, available to be allocated by a SAVE instruction without generating a w
spill exception

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl.
#126).

5.2.10.3 Restorable Windows (CANRESTORE) Register

Figure 29—CANRESTORE Register

The CANRESTORE register contains the number of register windows preceding CWP that
use by the current program and can be restored (via the RESTORE instruction) without ge
ing a window fill exception.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl.
#126).

5.2.10.4 Other Windows (OTHERWIN) Register

Figure 30—OTHERWIN Register

The OTHERWIN register contains the count of register windows that will be spilled/filled usin
separate set of trap vectors based on the contents of WSTATE_OTHER. If OTHERWIN is
register windows are spilled/filled using trap vectors based on the contents
WSTATE_NORMAL.

The OTHERWIN register can be used to split the register windows among different ad
spaces and handle spill/fill traps efficiently by using separate spill/fill vectors.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl.
#126).

4 0

CANSAVE

4 0

CANRESTORE

4 0

OTHERWIN

d fill
fill
he
for

truc-

ct to
valid

e used.
ORE
en a

dep.

 31.

renced

uch as
may

f these
is priv-
5.2.10.5 Window State (WSTATE) Register

Figure 31—WSTATE Register

The WSTATE register specifies bits that are inserted into TTTL<4:2> on traps caused by window
spill and fill exceptions. These bits are used to select one of eight different window spill an
handlers. If OTHERWIN = 0 at the time a trap is taken due to a window spill or window
exception, then the WSTATE.NORMAL bits are inserted into TT[TL]. Otherwise, t
WSTATE.OTHER bits are inserted into TT[TL]. See 6.4, “Register Window Management,”
details of the semantics of OTHERWIN.

5.2.10.6 Clean Windows (CLEANWIN) Register

Figure 32—CLEANWIN Register

The CLEANWIN register contains the number of windows that can be used by the SAVE ins
tion without causing aclean_window exception.

The CLEANWIN register counts the number of register windows that are “clean” with respe
the current program; that is, register windows that contain only zeros, valid addresses, or
data from that program. Registers in these windows need not be cleaned before they can b
The count includes the register windows that can be restored (the value in the CANREST
register) and the register windows following CWP that can be used without cleaning. Wh
clean window is requested (via a dSAVE instruction) and none is available, aclean_window excep-
tion occurs to cause the next window to be cleaned.

The effect of writing a value greater than NWINDOWS-1 to this register is undefined (impl.
#126).

5.2.11 Ancillary State Registers (ASRs)

SPARC-V9 provides for up to 25 ancillary state registers (ASRs), numbered from 7 through

ASRs numbered 7..15 are reserved for future use by the architecture and should not be refe
by software.

ASRs numbered 16..31 are available for implementation-dependent uses (impl. dep. #8), s
timers, counters, diagnostic registers, self-test registers, and trap-control registers. An IU
choose to implement from zero to sixteen of these ASRs. The semantics of accessing any o
ASRs is implementation-dependent. Whether access to a particular ancillary state register
ileged is implementation-dependent (impl. dep. #9).

WSTATE

05 3 2

OTHER NORMAL

4 0

CLEANWIN

SR

sum-

. In a
alter-
SR,

ausing
any

ristics
terna-
es in

truc-

ns suf-
raps,”
oint

based
f such
An ASR is read and written with the RDASR and WRASR instructions, respectively. An RDA
or WRASR instruction is privileged if the accessed register is privileged.

5.2.12 Floating-Point Deferred-Trap Queue (FQ)

If present in an implementation, the FQ contains sufficient state information to implement re
able, deferred floating-point traps.

IMPL. DEP. #23: Floating-point traps may be precise or deferred. If deferred, a floating-point deferred-trap
queue (FQ) shall be present.

The FQ can be read with the read privileged register (RDPR) floating-point queue instruction
given implementation, it may also be readable or writable via privileged load/store double
nate instructions (LDDA, STDA), or by read/write ancillary state register instructions (RDA
WRASR).

IMPL. DEP. #24: The presence, contents of, and operations upon the FQ are implementation-dependent.

If an FQ is present, however, supervisor software must be able to deduce the exception-c
instruction’s opcode (opf), operands, and address from its FQ entry. This also must be true of
other pending floating-point operations in the queue. See <Italic>Implementation Characte
of Current SPARC-V9-based Products, Revision 9.x, a document available from SPARC In
tional, for a discussion of the formats and operation of implemented floating-point queu
existing SPARC-V9 implementations.

In implementations with a floating-point queue, an attempt to read the FQ with a RDPR ins
tion when the FQ is empty (FSR.qne= 0) shall cause anfp_exception_other trap with FSR.ftt set to
4 (sequence_error).In implementations without an FQ, theqne bit in the FSR is always 0.

IMPL. DEP. #25: In implementations without a floating-point queue, an attempt to read the FQ with an
RDPR instruction shall cause either an illegal_instruction trap or an fp_exception_other trap with FSR.ftt
SET TO 4 (sequence_error).

5.2.13 IU Deferred-Trap Queue

An implementation may contain zero or more IU deferred-trap queues. Such a queue contai
ficient state to implement resumable deferred traps caused by the IU. See 7.3.2, “Deferred T
for more information. Note that deferred floating-point traps are handled by the floating-p
deferred-trap queue. See <Italic>Implementation Characteristics of Current SPARC-V9-
Products, Revision 9.x, a document available from SPARC International, for a discussion o
queues in existing implementations.

IMPL. DEP. #16: The existence, contents, and operation of an IU deferred-trap queue are implementation-
dependent; it is not visible to user application programs under normal conditions.

rapped.
es.

n exe-
. As a
xt pro-

ssible
events
terrupt

control
n and

unter
f the
e PC
layed-

ss space
3.1.3,
r use

on con-
ter and
s docu-

in fig-
6 Instructions

Instructions are accessed by the processor from memory and are executed, annulled, or t
Instructions are encoded in four major formats and partitioned into eleven general categori

6.1 Instruction Execution

The instruction at the memory location specified by the program counter is fetched and the
cuted. Instruction execution may change program-visible processor and/or memory state
side-effect of its execution, new values are assigned to the program counter (PC) and the ne
gram counter (nPC).

An instruction may generate an exception if it encounters some condition that makes it impo
to complete normal execution. Such an exception may in turn generate a precise trap. Other
may also cause traps: an exception caused by a previous instruction (a deferred trap), an in
or asynchronous error (a disrupting trap), or a reset request (a reset trap). If a trap occurs,
is vectored into a trap table. See Chapter 7, “Traps,” for a detailed description of exceptio
trap processing.

If a trap does not occur and the instruction is not a control transfer, the next program co
(nPC) is copied into the PC and the nPC is incremented by 4 (ignoring overflow, if any). I
instruction is a control-transfer instruction, the next program counter (nPC) is copied into th
and the target address is written to nPC. Thus, the two program counters provide for a de
branch execution model.

For each instruction access and each normal data access, the IU appends an 8-bit addre
identifier, or ASI, to the 64-bit memory address. Load/store alternate instructions (see 6.
“Address Space Identifiers (ASIs),”) can provide an arbitrary ASI with their data addresses, o
the ASI value currently contained in the ASI register.

Implementation Note:
The time required to execute an instruction is implementation-dependent, as is the degree of executi
currency. In the absence of traps, an implementation should cause the same program-visible regis
memory state changes as if a program had executed according to the sequential model implied in thi
ment. See Chapter 7, “Traps,” for a definition of architectural compliance in the presence of traps.

6.2 Instruction Formats

Instructions are encoded in four major 32-bit formats and several minor formats, as shown
ures 33 and 34.

op3rdop rs1 i=1 mmask

31 030 29

disp30op

Format 1 (op= 1): CALL

Format 2 (op= 0): SETHI & Branches (Bicc, BPcc, BPr, FBfcc, FBPfcc)

Format 3 (op= 2 or 3): Arithmetic, Logical, MOVr, MEMBAR, Load, and Store

31 141924 18 13 12 5 4 02530 29

31 2224 21 02530 29

disp22op2condop a

op3rdop —rs1 i=0 rs2

op3rdop rs1 i=1 simm13

disp19op2condop a

d16loop2rcondop a

20 19 1828

0

cc1cc0 p

pd16hi

14 13

rs1

op3rdop rcondrs1 i=0 rs2

op3rdop rs1 i=1 simm10

10 9

rcond

—

—

op3rdop rs1 i=0 rs2—

op3—op —rs1 i=0 rs2

op3—op rs1 i=1 simm13

2627

imm22op2rdop

67

cmask

3

op rd op3 rs1 i=0 imm_asi rs2

op3impl-depop impl-dep

Figure 33—Summary of Instruction Formats: Formats 1, 2, and 3

op3rdop rs1 i=0 rs2

op3rdop rs1 i=1 sw_trap#

cc1cc0 —

cc1cc0

Format 4 (op = 2): MOVcc, FMOVr, FMOVcc, and Tcc

op3rdop rs1 i=1 simm11

31 141924 18 13 12 5 4 02530 29 11 10 9

cc1cc0

7 6

—

op rd op3 cond opf_cc opf_low rs2

op rd op3 0 rcond opf_low rs2rs1

0

17

Format 3 (op = 2 or 3):Continued

31 24 02530 29 19 18

rdop op3 —

14 13 12 5 4

rs1 rs2i=0 x

rdop op3 —rs1 shcnt32i=1 x=0

rdop op3 —rs1 shcnt64i=1 x=1

6

op fcn op3 —

11

op3rdop rs1 —

rdop op3 —cond rs2i=0

rdop op3 cond simm11i=1

cc2

cc2

cc1

cc1

cc0

cc0

op3rdop —

op3rdop rs2opf—

op3rdop rs1 rs2opf

op op3 rs2000 rs1 opfcc1 cc0

nd

truc-
cc),
are
g-
des

.

nd the

ix E,

lative

teger
ion

ents

ruc-

ns. If
Figure 34—Summary of Instruction Formats: Formats 3 and 4

6.2.1 Instruction Fields

The instruction fields are interpreted as follows:

a:
Thea bit annuls the execution of the following instruction if the branch is conditional a
untaken, or if it is unconditional and taken.

cc0, cc1, and cc2:
cc2:cc1:cc0specify the condition codes (icc, xcc, fcc0, fcc1, fcc2, fcc3) to be used in the
instruction. Individual bits of the same logical field are present in several other ins
tions: Branch on Floating-Point Condition Codes with Prediction Instructions (FBPf
Branch on Integer Condition Codes with Prediction (BPcc), Floating-Point Comp
Instructions, Move Integer Register if Condition is Satisfied (MOVcc), Move Floatin
Point Register if Condition is Satisfied (FMOVcc), and Trap on Integer Condition Co
(Tcc). In instructions such as Tcc that do not contain thecc2bit, the missingcc2bit takes
on a default value. See table 38 on page 279 for a description of these fields’ values

cmask:
This 3-bit field specifies sequencing constraints on the order of memory references a
processing of instructions before and after a MEMBAR instruction.

cond:
This 4-bit field selects the condition tested by a branch instruction. See Append
“Opcode Maps,” for descriptions of its values.

d16hi and d16lo:
These 2-bit and 14-bit fields together comprise a word-aligned, sign-extended, PC-re
displacement for a branch-on-register-contents with prediction (BPr) instruction.

disp19:
This 19-bit field is a word-aligned, sign-extended, PC-relative displacement for an in
branch-with-prediction (BPcc) instruction or a floating-point branch-with-predict
(FBPfcc) instruction.

disp22 and disp30:
These 22-bit and 30-bit fields are word-aligned, sign-extended, PC-relative displacem
for a branch or call, respectively.

fcn:
This 5-bit field provides additional opcode bits to encode the DONE and RETRY inst
tions.

i:
The i bit selects the second operand for integer arithmetic and load/store instructio
i = 0, the operand is r[rs2]. Ifi = 1, the operand issimm10, simm11, or simm13, depending
on the instruction, sign-extended to 64 bits.

r.

ace.

and

e and

s. See

e

. See

on-
ster

s:

gister
tion
imm22:
This 22-bit field is a constant that SETHI places in bits 31..10 of a destination registe

imm_asi:
This 8-bit field is the address space identifier in instructions that access alternate sp

impl-dep:
The meaning of these fields is completely implementation-dependent for IMPDEP1
IMPDEP2 instructions.

mmask:
This 4-bit field imposes order constraints on memory references appearing befor
after a MEMBAR instruction.

op and op2:
These 2- and 3-bit fields encode the three major formats and the Format 2 instruction
Appendix E, “Opcode Maps,” for descriptions of their values.

op3:
This 6-bit field (together with one bit fromop) encodes the Format 3 instructions. Se
Appendix E, “Opcode Maps,” for descriptions of its values.

opf:
This 9-bit field encodes the operation for a floating-point operate (FPop) instruction
Appendix E, “Opcode Maps,” for possible values and their meanings.

opf_cc:
Specifies the condition codes to be used in FMOVcc instructions. Seecc0, cc1, and cc2
above for details.

opf_low:
This 6-bit field encodes the specific operation for a Move Floating-Point Register if C
dition is satisfied (FMOVcc) or Move Floating-Point register if contents of integer regi
match condition (FMOVr) instruction.

p:
This 1-bit field encodes static prediction for BPcc and FBPfcc instructions, as follow

rcond:
This 3-bit field selects the register-contents condition to test for a move based on re
contents (MOVr or FMOVr) instruction or a branch on register contents with predic
(BPr) instruction. See Appendix E, “Opcode Maps,” for descriptions of its values.

rd:
This 5-bit field is the address of the destination (or source)r or f register(s) for a load,
arithmetic, or store instruction.

p Branch prediction

0 Predict branch will not be taken

1 Predict branch will be taken

e sec-

e sec-

e sec-
hen

Trap
rs1:
This 5-bit field is the address of the firstr or f register(s) source operand.

rs2:
This 5-bit field is the address of the secondr or f register(s) source operand withi = 0.

shcnt32:
This 5-bit field provides the shift count for 32-bit shift instructions.

shcnt64:
This 6-bit field provides the shift count for 64-bit shift instructions.

simm10:
This 10-bit field is an immediate value that is sign-extended to 64 bits and used as th
ond ALU operand for a MOVr instruction wheni = 1.

simm11:
This 11-bit field is an immediate value that is sign-extended to 64 bits and used as th
ond ALU operand for a MOVcc instruction wheni = 1.

simm13:
This 13-bit field is an immediate value that is sign-extended to 64 bits and used as th
ond ALU operand for an integer arithmetic instruction or for a load/store instruction w
i = 1.

sw_trap#:
This 7-bit field is an immediate value that is used as the second ALU operand for a
on Condition Code instruction.

x:
Thex bit selects whether a 32- or 64-bit shift will be performed..

6.3 Instruction Categories

SPARC-V9 instructions can be grouped into the following categories:

— Memory access

— Memory synchronization

— Integer arithmetic

— Control transfer (CTI)

— Conditional moves

— Register window management

— State register access

— Privileged register access

— Floating-point operate

e only
er two
nd

, the

regis-
For
ory

al, the
oca-

.

dou-
word,
nd CAS

n be

uc-
es shall
ndaries,

s a

ble-
— Implementation-dependent

— Reserved

Each of these categories is further described in the following subsections.

6.3.1 Memory Access Instructions

Load, Store, Prefetch, Load Store Unsigned Byte, Swap, and Compare and Swap are th
instructions that access memory. All of the instructions except Compare and Swap use eith
r registers or anr register andsimm13to calculate a 64-bit byte memory address. Compare a
Swap uses a singler register to specify a 64-bit byte memory address. To this 64-bit address
IU appends an ASI that encodes address space information.

The destination field of a memory reference instruction specifies ther or f register(s) that supply
the data for a store or receive the data from a load or LDSTUB. For SWAP, the destination
ter identifies ther register to be exchanged atomically with the calculated memory location.
Compare and Swap, anr register is specified whose value is compared with the value in mem
at the computed address. If the values are equal, the destination field specifies ther register that is
to be exchanged atomically with the addressed memory location. If the values are unequ
destination field specifies ther register that is to receive the value at the addressed memory l
tion; in this case, the addressed memory location remains unchanged.

The destination field of a PREFETCH instruction is used to encode the type of the prefetch

Integer load and store instructions support byte (8-bit), halfword (16-bit), word (32-bit), and
bleword (64-bit) accesses. Floating-point load and store instructions support word, double
and quadword memory accesses. LDSTUB accesses bytes, SWAP accesses words, a
accesses words or doublewords. PREFETCH accesses at least 64 bytes.

Programming Note:
By setting i = 1 andrs1= 0, any location in the lowest or highest 4K bytes of an address space ca
accessed without using a register to hold part of the address.

6.3.1.1 Memory Alignment Restrictions

Halfword accesses shall bealigned on 2-byte boundaries, word accesses (which include instr
tion fetches) shall be aligned on 4-byte boundaries, extended word and doubleword access
be aligned on 8-byte boundaries, and quadword accesses shall be aligned on 16-byte bou
with the following exceptions.

An improperly aligned address in a load, store, or load-store instruction cause
mem_address_not_aligned exception to occur, except:

— An LDDF or LDDFA instruction accessing an address that is word-aligned but not dou
word-aligned may cause anLDDF_mem_address_not_aligned exception, or may complete
the operation in hardware (impl. dep. #109).

uble-

uad-

uad-

data
o pos-
Regis-

yte’s
are illus-

ndian

t byte
t byte

(bits
t byte

s are
d in the

dian
s to the
— An STDF or STDFA instruction accessing an address that is word-aligned but not do
word-aligned may cause anSTDF_mem_address_not_aligned exception or may complete
the operation in hardware (impl. dep. #110).

— An LDQF or LDQFA instruction accessing an address that is word-aligned but not q
word-aligned may cause anLDQF_mem_address_not_aligned exception or may complete
the operation in hardware (impl. dep. #111).

— An STQF or STQFA instruction accessing an address that is word-aligned but not q
word aligned may cause anSTQF_mem_address_not_aligned exception or may complete
the operation in hardware (impl. dep. #112).

6.3.1.2 Addressing Conventions

SPARC-V9 uses big-endian byte order for all instruction accesses and, by default, for
accesses. It is possible to access data in little-endian format by using selected ASIs. It is als
sible to change the default byte order for implicit data accesses. See 5.2.1, “Processor State
ter (PSTATE),” for more information.1

6.3.1.2.1 Big-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the most significant; a b
significance decreases as its address increases. The big-endian addressing conventions
trated in figure 35 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-e
modes.

halfword :
For a load/store halfword instruction, two bytes are accessed. The most significan
(bits 15..8) is accessed at the address specified in the instruction; the least significan
(bits 7..0) is accessed at the address + 1.

word:
For a load/store word instruction, four bytes are accessed. The most significant byte
31..24) is accessed at the address specified in the instruction; the least significan
(bits 7..0) is accessed at the address + 3.

doubleword or extended word:
For a load/store extended or floating-point load/store double instruction, eight byte
accessed. The most significant byte (bits 63..56) is accessed at the address specifie
instruction; the least significant byte (bits 7..0) is accessed at the address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two big-en
words are accessed. The word at the address specified in the instruction correspond

1.See Cohen, D., “On Holy Wars and a Plea for Peace,”Computer 14:10 (October 1981), pp. 48-54.

e fol-

ificant
ignifi-

yte’s
re illus-

ndian
even register specified in the instruction; the word at address + 4 corresponds to th
lowing odd-numbered register.

quadword:
For a load/store quadword instruction, sixteen bytes are accessed. The most sign
byte (bits 127..120) is accessed at the address specified in the instruction; the least s
cant byte (bits 7..0) is accessed at the address + 15.

Figure 35—Big-Endian Addressing Conventions

6.3.1.2.2 Little-Endian Addressing Convention

Within a multiple-byte integer, the byte with the smallest address is the least significant; a b
significance increases as its address increases. The little-endian addressing conventions a
trated in figure 36 and defined as follows:

byte:
A load/store byte instruction accesses the addressed byte in both big- and little-e
modes.

Byte
7 0

Halfword
15 0

Word
31 0

Doubleword /
63 32

31 0

78

15 78162324

47 3940485556

15 78162324

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword
127 96

95 64

111 103104112119120

79 7172808788

Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

63 32

31 0

47 3940485556

15 78162324

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

Extended word

t byte
t byte

(bits
e (bits

s are
in the

dian
nds to

n the
halfword :
For a load/store halfword instruction, two bytes are accessed. The least significan
(bits 7..0) is accessed at the address specified in the instruction; the most significan
(bits 15..8) is accessed at the address + 1.

word:
For a load/store word instruction, four bytes are accessed. The least significant byte
7..0) is accessed at the address specified in the instruction; the most significant byt
31..24) is accessed at the address + 3.

doubleword or extended word:
For a load/store extended or floating-point load/store double instruction, eight byte
accessed. The least significant byte (bits 7..0) is accessed at the address specified
instruction; the most significant byte (bits 63..56) is accessed at the address + 7.
For the deprecated integer load/store double instructions (LDD/STD), two little-en
words are accessed. The word at the address specified in the instruction + 4 correspo
the even register specified in the instruction; the word at the address specified i
instruction corresponds to the following odd-numbered register.

ificant
ificant

or
fied

An
quadword:
For a load/store quadword instruction, sixteen bytes are accessed. The least sign
byte (bits 7..0) is accessed at the address specified in the instruction; the most sign
byte (bits 127..120) is accessed at the address + 15

Figure 36—Little-Endian Addressing Conventions

6.3.1.3 Address Space Identifiers (ASIs)

Load and store instructions provide an implicit ASI value of ASI_PRIMARY
ASI_PRIMARY_LITTLE. Load and store alternate instructions provide an explicit ASI, speci
by theimm_asi instruction field wheni = 0, or the contents of the ASI register wheni = 1.

ASIs 0016 through 7F16 are restricted; only privileged software is allowed to access them.
attempt to access a restricted ASI by nonprivileged software results in aprivileged_action excep-

Byte
7 0

Halfword
7 8

Word
7 24

Doubleword /

150

23 31168150

0 1

00 01 10 11

Address

Address<0> =

Address<1:0> =

Address<2:0> =

Address<2:0> =

000 001 010 011

100 101 110 111

Quadword Address<3:0> =

Address<3:0> =

0000 0001 0010 0011

0100 0101 0110 0111

Address<3:0> =

Address<3:0> =

1000 1001 1010 1011

1100 1101 1110 1111

39 5655 6348404732

7 2423 31168150

39 5655 6348404732

7 2423 31168150

103 120119 12711210411196

71 8887 9580727964

Extended word

pro-

ASI,
tion. ASIs 8016 through FF16 are unrestricted; software is allowed to access them whether the
cessor is operating in privileged or nonprivileged mode. This is illustrated in table 11.

The required ASI assignments are shown in table 12. In the table, “R” indicates a restricted
and “U” indicates an unrestricted ASI.

IMPL. DEP. #29: These ASI assignments are implementation-dependent: restricted ASIs 0016..0316,
0516..0B16, 0D16..0F16, 1216..1716, AND 1A16..7F16; and unrestricted ASIs C016 .. FF16.

IMPL. DEP. #30: An implementation may choose to decode only a subset of the 8-bit ASI specifier; how-
ever, it shall decode at least enough of the ASI to distinguish ASI_PRIMARY, ASI_PRIMARY_LITTLE,
ASI_AS_IF_USER_PRIMARY, ASI_AS_IF_USER_PRIMARY_LITTLE, ASI_PRIMARY_NOFAULT,
ASI_PRIMARY_NOFAULT_LITTLE, ASI_SECONDARY, ASI_SECONDARY_LITTLE,
ASI_AS_IF_USER_SECONDARY, ASI_AS_IF_USER_SECONDARY_LITTLE,
ASI_SECONDARY_NOFAULT, and ASI_SECONDARY_NOFAULT_LITTLE. If the nucleus context is sup-
ported, then ASI_NUCLEUS and ASI_NUCLEUS_LITTLE must also be decoded (impl. dep. #124).
Finally, an implementation must always decode ASI bit<7> while PSTATE.PRIV = 0, so that an attempt by
nonprivileged software to access a restricted ASI will always cause a privileged_action exception.

Table 11—Allowed Accesses to ASIs

Value Access Type Processor state
(PSTATE.PRIV) Result of ASI access

0016..7F16 Restricted
Nonprivileged (0) privileged_action exception

Privileged (1) Valid access

8016..FF16 Unrestricted
Nonprivileged (0) Valid access

Privileged (1) Valid access

n-

l

ued
s

hared
times. It
w them
space.

riate
odify-
1 These ASI assignments are implementation-dependent (impl. dep. #29) and available for use by impleme
tors. Code that references any of these ASIs may not be portable.

2 ASI_NUCLEUS{_LITTLE} are implementation-dependent (impl. dep. #124); they may not be supported in al
implementations. See F.4.4, “Contexts,” for more information.

3 Use of these ASIs causes access checks to be performed as if the memory access instruction were iss
while PSTATE.PRIV = 0 (that is, in nonprivileged mode) and directed towards the corresponding addres
space.

4 ASI_PRIMARY_NOFAULT{_LITTLE} andASI_SECONDARY_NOFAULT{_LITTLE} refer to the same address
spaces asASI_PRIMARY{_LITTLE} andASI_SECONDARY{_LITTLE}, respectively, with additional seman-
tics as described in 8.3, “Addressing and Alternate Address Spaces.”

6.3.1.4 Separate Instruction Memory

A SPARC-V9 implementation may choose to place instruction and data in the same s
address space and use hardware to keep the data and instruction memory consistent at all
may also choose to overload independent address spaces for data and instructions and allo
to become inconsistent when data writes are made to addresses shared with the instruction
A program containing such self-modifying code must issue a FLUSH instruction or approp
calls to system software to bring the address spaces to a consistent state. See H.1.6, “Self-M
ing Code,” for more information.

Table 12—Address Space Identifiers (ASIs)

Value Name Access Address space
0016..0316 — R Implementation-dependent1

0416 ASI_NUCLEUS R Implementation-dependent2

0516..0B16 — R Implementation-dependent1

0C16 ASI_NUCLEUS_LITTLE R Implementation-dependent2

0D16..0F16 — R Implementation-dependent1

1016 ASI_AS_IF_USER_PRIMARY R Primary address space, user privilege3

1116 ASI_AS_IF_USER_SECONDARY R Secondary address space, user privilege3

1216 ..1716 — R Implementation-dependent1

1816 ASI_AS_IF_USER_PRIMARY_LITTLE R Primary address space, user privilege, little-endian3

1916 ASI_AS_IF_USER_SECONDARY_LITTLE R Secondary address space, user priv., little-endian3

1A16..7F16 — R Implementation-dependent1

8016 ASI_PRIMARY U Primary address space

8116 ASI_SECONDARY U Secondary address space

8216 ASI_PRIMARY_NOFAULT U Primary address space, no fault4

8316 ASI_SECONDARY_NOFAULT U Secondary address space, no fault4

8416..8716 — U Reserved

8816 ASI_PRIMARY_LITTLE U Primary address space, little-endian

8916 ASI_SECONDARY_LITTLE U Secondary address space, little-endian

8A16 ASI_PRIMARY_NOFAULT_LITTLE U Primary address space, no fault, little-endian4

8B16 ASI_SECONDARY_NOFAULT_LITTLE U Secondary address space, no fault, little-endian4

8C16..BF16 — U Reserved

C016..FF16 — U Implementation-dependent1

and
ets of
l over
sub-

n to

mpute
stina-

s (
rison

ct and

hift

t
r 10
struct

,

6.3.2 Memory Synchronization Instructions

Two forms of memory barrier (MEMBAR) instructions allow programs to manage the order
completion of memory references. Ordering MEMBARs induce a partial ordering between s
loads and stores and future loads and stores. Sequencing MEMBARs exert explicit contro
completion of loads and stores. Both barrier forms are encoded in a single instruction, with
functions bit-encoded in an immediate field.

Compatibility Note:
The deprecated STBAR instruction is a subcase of the MEMBAR instruction; it is identical in operatio
the STBAR instruction of SPARC-V8, and is included only for compatibility.

6.3.3 Integer Arithmetic Instructions

The integer arithmetic instructions are generally triadic-register-address instructions that co
a result which is a function of two source operands. They either write the result into the de
tion registerr[rd] or discard it. One of the source operands is always r[rs1]. The other source
operand depends on thei bit in the instruction; ifi = 0, the operand isr[rs2]; if i = 1, the operand
is the constantsimm10, simm11, orsimm13 sign-extended to 64 bits.

Note that the value ofr[0] always reads as zero, and writes to it are ignored.

6.3.3.1 Setting Condition Codes

Most integer arithmetic instructions have two versions; one sets the integer condition codeicc
and xcc) as a side effect; the other does not affect the condition codes. A special compa
instruction for integer values is not needed, since it is easily synthesized using the “subtra
set condition codes” (SUBcc) instruction. See G.3, “Synthetic Instructions,” for details.

6.3.3.2 Shift Instructions

Shift instructions shift anr register left or right by a constant or variable amount. None of the s
instructions changes the condition codes.

6.3.3.3 Set High 22 Bits of Low Word

The “set high 22 bits of low word of anr register” instruction (SETHI) writes a 22-bit constan
from the instruction into bits 31 through 10 of the destination register. It clears the low-orde
bits and high-order 32 bits, and does not affect the condition codes. Its primary use is to con
constants in registers.

6.3.3.4 Integer Multiply/Divide

The integer multiply instruction performs a 64× 64 → 64-bit operation; the integer divide
instructions perform 64÷ 64 → 64-bit operations. For compatibility with SPARC-V8

o low-
metic

-

Bc-

nPC)
nPC).
rol is
. The

nnul,
taken
they

fter a
bit can
loop.
n “if-
condi-
that an

gram
s that
32 × 32 → 64-bit multiply instructions, 64÷ 32 → 32-bit divide instructions, and the multiply
step instruction are provided. Division by zero causes adivision_by_zero exception.

6.3.3.5 Tagged Add/Subtract

The tagged add/subtract instructions assume tagged-format data, in which the tag is the tw
order bits of each operand. If either of the two operands has a nonzero tag, or if 32-bit arith
overflow occurs, tag overflow is detected. TADDcc and TSUBcc set the CCR.icc.V bit if tag over-
flow occurs; they set the CCR.xcc.V bit if 64-bit arithmetic overflow occurs. The trapping ver
sions (TADDccTV, TSUBccTV) of these instructions cause atag_overflow trap if tag overflow
occurs. If 64-bit arithmetic overflow occurs but tag overflow does not, TADDccTV and TSU
cTV set the CCR.xcc.V bit but do not trap.

6.3.4 Control-Transfer Instructions (CTIs)

These are the basic control-transfer instruction types:

— Conditional branch (Bicc, BPcc, BPr, FBfcc, FBPfcc)

— Unconditional Branch

— Call and Link (CALL)

— Jump and Link (JMPL, RETURN)

— Return from trap (DONE, RETRY)

— Trap (Tcc)

A control-transfer instruction functions by changing the value of the next program counter (
or by changing the value of both the program counter (PC) and the next program counter (
When only the next program counter, nPC, is changed, the effect of the transfer of cont
delayed by one instruction. Most control transfers in SPARC-V9 are of the delayed variety
instruction following a delayed control transfer instruction is said to be in thedelay slot of the
control transfer instruction. Some control transfer instructions (branches) can optionally a
that is, not execute, the instruction in the delay slot, depending upon whether the transfer is
or not-taken. Annulled instructions have no effect upon the program-visible state nor can
cause a trap.

Programming Note:
The annul bit increases the likelihood that a compiler can find a useful instruction to fill the delay slot a
branch, thereby reducing the number of instructions executed by a program. For example, the annul
be used to move an instruction from within a loop to fill the delay slot of the branch that closes the
Likewise, the annul bit can be used to move an instruction from either the “else” or “then” branch of a
then-else” program block to the delay slot of the branch that selects between them. Since a full set of
tions are provided, a compiler can arrange the code (possibly reversing the sense of the condition) so
instruction from either the “else” branch or the “then” branch can be moved to the delay slot.

Table 13 below defines the value of the program counter and the value of the next pro
counter after execution of each instruction. Conditional branches have two forms: branche

hat is,
hown
truc-

. The

diate
ace-

ignifi-
f
is

by
s of

L] or

nulled
if it is

control
s com-
test a condition, represented in the table by “Bcc,” and branches that are unconditional, t
always or never taken, represented in the table by “B.” The effect of an annulled branch is s
in the table through explicit transfers of control, rather than by fetching and annulling the ins
tion.

The effective address, EA in table 13, specifies the target of the control transfer instruction
effective address is computed in different ways, depending on the particular instruction:

PC-relative Effective Address:
A PC-relative effective address is computed by sign extending the instruction’s imme
field to 64-bits, left-shifting the word displacement by two bits to create a byte displ
ment, and adding the result to the contents of the PC.

Register-Indirect Effective Address:
A register-indirect effective address computes its target address as either r[rs1]+r [rs2] if i
= 0, or r[rs1]+sign_ext(simm13) if i = 1 .

Trap Vector Effective Address:
A trap vector effective address first computes the software trap number as the least s
cant seven bits ofr[rs1]+r [rs2] if i = 0 , or as the least significant seven bits o
r[rs1]+sw_trap# if i = 1 . The trap level, TL, is incremented. The hardware trap type
computed as 256 +sw_trap#and stored in TT[TL]. The effective address is generated
concatenating the contents of the TBA register, the “TL>0” bit, and the content
TT[TL]. See 5.2.8, “Trap Base Address (TBA),” for details.

Trap State Effective Address:
A trap state effective address is not computed, but is taken directly from either TPC[T
TNPC[TL].

Compatibility Note:
SPARC-V8 specified that the delay instruction was always fetched, even if annulled, and that an an
instruction could not cause any traps. SPARC-V9 does not require the delay instruction to be fetched
annulled.

Compatibility Note:
SPARC-V8 left as undefined the result of executing a delayed conditional branch that had a delayed
transfer in its delay slot. For this reason, programmers should avoid such constructs when backward
patibility is an issue.

the
elay
ken

”; it
n in

aken

elf,
ctive

self,
. The
6.3.4.1 Conditional Branches

A conditional branch transfers control if the specified condition is true. If the annul bit is 0,
instruction in the delay slot is always executed. If the annul bit is 1, the instruction in the d
slot isnot executedunlessthe conditional branch is taken. Note that the annul behavior of a ta
conditional branch is different from that of an unconditional branch.

6.3.4.2 Unconditional Branches

An unconditional branch transfers control unconditionally if its specified condition is “always
never transfers control if its specified condition is “never.” If the annul bit is 0, the instructio
the delay slot is always executed. If the annul bit is 1, the instruction in the delay slot isneverexe-
cuted. Note that the annul behavior of an unconditional branch is different from that of a t
conditional branch.

6.3.4.3 CALL and JMPL instructions

The CALL instruction writes the contents of the PC, which points to the CALL instruction its
into r[15] (out register 7) and then causes a delayed transfer of control to a PC-relative effe
address. The value written intor[15] is visible to the instruction in the delay slot.

The JMPL instruction writes the contents of the PC, which points to the JMPL instruction it
into r[rd] and then causes a delayed transfer of control to a PC-relative effective address
value written intor[rd] is visible to the instruction in the delay slot.

Table 13—Control Transfer Characteristics

Instruction group Address
form Delayed Taken Annul

bit New PC New nPC

Non-CTIs — — — — nPC nPC + 4

Bcc PC-relative Yes Yes 0 nPC EA

Bcc PC-relative Yes No 0 nPC nPC + 4

Bcc PC-relative Yes Yes 1 nPC EA

Bcc PC-relative Yes No 1 nPC + 4 nPC + 8

B PC-relative Yes Yes 0 nPC EA

B PC-relative Yes No 0 nPC nPC + 4

B PC-relative Yes Yes 1 EA EA + 4

B PC-relative Yes No 1 nPC + 4 nPC + 8

CALL PC-relative Yes — — nPC EA

JMPL, RETURN Register-ind. Yes — — nPC EA

DONE Trap state No — — TNPC[TL] TNPC[TL] + 4

RETRY Trap state No — — TPC[TL] TNPC[TL]

Tcc Trap vector No Yes — EA EA + 4

Tcc Trap vector No No — nPC nPC + 4

.

ode.

hese

to the
p, that
tever

e
and
Base

s the
only
trap is

e used

ister
st is
con-
When PSTATE.AM = 1, the value of the high order 32-bits transmitted tor[15] by the CALL
instruction or tor[rd] by the JMPL instruction is implementation-dependent. (impl. dep #125)

6.3.4.4 RETURN Instruction

The RETURN instruction is used to return from a trap handler executing in nonpriviliged m
RETURN combines the control-transfer characteristics of a JMPL instruction withr[0] specified
as the destination register and the register-window semantics of a RESTORE instruction.

6.3.4.5 DONE and RETRY Instructions

The DONE and RETRY instructions are used by privileged software to return from a trap. T
instructions restore the machine state to values saved in the TSTATE register.

RETRY returns to the instruction that caused the trap in order to reexecute it. DONE returns
instruction pointed to by the value of nPC associated with the instruction that caused the tra
is, the next logical instruction in the program. DONE presumes that the trap handler did wha
was requested by the program and that execution should continue.

6.3.4.6 Trap Instruction (Tcc)

The Tcc instruction initiates a trap if the condition specified by itscondfield matches the current
state of the condition code register specified by itscc field, otherwise it executes as a NOP. If th
trap is taken, it increments the TL register, computes a trap type which is stored in TT[TL],
transfers to a computed address in the trap table pointed to by TBA. See 5.2.8, “Trap
Address (TBA).”

A Tcc instruction can specify one of 128 software trap types. When a Tcc is taken, 256 plu
seven least significant bits of the sum of the Tcc’s source operands is written to TT[TL]. The
visible difference between a software trap generated by a Tcc instruction and a hardware
the trap number in the TT register. See Chapter 7, “Traps,” for more information.

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. Tcc can also b
for run-time checks, such as out-of-range array index checks or integer overflow checks.

6.3.5 Conditional Move Instructions

6.3.5.1 MOVcc and FMOVcc Instructions

The MOVcc and FMOVcc instructions copy the contents of any integer or floating-point reg
to a destination integer or floating-point register if a condition is satisfied. The condition to te
specified in the instruction and may be any of the conditions allowed in conditional delayed
trol-transfer instructions. This condition is tested against one of the six condition codes (icc, xcc,
fcc0, fcc1, fcc2, andfcc3) as specified by the instruction. For example:

fmovdg %fcc2, %f20, %f22

s. In
truc-

r to
truc-

ontrol

ltiple

9. The
State
moves the contents of the double-precision floating-point register%f20 to register%f22 if float-
ing-point condition code number 2 (fcc2) indicates a greater-than relation (FSR.fcc2= 2). If fcc2
does not indicate a greater-than relation (FSR.fcc2≠ 2), then the move is not performed.

The MOVcc and FMOVcc instructions can be used to eliminate some branches in program
most implementations, branches will be more expensive than the MOVcc or FMOVcc ins
tions. For example, the following C statement:

if (A > B) X = 1; else X = 0;

can be coded as:

cmp %i0, %i2 ! (A > B)
or %g0, 0, %i3 ! set X = 0
movg %xcc, %g0,1, %i3 ! overwrite X with 1 if A > B

which eliminates the need for a branch.

6.3.5.2 MOVr and FMOVr Instructions

The MOVr and FMOVr instructions allow the contents of any integer or floating-point registe
be moved to a destination integer or floating-point register if a condition specified by the ins
tion is satisfied. The condition to test may be any of the following:

Any of the integer registers may be tested for one of the conditions, and the result used to c
the move. For example,

movrnz %i2, %l4, %l6

moves integer register%l4 to integer register%l6 if integer register%i2 contains a nonzero
value.

MOVr and FMOVr can be used to eliminate some branches in programs, or to emulate mu
unsigned condition codes by using an integer register to hold the result of a comparison.

6.3.6 Register Window Management Instructions

This subsection describes the instructions used to manage register windows in SPARC-V
privileged registers affected by these instructions are described in 5.2.10, “Register-Window
Registers.”

Condition Description

NZ Nonzero

Z Zero

GEZ Greater than or equal to zero

LZ Less than zero

LEZ Less than or equal to zero

GZ Greater than zero

w by

, and
one

win-

regis-

NRE-
in-

to a

and

ister
ossi-
,

ion. A
ess for
o the

r in an
Win-

l has
6.3.6.1 SAVE Instruction

The SAVE instruction allocates a new register window and saves the caller’s register windo
incrementing the CWP register.

If CANSAVE = 0, execution of a SAVE instruction causes awindow_spill exception.

If CANSAVE ≠ 0, but the number of clean windows is zero, that is:

(CLEANWIN – CANRESTORE) = 0

then SAVE causes aclean_window exception.

If SAVE does not cause an exception, it performs an ADD operation, decrements CANSAVE
increments CANRESTORE. The source registers for the ADD are from the old window (the
to which CWP pointed before the SAVE), while the result is written into a register in the new
dow (the one to which the incremented CWP points).

6.3.6.2 RESTORE Instruction

The RESTORE instruction restores the previous register window by decrementing the CWP
ter.

If CANRESTORE = 0, execution of a RESTORE instruction causes awindow_fill exception.

If RESTORE does not cause an exception, it performs an ADD operation, decrements CA
STORE, and increments CANSAVE. The source registers for the ADD are from the “old” w
dow (the one to which CWP pointed before the RESTORE), while the result is written in
register in the “new” window (the one to which the decremented CWP points).

Programming Note:
The following describes a common convention for use of register windows, SAVE, RESTORE, CALL,
JMPL instructions.

A procedure is invoked by executing a CALL (or a JMPL) instruction. If the procedure requires a reg
window, it executes a SAVE instruction. A routine that does not allocate a register window of its own (p
bly a leaf procedure) should not modify any windowed registers exceptout registers 0 through 6. See H.1.2
“Leaf-Procedure Optimization.”

A procedure that uses a register window returns by executing both a RESTORE and a JMPL instruct
procedure that has not allocated a register window returns by executing a JMPL only. The target addr
the JMPL instruction is normally eight plus the address saved by the calling instruction, that is, t
instruction after the instruction in the delay slot of the calling instruction.

The SAVE and RESTORE instructions can be used to atomically establish a new memory stack pointe
r register and switch to a new or previous register window. See H.1.4, “Register Allocation within a
dow.”

6.3.6.3 SAVED Instruction

The SAVED instruction should be used by a spill trap handler to indicate that a window spil
completed successfully. It increments CANSAVE:

AVED

has

pace

), so

N-

per-
p if
dows

has
ill
been
CANSAVE ← (CANSAVE + 1)

If the saved window belongs to a different address space (OTHERWIN≠ 0), it decrements OTH-
ERWIN:

OTHERWIN ← (OTHERWIN – 1)

Otherwise, the saved window belongs to the current address space (OTHERWIN = 0), so S
decrements CANRESTORE:

CANRESTORE← (CANRESTORE – 1)

6.3.6.4 RESTORED Instruction

The RESTORED instruction should be used by a fill trap handler to indicate that a window
been filled successfully. It increments CANRESTORE:

CANRESTORE← (CANRESTORE+ 1)

If the restored window replaces a window that belongs to a different address s
(OTHERWIN ≠ 0), it decrements OTHERWIN:

OTHERWIN ← (OTHERWIN – 1)

Otherwise, the restored window belongs to the current address space (OTHERWIN = 0
RESTORED decrements CANSAVE:

CANSAVE ← (CANSAVE – 1)

If CLEANWIN is less than NWINDOWS-1, the RESTORED instruction increments CLEA
WIN:

if (CLEANWIN < (NWINDOWS-1))then CLEANWIN ← (CLEANWIN + 1)

6.3.6.5 Flush Windows Instruction

The FLUSHW instruction flushes all of the register windows except the current window, by
forming repetitive spill traps. The FLUSHW instruction is implemented by causing a spill tra
any register window (other than the current window) has valid contents. The number of win
with valid contents is computed as

NWINDOWS – 2 – CANSAVE

If this number is nonzero, the FLUSHW instruction causes a spill trap. Otherwise, FLUSHW
no effect. If the spill trap handler exits with a RETRY instruction, the FLUSHW instruction w
continue causing spill traps until all the register windows except the current window have
flushed.

. These
-

le only

tions.
in one

d

f

d does
load/

s do

for

tion

n.

n.
rate

s

6.3.7 State Register Access

The read/write state register instructions access program-visible state and status registers
instructions read/write the state registers into/fromr registers. A read/write Ancillary State Regis
ter instruction is privileged only if the accessed register is privileged.

6.3.8 Privileged Register Access

The read/write privileged register instructions access state and status registers that are visib
to privileged software. These instructions read/write privileged registers into/fromr registers. The
read/write privileged register instructions are privileged.

6.3.9 Floating-Point Operate (FPop) Instructions

Floating-point operate instructions (FPops) are generally triadic-register-address instruc
They compute a result that is a function of one or two source operands and place the result
or more destinationf registers. The exceptions are:

— Floating-point convert operations, which use one source and one destination operan

— Floating-point compare operations, which do not write to anf register, but update one o
thefccn fields of the FSR instead

The term “FPop” refers to those instructions encoded by the FPop1 and FPop2 opcodes an
not include branches based on the floating-point condition codes (FBfcc and FBPfcc) or the
store floating-point instructions.

The FMOVcc instructions function for the floating-point registers as the MOVcc instruction
for the integer registers. See 6.3.5.1, “MOVcc and FMOVcc Instructions.”

The FMOVr instructions function for the floating-point registers as the MOVr instructions do
the integer registers. See 6.3.5.2, “MOVr and FMOVr Instructions.”

If there is no floating-point unit present or if PSTATE.PEF = 0 or FPRS.FEF = 0, any instruc
that attempts to access an FPU register, including an FPop instruction, generates anfp_disabled
exception.

All FPop instructions clear theftt field and set thecexcfield, unless they generate an exceptio
Floating-point compare instructions also write one of thefccn fields. All FPop instructions that
can generate IEEE exceptions set thecexcand aexcfields, unless they generate an exceptio
FABS(s,d,q), FMOV(s,d,q), FMOVcc(s,d,q), FMOVr(s,d,q), and FNEG(s,d,q) cannot gene
IEEE exceptions, so they clearcexcand leaveaexcunchanged. FMOVcc and FMOVr instruction
clear these FSR fields regardless of the value of the conditional predicate.

IMPL. DEP. #3: An implementation may indicate that a floating-point instruction did not produce a correct
IEEE STD 754-1985 result by generating a special unfinished_FPop or unimplemented_FPop exception.
Privileged-mode software must emulate any functionality not present in the hardware.

and

pecifi-

e an
the

isters
y the
ware

 true:

uation.

ust
count

hout
d in

via the
fig-

ddress
in a
6.3.10 Implementation-Dependent Instructions

SPARC-V9 provides two instructions that are entirely implementation-dependent, IMPDEP1
IMPDEP2 (impl. dep. #106).

Compatibility Note:
The IMPDEPn instructions replace the CPopn instructions in SPARC-V8.

See A.23, “Implementation-Dependent Instructions,” for more information.

6.3.11 Reserved Opcodes and Instruction Fields

An attempt to execute an opcode to which no instruction is assigned shall cause a trap. S
cally, attempting to execute a reserved FPop causes anfp_exception_other trap (with
FSR.ftt = unimplemented_FPop); attempting to execute any other reserved opcode shall caus
illegal_instruction trap. See Appendix E, “Opcode Maps,” for a complete enumeration of
reserved opcodes.

6.4 Register Window Management

The state of the register windows is determined by the contents of the set of privileged reg
described in 5.2.10, “Register-Window State Registers.” Those registers are affected b
instructions described in 6.3.6, “Register Window Management Instructions.” Privileged soft
can read/write these state registers directly by using RDPR/WRPR instructions.

6.4.1 Register Window State Definition

In order for the state of the register windows to be consistent, the following must always be

CANSAVE + CANRESTORE+ OTHERWIN = NWINDOWS – 2

Figure 3 on page 34 shows how the register windows are partitioned to obtain the above eq
In figure 3, the partitions are as follows:

— The current window and the window that overlaps two other valid windows and so m
not be used (in the figure, windows 0 and 4, respectively) are always present and ac
for the 2 subtracted from NWINDOWS in the right-hand side of the equation.

— Windows that do not have valid contents and can be used (via a SAVE instruction) wit
causing a spill trap. These windows (windows 1, 2 and 3 in the figure) are counte
CANSAVE.

— Windows that have valid contents for the current address space and can be used (
RESTORE instruction) without causing a fill trap. These windows (window 7 in the
ure) are counted in CANRESTORE.

— Windows that have valid contents for an address space other than the current a
space. An attempt to use these windows via a SAVE (RESTORE) instruction results

tion.

ing

state of
spill-
dow
roying

s, to

w is
save

gister
ed

t in
e.

con-
indow

ftware

urrent
tored
n be
ed by
spill (fill) trap to a separate set of trap vectors, as discussed in the following subsec
These windows (windows 5 and 6 in the figure) are counted in OTHERWIN.

In addition,

CLEANWIN ≥ CANRESTORE

since CLEANWIN is the sum of CANRESTORE and the number of clean windows follow
CWP.

In order to use the window-management features of the architecture as described here, the
the register windows must be kept consistent at all times, except in trap handlers for window
ing, filling, and cleaning. While handling window traps the state may be inconsistent. Win
spill/fill strap handlers should be written such that a nested trap can be taken without dest
state.

6.4.2 Register Window Traps

Window traps are used to manage overflow and underflow conditions in the register window
support clean windows, and to implement the FLUSHW instruction.

6.4.2.1 Window Spill and Fill Traps

A window overflow occurs when a SAVE instruction is executed and the next register windo
occupied (CANSAVE = 0). An overflow causes a spill trap that allows privileged software to
the occupied register window in memory, thereby making it available for use.

A window underflow occurs when a RESTORE instruction is executed and the previous re
window is not valid (CANRESTORE = 0). An underflow causes a fill trap that allows privileg
software to load the registers from memory.

6.4.2.2 Clean-Window Trap

SPARC-V9 provides theclean_window trap so that software can create a secure environmen
which it is guaranteed that register windows contain only data from the same address spac

A clean register window is one in which all of the registers, including uninitialized registers,
tain either zero or data assigned by software executing in the address space to which the w
belongs. A clean window cannot contain register values from another process, that is, so
operating in a different address space.

Supervisor software specifies the number of windows that are clean with respect to the c
address space in the CLEANWIN register. This includes register windows that can be res
(the value in the CANRESTORE register) and the register windows following CWP that ca
used without cleaning. Therefore, the number of clean windows that are available to be us
the SAVE instruction is

CLEANWIN – CANRESTORE

t-

ec-

to an
s kept

ows

the
ide.

be
space
ld

ndler,

er-

AN-
illed
The SAVE instruction causes aclean_window trap if this value is zero. This allows supervisor sof
ware to clean a register window before it is accessed by a user.

6.4.2.3 Vectoring of Fill/Spill Traps

In order to make handling of fill and spill traps efficient, SPARC-V9 provides multiple trap v
tors for the fill and spill traps. These trap vectors are determined as follows:

— Supervisor software can mark a set of contiguous register windows as belonging
address space different from the current one. The count of these register windows i
in the OTHERWIN register. A separate set of trap vectors (fill_n_other andspill_n_other) is
provided for spill and fill traps for these register windows (as opposed to register wind
that belong to the current address space).

— Supervisor software can specify the trap vectors for fill and spill traps by presetting
fields in the WSTATE register. This register contains two subfields, each three bits w
The WSTATE.NORMAL field is used to determine one of eight spill (fill) vectors to
used when the register window to be spilled (filled) belongs to the current address
(OTHERWIN = 0). If the OTHERWIN register is nonzero, the WSTATE.OTHER fie
selects one of eightfill_n_other (spill_n_other) trap vectors.

See Chapter 7, “Traps,” for more details on how the trap address is determined.

6.4.2.4 CWP on Window Traps

On a window trap the CWP is set to point to the window that must be accessed by the trap ha
as follows (note that all arithmetic on CWP is done modulo NWINDOWS):

— If the spill trap occurs due to a SAVE instruction (when CANSAVE = 0), there is an ov
lap window between the CWP and the next register window to be spilled

CWP← (CWP+ 2) mod NWINDOWS

If the spill trap occurs due to a FLUSHW instruction, there can be unused windows (C
SAVE) in addition to the overlap window, between the CWP and the window to be sp

CWP← (CWP+ CANSAVE + 2) mod NWINDOWS

Implementation Note:
All spill traps can use:

CWP← (CWP+ CANSAVE + 2) mod NWINDOWS

since CANSAVE is zero whenever a trap occurs due to a SAVE instruction.

— On a fill trap, the window preceding CWP must be filled

CWP← (CWP – 1)mod NWINDOWS

— On a clean_window trap, the window following CWP must be cleaned. Then

CWP← (CWP+ 1) mod NWINDOWS

d
gister
AN-
da-

ills.

lls.

it

Spill

ns the
f the
r. The
One-
gener-

e trap

tion, a
ticular
ction, it
excep-
equest

cuting
pro-
6.4.2.5 Window Trap Handlers

The trap handlers for fill, spill andclean_window traps must handle the trap appropriately an
return using the RETRY instruction, to reexecute the trapped instruction. The state of the re
windows must be updated by the trap handler, and the relationship among CLEANWIN, C
SAVE, CANRESTORE, and OTHERWIN must remain consistent. The following recommen
tions should be followed:

— A spill trap handler should execute the SAVED instruction for each window that it sp

— A fill trap handler should execute the RESTORED instruction for each window that it fi

— A clean_window trap handler should increment CLEANWIN for each window that
cleans:

CLEANWIN ← (CLEANWIN + 1)

Window trap handlers in SPARC-V9 can be very efficient. See H.2.2, “Example Code for
Handler,” for details and sample code.

7 Traps
7.1 Overview

A trap is a vectored transfer of control to supervisor software through a trap table that contai
first eight (thirty-two for fill/spill traps) instructions of each trap handler. The base address o
table is established by supervisor software, by writing the Trap Base Address (TBA) registe
displacement within the table is determined by the trap type and the current trap level (TL).
half of the table is reserved for hardware traps; one-quarter is reserved for software traps
ated by Tcc instructions; the remaining quarter is reserved for future use.

A trap behaves like an unexpected procedure call. It causes the hardware to

(1) Save certain processor state (program counters, CWP, ASI, CCR, PSTATE, and th
type) on a hardware register stack

(2) Enter privileged execution mode with a predefined PSTATE

(3) Begin executing trap handler code in the trap vector

When the trap handler has finished, it uses either a DONE or RETRY instruction to return.

A trap may be caused by a Tcc instruction, an SIR instruction, an instruction-induced excep
reset, an asynchronous exception, or an interrupt request not directly related to a par
instruction. The processor must appear to behave as though, before executing each instru
determines if there are any pending exceptions or interrupt requests. If there are pending
tions or interrupt requests, the processor selects the highest-priority exception or interrupt r
and causes a trap.

Thus, an exception is a condition that makes it impossible for the processor to continue exe
the current instruction stream without software intervention. A trap is the action taken by the

terrupt,

, due
stored.
resum-

served
and

XTL,

re
by the
cessor when it changes the instruction flow in response to the presence of an exception, in
or Tcc instruction.

A catastrophic error exception is due to the detection of a hardware malfunction from which
to the nature of the error, the state of the machine at the time of the exception cannot be re
Since the machine state cannot be restored, execution after such an exception may not be
able. An example of such an error is an uncorrectable bus parity error.

IMPL. DEP. #31: The causes and effects of catastrophic errors are implementation-dependent. They may
cause precise, deferred, or disrupting traps.

7.2 Processor States, Normal and Special Traps

The processor is always in one of three discrete states:

— execute_state, which is the normal execution state of the processor

— RED_state (Reset, Error, and Debug state), which is a restricted execution state re
for processing traps that occur when TL = MAXTL – 1, and for processing hardware-
software-initiated resets

— error_state, which is a halted state that is entered as a result of a trap when TL = MA
or due to an unrecoverable error

Traps processed in execute_state are callednormal traps. Traps processed in RED_state a
calledspecial traps. Exceptions that cause the processor to enter error_state are recorded
hardware and are made available in the TT field after the processor is reset.

Figure 37 shows the processor state diagram.

Figure 37—Processor State Diagram

RED_stateexecute_state error_state

POR,

Including Power Off

Trap or SIR @

Trap @
TL = MAXTL

Trap @
TL = MAXTL–1,

DONE,

TL = MAXTL

RED = 1

RED = 0
RETRY,

WDR,

Any State

Trap or SIR @
TL < MAXTL

Trap @
TL < MAXTL–1

XIR

Trap or SIR @
TL< MAXTL,

ate

is, if
te pro-

state;
ecut-
egis-
e can
essor
ed in

y

7.2.1 RED_state

RED_state is an acronym forReset,Error, andDebug state. The processor enters RED_st
under any one of the following conditions:

— A trap is taken when TL = MAXTL–1.

— Any of the four reset requests occurs (POR, WDR, XIR, SIR).

— An implementation-dependent trap,internal_processor_error exception, orcatastrophic_error
exception occurs.

— System software sets PSTATE.RED = 1.

RED_state serves two mutually exclusive purposes:

— During trap processing, it indicates that there are no more available trap levels; that
another nested trap is taken, the processor will enter error_state and halt. RED_sta
vides system software with a restricted execution environment.

— It provides the execution environment for all reset processing.

RED_state is indicated by PSTATE.RED. When this bit is set, the processor is in RED_
when this bit is clear, the processor is not in RED_state, independent of the value of TL. Ex
ing a DONE or RETRY instruction in RED_state restores the stacked copy of the PSTATE r
ter, which clears the PSTATE.RED flag if the stacked copy had it cleared. System softwar
also set or clear the PSTATE.RED flag with a WRPR instruction, which also forces the proc
to enter or exit RED_state, respectively. In this case, the WRPR instruction should be plac
the delay slot of a jump, so that the PC can be changed in concert with the state change.

Programming Note:
Setting TL = MAXTL with a WRPR instructiondoes notalso set PSTATE.RED = 1; nor does it alter an
other machine state. The values of PSTATE.RED and TL are independent.

bbrevi-
al trap

n

f RST-
tance

e val-

U is

led.
MMU.
7.2.1.1 RED_state Trap Table

Traps occurring in RED_state or traps that cause the processor to enter RED_state use an a
ated trap vector. The RED_state trap vector is constructed so that it can overlay the norm
vector if necessary. Figure 38 illustrates the RED_state trap vector.

†TT = 2 if a watchdog reset occurs while the processor is not in error_state; TT = trap type of the exceptio
that caused entry into error_state if a watchdog reset (WDR) occurs in error_state.

‡TT = 3 if an externally initiated reset (XIR) occurs while the processor is not in error_state; TT = trap type
of the exception that caused entry into error_state if the externally initiated reset occurs in error_state.

* TT = trap type of the exception. See table 14 on page 124.

Figure 38—RED_state Trap Vector Layout

IMPL. DEP. #114: The RED_state trap vector is located at an implementation-dependent address referred
to as RSTVaddr.

Implementation Note:
The RED_state trap handlers should be located in trusted memory, for example, in ROM. The value o
Vaddr may be hard-wired in an implementation, but it is suggested that it be externally settable, for ins
by scan, or read from pins at power-on reset.

7.2.1.2 RED_state Execution Environment

In RED_state the processor is forced to execute in a restricted environment by overriding th
ues of some processor controls and state registers.

Programming Note:
The values are overridden, not set. This is to allow them to be switched atomically.

IMPL. DEP. #115: A processor’s behavior in RED_state is implementation-dependent.

The following are recommended:

(1) Instruction address translation is a straight-through physical map; that is, the MM
always suppressed for instruction access in RED_state.

(2) Data address translation is handled normally; that is, the MMU is used if it is enab
However, any event that causes the processor to enter RED_state also disables the
The handler executing in RED_state can reenable the MMU.

(3) All references are uncached.

Offset TT Reason

0016 0 Reserved (SPARC-V8 reset)

2016 1 Power-on reset (POR)

4016 2† Watchdog reset (WDR)

6016 3‡ Externally initiated reset (XIR)

8016 4 Software-initiated reset (SIR)

A016 * All other exceptions in RED_state

ogram-
abled,
ery

(for

ate.

poten-
after a
.

en.

failing

dler

hes to

trans-
(4) Cache coherence in RED_state is the problem of the system designer and system pr
mer. Normally, cache enables are left unchanged by RED_state; thus, if a cache is en
it will continue to participate in cache coherence until explicitly disabled by recov
code. A cache may be disabled automatically if an error is detected in the cache.

(5) Unessential functional units (for example, the floating-point unit) and capabilities
example, superscalar execution) should be disabled.

(6) If a store buffer is present, it should be emptied, if possible, before entering RED_st

(7) PSTATE.MM is set to TSO.

Programming Note:
When RED_state is entered due to component failures, the handler should attempt to recover from
tially catastrophic error conditions or to disable the failing components. When RED_state is entered
reset, the software should create the environment necessary to restore the system to a running state

7.2.1.3 RED_state Entry Traps

The following traps are processed in RED_state in all cases

— POR (Power-on reset)

— WDR (Watchdog reset)

— XIR (Externally initiated reset)

In addition, the following trap is processed in RED_state if TL < MAXTL when the trap is tak
Otherwise it is processed in error_state.

— SIR (Software-initiated Reset)

An implementation also may elect to set PSTATE.RED = 1 after aninternal_processor_error trap
(impl. dep. #31), or any of the implementation-dependent traps (impl. dep. #35).

Implementation-dependent traps may force additional state changes, such as disabling
components.

Traps that occur when TL = MAXTL – 1 also set PSTATE.RED = 1; that is, any trap han
entered with TL = MAXTL runs in RED_state.

Any nonreset trap that sets PSTATE.RED = 1 or that occurs when PSTATE.RED = 1, branc
a special entry in the RED_state trap vector at RSTVaddr + A016.

In systems in which it is desired that traps not enter RED_state, the RED_state handler may
fer to the normal trap vector by executing the following code:

! Assumptions:
! -- In RED_state handler, therefore we know that
! PSTATE.RED = 1, so a WRPR can directly toggle it to 0
! and, we don’t have to worry about intervening traps.
! -- Registers %g1 and %g2 are available as scratch registers.
...
#define PSTATE_RED 0x0020 ! PSTATE.RED is bit 5

. Soft-
at is,
y to

r a pre-
lternate

ximum

y be
...
rdpr %tt,%g1 ! Get the normal trap vector
rdpr %tba,%g2 ! address in %g2.
add %g1,%g2,%g2
rdpr %pstate,%g1 ! Read PSTATE into %g1.
jmpl %g2 ! Jump to normal trap vector,
wrpr %g1,PSTATE_RED,%pstate ! toggling PSTATE.RED to 0.

7.2.1.4 RED_state Software Considerations

In effect, RED_state reserves one level of the trap stack for recovery and reset processing
ware should be designed to require only MAXTL – 1 trap levels for normal processing. Th
any trap that causes TL = MAXTL is an exceptional condition that should cause entr
RED_state.

Since the minimum value for MAXTL is 4, typical usage of the trap levels is as follows:

Programming Note:
In order to log the state of the processor, RED_state-handler software needs either a spare register o
loaded pointer to a save area. To support recovery, the operating system might reserve one of the a
global registers, (for example,%a7) for use in RED_state.

7.2.2 Error_state

The processor enters error_state when a trap occurs while the processor is already at its ma
supported trap level, that is, when TL = MAXTL.

IMPL. DEP. #39: The processor may enter error_state when an implementation-dependent error condition
occurs.

IMPL. DEP. #40: Effects when error_state is entered are implementation-dependent, but it is recom-
mended that as much processor state as possible be preserved upon entry to error_state.

In particular:

(1) The processor should present an external indication that it has entered error_state.

(2) The processor should halt, that is, make no further changes to system state.

(3) The processor should be restarted by a watchdog reset (WDR). Alternatively, it ma
restarted by an externally initiated reset (XIR) or a power-on reset (POR).

TL Usage

0 Normal execution

1 System calls; interrupt handlers; instruction emulation

2 Window spill / fill

3 Page-fault handler

4 RED_state handler

ith TL
try into
used

tate
ditions

nPC

n.

n (PC

ting a
After a reset that brings the processor out of error_state, the processor enters RED_state w
set as defined in table 18 on page 130; the trap state describes the state at the time of en
error_state. In particular, for WDR and XIR, TT is set to the value of the original trap that ca
entry to error_state, not the normal TT value for the WDR or XIR.

7.3 Trap Categories

An exception or interrupt request can cause any of the following trap types:

— A precise trap

— A deferred trap

— A disrupting trap

— A reset trap

7.3.1 Precise Traps

A precise trap is induced by a particular instruction and occurs before any program-visible s
has been changed by the trap-inducing instruction. When a precise trap occurs, several con
must be true.

— The PC saved in TPC[TL] points to the instruction that induced the trap, and the
saved in NTPC[TL] points to the instruction that was to be executed next.

— All instructions issued before the one that induced the trap have completed executio

— Any instructions issued after the one that induced the trap remain unexecuted.

Programming Note:
Among the actions the trap handler software might take after a precise trap are:

— Return to the instruction that caused the trap and reexecute it, by executing a RETRY instructio

← old PC, nPC← old nPC)

— Emulate the instruction that caused the trap and return to the succeeding instruction by execu

DONE instruction (PC← old nPC, nPC← old nPC + 4)

— Terminate the program or process associated with the trap

rred
hanged
tions.

ed trap
ferred

en as

e state
truc-
rred-

leted
ue.

ple-
caus-
rfluous

cution-
rn con-

by a
es it
cution
exe-

ister
ter-
7.3.2 Deferred Traps

A deferred trap is also induced by a particular instruction, but unlike a precise trap, a defe
trap may occur after program-visible state has been changed. Such state may have been c
by the execution of either the trap-inducing instruction itself or by one or more other instruc

If an instruction induces a deferred trap and a precise trap occurs simultaneously, the deferr
may not be deferred past the precise trap, except that a floating-point exception may be de
past a precise trap.

Associated with a particular deferred-trap implementation, there must exist:

— An instruction that causes a potentially outstanding deferred-trap exception to be tak
a trap.

— Privileged instructions that access the deferred-trap queues. This queue contains th
information needed by supervisor software to emulate the deferred-trap-inducing ins
tion, and to resume execution of the trapped instruction stream. See 5.2.13, “IU Defe
Trap Queue.”)

Note that resuming execution may require the emulation of instructions that had not comp
execution at the time of the deferred trap, that is, those instructions in the deferred-trap que

IMPL. DEP. #32: Whether any deferred traps (and associated deferred-trap queues) are present is imple-
mentation-dependent.

Note that to avoid deferred traps entirely, an implementation would need to execute all im
mented floating-point instructions synchronously with the execution of integer instructions,
ing all generated exceptions to be precise. A deferred-trap queue (e.g., FQ) would be supe
in such an implementation.

Programming Note:
Among the actions software can take after a deferred trap are:

— Emulate the instruction that caused the exception, emulate or cause to execute any other exe
deferred instructions that were in an associated deferred-trap state queue, and use RETRY to retu
trol to the instruction at which the deferred trap was invoked, or

— Terminate the program or process associated with the trap.

7.3.3 Disrupting Traps

A disrupting trap is neither a precise trap nor a deferred trap. A disrupting trap is caused
condition (e.g., an interrupt), rather than directly by a particular instruction; this distinguish
from precise and deferred traps. When a disrupting trap has been serviced, program exe
resumes where it left off. This differentiates disrupting traps from reset traps, which resume
cution at the unique reset address.

Disrupting traps are controlled by a combination of the Processor Interrupt Level (PIL) reg
and the Interrupt Enable (IE) field of PSTATE. A disrupting trap condition is ignored when in

pec-

exe-
rrupt
rtion of
re the

d trap
pro-
nduce
neces-
g load

s that
hey do

sys-
rupts are disabled (PSTATE.IE = 0) or when the condition’s interrupt level is lower than that s
ified in PIL.

A disrupting trap may be due to either an interrupt request not directly related to a previously
cuted instruction, or to an exception related to a previously executed instruction. Inte
requests may be either internal or external. An interrupt request can be induced by the asse
a signal not directly related to any particular processor or memory state. Examples of this a
assertion of an “I/O done” signal or setting external interrupt request lines.

A disrupting trap related to an earlier instruction causing an exception is similar to a deferre
in that it occurs after instructions following the trap-inducing instruction have modified the
cessor or memory state. The difference is that the condition which caused the instruction to i
the trap may lead to unrecoverable errors, since the implementation may not preserve the
sary state. An example of this is an ECC data-access error reported after the correspondin
instruction has completed.

Disrupting trap conditions should persist until the corresponding trap is taken.

Programming Note:
Among the actions that trap-handler software might take after a disrupting trap are:

— Use RETRY to return to the instruction at which the trap was invoked

(PC← old PC, nPC← old nPC), or

— Terminate the program or process associated with the trap.

7.3.4 Reset Traps

A reset trap occurs when supervisor software or the implementation’s hardware determine
the machine must be reset to a known state. Reset traps differ from disrupting traps, since t
not resume execution of the program that was running when the reset trap occurred.

IMPL. DEP. #37: Some of a processor’s behavior during a reset trap is implementation-dependent. See
7.6.2, “Special Trap Processing,” for details.

The following reset traps are defined for SPARC-V9:

Software-initiated reset (SIR):
Initiated by software by executing the SIR instruction.

Power-on reset (POR):
Initiated when power is applied (or reapplied) to the processor.

Watchdog reset (WDR):
Initiated in response to error_state or expiration of a watchdog timer.

Externally initiated reset (XIR) :
Initiated in response to an external signal. This reset trap is normally used for critical
tem events, such as power failure.

u-

tions,

ction
phic
emory
access.

or dis-

inter-
7.3.5 Uses of the Trap Categories

The SPARC-V9trap model stipulates that:

(1) Reset traps, exceptsoftware_initiated_reset traps, occur asynchronously to program exec
tion.

(2) When recovery from an exception can affect the interpretation of subsequent instruc
such exceptions shall be precise. These exceptions are:

— software_initiated_reset

— instruction_access_exception

— privileged_action

— privileged_opcode

— trap_instruction

— instruction_access_error

— clean_window

— fp_disabled

— LDDF_mem_address_not_aligned

— STDF_mem_address_not_aligned

— tag_overflow

— unimplemented_LDD

— unimplemented_STD

— spill_n_normal

— spill_n_other

— fill_n_normal

— fill_n_other

(3) IMPL. DEP. #33: Exceptions that occur as the result of program execution may be precise or
deferred, although it is recommended that such exceptions be precise. Examples:
mem_address_not_aligned, division_by_zero.

(4) An exception caused after the initial access of a multiple-access load or store instru
(load-store doubleword, LDSTUB, CASA, CASXA, or SWAP) that causes a catastro
exception may be precise, deferred, or disrupting. Thus, a trap due to the second m
access can occur after the processor or memory state has been modified by the first

(5) Implementation-dependent catastrophic exceptions may cause precise, deferred,
rupting traps (impl. dep. #31).

(6) Exceptions caused by external events unrelated to the instruction stream, such as
rupts, are disrupting.

uction

. An
to

C has
ctions.
on as

com-
ons for
may
into

dis-
he dis-

trap
tination
y the

, an
tore)

hat can
rovoke

might
ing
For the purposes of this subsection, we must distinguish between the dispatch of an instr
and its execution by some functional unit. An instruction is deemed to have beendispatched
when the software-visible PC advances beyond that instruction in the instruction stream
instruction is deemed to have beenexecutedwhen the results of that instruction are available
subsequent instructions.

For most instructions, dispatch and execution appear to occur simultaneously; when the P
advanced beyond the instruction, its results are immediately available to subsequent instru
For floating-point instructions, however, the PC may advance beyond the instruction as so
the IU places the instruction into a floating-point queue; the instruction itself may not have
pleted (or even begun) execution, and results may not be available to subsequent instructi
some time. In particular, the fact that a floating-point instruction will generate an exception
not be noticed by the hardware until additional floating-point instructions have been placed
the queue by the IU. This creates the condition for a deferred trap.

A deferred trap may occur one or more instructions after the trap-inducing instruction is
patched. However, a deferred trap must occur before the execution (but not necessarily t
patch) of any instruction that depends on the trap-inducing instruction. That is, a deferred
may not be deferred past the execution of an instruction that specifies source registers, des
registers, condition codes, or any software-visible machine state that could be modified b
trap-inducing instruction.

In the case of floating-point instructions, if a floating-point exception is currently deferred
attempt to dispatch a floating-point instruction (FPop, FBfcc, FBPfcc, or floating-point load/s
invokes or causes the outstandingfp_exception_ieee_754 trap.

Implementation Note:
To provide the capability to terminate a user process on the occurrence of a catastrophic exception t
cause a deferred or disrupting trap, an implementation should provide one or more instructions that p
an outstanding exception to be taken as a trap. For example, an outstanding floating-point exception
cause anfp_exception_ieee_754 trap when any of an FPop, load or store floating-point register (includ
the FSR), FBfcc, or FBPfcc instruction is executed.

ister

EF)
aps.

trap

per-

rrupt
rrupt
sts,

a

7.4 Trap Control

Several registers control how any given trap is processed:

— The interrupt enable (IE) field in PSTATE and the processor interrupt level (PIL) reg
control interrupt processing.

— The enable floating-point unit (FEF) field in FPRS, the floating-point unit enable (P
field in PSTATE, and the trap enable mask (TEM) in the FSR control floating-point tr

— The TL register, which contains the current level of trap nesting, controls whether a
causes entry to execute_state, RED_state, or error_state.

— PSTATE.TLE determines whether implicit data accesses in the trap routine will be
formed using the big- or little-endian byte order.

7.4.1 PIL Control

Between the execution of instructions, the IU prioritizes the outstanding exceptions and inte
requests according to table 15. At any given time, only the highest priority exception or inte
request is taken as a trap.1 When there are multiple outstanding exceptions or interrupt reque

1. The highest priority exception or interrupt is the one with the lowest priority value in table 15. For example,
priority 2 exception is processed before a priority 3 exception.

cep-

terrupt
inter-

-
iated

R’s

trap-
of TL

ctor
.0, are
SPARC-V9 assumes that lower-priority interrupt requests will persist and lower-priority ex
tions will recur if an exception-causing instruction is reexecuted.

For interrupt requests, the IU compares the interrupt request level against the processor in
level (PIL) register. If the interrupt request level is greater than PIL, the processor takes the
rupt request trap, assuming there are no higher-priority exceptions outstanding

IMPL. DEP. #34: How quickly a processor responds to an interrupt request and the method by which an
interrupt request is removed are implementation-dependent.

7.4.2 TEM Control

The occurrence of floating-point traps of typeIEEE_754_exception can be controlled with the user
accessible trap enable mask (TEM) field of the FSR. If a particular bit of TEM is 1, the assoc
IEEE_754_exception can cause anfp_exception_ieee_754 trap.

If a particular bit of TEM is 0, the associatedIEEE_754_exception does not cause an
fp_exception_ieee_754 trap. Instead, the occurrence of the exception is recorded in the FS
accrued exception field (aexc).

If an IEEE_754_exception results in anfp_exception_ieee_754 trap, then the destinationf register,
fccn, andaexcfields remain unchanged. However, if anIEEE_754_exception does not result in a

trap, then thef register,fccn, andaexc fields are updated to their new values.

7.5 Trap-Table Entry Addresses

Privileged software initializes the trap base address (TBA) register to the upper 49 bits of the
table base address. Bit 14 of the vector address (the “TL>0” field) is set based on the value
at the time the trap is taken; that is, to 0 if TL = 0 and to 1 if TL > 0. Bits 13..5 of the trap ve
address are the contents of the TT register. The lowest five bits of the trap address, bits 4.
always 0 (hence each trap-table entry is at least 25 or 32 bytes long). Figure 39 illustrates this.

Figure 39—Trap Vector Address

63 15 14 0

TBA<63:15>

13 45

TL>0 TTTL 00000

512

table

9-bit
ress

”).
ontain

s (32

trol is
n offset

5 lists

s
aps
tor, to
7.5.1 Trap Table Organization

The trap table layout is as illustrated in figure 40.

Figure 40—Trap Table Layout

The trap table for TL = 0 comprises 512 32-byte entries; the trap table for TL > 0 comprises
more 32-byte entries. Therefore, the total size of a full trap table is 512× 32 × 2, or 32K bytes.
However, if privileged software does not use software traps (Tcc instructions) at TL > 0, the
can be made 24K bytes long.

7.5.2 Trap Type (TT)

When a normal trap occurs, a value that uniquely identifies the trap is written into the current
TT register (TT[TL]) by hardware. Control is then transferred into the trap table to an add
formed by the TBA register (“TL>0”) and TT[TL] (see 5.2.8, “Trap Base Address (TBA)
Since the lowest five bits of the address are always zero, each entry in the trap table may c
the first eight instructions of the corresponding trap handler.

Programming Note:
The spill/fill and clean_window trap types are spaced such that their trap table entries are 128 byte
instructions) long. This allows the complete code for one spill/fill orclean_window routine to reside in one
trap table entry.

When a special trap occurs, the TT register is set as described in 7.2.1, “RED_state.” Con
then transferred into the RED_state trap table to an address formed by the RSTVaddr and a
depending on the condition.

TT values 00016..0FF16 are reserved for hardware traps. TT values 10016..17F16 are reserved for
software traps (traps caused by execution of a Tcc instruction). TT values 18016..1FF16 are
reserved for future uses. The assignment of TT values to traps is shown in table 14; table 1
the traps in priority order. Traps marked with an open bullet ‘❍’ are optional and possibly imple-
mentation-dependent. Traps marked with a closed bullet ‘●’ are mandatory; that is, hardware
must detect and trap these exceptions and interrupts and must set the defined TT values.

The trap type for theclean_window exception is 02416. Three subsequent trap vector
(02516..02716) are reserved to allow for an inline (branchless) trap handler. Window spill/fill tr
are described in 7.5.2.1. Three subsequent trap vectors are reserved for each spill/fill vec
allow for an inline (branchless) trap handler.

Value of TL
Before the Trap

Trap Table Contents Trap Type

TL = 0

Hardware traps

Spill/fill traps

Software traps

Reserved

00016..07F16

08016..0FF16

10016..17F16

18016..1FF16

TL > 0

Hardware traps

Spill/fill traps

Software traps

Reserved

20016..27F16

28016..2FF16

30016..37F16

38016..3FF16

Table 14—Exception and Interrupt Requests, Sorted by TT Value

M / O Exception or interrupt request TT Priority

● Reserved 00016 n/a

● power_on_reset 00116 0

❍ watchdog_reset 00216 1

❍ externally_initiated_reset 00316 1

● software_initiated_reset 00416 1

● RED_state_exception 00516 1

● Reserved 00616..00716 n/a

● instruction_access_exception 00816 5

❍ instruction_access_MMU_miss 00916 2

❍ instruction_access_error 00A16 3

● Reserved 00B16..00F16 n/a

● illegal_instruction 01016 7

● privileged_opcode 01116 6

❍ unimplemented_LDD 01216 6

❍ unimplemented_STD 01316 6

● Reserved 01416..01F16 n/a

● fp_disabled 02016 8

❍ fp_exception_ieee_754 02116 11

❍ fp_exception_other 02216 11

● tag_overflow 02316 14

❍ clean_window 02416..02716 10

● division_by_zero 02816 15

❍ internal_processor_error 02916 4

● Reserved 02A16..02F16 n/a

● data_access_exception 03016 12

❍ data_access_MMU_miss 03116 12

❍ data_access_error 03216 12

❍ data_access_protection 03316 12

● mem_address_not_aligned 03416 10

❍ LDDF_mem_address_not_aligned (impl. dep. #109) 03516 10

❍ STDF_mem_address_not_aligned (impl. dep. #110) 03616 10

● privileged_action 03716 11

❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 10

❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 10

● Reserved 03A16..03F16 n/a

❍ async_data_error 04016 2

● interrupt_level_n (n = 1..15) 04116..04F16 32–n

● Reserved 05016..05F16 n/a

❍ implementation_dependent_exception_n (impl. dep. #35) 06016..07F16 impl.-dep.

● spill_n_normal (n = 0..7) 08016..09F16 9

● spill_n_other (n = 0..7) 0A016..0BF16 9

● fill_n_normal (n = 0..7) 0C016..0DF16 9

● fill_n_other (n = 0..7) 0E016..0FF16 9

● trap_instruction 10016..17F16 16

● Reserved 18016..1FF16 n/a

Table 14—Exception and Interrupt Requests, Sorted by TT Value

M / O Exception or interrupt request TT Priority

Table 15—Exception and Interrupt Requests, Sorted by Priority (0 = Highest; 31 = Lowest)

M / O Exception or Interrupt Request TT Priority

● power_on_reset 00116 0

❍ watchdog_reset 00216 1

❍ externally_initiated_reset 00316 1

● software_initiated_reset 00416 1

● RED_state_exception 00516 1

❍ instruction_access_MMU_miss 00916 2

❍ async_data_error 04016 2

❍ instruction_access_error 00A16 3

❍ internal_processor_error 02916 4

● instruction_access_exception 00816 5

● privileged_opcode 01116 6

❍ unimplemented_LDD 01216 6

❍ unimplemented_STD 01316 6

● illegal_instruction 01016 7

● fp_disabled 02016 8

● spill_n_normal (n = 0..7) 08016..09F16 9

● spill_n_other (n = 0..7) 0A016..0BF16 9

● fill_n_normal (n = 0..7) 0C016..0DF16 9

● fill_n_other (n = 0..7) 0E016..0FF16 9

❍ clean_window 02416..02716 10

● mem_address_not_aligned 03416 10

❍ LDDF_mem_address_not_aligned (impl. dep. #109) 03516 10

❍ STDF_mem_address_not_aligned (impl. dep. #110) 03616 10

❍ LDQF_mem_address_not_aligned (impl. dep. #111) 03816 10

❍ STQF_mem_address_not_aligned (impl. dep. #112) 03916 10

❍ fp_exception_ieee_754 02116 11

❍ fp_exception_other 02216 11

● privileged_action 03716 11

● data_access_exception 03016 12

❍ data_access_MMU_miss 03116 12

❍ data_access_error 03216 12

❍ data_access_protection 03316 12

● tag_overflow 02316 14

● division_by_zero 02816 15

● trap_instruction 10016..17F16 16

● interrupt_level_n (n = 1..15) 04116..04F16 32–n

❍ implementation_dependent_exception_n (impl. dep. #35) 06016..07F16 impl.-dep.

h, in a
r gen-
h this

ses and
addi-

n-

c-

WIN

errupt

ior-
Compatibility Note:
Support for some trap types is optional because they are associated with specific instruction(s), whic
given implementation, might be implemented purely in software. In such a case, hardware would neve
erate that type of trap; therefore, support for it would be superfluous. Examples of trap types to whic
applies arefp_exception_ieee_754 and fp_exception_other.

Since the assignment of exceptions and interrupt requests to particular trap vector addres
the priority levels are not visible to a user program, an implementation is allowed to define
tional hardware traps.

IMPL. DEP. #35: TT values 06016 TO 07F16 are reserved for implementation-dependent exceptions. The
existence of implementation_dependent_n traps and whether any that do exist are precise, deferred, or
disrupting is implementation-dependent. See Appendix C, “SPARC-V9 Implementation Depende
cies.”

Trap Type values marked “Reserved” in table 14 are reserved for future versions of the archite
ture.

7.5.2.1 Trap Type for Spill/Fill Traps

The trap type for window spill/fill traps is determined based on the contents of the OTHER
and WSTATE registers as follows:

The fields have the following values:

SPILL_OR_FILL :
0102 for spill traps; 0112 for fill traps

OTHER :
(OTHERWIN≠0)

WTYPE :
If (OTHER) then WSTATE.OTHER else WSTATE.NORMAL

7.5.3 Trap Priorities

Table 14 shows the assignment of traps to TT values and the relative priority of traps and int
requests. Priority 0 is highest, priority 31 is lowest; that is, ifX < Y, a pending exception or inter-
rupt request with priorityX is taken instead of a pending exception or interrupt request with pr
ity Y.

IMPL. DEP. #36: The priorities of particular traps are relative and are implementation-dependent, because
a future version of the architecture may define new traps, and an implementation may define implementa-
tion-dependent traps that establish new relative priorities.

Trap Type

05 2

0SPILL_OR_FILL

1468

0WTYPEOTHER

emain

of trap
ssing,
1, and
rocess-

tate and

no
oid this
sed in
ctoring

s are
rocess-

the

aps are
or SIR
d 18
However, the TT values for the exceptions and interrupt requests shown in table 14 must r
the same for every implementation.

7.6 Trap Processing

The processor’s action during trap processing depends on the trap type, the current level
nesting (given in the TL register), and the processor state. All traps use normal trap proce
except those due to reset requests, catastrophic errors, traps taken when TL = MAXTL –
traps taken when the processor is in RED_state. These traps use special RED_state trap p
ing.

During normal operation, the processor is in execute_state. It processes traps in execute_s
continues.

When a normal trap or software-initiated reset (SIR) occurs with TL = MAXTL, there are
more levels on the trap stack, so the processor enters error_state and halts. In order to av
catastrophic failure, SPARC-V9 provides the RED_state processor state. Traps proces
RED_state use a special trap vector and a special trap-vectoring algorithm. RED_state ve
and the setting of the TT value for RED_state traps are described in 7.2.1, “RED_state.”

Traps that occur with TL = MAXTL – 1 are processed in RED_state. In addition, reset trap
also processed in RED_state. Reset trap processing is described in 7.6.2, “Special Trap P
ing.” Finally, supervisor software can force the processor into RED_state by setting
PSTATE.RED flag to one.

Once the processor has entered RED_state, no matter how it got there, all subsequent tr
processed in RED_state until software returns the processor to execute_state or a normal
trap is taken when TL = MAXTL, which puts the processor in error_state. Tables 16, 17, an
describe the processor mode and trap level transitions involved in handling traps:

†This state occurs when software changes TL to MAXTL and does not set PSTATE.RED, or if it clears
PSTATE.RED while at MAXTL.

Table 16—Trap Received While in execute_state

New State, after receiving trap type

Original state Normal trap
or interrupt POR WDR, XIR,

Impl. Dep. SIR

execute_state

TL < MAXTL – 1

execute_state

TL + 1

RED_state

MAXTL

RED_state

TL + 1

RED_state

TL + 1

execute_state

TL = MAXTL – 1

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

execute_state†

TL = MAXTL

error_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

error_state

MAXTL

unless

value,
and

at its
.2.2,

isters
Implementation Note:
The processor shall not recognize interrupts while it is in error_state.

7.6.1 Normal Trap Processing

A normal trap causes the following state changes to occur:

— If the processor is already in RED_state, the new trap is processed in RED_state
TL = MAXTL. See 7.6.2.6, “Normal Traps When the Processor is in RED_state.”

— If the processor is in execute_state and the trap level is one less than its maximum
that is, TL = MAXTL–1, the processor enters RED_state. See 7.2.1, “RED_state,”
7.6.2.1, “Normal Traps with TL = MAXTL – 1.”

— If the processor is in either execute_state or RED_state, and the trap level is already
maximum value, that is, TL = MAXTL, the processor enters error_state. See 7
“Error_state.”

Otherwise, the trap uses normal trap processing, and the following state changes occur:

— The trap level is set. This provides access to a fresh set of privileged trap-state reg
used to save the current state, in effect, pushing a frame on the trap stack.
TL ← TL + 1

Table 17—Trap Received While in RED_state

New State, after receiving trap type

Original state
Normal trap
or interrupt POR

WDR, XIR,
Impl. Dep. SIR

RED_state

TL < MAXTL – 1

RED_state

TL + 1

RED_state

MAXTL

RED_state

TL + 1

RED_state

TL + 1

RED_state

TL = MAXTL – 1

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

RED_state

TL = MAXTL

error_state

MAXTL

RED_state

MAXTL

RED_state

MAXTL

error_state

MAXTL

Table 18—Reset Received While in error_state

New State, after receiving trap type

Original state
Normal trap
or interrupt POR

WDR, XIR,
Impl. Dep. SIR

error_state

TL < MAXTL – 1
—

RED_state

MAXTL

RED_state

TL + 1
—

error_state

TL = MAXTL – 1
—

RED_state

MAXTL

RED_state

MAXTL
—

error_state

TL = MAXTL
—

RED_state

MAXTL

RED_state

MAXTL
—

t be

a
tion
— Existing state is preserved
TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

— The trap type is preserved.
TT[TL] ← the trap type

— The PSTATE register is updated to a predefined state
PSTATE.MM is unchanged
PSTATE.RED ← 0
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that mus
accessed by the trap-handler software, that is:

• If TT[TL] = 02416 (aclean_window trap), then CWP← CWP+ 1.

• If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP←
CWP+ CANSAVE + 2.

• If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP← CWP–1.
For non-register-window traps, CWP is not changed.

— Control is transferred into the trap table:

PC ← TBA<63:15> (TL>0) TT[TL] 0 0000

nPC ← TBA<63:15> (TL>0) TT[TL] 0 0100
where “(TL>0)” is 0 if TL = 0, and 1 if TL > 0.

Interrupts are ignored as long as PSTATE.IE = 0.

Programming Note:
State in TPC[n], TNPC[n], TSTATE[n], and TT[n] is only changed autonomously by the processor when
trap is taken while TL =n–1, however, software can change any of these values with a WRPR instruc
when TL =n.

te
7.6.2 Special Trap Processing

The following conditions invoke special trap processing:

— Traps taken with TL = MAXTL – 1

— Power-on reset traps

— Watchdog reset traps

— Externally initiated reset traps

— Software-initiated reset traps

— Traps taken when the processor is already in RED_state

— Implementation-dependent traps

IMPL. DEP. #38: Implementation-dependent registers may or may not be affected by the various reset
traps.

7.6.2.1 Normal Traps with TL = MAXTL – 1

Normal traps that occur when TL = MAXTL – 1 are processed in RED_state. The following sta
changes occur:

— The trap level is advanced.
TL ← MAXTL

— Existing state is preserved
TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

— The trap type is preserved.
TT[TL] ← the trap type

— The PSTATE register is set as follows:
PSTATE.MΜ ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

t be

er-on
state is
— For a register-window trap only, CWP is set to point to the register window that mus
accessed by the trap-handler software, that is:

• If TT[TL] = 02416 (aclean_window trap), then CWP← CWP+ 1.

• If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then CWP←
CWP+ CANSAVE + 2.

• If (0C016 ≤ TT[TL] ≤ 0FF16)(window fill trap), then CWP← CWP–1.
For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

7.6.2.2 Power-On Reset (POR) Traps

Initiated when power is applied to the processor. If the processor is in error_state, a pow
reset (POR) brings the processor out of error_state and places it in RED_state. Processor
undefined after POR, except for the following:

— The trap level is set.
TL ← MAXTL

— The trap type is set.
TT[TL] ← 00116

— The PSTATE register is set as follows:
PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.TLE ← 0 (big-endian mode for traps)
PSTATE.CLE ← 0 (big-endian mode for non-traps)

— The TICK register is protected.
TICK.NPT ← 1 (TICK unreadable by nonprivileged software)

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 0010 00002

nPC ← RSTVaddr<63:8> 0010 01002

e to
d per-

ds and
regis-
e in an
g reset
For any reset when TL = MAXTL, for alln<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

7.6.2.3 Watchdog Reset (WDR) Traps

WDR traps are initiated by an external signal. Typically, this is generated in respons
error_state or expiration of a watchdog timer. WDR clears error_state and hung states, an
forms a system reset; pending and in-progress hardware operations (for example, loa
stores) may be cancelled or aborted. Architecturally defined registers (e. g., floating-point
ters, integer registers, etc.) and state are unchanged from before the WDR, but they may b
inconsistent state if operations are aborted. If the processor is in error_state, a watchdo
(WDR) brings the processor out of error_state and places it in RED_state.

The following state changes occur:

— The trap level is set.
TL ← MIN(TL + 1, MAXTL)

— Existing state is preserved.
TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

— TT[TL] is set as described below.

— The PSTATE register is set as follows:
PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0100 00002

nPC ← RSTVaddr<63:8> 0100 01002

of the
or in

asked
but-
pera-
rnally
If a watchdog reset occurs when the processor is in error_state, the TT field gives the type
trap that caused entry into error_state. If a watchdog reset occurs with the process
execute_state, TT is set to 2 (WDR).

For any reset when TL = MAXTL, for alln<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

7.6.2.4 Externally Initiated Reset (XIR) Traps

XIR traps are initiated by an external signal. They behave like an interrupt that cannot be m
by IE = 0 or PIL. Typically, XIR is used for critical system events such as power failure, reset
ton pressed, failure of external components that does not require a WDR (which aborts o
tions), or system-wide reset in a multiprocessor. If the processor is in error_state, an exte
initiated reset (XIR) brings the processor out of error_state and places it in RED_state.

The following state changes occur:

— The trap level is set.
TL ← MIN(TL + 1, MAXTL)

— Existing state is preserved.
TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

— TT[TL] is set as described below.

— The PSTATE register is set as follows:
PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table.

PC ← RSTVaddr<63:8> 0110 00002

nPC ← RSTVaddr<63:8> 0110 01002

hen the
XIR

as a
TT is set in the same manner as for watchdog reset. If the processor is in execute_state w
externally initiated reset (XIR) occurs, TT = 3. If the processor is in error_state when the
occurs, TT identifies the exception that caused entry into error_state.

For any reset when TL = MAXTL, for alln<MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

7.6.2.5 Software-Initiated Reset (SIR) Traps

SIR traps are initiated by executing an SIR instruction. This is used by supervisor software
panic operation, or a meta-supervisor trap.

The following state changes occur:

— If TL = MAXTL, then enter error_state. Otherwise, do the following:

— The trap level is set.
TL ← TL + 1

— Existing state is preserved
TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

— The trap type is set.
TT[TL] ← 0416

— The PSTATE register is set as follows:
PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— Implementation-specific state changes; for example, disabling an MMU.

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 1000 00002

nPC ← RSTVaddr<63:8> 1000 01002

_state,

t be
For any reset when TL = MAXTL, for alln < MAXTL, the values in TPC[n], TNPC[n], and
TSTATE[n] are undefined.

7.6.2.6 Normal Traps When the Processor is in RED_state

Normal traps taken when the processor is already in RED_state are also processed in RED
unless TL = MAXTL, in which case the processor enters error_state.

The processor state shall be set as follows:

— The trap level is set.
TL ← TL + 1

— Existing state is preserved.
TSTATE[TL].CCR ← CCR
TSTATE[TL].ASI ← ASI
TSTATE[TL].PSTATE ← PSTATE
TSTATE[TL].CWP ← CWP
TPC[TL] ← PC
TNPC[TL] ← nPC

— The trap type is preserved.
TT[TL] ← trap type

— The PSTATE register is set as follows:
PSTATE.MM ← 002 (TSO)
PSTATE.RED ← 1 (enter RED_state)
PSTATE.PEF ← 1 if FPU is present, 0 otherwise
PSTATE.AM ← 0 (address masking is turned off)
PSTATE.PRIV ← 1 (the processor enters privileged mode)
PSTATE.IE ← 0 (interrupts are disabled)
PSTATE.AG ← 1 (global regs are replaced with alternate globals)
PSTATE.CLE ← PSTATE.TLE (set endian mode for traps)

— For a register-window trap only, CWP is set to point to the register window that mus
accessed by the trap-handler software, that is:

• If TT[TL] = 02416 (aclean_window trap), then CWP← CWP+ 1.

• If (08016 ≤ TT[TL] ≤ 0BF16) (window spill trap), then
CWP← CWP+ CANSAVE + 2.

• If (0C016 ≤ TT[TL] ≤ 0FF16) (window fill trap), then CWP← CWP – 1.
For non-register-window traps, CWP is not changed.

— Implementation-specific state changes; for example, disabling an MMU

— Control is transferred into the RED_state trap table

PC ← RSTVaddr<63:8> 1010 00002

nPC ← RSTVaddr<63:8> 1010 01002

condi-
ap type
-
e-
eption
each

curred
n an
d
ed the

from

this

ple, a
. dep.

e was

page
rtual
7.6.2.7 Implementation-Dependent Traps

The operation of the processor forimplementation_dependent_exception_n traps is implementation-
dependent (impl. dep. #35).

7.7 Exception and Interrupt Descriptions

The following paragraphs describe the various exceptions and interrupt requests and the
tions that cause them. Each exception and interrupt request describes the corresponding tr
as defined by the trap model. An open bullet ‘❍’ identifies optional and possibly implementation
dependent traps; traps marked with a closed bullet ‘●’ are mandatory. Each trap is marked as pr
cise, deferred, disrupting, or reset. Example exception conditions are included for each exc
type. Appendix A, “Instruction Definitions,” enumerates which traps can be generated by
instruction.

❍ async_data_error [tt = 04016] (Disrupting)
An asynchronous data error occurred on a data access. Examples: an ECC error oc
while writing data from a cache store buffer to memory, or an ECC error occurred o
MMU hardware table walk. When anasync_data_error occurs, the TPC and TNPC stacke
by the trap are not necessarily related to the instruction or data access that caus
error; that is,async_data_error causes a disrupting trap.

Compatibility Note:
The SPARC-V9async_data_error exception supersedes the less general SPARC-V8data_store_error
exception.

❍ clean_window [tt = 02416..02716] (Precise)
A SAVE instruction discovered that the window about to be used contains data
another address space; the window must be cleaned before it can be used.

IMPL. DEP. #102: An implementation may choose either to implement automatic cleaning of regis-
ter windows in hardware, or to generate a clean_window trap, when needed, so that window(s) can
be cleaned by software. If an implementation chooses the latter option, then support for
trap type is mandatory.

❍ data_access_error [tt = 03216] (Precise, Deferred, or Disrupting)
A catastrophic error exception occurred on a data access from/to memory (for exam
parity error on a data cache access, or an uncorrectable ECC memory error) (impl
#31).

● data_access_exception [tt = 03016] (Precise or Deferred)
An exception occurred on a data access. For example, an MMU indicated that a pag
invalid or protected (impl. dep. #33).

❍ data_access_MMU_miss [tt = 03116] (Precise or Deferred)
A miss in an MMU occurred on a data access from/to memory. For example, a
descriptor cache or translation lookaside buffer did not contain a translation for the vi
address. (impl. dep. #33)

page

power

win-

load/
.

nable

nce or
’s

ILL-
uld
erate

parity
❍ data_access_protection [tt = 03316] (Precise or Deferred)
A protection fault occurred on a data access; for example, an MMU indicated that the
was write-protected (impl. dep. #33).

● division_by_zero [tt = 02816] (Precise or Deferred)
An integer divide instruction attempted to divide by zero (impl. dep. #33).

❍ externally_initiated_reset [tt = 00316] (Reset)
An external signal was asserted. This trap is used for catastrophic events such as
failure, reset button pressed, and system-wide reset in multiprocessor systems.

● fill_n_normal [tt = 0C016..0DF16] (Precise)

● fill_n_other [tt = 0E016..0FF16] (Precise)
A RESTORE or RETURN instruction has determined that the contents of a register
dow must be restored from memory.

Compatibility Note:
The SPARC-V9 fill_n_* exceptions supersede the SPARC-V8window_underflow exception.

● fp_disabled [tt = 02016] (Precise)
An attempt was made to execute an FPop, a floating-point branch, or a floating-point
store instruction while an FPU was not present, PSTATE.PEF = 0, or FPRS.FEF = 0

❍ fp_exception_ieee_754 [tt = 02116] (Precise or Deferred (impl. dep. #23))
An FPop instruction generated an IEEE_754_exception and its corresponding trap e
mask (TEM) bit was 1. The floating-point exception type,IEEE_754_exception, is encoded
in the FSR.ftt, and specificIEEE_754_exception information is encoded in FSR.cexc.

❍ fp_exception_other [tt = 02216] (Precise or Deferred (impl. dep. #23))
An FPop instruction generated an exception other than anIEEE_754_exception. For exam-
ple, the FPop is unimplemented, or the FPop did not complete, or there was a seque
hardware error in the FPU. The floating-point exception type is encoded in the FSRftt
field.

● illegal_instruction [tt = 01016] (Precise or Deferred)
An attempt was made to execute an instruction with an unimplemented opcode, an
TRAP instruction, an instruction with invalid field usage, or an instruction that wo
result in illegal processor state. Note that unimplemented FPop instructions gen
fp_exception_other traps.

❍ implementation_dependent_exception_n [tt = 06016..07F16] (Pre, Def, or Dis)
These exceptions are implementation-dependent (impl. dep. #35).

❍ instruction_access_error [tt = 00A16] (Precise, Deferred, or Disrupting)
A catastrophic error exception occurred on an instruction access. For example, a
error on an instruction cache access (impl. dep. #31).

t the

PDC

ity or

V8

r-

word-
dent

lation
ord-

word-
dent

lation
ord-

ccord-
ned

the

am-
cant
oft-
● instruction_access_exception [tt = 00816] (Precise)
An exception occurred on an instruction access. For example, an MMU indicated tha
page was invalid or not executable.

❍ instruction_access_MMU_miss [tt = 00916] (Precise, Deferred, or Disrupting)
A miss in an MMU occurred on an instruction access from memory. For example, a
or TLB did not contain a translation for the virtual address. (impl. dep. #33)

❍ internal_processor_error [tt = 02916] (Precise, Deferred, or Disrupting)
A catastrophic error exception occurred in the main processor. For example, a par
uncorrectable ECC error on an internal register or bus (impl. dep. #31).

Compatibility Note:
The SPARC-V9 internal_processor_error exception supersedes the less general SPARC-
r_register_access_error exception.

● interrupt_level_n [tt = 04116..04F16] (Disrupting)
An interrupt request level ofn was presented to the IU, while PSTATE.IE = 1 and (inte
rupt request level > PIL).

❍ LDDF_mem_address_not_aligned [tt = 03516] (Precise)
An attempt was made to execute an LDDF instruction and the effective address was
aligned but not doubleword-aligned. Use of this exception is implementation-depen
(impl. dep. #109). A separate trap entry for this exception supports fast software emu
of the LDDF instruction when the effective address is word-aligned but not doublew
aligned. See A.25, “Load Floating-Point.”

❍ LDQF_mem_address_not_aligned [tt = 03816] (Precise)
An attempt was made to execute an LDQF instruction and the effective address was
aligned but not quadword-aligned. Use of this exception is implementation-depen
(impl. dep. #111). A separate trap entry for this exception supports fast software emu
of the LDQF instruction when the effective address is word-aligned but not quadw
aligned. See A.25, “Load Floating-Point.”

● mem_address_not_aligned [tt = 03416] (Precise or Deferred)
A load/store instruction generated a memory address that was not properly aligned a
ing to the instruction, or a JMPL or RETURN instruction generated a non-word-alig
address (impl. dep. #33).

● power_on_reset [tt = 00116] (Reset)
An external signal was asserted. This trap isused to bring a system reliably from
power-off to the power-on state.

● privileged_action [tt = 03716] (Precise)
An action defined to be privileged has been attempted while PSTATE.PRIV = 0. Ex
ples: a data access by nonprivileged software using an ASI value with its most signifi
bit = 0 (a restricted ASI), or an attempt to read the TICK register by nonprivileged s
ware when TICK.NPT = 1.

-

stem

dow

word-
dent

lation
ord-

word-
dent

lation
ord-

er-

ard-

ard-
● privileged_opcode [tt = 01116] (Precise)
An attempt was made to execute a privileged instruction while PSTATE.PRIV = 0.

Compatibility Note:
This trap type is identical to the SPARC-V8privileged_instruction trap. The name was changed to distin
guish it from the newprivileged_action trap type.

● software_initiated_reset [tt = 00416] (Reset)
Caused by the execution of the SIR, Software-Initiated Reset, instruction. It allows sy
software to reset the processor.

● spill_n_normal [tt = 08016..09F16] (Precise)

● spill_n_other [tt = 0A016..0BF16] (Precise)
A SAVE or FLUSHW instruction has determined that the contents of a register win
must be saved to memory.

Compatibility Note:
The SPARC-V9 spill_n_* exceptions supersede the SPARC-V8window_overflow exception.

❍ STDF_mem_address_not_aligned [tt = 03616] (Precise)
An attempt was made to execute an STDF instruction and the effective address was
aligned but not doubleword-aligned. Use of this exception is implementation-depen
(impl. dep. #110). A separate trap entry for this exception supports fast software emu
of the STDF instruction when the effective address is word-aligned but not doublew
aligned. See A.52, “Store Floating-Point.”

❍ STQF_mem_address_not_aligned [tt = 03916] (Precise)
An attempt was made to execute an STQF instruction and the effective address was
aligned but not quadword-aligned. Use of this exception is implementation-depen
(impl. dep. #112). A separate trap entry for this exception supports fast software emu
of the STQF instruction when the effective address is word-aligned but not quadw
aligned. See A.52, “Store Floating-Point.”

● tag_overflow [tt = 02316] (Precise)
A TADDccTV or TSUBccTV instruction was executed, and either 32-bit arithmetic ov
flow occurred or at least one of the tag bits of the operands was nonzero.

● trap_instruction [tt = 10016..17F16] (Precise)
A Tcc instruction was executed and the trap condition evaluated to TRUE.

❍ unimplemented_LDD [tt = 01216] (Precise)
An attempt was made to execute an LDD instruction, which is not implemented in h
ware on this implementation (impl. dep. #107).

❍ unimplemented_STD [tt = 01316] (Precise)
An attempt was made to execute an STD instruction which is not implemented in h
ware on this implementation (impl. dep. #108).

when
ems it
back

set
pear in
y the
ts, if

ormal
le pro-
-mem-
nd the
and
ls,”

on
long as
rmally

l Con-
● watchdog_reset [tt = 00216] (Precise)
An external signal was asserted. This trap exists to break a system deadlock created
an expected external event does not happen within the expected time. In simple syst
is also used to bring a system out of error_state, through RED_state, and ultimately
to execute_state.

All other trap types are reserved.

8 Memory Models
8.1 Introduction

The SPARC-V9memory modelsdefine the semantics of memory operations. The instruction
semantics require that loads and stores seem to be performed in the order in which they ap
the dynamic control flow of the program. The actual order in which they are processed b
memory may be different. The purpose of the memory models is to specify what constrain
any, are placed on the order of memory operations.

The memory models apply both to uniprocessor and to shared-memory multiprocessors. F
memory models are necessary in order to precisely define the interactions between multip
cessors and input/output devices in a shared-memory configuration. Programming shared
ory multiprocessors requires a detailed understanding of the operative memory model a
ability to specify memory operations at a low level in order to build programs that can safely
reliably coordinate their activities. See Appendix J, “Programming With the Memory Mode
for additional information on the use of the models in programming real systems.

The SPARC-V9 architecture is amodel that specifies the behavior observable by software
SPARC-V9 systems. Therefore, access to memory can be implemented in any manner, as
the behavior observed by software conforms to that of the models described here and fo
defined in Appendix D, “Formal Specification of the Memory Models.”

The SPARC-V9 architecture defines three different memory models:Total Store Order (TSO),
Partial Store Order (PSO), andRelaxed Memory Order (RMO). All SPARC-V9 processors
must provide Total Store Order (or a more strongly ordered model, for example, Sequentia
sistency) to ensure SPARC-V8 compatibility.

IMPL. DEP. 113: Whether the PSO or RMO models are supported is implementation-dependent.

least
ly on

rmal
mal
ormal

ory
rtial
MO,
y also

stron-

s-
tency
load-

der in
quen-
nts a
nsis-

ed in
of

bit
ted by
may be
Figure 41 shows the relationship of the various SPARC-V9 memory models, from the
restrictive to the most restrictive. Programs written assuming one model will function correct
any included model.

Figure 41—Memory Models from Least Restrictive (RMO) to Most Restrictive (TSO)

SPARC-V9 provides multiple memory models so that:

— Implementations can schedule memory operations for high performance.

— Programmers can create synchronization primitives using shared memory.

These models are described informally in this subsection and formally in Appendix D, “Fo
Specification of the Memory Models.” If there is a conflict in interpretation between the infor
description provided here and the formal models, the formal models supersede the inf
description.

There is no preferred memory model for SPARC-V9. Programs written for Relaxed Mem
Order will work in Partial Store Order and Total Store Order as well. Programs written for Pa
Store Order will work in Total Store Order. Programs written for a weak model, such as R
may execute more quickly, since the model exposes more scheduling opportunities, but ma
require extra instructions to ensure synchronization. Multiprocessor programs written for a
ger model will behave unpredictably if run in a weaker model.

Machines that implementsequential consistency(also called strong ordering or strong consi
tency) automatically support programs written for TSO, PSO, and RMO. Sequential consis
is not a SPARC-V9 memory model. In sequential consistency, the loads, stores, and atomic
stores of all processors are performed by memory in a serial order that conforms to the or
which these instructions are issued by individual processors. A machine that implements se
tial consistency may deliver lower performance than an equivalent machine that impleme
weaker model. Although particular SPARC-V9 implementations may support sequential co
tency, portable software must not rely on having this model available.

8.2 Memory, Real Memory, and I/O Locations

Memory is the collection of locations accessed by the load and store instructions (describ
Appendix A, “Instruction Definitions”). Each location is identified by an address consisting
two elements: anaddress space identifier(ASI), which identifies an address space, and a 64-
address,which is a byte offset into that address space. Memory addresses may be interpre
the memory subsystem to be either physical addresses or virtual addresses; addresses

RMO PSO TSO

ntly and

store to

ost
d-store

tomic
ds may
ns are
e per-
rties,

-depen-

y are

th to
loca-

ds fol-
o the
MEM-

re that
renced
soft-

t in the
hose
using
remapped and values cached, provided that memory properties are preserved transpare
coherency is maintained.

When two or more data addresses refer to the same datum, the address is said to bealiased. In this
case, the processor and memory system must cooperate to maintain consistency; that is, a
an aliased address must change all values aliased to that address.

Memory addresses identify either real memory or I/O locations.

Real memory stores information without side effects. A load operation returns the value m
recently stored. Operations are side-effect-free in the sense that a load, store, or atomic loa
to a location in real memory has no program-observable effect, except upon that location.

I/O locations may not behave like memory and may have side effects. Load, store, and a
load-store operations performed on I/O locations may have observable side effects and loa
not return the value most recently stored. The value semantics of operations on I/O locatio
not defined by the memory models, but the constraints on the order in which operations ar
formed is the same as it would be if the I/O locations were real memory. The storage prope
contents, semantics, ASI assignments, and addresses of I/O registers are implementation
dent (impl. dep. #6) (impl. dep. #7) (impl. dep. #123).

IMPL. DEP. #118: The manner in which I/O locations are identified is implementation-dependent.

See F.3.2, “Attributes the MMU Associates with Each Mapping,” for example.

IMPL. DEP #120: The coherence and atomicity of memory operations between processors and I/O DMA
memory accesses are implementation-dependent.

Compatibility Note:
Operations to I/O locations arenot guaranteed to be sequentially consistent between themselves, as the
in SPARC-V8.

SPARC-V9 does not distinguish real memory from I/O locations in terms of ordering. All references, bo
I/O locations and real memory, conform to the memory model’s order constraints. References to I/O
tions may need to be interspersed with MEMBAR instructions to guarantee the desired ordering. Loa
lowing stores to locations with side effects may return unexpected results due to lookaside int
processor’s store buffer, which may subsume the memory transaction. This can be avoided by using a
BAR #LookAside .

Systems supporting SPARC-V8 applications that use memory mapped I/O locations must ensu
SPARC-V8 sequential consistency of I/O locations can be maintained when those locations are refe
by a SPARC-V8 application. The MMU either must enforce such consistency or cooperate with system
ware and/or the processor to provide it.

IMPL. DEP #121: An implementation may choose to identify certain addresses and use an implementa-
tion-dependent memory model for references to them.

For example, an implementation might choose to process addresses tagged with a flag bi
memory management unit (see Appendix F, “SPARC-V9 MMU Requirements”), or to treat t
that utilize a particular ASI (see 8.3, “Addressing and Alternate Address Spaces,” below) as
a sequentially consistent model.

a 64-
lfword
aligned
ies, and
cases
load,
ranteed
rent
rences

leword
d using
nd store
word-
rity of

several

to be

ssing
erence

mory

e
to the
ss to a

fully
fined
cted

d per-
,

8.3 Addressing and Alternate Address Spaces
An address in SPARC-V9 is a tuple consisting of an 8-bit address space identifier (ASI) and
bit byte-address offset in the specified address space. Memory is byte-addressed, with ha
accesses aligned on 2-byte boundaries, word accesses (which include instruction fetches)
on 4-byte boundaries, extended-word and doubleword accesses aligned on 8-byte boundar
quadword quantities aligned on 16-byte boundaries. With the possible exception of the
described in 6.3.1.1, “Memory Alignment Restrictions,” an improperly aligned address in a
store, or load-store instruction always causes a trap to occur. The largest datum that is gua
to be atomically read or written is an aligned doubleword. Also, memory references to diffe
bytes, halfwords, and words in a given doubleword are treated for ordering purposes as refe
to the same location. Thus, the unit of ordering for memory is a doubleword.

Programming Note:
While the doubleword is the coherency unit for update, programmers should not assume that doub
floating-point values are updated as a unit unless they are doubleword-aligned and always update
double-precision loads and stores. Some programs use pairs of single-precision operations to load a
double-precision floating-point values when the compiler cannot determine that they are double
aligned. Also, while quad-precision operations are defined in the SPARC-V9 architecture, the granula
loads and stores for quad-precision floating-point values may be word or doubleword.

The processor provides an address space identifier with every address. This ASI may serve
purposes:

— To identify which of several distinguished address spaces the 64-bit address offset is
interpreted as addressing

— To provide additional access control and attribute information, for example, the proce
which is to be taken if an access fault occurs or to specify the endian-ness of the ref

— To specify the address of an internal control register in the processor, cache, or me
management hardware

The memory management hardware can associate an independent 264-byte memory address spac
with each ASI. If this is done, it becomes possible to allow system software easy access
address space of the faulting program when processing exceptions, or to implement acce
client program’s memory space by a server program.

The architecturally specified ASIs are listed in table 12 on page 75. ASIs need not be
decoded by the hardware (impl. dep. #30). In particular, specifying an architecturally unde
ASI value in a memory reference instruction or in the ASI register may produce unexpe
implementation-dependent results.

When TL = 0, normal accesses by the processor to memory when fetching instructions an
forming loads and stores implicitly specify ASI_PRIMARY or ASI_PRIMARY_LITTLE
depending on the setting of the PSTATE.CLE bit.

IMPL. DEP. #124: When TL > 0, the implicit ASI for instruction fetches, loads, and stores is implementa-
tion-dependent.

o not
on-

sses, the
from

ndent
uire

e their
shown

nd
ft-

stricted
icted
ro-

be
bina-
om-

uard
The

strophic
e hard-

result.
et to

able to
NULL

ulting
lts.

C-V9
ix F,
Implementation Note:
Implementations that support the nucleus context should use ASI_NUCLEUS{_LITTLE}; those that d
should use ASI_PRIMARY{_LITTLE}. See F.4.4, “Contexts,” for more information about the nucleus c
text.

Accesses to other address spaces use the load/store alternate instructions. For these acce
ASI is either contained in the instruction (for the register-register addressing mode) or taken
the ASI register (for register-immediate addressing).

ASIs are either unrestricted or restricted. An unrestricted ASI is one that may be used indepe
of the privilege level (PSTATE.PRIV) at which the processor is running. Restricted ASIs req
that the processor be in privileged mode for a legal access to occur. Restricted ASIs hav
high-order bit equal to zero. The relationship between processor state and ASI restriction is
in table 11 on page 74.

Several restricted ASIs must be provided: ASI_AS_IF_USER_PRIMARY{_LITTLE} a
ASI_AS_IF_USER_SECONDARY{_LITTLE}. The intent of these ASIs is to give system so
ware efficient access to the memory space of a program.

The normal address space is primary address space, which is accessed by the unre
ASI_PRIMARY{_LITTLE}. The secondary address space, which is accessed by the unrestr
ASI_SECONDARY{_LITTLE}, is provided to allow a server program to access a client p
gram’s address space.

ASI_PRIMARY_NOFAULT{_LITTLE} and ASI_SECONDARY_NOFAULT{_LITTLE} sup-
port nonfaulting loads. These ASIs are aliased to ASI_PRIMARY{_LITTLE} and
ASI_SECONDARY{_LITTLE}, respectively, and have exactly the same action. They may
used to color (that is, distinguish into classes) loads in the instruction stream so that, in com
tion with a judicious mapping of low memory and a specialized trap handler, an optimizing c
piler can move loads outside of conditional control structures.

Programming Note:
Nonfaulting loads allow optimizations that move loads ahead of conditional control structures which g
their use; thus, they can minimize the effects of load latency by improving instruction scheduling.
semantics of nonfaulting load are the same as for any other load, except when non-recoverable cata
faults occur (for example, address-out-of-range errors). When such a fault occurs, it is ignored and th
ware and system software cooperate to make the load appear to complete normally, returning a zero
The compiler’s optimizer generates load-alternate instructions with the ASI field or register s
ASI_PRIMARY_NOFAULT{_LITTLE} or ASI_SECONDARY_NOFAULT{_LITTLE} for those loads it
determines should be nonfaulting. To minimize unnecessary processing if a fault does occur, it is desir
map low addresses (especially address zero) to a page of all zeros, so that references through a
pointer do not cause unnecessary traps.

Implementation Note:
An implementation, through a combination of hardware and system software, must prevent nonfa
loads on memory locations that have side effects; otherwise, such accesses produce undefined resu

8.4 The SPARC-V9 Memory Model

The SPARC-V9 processor architecture specifies the organization and structure of a SPAR
central processing unit, but does not specify a memory system architecture. Append

en-

struc-
er pro-
l for

n exe-

ram
depen-

ruction
locate
m exe-
. This

d mem-
if the
ed in
tions,

uses

sets
“SPARC-V9 MMU Requirements,” summarizes the MMU support required by a SPARC-V9 c
tral processing unit.

The memory models specify the possible order relationships between memory-reference in
tions issued by a processor and the order and visibility of those instructions as seen by oth
cessors. The memory model is intimately intertwined with the program execution mode
instructions.

8.4.1 The SPARC-V9 Program Execution Model

The SPARC-V9 processor model consists of three units: an issue unit, a reorder unit, and a
cute unit, as shown in figure 42.

The issue unit reads instructions over the instruction path from memory and issues them inpro-
gram order. Program order is precisely the order determined by the control flow of the prog
and the instruction semantics, under the assumption that each instruction is performed in
dently and sequentially.

Issued instructions are collected, reordered, and then dispatched to the execute unit. Inst
reordering allows an implementation to perform some operations in parallel and to better al
resources. The reordering of instructions is constrained to ensure that the results of progra
cution are the same as they would be if the instructions were performed in program order
property is calledprocessor self-consistency.

Figure 42—Processor Model: Uniprocessor System

Processor self-consistency requires that the result of execution, in the absence of any share
ory interaction with another processor, be identical to the result that would be observed
instructions were performed in program order. In the model in figure 42, instructions are issu
program order and placed in the reorder buffer. The processor is allowed to reorder instruc
provided it does not violate any of the data-flow constraints for registers or for memory.

The data-flow order constraints for register reference instructions are:

— An instruction cannot be performed until all earlier instructions that set a register it
have been performed (read-after-write hazard; write-after-write hazard).

— An instruction cannot be performed until all earlier instructions that use a register it
have been performed (write-after-read hazard).

Processor

Memory

Data Path

Instruction PathIssue Reorder Execute

nam-
new

rence

until
rite-

per-
have

y pro-
value
e store
ifferent
write
write
ry.

d by
EM-

order
gram.

g two
gs are
sistent
require

uction
tributed
s are

ssor exe-
by pro-
ated by

ng
An implementation can avoid blocking instruction execution in the second case by using a re
ing mechanism which provides the old value of the register to earlier instructions and the
value to later uses.

The data-flow order constraints for memory-reference instructions are those for register refe
instructions, plus the following additional constraints:

(1) A memory-reference instruction that sets (stores to) a location cannot be performed
all previous instructions that use (load from) the location have been performed (w
after-read hazard).

(2) A memory-reference instruction that uses (loads) the value at a location cannot be
formed until all earlier memory-reference instructions that set (store to) the location
been performed (read-after-write hazard).

As with the case for registers, implementations can avoid blocking instructions in case (2) b
viding an additional mechanism, in this case, a write buffer which guarantees that the
returned by a load is that which would be returned by the most recent store, even though th
has not completed. As a result, the value associated with an address may appear to be d
when observed from a processor that has written the location and is holding the value in its
buffer than it would be when observed from a processor that references memory (or its own
buffer). Moreover, the load that was satisfied by the write buffer never appears at the memo

Memory-barrier instructions (MEMBAR and STBAR) and the active memory model specifie
PSTATE.MM also constrain the issue of memory-reference instructions. See 8.4.3, “The M
BAR Instruction,” and 8.4.4, “Memory Models,” for a detailed description.

The constraints on instruction execution assert a partial ordering on the instructions in the re
buffer. Every one of the several possible orderings is a legal execution ordering for the pro
See Appendix D, “Formal Specification of the Memory Models,” for more information.

8.4.2 The Processor/Memory Interface Model

Each processor in a multiprocessor system is modelled as shown in figure 43; that is, havin
independent paths to memory: one for instructions and one for data. Caches and mappin
considered to be part of the memory. Data caches are maintained by hardware to be con
(coherent). Instruction caches need not be kept consistent with data caches and, therefore,
explicit program action to ensure consistency when a program modifies an executing instr
stream. Memory is shared in terms of address space, but may be inhomogeneous and dis
in an implementation. Mapping and caches are ignored in the model, since their function
transparent to the memory model.1

In real systems addresses may have attributes that the processor must respect. The proce
cutes loads, stores, and atomic load-stores in whatever order it chooses, as constrained
gram order and the current memory model. The ASI address-couples it generates are transl

1. The model described here is only a model. Implementations of SPARC-V9 systems are unsonstrained so lo
as their observable behaviors match those of the model.

ay, in
mple, a
cted. It
ory

” for

dency
y. The
s
tions

. Mul-
inistic
partial
tions
stores

al total

er-
sued
am-

ARs
isible,
a memory management unit (MMU), which associates attributes with the address and m
some instances, abort the memory transaction and signal an exception to the CPU. For exa
region of memory may be marked as non-prefetchable, non-cacheable, read-only, or restri
is the MMU’s responsibility, working in conjunction with system software, to ensure that mem
attribute constraints are not violated. See Appendix F, “SPARC-V9 MMU Requirements,
more information.

Instructions are performed in an order constrained by local dependencies. Using this depen
ordering, an execution unit submits one or more pending memory transactions to the memor
memory performs transactions inmemory order. The memory unit may perform transaction
submitted to it out of order; hence, the execution unit must not submit two or more transac
concurrently that are required to be ordered.

Figure 43—Data Memory Paths: Multiprocessor System

The memory accepts transactions, performs them, and then acknowledges their completion
tiple memory operations may be in progress at any time and may be initiated in a nondeterm
fashion in any order, provided that all transactions to a location preserve the per-processor
orders. Memory transactions may complete in any order. Once initiated, all memory opera
are performed atomically: loads from one location all see the same value, and the result of
are visible to all potential requestors at the same instant.

The order of memory operations observed at a single location is atotal order that preserves the
partial orderings of each processor’s transactions to this address. There may be many leg
orders for a given program’s execution.

8.4.3 The MEMBAR Instruction

MEMBAR serves two distinct functions in SPARC-V9. One variant of the MEMBAR, the ord
ing MEMBAR, provides a way for the programmer to control the order of loads and stores is
by a processor. The other variant of MEMBAR, the sequencing MEMBAR, allows the progr
mer to explicitly control order and completion for memory operations. Sequencing MEMB
are needed only when a program requires that the effect of an operation become globally v

Processors

Memory Transactions
In Memory Order

Memory

Instructions

Data

le

ces-
d with
tions
a

antics
R

ess or
ly to
rence

01
ns
s fol-
case.
al-
e vis-
order

tion

truc-
d

ble
ne
ry
rather than simply being scheduled.1 As both forms are bit-encoded into the instruction, a sing
MEMBAR can function both as an ordering MEMBAR and as a sequencing MEMBAR.

8.4.3.1 Ordering MEMBAR Instructions

Ordering MEMBAR instructions induce an ordering in the instruction stream of a single pro
sor. Sets of loads and stores that appear before the MEMBAR in program order are ordere
respect to sets of loads and stores that follow the MEMBAR in program order. Atomic opera
(LDSTUB(A), SWAP(A), CASA, and CASXA) are ordered by MEMBAR as if they were both
load and a store, since they share the semantics of both. An STBAR instruction, with sem
that are a subset of MEMBAR, is provided for SPARC-V8 compatibility. MEMBAR and STBA
operate on all pending memory operations in the reorder buffer, independent of their addr
ASI, ordering them with respect to all future memory operations. This ordering applies on
memory-reference instructions issued by the processor issuing the MEMBAR. Memory-refe
instructions issued by other processors are unaffected.

The ordering relationships are bit-encoded as shown in table 19. For example, MEMBAR16,
written as “membar #LoadLoad ” in assembly language, requires that all load operatio
appearing before the MEMBAR in program order complete before any of the load operation
lowing the MEMBAR in program order complete. Store operations are unconstrained in this
MEMBAR 0816 (#StoreStor e) is equivalent to the STBAR instruction; it requires that the v
ues stored by store instructions appearing in program order prior to the STBAR instruction b
ible to other processors prior to issuing any store operations that appear in program
following the STBAR.

In table 19 these ordering relationships are specified by the ‘<m’ symbol, which signifies memory
order. See Appendix D, “Formal Specification of the Memory Models,” for a formal descrip
of the <m relationship.

Selections may be combined to form more powerful barriers. For example, a MEMBAR ins
tion with a mask of 0916 (#LoadLoad | #StoreStore) orders loads with respect to loads an
stores with respect to stores, but does not order loads with respect to stores or vice versa.

1. Sequencing MEMBARs are needed for some input/output operations, forcing stores into specialized sta
storage, context switching, and occasional other systems functions. Using a Sequencing MEMBAR when o
is not needed may cause a degradation of performance. See Appendix J, “Programming With the Memo
Models,” for examples of their use.

Table 19—Ordering Relationships Selected by Mask

Ordering relation,
earlier < later

Suggested
assembler tag

Mask
value

nmask
bit #

Load <m Load #LoadLoad 0116 0

Store <m Load #StoreLoad 0216 1

Load <m Store #LoadStore 0416 2

Store <m Store #StoreStore 0816 3

tro-
eding a

are
ppli-

ide
he
ay
to
isters

ncing
the

BAR
ction

upon
nsis-
fol-
An ordering MEMBAR instruction does not guarantee any completion property; it only in
duces an ordering constraint. For example, a program should not assume that a store prec
MEMBAR instruction has completed following execution of the MEMBAR.

8.4.3.2 Sequencing MEMBAR Instructions

A sequencing MEMBAR exerts explicit control over the completion of operations. There
three sequencing MEMBAR options, each with a different degree of control and a different a
cation.

Lookaside Barrier:
Ensures that loads following this MEMBAR are from memory and not from a lookas
into a write buffer.Lookaside Barrier requires that pending stores issued prior to t
MEMBAR be completed before any load from that address following the MEMBAR m
be issued. ALookaside Barrier MEMBAR may be needed to provide lock fairness and
support some plausible I/O location semantics. See the example in J.14.1, “I/O Reg
With Side Effects.”

Memory Issue Barrier:
Ensures that all memory operations appearing in program order before the seque
MEMBAR complete before any any new memory operation may be initiated. See
example in J.14.2, “The Control and Status Register (CSR).”

Synchronization Barrier:
Ensures that all instructions (memory reference and others) preceding the MEM
complete and the effects of any fault or error have become visible before any instru
following the MEMBAR in program order is initiated. ASynchronization Barrier
MEMBAR fully synchronizes the processor that issues it.

Table 20 shows the encoding of these functions in the MEMBAR instruction.

8.4.4 Memory Models

The SPARC-V9 memory models are defined below in terms of order constraints placed
memory-reference instruction execution, in addition to the minimal set required for self-co
tency. These order constraints take the form of MEMBAR operations implicitly performed
lowing some memory-reference instructions.

Table 20—Sequencing Barrier Selected by Mask

Sequencing
function

Assembler tag Mask
value

cmaskbit
#

Lookaside Barrier #Lookaside 1016 0

Memory Issue Barrier #MemIssue 2016 1

Synchronization Barrier #Sync 4016 2

hose
licitly

o-
odel.

AR

ruc-

ro-
l.

e of

8

of
8.4.4.1 Relaxed Memory Order (RMO)

Relaxed Memory Order places no ordering constraints on memory references beyond t
required for processor self-consistency. When ordering is required, it must be provided exp
in the programs using MEMBAR instructions.

8.4.4.2 Partial Store Order (PSO)

Partial Store Order may be provided for compatibility with existing SPARC-V8 programs. Pr
grams that execute correctly in the RMO memory model will execute correctly in the PSO m

The rules for PSO are:

— Loads are blocking and ordered with respect to earlier loads.

— Atomic load-stores are ordered with respect to loads.

Thus, PSO ensures that:

— Each load and atomic load-store instruction behaves as if it were followed by a MEMB
with a mask value of 0516.

— Explicit MEMBAR instructions are required to order store and atomic load-store inst
tions with respect to each other.

8.4.4.3 Total Store Order (TSO)

Total Store Order must be provided for compatibility with existing SPARC-V8 programs. P
grams that execute correctly in either RMO or PSO will execute correctly in the TSO mode

The rules for TSO are:

— Loads are blocking and ordered with respect to earlier loads.

— Stores are ordered with respect to stores.

— Atomic load-stores are ordered with respect to loads and stores.

Thus, TSO ensures that:

— Each load instruction behaves as if it were followed by a MEMBAR with a mask valu
0516.

— Each store instruction behaves as if it were followed by a MEMBAR with a mask of 016.

— Each atomic load-store behaves as if it were followed by a MEMBAR with a mask
0D16.

.1.4,

to be

es of

tibil-

d and
.

ual-
utual

odels.
store
em-

men-
rim-
tion is
20).

er to a
in a

. The
n access
8.4.5 Mode Control

The memory model is specified by the two-bit state in PSTATE.MM, described in 5.2
“PSTATE_mem_model (MM).”

Writing a new value into PSTATE.MM causes subsequent memory reference instructions
performed with the order constraints of the specified memory model.

SPARC-V9 processors need not provide all three memory models; undefined valu
PSTATE.MM have implementation-dependent effects.

IMPL. DEP. #119: The effect of writing an unimplemented memory mode designation into PSTATE.MM is
implementation-dependent.

Implementation Note:
All SPARC-V9 implementations must provide TSO or a stronger model to maintain SPARC-V8 compa
ity. An implementation may provide PSO, RMO, or neither.

Except when a trap enters RED_state, PSTATE.MM is left unchanged when a trap is entere
the old value is stacked. When entering RED_state, the value of PSTATE.MM is set to TSO

8.4.6 Hardware Primitives for Mutual Exclusion

In addition to providing memory-ordering primitives that allow programmers to construct mut
exclusion mechanisms in software, SPARC-V9 provides three hardware primitives for m
exclusion:

— Compare and Swap (CASA, CASXA)

— Load Store Unsigned Byte (LDSTUB, LDSTUBA)

— Swap (SWAP, SWAPA)

Each of these instructions has the semantics of both a load and a store in all three memory m
They are allatomic, in the sense that no other store can be performed between the load and
elements of the instruction. All of the hardware mutual exclusion operations conform to the m
ory models and may require barrier instructions to ensure proper data visibility.

When the hardware mutual-exclusion primitives address I/O locations, the results are imple
tation-dependent (impl. dep. #123). In addition, the atomicity of hardware mutual-exclusion p
itives is guaranteed only for processor memory references and not when the memory loca
simultaneously being addressed by an I/O device such as a channel or DMA (impl. dep. #1

8.4.6.1 Compare and Swap (CASA, CASXA)

Compare-and-swap is an atomic operation which compares a value in a processor regist
value in memory, and, if and only if they are equal, swaps the value in memory with the value
second processor register. Both 32-bit (CASA) and 64-bit (CASXA) operations are provided
compare-and-swap operation is atomic in the sense that once begun, no other processor ca

s also

prim-
finite
to con-

ming

ory.
g pro-

has a
a wait-

e con-
a pro-
by a
cache
pecial

refer-
ing the
e pro-
ultiple
rformed
ed to

rget of
s, and

ts as a
store
the memory location specified until the compare has completed and the swap (if any) ha
completed and is potentially visible to all other processors in the system.

Compare-and-swap is substantially more powerful than the other hardware synchronization
itives. It has an infinite consensus number; that is, it can resolve, in a wait-free fashion, an in
number of contending processes. Because of this property, compare-and-swap can be used
struct wait-free algorithms that do not require the use of locks. See Appendix J, “Program
With the Memory Models,” for examples.

8.4.6.2 Swap (SWAP)

SWAP atomically exchanges the lower 32 bits in a processor register with a word in mem
Swap has a consensus number of two; that is, it cannot resolve more than two contendin
cesses in a wait-free fashion.

8.4.6.3 Load Store Unsigned Byte (LDSTUB)

LDSTUB loads a byte value from memory to a register and writes the value FF16 into the
addressed byte atomically. LDSTUB is the classic test-and-set instruction. Like SWAP, it
consensus number of two and so cannot resolve more than two contending processes in
free fashion.

8.4.7 Synchronizing Instruction and Data Memory

The SPARC-V9 memory models do not require that instruction and data memory images b
sistent at all times. The instruction and data memory images may become inconsistent if
gram writes into the instruction stream. As a result, whenever instructions are modified
program in a context where the data (that is, the instructions) in the memory and the data
hierarchy may be inconsistent with instructions in the instruction cache hierarchy, some s
programmatic action must be taken.

The FLUSH instruction will ensure consistency between the instruction stream and the data
ences across any local caches for a particular doubleword value in the processor execut
FLUSH. It will ensure eventual consistency across all caches in a multiprocessor system. Th
grammer must be careful to ensure that the modification sequence is robust under m
updates and concurrent execution. Since, in the general case, loads and stores may be pe
out of order, appropriate MEMBAR and FLUSH instructions must be interspersed as need
control the order in which the instruction data is mutated.

The FLUSH instruction ensures that subsequent instruction fetches from the doubleword ta
the FLUSH by the processor executing the FLUSH appear to execute after any loads, store
atomic load-stores issued by the processor to that address prior to the FLUSH. FLUSH ac
barrier for instruction fetches in the processor that executes it and has the properties of a
with respect to MEMBAR operations.

iately

proto-

dation
instruc-

USH,
e line.

H may
tine for
ries of
h the

o sub-

that

‘—’
ro
ters
g the
set.

ed in

te the
FLUSH has no latency on the issuing processor; the modified instruction stream is immed
available.1

IMPL. DEP. #122: The latency between the execution of FLUSH on one processor and the point at which
the modified instructions have replaced outdated instructions in a multiprocessor is implementation-depen-
dent.

If all caches in a system (uniprocessor or multiprocessor) have a unified cache consistency
col, FLUSH does nothing.

Use of FLUSH in a multiprocessor environment may cause unexpected performance degra
in some systems, because every processor that may have a copy of the modified data in its
tion cache must invalidate that data. In the worst case naive system,all processors must invalidate
the data. The performance problem is compounded by the doubleword granularity of the FL
which must be observed even when the actual invalidation unit is larger, for example, a cach

Programming Note:
Because FLUSH is designed to act on a doubleword, and because, on some implementations, FLUS
trap to system software, it is recommended that system software provide a user-callable service rou
flushing arbitrarily sized regions of memory. On some implementations, this routine would issue a se
FLUSH instructions; on others, it might issue a single trap to system software that would then flus
entire region.

A Instruction Definitions

A.1 Overview

This appendix describes each SPARC-V9 instruction. Related instructions are grouped int
sections. Each subsection consists of these parts:

(1) A table of the opcodes defined in the subsection with the values of the field(s)
uniquely identify the instruction(s).

(2) An illustration of the applicable instruction format(s). In these illustrations, a dash
indicates that the field isreservedfor future versions of the architecture and shall be ze
in any instance of the instruction. If a conforming SPARC-V9 implementation encoun
nonzero values in these fields, its behavior is undefined. See Appendix I, “Extendin
SPARC-V9 Architecture,” for information about extending the SPARC-V9 instruction

(3) A list of the suggested assembly language syntax; the syntax notation is describ
Appendix G, “Suggested Assembly Language Syntax.”

(4) A description of the features, restrictions, and exception-causing conditions.

(5) A list of the exceptions that can occur as a consequence of attempting to execu
instruction(s). Exceptions due to aninstruction_access_error, instruction_access_exception,

1. SPARC-V8 specified a five-instruction latency. Invalidation of instructions in execution in the instruction
cache is likely to force an instruction-cache fault.

hat is

tim-

ithin
s are
ble 21:
instruction_access_MMU_miss, async_data_error, or internal_processor_error, and interrupt
requests are not listed, since they can occur on any instruction. Also, any instruction t
not implemented in hardware shall generate anillegal_instruction exception (or
fp_exception_other exception withftt = unimplemented_FPop for floating-point instructions)
when it is executed.

This appendix does not include any timing information (in either cycles or clock time), since
ing is implementation-dependent.

Table 22 summarizes the instruction set; the instruction definitions follow the table. W
table 22, throughout this appendix, and in Appendix E, “Opcode Maps,” certain opcode
marked with mnemonic superscripts. The superscripts and their meanings are defined in ta

Table 21—Opcode Superscripts

Superscrip
t Meaning

D Deprecated instruction

P Privileged opcode

PASI Privileged action if bit 7 of the referenced ASI is zero

PASR Privileged opcode if the referenced ASR register is privileged

PNPT Privileged action if PSTATE.PRIV = 0 and TICK.NPT = 1

Table 22—Instruction Set

Opcode Name Page
ADD (ADDcc) Add (and modify condition codes) 160

ADDC (ADDCcc) Add with carry (and modify condition codes) 160

AND (ANDcc) And (and modify condition codes) 208

ANDN (ANDNcc) And not (and modify condition codes) 208

BPcc Branch on integer condition codes with prediction 172

BiccD Branch on integer condition codes 169

BPr Branch on contents of integer register with prediction 161

CALL Call and link 175

CASAPASI Compare and swap word in alternate space 176

CASXAPAS I Compare and swap doubleword in alternate space 176

DONEP Return from trap 181

FABS(s,d,q) Floating-point absolute value 188

FADD(s,d,q) Floating-point add 182

FBfccD Branch on floating-point condition codes 163

FBPfcc Branch on floating-point condition codes with prediction 166

FCMP(s,d,q) Floating-point compare 183

FCMPE(s,d,q) Floating-point compare (exception if unordered) 183

FDIV(s,d,q) Floating-point divide 189

FdMULq Floating-point multiply double to quad 189

FiTO(s,d,q) Convert integer to floating-point 187

FLUSH Flush instruction memory 191

FLUSHW Flush register windows 193

FMOV(s,d,q) Floating-point move 188

FMOV(s,d,q)cc Move floating-point register if condition is satisfied 213

FMOV(s,d,q)r Move f-p reg. if integer reg. contents satisfy condition 217

FMUL(s,d,q) Floating-point multiply 189

FNEG(s,d,q) Floating-point negate 188

FsMULd Floating-point multiply single to double 189

FSQRT(s,d,q) Floating-point square root 190

F(s,d,q)TOi Convert floating point to integer 185

F(s,d,q)TO(s,d,q) Convert between floating-point formats 186

F(s,d,q)TOx Convert floating point to 64-bit integer 185

FSUB(s,d,q) Floating-point subtract 182

FxTO(s,d,q) Convert 64-bit integer to floating-point 187

ILLTRAP Illegal instruction 194

IMPDEP1 Implementation-dependent instruction 195

IMPDEP2 Implementation-dependent instruction 195

JMPL Jump and link 196

LDDD Load doubleword 201

LDDAD, PASI Load doubleword from alternate space 203

LDDF Load double floating-point 197

LDDFAPASI Load double floating-point from alternate space 199

LDF Load floating-point 197

LDFAPASI Load floating-point from alternate space 199

LDFSRD Load floating-point state register lower 197

LDQF Load quad floating-point 197

LDQFAPASI Load quad floating-point from alternate space 199

LDSB Load signed byte 201

LDSBAPASI Load signed byte from alternate space 203

LDSH Load signed halfword 201

LDSHAPASI Load signed halfword from alternate space 203

LDSTUB Load-store unsigned byte 206

LDSTUBAPASI Load-store unsigned byte in alternate space 207

LDSW Load signed word 201

LDSWAPASI Load signed word from alternate space 203

LDUB Load unsigned byte 201

LDUBAPASI Load unsigned byte from alternate space 203

LDUH Load unsigned halfword 201

LDUHAPASI Load unsigned halfword from alternate space 203

LDUW Load unsigned word 201

LDUWAPASI Load unsigned word from alternate space 203

LDX Load extended 201

LDXA PASI Load extended from alternate space 203

LDXFSR Load floating-point state register 197

MEMBAR Memory barrier 210

MOVcc Move integer register if condition is satisfied 219

Table 22—Instruction Set (Continued)

Opcode Name Page

MOVr Move integer register on contents of integer register 223

MULSccD Multiply step (and modify condition codes) 228

MULX Multiply 64-bit integers 225

NOP No operation 230

OR (ORcc) Inclusive-or (and modify condition codes) 208

ORN (ORNcc) Inclusive-or not (and modify condition codes) 208

POPC Population count 231

PREFETCH Prefetch data 232

PREFETCHAPASI Prefetch data from alternate space 232

RDASI Read ASI register 241

RDASRPASR Read ancillary state register 241

RDCCR Read condition codes register 241

RDFPRS Read floating-point registers state register 241

RDPC Read program counter 241

RDPRP Read privileged register 238

RDTICKPNPT Read TICK register 241

RDYD Read Y register 241

RESTORE Restore caller’s window 245

RESTOREDP Window has been restored 247

RETRYP Return from trap and retry 181

RETURN Return 243

SAVE Save caller’s window 245

SAVEDP Window has been saved 247

SDIVD (SDIVccD) 32-bit signed integer divide (and modify condition codes) 178

SDIVX 64-bit signed integer divide 225

SETHI Set high 22 bits of low word of integer register 248

SIR Software-initiated reset 251

SLL Shift left logical 249

SLLX Shift left logical, extended 249

SMULD (SMULccD) Signed integer multiply (and modify condition codes) 226

SRA Shift right arithmetic 249

SRAX Shift right arithmetic, extended 249

SRL Shift right logical 249

SRLX Shift right logical, extended 249

STB Store byte 257

STBAPASI Store byte into alternate space 259

STBARD Store barrier 252

STDD Store doubleword 257

STDAD, PASI Store doubleword into alternate space 257

STDF Store double floating-point 253

STDFAPASI Store double floating-point into alternate space 255

STF Store floating-point 253

STFAPASI Store floating-point into alternate space 255

STFSRD Store floating-point state register 253

Table 22—Instruction Set (Continued)

Opcode Name Page

STH Store halfword 257

STHAPASI Store halfword into alternate space 259

STQF Store quad floating-point 253

STQFAPASI Store quad floating-point into alternate space 255

STW Store word 257

STWAPASI Store word into alternate space 259

STX Store extended 257

STXAPASI Store extended into alternate space 259

STXFSR Store extended floating-point state register 253

SUB (SUBcc) Subtract (and modify condition codes) 261

SUBC (SUBCcc) Subtract with carry (and modify condition codes) 261

SWAPD Swap integer register with memory 262

SWAPAD, PASI Swap integer register with memory in alternate space 264

TADDcc (TADDccTVD) Tagged add and modify condition codes (trap on overflow) 266

Tcc Trap on integer condition codes 270

TSUBcc (TSUBccTVD) Tagged subtract and modify condition codes (trap on overflow) 268

UDIVD (UDIVccD) Unsigned integer divide (and modify condition codes) 178

UDIVX 64-bit unsigned integer divide 225

UMULD (UMULccD) Unsigned integer multiply (and modify condition codes) 226

WRASI Write ASI register 275

WRASRPASR Write ancillary state register 275

WRCCR Write condition codes register 275

WRFPRS Write floating-point registers state register 275

WRPRP Write privileged register 273

WRYD Write Y register 275

XNOR (XNORcc) Exclusive-nor (and modify condition codes) 208

XOR (XORcc) Exclusive-or (and modify condition codes) 208

Table 22—Instruction Set (Continued)

Opcode Name Page

.

A.2 Add

Format (3):

Description:

ADD and ADDcc compute “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1, and
write the sum intor[rd].

ADDC and ADDCcc (“ADD with carry”) also add the CCR register’s 32-bit carry (icc.c) bit; that
is, they compute “r[rs1] + r[rs2] + icc.c” or “ r[rs1] + sign_ext(simm13) + icc.c” and write the
sum intor[rd].

ADDcc and ADDCcc modify the integer condition codes (CCR.icc and CCR.xcc). Overflow
occurs on addition if both operands have the same sign and the sign of the sum is different

Programming Note:
ADDC and ADDCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit condition codes’
carry bit (CCR.xcc.c).

Compatibility Note:
ADDC and ADDCcc were named ADDX and ADDXcc, respectively, in SPARC-V8.

Exceptions:
(none)5

Opcode Op3 Operation

ADD 00 0000 Add

ADDcc 01 0000 Add and modify cc’s

ADDC 00 1000 Add with Carry

ADDCcc 01 1000 Add with Carry and modify cc’s

Suggested Assembly Language Syntax

add regrs1, reg_or_imm, regrd

addcc regrs1, reg_or_imm, regrd

addc regrs1, reg_or_imm, regrd

addccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

e

a

tion

annul
-

A.3 Branch on Integer Register with Prediction (BPr)

Format (2):

Programming Note:
To set the annul bit for BPr instructions, append “,a ” to the opcode mnemonic. For example, use “brz,a
%i3 ,label.” The preceding table indicates that the “,a ” is optional by enclosing it in braces. To set th
branch prediction bit “p,” append either “,pt ” for predict taken or “,pn ” for predict not taken to the
opcode mnemonic. If neither “,pt ” nor “,pn ” is specified, the assembler shall default to “,p t”.

Description:

These instructions branch based on the contents ofr[rs1]. They treat the register contents as
signed integer value.

A BPr instruction examines all 64 bits ofr[rs1] according to thercond field of the instruction,
producing either a TRUE or FALSE result. If TRUE, the branch is taken; that is, the instruc
causes a PC-relative, delayed control transfer to the address “PC + (4 * sign_ext(d16hi
d16lo)).” If FALSE, the branch is not taken.

If the branch is taken, the delay instruction is always executed, regardless of the value of the
bit. If the branch is not taken and the annul bit (a) is 1, the delay instruction is annulled (not exe
cuted).

Opcode rcond Operation
Register

contents test

— 000 Reserved —

BRZ 001 Branch on Register Zero r[rs1] = 0

BRLEZ 010 Branch on Register Less Than or Equal to Zero r[rs1] ≤ 0

BRLZ 011 Branch on Register Less Than Zero r[rs1] < 0

— 100 Reserved —

BRNZ 101 Branch on Register Not Zero r[rs1] ≠ 0

BRGZ 110 Branch on Register Greater Than Zero r[rs1] > 0

BRGEZ 111 Branch on Register Greater Than or Equal to Zero r[rs1] ≥ 0

Suggested Assembly Language Syntax

brz { ,a }{ ,pt |,pn } regrs1, label

brlez { ,a }{ ,pt |,pn } regrs1, label

brlz { ,a }{ ,pt |,pn } regrs1, label

brnz { ,a }{ ,pt |,pn } regrs1, label

brgz { ,a }{ ,pt |,pn } regrs1, label

brgez { ,a }{ ,pt |,pn } regrs1, label

31 141924 18 13 027 2530 29 28 22 21 20

00 a 0 rcond 011 d16hi p rs1 d16lo

to be
t the

her in

t, the
The predict bit (p) is used to give the hardware a hint about whether the branch is expected
taken. A 1 in thep bit indicates that the branch is expected to be taken; a 0 indicates tha
branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are described furt
Chapter 6, “Instructions.”

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) bit and Z (zero) bi
following table can be used to determine ifrcond is TRUE:

Exceptions:
illegal_instruction (if rcond= 0002 or 1002)

Branch Test

BRNZ not Z

BRZ Z

BRGEZ not N

BRLZ N

BRLEZ N or Z

BRGZ not (N or Z)

A.4 Branch on Floating-Point Condition Codes (FBfcc)

Format (2):

Opcode cond Operation fcc test

FBAD 1000 Branch Always 1

FBND 0000 Branch Never 0

FBUD 0111 Branch on Unordered U

FBGD 0110 Branch on Greater G

FBUGD 0101 Branch on Unordered or Greater Gor U

FBLD 0100 Branch on Less L

FBULD 0011 Branch on Unordered or Less Lor U

FBLGD 0010 Branch on Less or Greater Lor G

FBNED 0001 Branch on Not Equal Lor G or U

FBED 1001 Branch on Equal E

FBUED 1010 Branch on Unordered or Equal Eor U

FBGED 1011 Branch on Greater or Equal Eor G

FBUGED 1100 Branch on Unordered or Greater or Equal Eor G or U

FBLED 1101 Branch on Less or Equal Eor L

FBULED 1110 Branch on Unordered or Less or Equal Eor L or U

FBOD 1111 Branch on Ordered Eor L or G

The FBfcc instructions are deprecated; they are provided only for compatibility
with previous versions of the architecture. They should not be used in new SPARC-
V9 software. It is recommended that the FBPfcc instructions be used in their place.

31 24 02530 29 28 22 21

cond00 a 110 disp22

eld
xe-

ress
de
(not

ion
s

tion
ress

of the
Programming Note:
To set the annul bit for FBfcc instructions, append “,a ” to the opcode mnemonic. For example, use “fbl,a
label.” The preceding table indicates that the “,a ” is optional by enclosing it in braces .

Description:
Unconditional Branches (FBA, FBN):

If its annul field is 0, an FBN (Branch Never) instruction acts like a NOP. If its annul fi
is 1, the following (delay) instruction is annulled (not executed) when the FBN is e
cuted. In neither case does a transfer of control take place.

FBA (Branch Always) causes a PC-relative, delayed control transfer to the add
“PC + (4× sign_ext(disp22)),” regardless of the value of the floating-point condition co
bits. If the annul field of the branch instruction is 1, the delay instruction is annulled
executed). If the annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches:
Conditional FBfcc instructions (except FBA and FBN) evaluate floating-point condit
code zero (fcc0) according to thecondfield of the instruction. Such evaluation produce
either a TRUE or FALSE result. If TRUE, the branch is taken, that is, the instruc
causes a PC-relative, delayed control transfer to the add
“PC + (4× sign_ext(disp22)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed, regardless
value of the annul field. If a conditional branch is not taken and thea (annul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit has adifferent effect
on conditional branches than it does on unconditional branches.

Suggested Assembly Language Syntax

fba { ,a } label

fbn { ,a } label

fbu { ,a } label

fbg { ,a } label

fbug { ,a } label

fbl { ,a } label

fbul { ,a } label

fblg { ,a } label

fbne { ,a } label (synonym: fbnz)

fbe { ,a } label (synonym: fbz)

fbue { ,a } label

fbge { ,a } label

fbuge { ,a } label

fble { ,a } label

fbule { ,a} label

fbo { ,a } label

er in

ration

not
Annulment, delay instructions, and delayed control transfers are described furth
Chapter 6, “Instructions.”

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare ope
and a floating-point branch (FBfcc, FBPfcc).

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, the FBfcc instruction is
executed and instead, generates anfp_disabled exception.

Exceptions:
fp_disabled

A.5 Branch on Floating-Point Condition Codes with Prediction
(FBPfcc)

Format (2):

Opcode cond Operation fcc test

FBPA 1000 Branch Always 1

FBPN 0000 Branch Never 0

FBPU 0111 Branch on Unordered U

FBPG 0110 Branch on Greater G

FBPUG 0101 Branch on Unordered or Greater Gor U

FBPL 0100 Branch on Less L

FBPUL 0011 Branch on Unordered or Less Lor U

FBPLG 0010 Branch on Less or Greater Lor G

FBPNE 0001 Branch on Not Equal Lor G or U

FBPE 1001 Branch on Equal E

FBPUE 1010 Branch on Unordered or Equal Eor U

FBPGE 1011 Branch on Greater or Equal Eor G

FBPUGE 1100 Branch on Unordered or Greater or Equal Eor G or U

FBPLE 1101 Branch on Less or Equal Eor L

FBPULE 1110 Branch on Unordered or Less or Equal Eor L or U

FBPO 1111 Branch on Ordered Eor L or G

cc1 cc0
Condition

code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

31 1924 18 02530 29 28 22 21 20

00 a cond 101 cc1 p disp19cc0

e

ion
n is

no

ela-

f the

oat-

he
to the
Programming Note:
To set the annul bit for FBPfcc instructions, append “,a ” to the opcode mnemonic. For example, us
“ fbl,a %fcc3,label .” The preceding table indicates that the “,a ” is optional by enclosing it in braces.
To set the branch prediction bit, append either “,pt ” (for predict taken) or “pn” (for predict not taken) to
the opcode mnemonic. If neither “,pt ” nor “ ,pn ” is specified, the assembler shall default to “,p t”. To
select the appropriate floating-point condition code, include "%fcc0 ", "%fcc1 ", "%fcc2" , or "%fcc3 "
before the label.

Description:

Unconditional Branches (FBPA, FBPN):
If its annul field is 0, an FBPN (Floating-Point Branch Never with Prediction) instruct
acts like a NOP. If the Branch Never’s annul field is 0, the following (delay) instructio
executed; if the annul field is 1, the following instruction is annulled (not executed). In
case does an FBPN cause a transfer of control to take place.

FBPA (Floating-Point Branch Always with Prediction) causes an unconditional PC-r
tive, delayed control transfer to the address “PC + (4× sign_ext(disp19)).” If the annul
field of the branch instruction is 1, the delay instruction is annulled (not executed). I
annul field is 0, the delay instruction is executed.

Fcc-Conditional Branches:
Conditional FBPfcc instructions (except FBPA and FBPN) evaluate one of the four fl
ing-point condition codes (fcc0, fcc1, fcc2, fcc3) as selected bycc0andcc1, according to
thecondfield of the instruction, producing either a TRUE or FALSE result. If TRUE, t
branch is taken, that is, the instruction causes a PC-relative, delayed control transfer
address “PC + (4× sign_ext(disp19)).” If FALSE, the branch is not taken.

Suggested Assembly Language Syntax

fba { ,a }{ ,pt |,pn } %fcc n, label

fbn { ,a }{ ,pt |,pn } %fcc n, label

fbu { ,a }{ ,pt |,pn } %fcc n, label

fbg { ,a }{ ,pt |,pn } %fcc n, label

fbug { ,a }{ ,pt |,pn } %fcc n, label

fbl { ,a }{ ,pt |,pn } %fcc n, label

fbul { ,a }{ ,pt |,pn } %fcc n, label

fblg { ,a }{ ,pt |,pn } %fcc n, label

fbne { ,a }{ ,pt |,pn } %fcc n, label (synonym: fbnz)

fbe { ,a }{ ,pt |,pn } %fcc n, label (synonym: fbz)

fbue { ,a }{ ,pt |,pn } %fcc n, label

fbge { ,a }{ ,pt |,pn } %fcc n, label

fbuge { ,a }{ ,pt |,pn } %fcc n, label

fble { ,a }{ ,pt |,pn } %fcc n, label

fbule { ,a }{ ,pt |,pn } %fcc n, label

fbo { ,a }{ ,pt |,pn } %fcc n, label

of the

cted
tes

er in

not

ration
If a conditional branch is taken, the delay instruction is always executed, regardless
value of the annul field. If a conditional branch is not taken and thea (annul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit has adifferent effect
on conditional branches than it does on unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is expe
to be taken. A 1 in thep bit indicates that the branch is expected to be taken. A 0 indica
that the branch is expected not to be taken.

Annulment, delay instructions, and delayed control transfers are described furth
Chapter 6, “Instructions.”

If FPRS.FEF = 0 or PSTATE.PEF = 0, or if an FPU is not present, an FBPfcc instruction is
executed and instead, generates anfp_disabled exception.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare ope
and a floating-point branch (FBfcc, FBPfcc).

Exceptions:
fp_disabled

A.6 Branch on Integer Condition Codes (Bicc)

Format (2):

Opcode cond Operation icc test

BAD 1000 Branch Always 1

BND 0000 Branch Never 0

BNED 1001 Branch on Not Equal not Z

BED 0001 Branch on Equal Z

BGD 1010 Branch on Greater not (Z or (N xor V))

BLED 0010 Branch on Less or Equal Zor (N xor V)

BGED 1011 Branch on Greater or Equal not (N xor V)

BLD 0011 Branch on Less Nxor V

BGUD 1100 Branch on Greater Unsigned not (C or Z)

BLEUD 0100 Branch on Less or Equal Unsigned Cor Z

BCCD 1101 Branch on Carry Clear(Greater than or Equal, Unsigned) not C

BCSD 0101 Branch on Carry Set (Less than, Unsigned) C

BPOSD 1110 Branch on Positive not N

BNEGD 0110 Branch on Negative N

BVCD 1111 Branch on Overflow Clear not V

BVSD 0111 Branch on Overflow Set V

The Bicc instructions are deprecated; they are provided only for compatibility with
previous versions of the architecture. They should not be used in new SPARC-V9
software. It is recommended that the BPcc instructions be used in their place.

31 24 02530 29 28 22 21

00 a cond 010 disp22

is
rans-

o the
e
n is

tion
r
tive,

of the

er in
Programming Note:
To set the annul bit for Bicc instructions, append “,a ” to the opcode mnemonic. For example, use “bgu,a
label.” The preceding table indicates that the “,a ” is optional by enclosing it in braces.

Description:
Unconditional Branches (BA, BN):

If its annul field is 0, a BN (Branch Never) instruction acts like a NOP. If its annul field
1, the following (delay) instruction is annulled (not executed). In neither case does a t
fer of control take place.

BA (Branch Always) causes an unconditional PC-relative, delayed control transfer t
address “PC + (4× sign_ext(disp22)).” If the annul field of the branch instruction is 1, th
delay instruction is annulled (not executed). If the annul field is 0, the delay instructio
executed.

Icc-Conditional Branches:
Conditional Bicc instructions (all except BA and BN) evaluate the 32-bit integer condi
codes (icc), according to thecond field of the instruction, producing either a TRUE o
FALSE result. If TRUE, the branch is taken, that is, the instruction causes a PC-rela
delayed control transfer to the address “PC + (4× sign_ext(disp22)).” If FALSE, the
branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless
value of the annul field. If a conditional branch is not taken and thea (annul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit has adifferent effect
on conditional branches than it does on unconditional branches.

Annulment, delay instructions, and delayed control transfers are described furth
Chapter 6, “Instructions.”

Exceptions:

Suggested Assembly Language Syntax

ba{,a} label

bn{,a} label

bne{,a} label (synonym: bnz)

be{,a} label (synonym: bz)

bg{,a} label

ble{,a} label

bge{,a} label

bl{,a} label

bgu{,a} label

bleu{,a} label

bcc{,a} label (synonym: bgeu)

bcs{,a} label (synonym: blu)

bpos{,a} label

bneg{,a} label

bvc{,a} label

bvs{,a} label

(none)

A.7 Branch on Integer Condition Codes with Prediction (BPcc)

Format (2):

Opcode cond Operation icc test

BPA 1000 Branch Always 1

BPN 0000 Branch Never 0

BPNE 1001 Branch on Not Equal not Z

BPE 0001 Branch on Equal Z

BPG 1010 Branch on Greater not (Z or (N xor V))

BPLE 0010 Branch on Less or Equal Zor (N xor V)

BPGE 1011 Branch on Greater or Equal not (N xor V)

BPL 0011 Branch on Less Nxor V

BPGU 1100 Branch on Greater Unsigned not (C or Z)

BPLEU 0100 Branch on Less or Equal Unsigned Cor Z

BPCC 1101 Branch on Carry Clear(Greater Than or Equal, Unsigned) not C

BPCS 0101 Branch on Carry Set (Less than, Unsigned) C

BPPOS 1110 Branch on Positive not N

BPNEG 0110 Branch on Negative N

BPVC 1111 Branch on Overflow Clear not V

BPVS 0111 Branch on Overflow Set V

cc1 cc0
Condition

code

00 icc

01 —

10 xcc

11 —

31 1924 18 02530 29 28 22 21 20

00 a cond 001 cc1 p disp19cc0

e

4
uted
that

by an
is
no

con-

, the

con-

that
Programming Note:
To set the annul bit for BPcc instructions, append “,a ” to the opcode mnemonic. For example, use “bgu,a
%icc,label .” The preceding table indicates that the “,a ” is optional by enclosing it in braces. To set th
branch prediction bit, append to an opcode mnemonic either “,pt ” for predict taken or “,pn ” for predict
not taken. If neither “,pt ” nor “ ,pn ” is specified, the assembler shall default to “,p t”. To select the appro-
priate integer condition code, include “%icc ” or “%xcc” before the label.

Description:

Unconditional Branches (BPA, BPN):
A BPN (Branch Never with Prediction) instruction for this branch type (op2= 1) is used
in SPARC-V9 as an instruction prefetch; that is, the effective address (PC + (×
sign_ext(disp19))) specifies an address of an instruction that is expected to be exec
soon. The processor may use this information to begin prefetching instructions from
address. Like the PREFETCH instruction, this instruction may be treated as a NOP
implementation. If the Branch Never’s annul field is 1, the following (delay) instruction
annulled (not executed). If the annul field is 0, the following instruction is executed. In
case does a Branch Never cause a transfer of control to take place.

BPA (Branch Always with Prediction) causes an unconditional PC-relative, delayed
trol transfer to the address “PC + (4× sign_ext(disp19)).” If the annul field of the branch
instruction is 1, the delay instruction is annulled (not executed). If the annul field is 0
delay instruction is executed.

Conditional Branches:
Conditional BPcc instructions (except BPA and BPN) evaluate one of the two integer
dition codes (icc or xcc), as selected bycc0 andcc1, according to thecondfield of the
instruction, producing either a TRUE or FALSE result. If TRUE, the branch is taken;

Suggested Assembly Language Syntax

ba{ ,a }{ ,pt |,pn } i_or_x_cc, label

bn{ ,a }{ ,pt |,pn } i_or_x_cc, label (or: iprefetch label)

bne { ,a }{ ,pt |,pn } i_or_x_cc, label (synonym: bnz)

be{ ,a }{ ,pt |,pn } i_or_x_cc, label (synonym: bz)

bg{ ,a }{ ,pt |,pn } i_or_x_cc, label

ble { ,a }{ ,pt |,pn } i_or_x_cc, label

bge { ,a }{ ,pt |,pn } i_or_x_cc, label

bl { ,a }{ ,pt |,pn } i_or_x_cc, label

bgu { ,a }{ ,pt |,pn } i_or_x_cc, label

bleu { ,a }{ ,pt |,pn } i_or_x_cc, label

bcc { ,a }{ ,pt |,pn } i_or_x_cc, label (synonym: bgeu)

bcs { ,a }{ ,pt |,pn } i_or_x_cc, label (synonym: blu)

bpos { ,a }{ ,pt |,pn } i_or_x_cc, label

bneg { ,a }{ ,pt |,pn } i_or_x_cc, label

bvc { ,a }{ ,pt |,pn } i_or_x_cc, label

bvs { ,a }{ ,pt |,pn } i_or_x_cc, label

+ (4

of the

cted

d fur-
is, the instruction causes a PC-relative, delayed control transfer to the address “PC×
sign_ext(disp19)).” If FALSE, the branch is not taken.

If a conditional branch is taken, the delay instruction is always executed regardless
value of the annul field. If a conditional branch is not taken and thea (annul) field is 1, the
delay instruction is annulled (not executed). Note that the annul bit has adifferent effect
for conditional branches than it does for unconditional branches.

The predict bit (p) is used to give the hardware a hint about whether the branch is expe
to be taken. A 1 in thep bit indicates that the branch is expected to be taken; a 0 indicates
that the branch is expected not to be taken.

Annulment, delay instructions, prediction, and delayed control transfers are describe
ther in Chapter 6, “Instructions.”

Exceptions:
illegal_instruction (cc1 cc0= 012 or 112)

dress

by
ros to

into
A.8 Call and Link

Format (1):

Description:

The CALL instruction causes an unconditional, delayed, PC-relative control transfer to ad
PC + (4× sign_ext(disp30)). Since the word displacement (disp30) field is 30 bits wide, the target
address lies within a range of –231 to +231 – 4 bytes. The PC-relative displacement is formed
sign-extending the 30-bit word displacement field to 62 bits and appending two low-order ze
obtain a 64-bit byte displacement.

The CALL instruction also writes the value of PC, which contains the address of the CALL,
r[15] (out register 7). The high-order 32-bits of the PC value stored inr[15] are implementation-
dependent when PSTATE.AM = 1 (impl. dep. #125). The value written intor[15] is visible to the
instruction in the delay slot.

Exceptions:
(none)

Opcode op Operation

CALL 01 Call and Link

Suggested Assembly Language Syntax

call label

31 030 29

01 disp30

cesses.
updates

er

ca-

ap. The
ed by
, load-
ion, or

e-
arriers
A.9 Compare and Swap

Format (3):

Description:
These instructions are used for synchronization and memory updates by concurrent pro
Uses of compare-and-swap include spin-lock operations, updates of shared counters, and
of linked-list pointers. The latter two can use wait-free (nonlocking) protocols.

The CASXA instruction compares the value in registerr[rs2] with the doubleword in memory
pointed to by the doubleword address inr[rs1]. If the values are equal, the value inr[rd] is
swapped with the doubleword pointed to by the doubleword address inr[rs1]. If the values are not
equal, the contents of the doubleword pointed to byr[rs1] replaces the value inr[rd], but the
memory location remains unchanged.

The CASA instruction compares the low-order 32 bits of registerr[rs2] with a word in memory
pointed to by the word address inr[rs1]. If the values are equal, the low-order 32 bits of regist
r[rd] are swapped with the contents of the memory word pointed to by the address inr[rs1] and
the high-order 32 bits of registerr[rd] are set to zero. If the values are not equal, the memory lo
tion remains unchanged, but the zero-extended contents of the memory word pointed to byr[rs1]
replace the low-order 32 bits ofr[rd] and the high-order 32 bits of registerr[rd] are set to zero.

A compare-and-swap instruction comprises three operations: a load, a compare, and a sw
overall instruction is atomic; that is, no intervening interrupts or deferred traps are recogniz
the processor, and no intervening update resulting from a compare-and-swap, swap, load
store unsigned byte, or store instruction to the doubleword containing the addressed locat
any portion of it, is performed by the memory system.

A compare-and-swap operation doesnot imply any memory barrier semantics. When compar
and-swap is used for synchronization, the same consideration should be given to memory b
as if a load, store, or swap instruction were used.

Opcode op3 Operation

CASAPASI 11 1100 Compare and Swap Word from Alternate space

CASXAPASI 11 1110 Compare and Swap Extended from Alternate space

Suggested Assembly Language Syntax

casa [regrs1] imm_asi, regrs2, regrd

casa [regrs1] %asi , regrs2, regrd

casxa [regrs1] imm_asi, regrs2, regrd

casxa [regrs1] %asi , regrs2, regrd

31 141924 18 13 12 5 4 02530 29

11 rd op3 rs1 i=0 imm_asi rs2

11 rd op3 rs1 i=1 — rs2

ues in

I

mory

though

ble for
Little

hetic
A compare-and-swap operation behaves as if it performs a store, either of a new value fromr[rd]
or of the previous value in memory. The addressed location must be writable, even if the val
memory andr[rs2] are not equal.

If i = 0, the address space of the memory location is specified in theimm_asifield; if i = 1, the
address space is specified in the ASI register.

A mem_address_not_aligned exception is generated if the address inr[rs1] is not properly aligned.
CASXA and CASA cause aprivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the AS
is zero.

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Implementation Note:
An implementation might cause an exception due to an error during the store memory access, even
there was no error during the load memory access.

Programming Note:
Compare and Swap (CAS) and Compare and Swap Extended (CASX) synthetic instructions are availa
“big endian” memory accesses. Compare and Swap Little (CASL) and Compare and Swap Extended
(CASXL) synthetic instructions are available for “little endian” memory accesses. See G.3, “Synt
Instructions,” for these synthetic instructions’ syntax.

The compare-and-swap instructions do not affect the condition codes.

Exceptions:
privileged_action
mem_address_not_aligned
data_access_exception
data_access_MMU_miss
data_access_protection
data_access_error
async_data_error

t are

ion.
A.10 Divide (64-bit / 32-bit)

Format (3):

Description:

The divide instructions perform 64-bit by 32-bit division, producing a 32-bit result. Ifi = 0, they
compute “(Y lower 32 bits of r[rs1]) ÷ lower 32 bits of r[rs2].” Otherwise (i.e., ifi = 1), the
divide instructions compute “(Y lower 32 bits of r[rs1]) ÷ lower 32 bits ofsign_ext(simm13).”
In either case, if overflow does not occur, the less significant 32 bits of the integer quotien
sign-or zero-extended to 64 bits and are written intor[rd].

The contents of the Y register are undefined after any 64-bit by 32-bit integer divide operat

Unsigned Divide:

Unsigned divide (UDIV, UDIVcc) assumes an unsigned integer doubleword dividend (Ylower
32 bits of r[rs1]) and an unsigned integer word divisor (lower 32 bits of r[rs2] or lower 32 bits of
sign_ext(simm13)) and computes an unsigned integer word quotient (r[rd]). Immediate values in
simm13 are in the ranges 0..212– 1 and 232– 212..232– 1 for unsigned divide instructions.

Unsigned division rounds an inexact rational quotient toward zero .

Opcode op3 Operation

UDIVD 00 1110 Unsigned Integer Divide

SDIVD 00 1111 Signed Integer Divide

UDIVccD 01 1110 Unsigned Integer Divide and modify cc’s

SDIVccD 01 1111 Signed Integer Divide and modify cc’s

Suggested Assembly Language Syntax

udiv regrs1, reg_or_imm, regrd
sdiv regrs1, reg_or_imm, regrd
udivcc regrs1, reg_or_imm, regrd
sdivcc regrs1, reg_or_imm, regrd

The UDIV, UDIVcc, SDIV, and SDIVcc instructions are deprecated; they are pro-
vided only for compatibility with previous versions of the architecture. They should
not be used in new SPARC-V9 software. It is recommended that the UDIVX and
SDIVX instructions be used in their place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

rac-
l part

ation
gned
e

ister

s as
lue of

turned
in
Programming Note:
The rational quotient is the infinitely precise result quotient. It includes both the integer part and the f
tional part of the result. For example, the rational quotient of 11/4 = 2.75 (Integer part = 2, fractiona
= .75).

The result of an unsigned divide instruction can overflow the low-order 32 bits of the destin
registerr[rd] under certain conditions. When overflow occurs the largest appropriate unsi
integer is returned as the quotient inr[rd]. The condition under which overflow occurs and th
value returned inr[rd] under this condition is specified in the following table.

When no overflow occurs, the 32-bit result is zero-extended to 64 bits and written into reg
r[rd].

UDIV does not affect the condition code bits. UDIVcc writes the integer condition code bit
shown in the following table. Note that negative (N) and zero (Z) are set according to the va
r[rd] after it has been set to reflect overflow, if any.

Signed Divide:

Signed divide (SDIV, SDIVcc) assumes a signed integer doubleword dividend (Ylower 32 bits
of r[rs1]) and a signed integer word divisor (lower 32 bits of r[rs2] or lower 32 bits of
sign_ext(simm13)) and computes a signed integer word quotient (r[rd]).

Signed division rounds an inexact quotient toward zero. For example, –7÷ 4 equals the rational
quotient of –1.75, which rounds to –1 (not –2) when rounding toward zero.

The result of a signed divide can overflow the low-order 32 bits of the destination registerr[rd]
under certain conditions. When overflow occurs the largest appropriate signed integer is re
as the quotient inr[rd]. The conditions under which overflow occurs and the value returned
r[rd] under those conditions are specified in the following table.

Table 23—UDIV / UDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned inr[rd]

Rational quotient≥ 232 232−1
(0000 0000 FFFF FFFF16)

Bit UDIVcc

icc.N Set ifr[rd]<31> = 1

icc.Z Set ifr[rd]<31:0> = 0

icc.V Set if overflow (per table 23)

icc.C Zero

xcc.N Set ifr[rd]<63> = 1

xcc.Z Set ifr[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

ister

ts as
lue of
When no overflow occurs, the 32-bit result is sign-extended to 64 bits and written into reg
r[rd].

SDIV does not affect the condition code bits. SDIVcc writes the integer condition code bi
shown in the following table. Note that negative (N) and zero (Z) are set according to the va
r[rd] after it has been set to reflect overflow, if any.

Exceptions:
division_by_zero

Table 24—SDIV / SDIVcc Overflow Detection and Value Returned

Condition under which overflow occurs Value returned inr[rd]

Rational quotient≥ 231 231−1
(0000 0000 7FFF FFFF16)

Rational quotient≤ -231−1
−231

(FFFF FFFF 8000 000016)

Bit SDIVcc

icc.N Set ifr[rd]<31> = 1

icc.Z Set ifr[rd]<31:0> = 0

icc.V Set if overflow (per table 24)

icc.C Zero

xcc.N Set ifr[rd]<63]> = 1

xcc.Z Set ifr[rd]<63:0> = 0

xcc.V Zero

xcc.C Zero

, and

ro-
A.11 DONE and RETRY

Format (3):

Description:

The DONE and RETRY instructions restore the saved state from TSTATE (CWP, ASI, CCR
PSTATE), set PC and nPC, and decrement TL.

The RETRY instruction resumes execution with the trapped instruction by setting PC←TPC[TL]
(the saved value of PC on trap) and nPC←TNPC[TL] (the saved value of nPC on trap).

The DONE instruction skips the trapped instruction by setting PC←TNPC[TL] and
nPC←TNPC[TL]+4.

Execution of a DONE or RETRY instruction in the delay slot of a control-transfer instruction p
duces undefined results.

Programming Note:
The DONE and RETRY instructions should be used to return from privileged trap handlers.

Exceptions:
privileged_opcode
illegal_instruction (if TL = 0 or fcn= 2..31)

Opcode op3 fcn Operation

DONEP 11 1110 0 Return from Trap (skip trapped instruction)

RETRYP 11 1110 1 Return from Trap (retry trapped instruction)

— 11 1110 2..31 Reserved

Suggested Assembly Language Syntax

done

retry

10 op3fcn —

31 1924 18 02530 29

t

e

A.12 Floating-Point Add and Subtract

Format (3):

Description:

The floating-point add instructions add the floating-point register(s) specified by thers1 field and
the floating-point register(s) specified by thers2 field, and write the sum into the floating-poin
register(s) specified by therd field.

The floating-point subtract instructions subtract the floating-point register(s) specified by thrs2
field from the floating-point register(s) specified by thers1 field, and write the difference into the
floating-point register(s) specified by therd field.

Rounding is performed as specified by the FSR.RD field.

Exceptions:
fp_disabled
fp_exception_ieee_754 (OF, UF, NX, NV)
fp_exception_other (invalid_fp_register (only FADDQ and FSUBQ))

Opcode op3 opf Operation

FADDs 11 0100 0 0100 0001 Add Single

FADDd 11 0100 0 0100 0010 Add Double

FADDq 11 0100 0 0100 0011 Add Quad

FSUBs 11 0100 0 0100 0101 Subtract Single

FSUBd 11 0100 0 0100 0110 Subtract Double

FSUBq 11 0100 0 0100 0111 Subtract Quad

Suggested Assembly Language Syntax

fadds fregrs1, fregrs2, fregrd

faddd fregrs1, fregrs2, fregrd

faddq fregrs1, fregrs2, fregrd

fsubs fregrs1, fregrs2, fregrd

fsubd fregrs1, fregrs2, fregrd

fsubq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

de
A.13 Floating-Point Compare

Format (3):

Description:

These instructions compare the floating-point register(s) specified by thers1 field with the float-
ing-point register(s) specified by thers2 field, and set the selected floating-point condition co
(fcc n) according to the following table:

Opcode op3 opf Operation

FCMPs 11 0101 0 0101 0001 Compare Single

FCMPd 11 0101 0 0101 0010 Compare Double

FCMPq 11 0101 0 0101 0011 Compare Quad

FCMPEs 11 0101 0 0101 0101 Compare Single and Exception if Unordered

FCMPEd 11 0101 0 0101 0110 Compare Double and Exception if Unordered

FCMPEq 11 0101 0 0101 0111 Compare Quad and Exception if Unordered

Suggested Assembly Language Syntax

fcmps %fcc n, fregrs1, fregrs2

fcmpd %fcc n, fregrs1, fregrs2

fcmpq %fcc n, fregrs1, fregrs2

fcmpes %fcc n, fregrs1, fregrs2

fcmped %fcc n, fregrs1, fregrs2

fcmpeq %fcc n, fregrs1, fregrs2

cc1 cc0 Condition
code

00 fcc0

01 fcc1

10 fcc2

11 fcc3

fcc value Relation

0 fregrs1 = fregrs2

1 fregrs1 < fregrs2

2 fregrs1 > fregrs2

3 fregrs1 ? fregrs2 (unordered)

10 op3 rs2000 rs1

31 141924 18 13 02530 29 4

opf

52627

cc1 cc0

dition

truc-

ration

RC-
The “?” in the above table indicates that the comparison is unordered. The unordered con
occurs when one or both of the operands to the compare is a signaling or quiet NaN.

The “compare and cause exception if unordered” (FCMPEs, FCMPEd, and FCMPEq) ins
tions cause an invalid (NV) exception if either operand is a NaN.

FCMP causes an invalid (NV) exception if either operand is a signaling NaN.

Compatibility Note:
Unlike SPARC-V8, SPARC-V9 does not require an instruction between a floating-point compare ope
and a floating-point branch (FBfcc, FBPfcc).

Compatibility Note:
SPARC-V8 floating-point compare instructions are required to have a zero in ther[rd] field. In SPARC-V9,
bits 26 and 25 of ther[rd] field are used to specify the floating-point condition code to be set. Legal SPA
V8 code will work on SPARC-V9 because the zeroes in ther[rd] field are interpreted asfcc0 , and the
FBfcc instruction branches based onfcc0 .

Exceptions:
fp_disabled
fp_exception_ieee_754 (NV)
fp_exception_other (invalid_fp_register (FCMPq, FCMPEq only))

er(s)

pec-

FSR

size,
int
A.14 Convert Floating-Point to Integer

Format (3):

Description:

FsTOx, FdTOx, and FqTOx convert the floating-point operand in the floating-point regist
specified byrs2 to a 64-bit integer in the floating-point register(s) specified byrd.

FsTOi, FdTOi, and FqTOi convert the floating-point operand in the floating-point register(s) s
ified by rs2 to a 32-bit integer in the floating-point register specified byrd.

The result is always rounded toward zero; that is, the rounding direction (RD) field of the
register is ignored.

If the floating-point operand’s value is too large to be converted to an integer of the specified
or is a NaN or infinity, an invalid (NV) exception occurs. The value written into the floating-po
register(s) specified byrd in these cases is defined in B.5, “Integer Overflow Definition.”

Exceptions:
fp_disabled
fp_exception_ieee_754 (NV, NX)
fp_exception_other (invalid_fp_register (FqTOi, FqTOx only))

Opcode op3 opf Operation

FsTOx 11 0100 0 1000 0001 Convert Single to 64-bit Integer

FdTOx 11 0100 0 1000 0010 Convert Double to 64-bit Integer

FqTOx 11 0100 0 1000 0011 Convert Quad to 64-bit Integer

FsTOi 11 0100 0 1101 0001 Convert Single to 32-bit Integer

FdTOi 11 0100 0 1101 0010 Convert Double to 32-bit Integer

FqTOi 11 0100 0 1101 0011 Convert Quad to 32-bit Integer

Suggested Assembly Language Syntax

fstox fregrs2, fregrd

fdtox fregrs2, fregrd

fqtox fregrs2, fregrd

fstoi fregrs2, fregrd

fdtoi fregrs2, fregrd

fqtoi fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

ed by
ing-

d NX

aling

rting
A.15 Convert Between Floating-Point Formats

Format (3):

Description:

These instructions convert the floating-point operand in the floating-point register(s) specifi
rs2 to a floating-point number in the destination format. They write the result into the float
point register(s) specified byrd.

Rounding is performed as specified by the FSR.RD field.

FqTOd, FqTOs, and FdTOs (the “narrowing” conversion instructions) can raise OF, UF, an
exceptions. FdTOq, FsTOq, and FsTOd (the “widening” conversion instructions) cannot.

Any of these six instructions can trigger an NV exception if the source operand is a sign
NaN.

B.2.1, “Untrapped Result in Different Format from Operands,” defines the rules for conve
NaNs from one floating-point format to another.

Exceptions:
fp_disabled
fp_exception_ieee_754 (OF, UF, NV, NX)
fp_exception_other (invalid_fp_register) (FsTOq, FdTOq, FqTOs, FqTOd)

Opcode op3 opf Operation

FsTOd 11 0100 0 1100 1001 Convert Single to Double

FsTOq 11 0100 0 1100 1101 Convert Single to Quad

FdTOs 11 0100 0 1100 0110 Convert Double to Single

FdTOq 11 0100 0 1100 1110 Convert Double to Quad

FqTOs 11 0100 0 1100 0111 Convert Quad to Single

FqTOd 11 0100 0 1100 1011 Convert Quad to Double

Suggested Assembly Language Syntax

fstod fregrs2, fregrd

fstoq fregrs2, fregrd

fdtos fregrs2, fregrd

fdtoq fregrs2, fregrd

fqtos fregrs2, fregrd

fqtod fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

egis-
ter,

on)

er(s)
to
A.16 Convert Integer to Floating-Point

Format (3):

Description:

FxTOs, FxTOd, and FxTOq convert the 64-bit signed integer operand in the floating-point r
ter(s) specified byrs2 into a floating-point number in the destination format. The source regis
floating-point register(s) specified byrs2, must be an even-numbered (that is, double-precisi
floating-point register.

FiTOs, FiTOd, and FiTOq convert the 32-bit signed integer operand in floating-point regist
specified byrs2 into a floating-point number in the destination format. All write their result in
the floating-point register(s) specified byrd.

FiTOs, FxTOs, and FxTOd round as specified by the FSR.RD field.

Exceptions:
fp_disabled
fp_exception_ieee_754 (NX (FiTOs, FxTOs, FxTOd only))
fp_exception_other (invalid_fp_register (FiTOq, FxTOq only))

Opcode op3 opf Operation

FxTOs 11 0100 0 1000 0100 Convert 64-bit Integer to Single

FxTOd 11 0100 0 1000 1000 Convert 64-bit Integer to Double

FxTOq 11 0100 0 1000 1100 Convert 64-bit Integer to Quad

FiTOs 11 0100 0 1100 0100 Convert 32-bit Integer to Single

FiTOd 11 0100 0 1100 1000 Convert 32-bit Integer to Double

FiTOq 11 0100 0 1100 1100 Convert 32-bit Integer to Quad

Suggested Assembly Language Syntax

fxtos fregrs2, fregrd

fxtod fregrs2, fregrd

fxtoq fregrs2, fregrd

fitos fregrs2, fregrd

fitod fregrs2, fregrd

fitoq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

float-
uble-
d-pre-
A.17 Floating-Point Move

Format (3):

Description:

The single-precision versions of these instructions copy the contents of a single-precision
ing-point register to the destination. The double-precision forms copy the contents of a do
precision floating-point register to the destination. The quad-precision versions copy a qua
cision value in floating-point registers to the destination.

FMOV copies the source to the destination unaltered.

FNEG copies the source to the destination with the sign bit complemented.

FABS copies the source to the destination with the sign bit cleared.

These instructions do not round.

Exceptions:
fp_disabled
fp_exception_other (invalid_fp_register(FMOVq, FNEGq, FABSq only))

Opcode op3 opf Operation

FMOVs 11 0100 0 0000 0001 Move Single

FMOVd 11 0100 0 0000 0010 Move Double

FMOVq 11 0100 0 0000 0011 Move Quad

FNEGs 11 0100 0 0000 0101 Negate Single

FNEGd 11 0100 0 0000 0110 Negate Double

FNEGq 11 0100 0 0000 0111 Negate Quad

FABSs 11 0100 0 0000 1001 Absolute Value Single

FABSd 11 0100 0 0000 1010 Absolute Value Double

FABSq 11 0100 0 0000 1011 Absolute Value Quad

Suggested Assembly Language Syntax

fmovs fregrs2, fregrd

fmovd fregrs2, fregrd

fmovq fregrs2, fregrd

fnegs fregrs2, fregrd

fnegd fregrs2, fregrd

fnegq fregrs2, fregrd

fabss fregrs2, fregrd

fabsd fregrs2, fregrd

fabsq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

r(s)

ision
xact

ified
A.18 Floating-Point Multiply and Divide

Format (3):

Description:

The floating-point multiply instructions multiply the contents of the floating-point registe
specified by thers1 field by the contents of the floating-point register(s) specified by thers2 field,
and write the product into the floating-point register(s) specified by therd field.

The FsMULd instruction provides the exact double-precision product of two single-prec
operands, without underflow, overflow, or rounding error. Similarly, FdMULq provides the e
quad-precision product of two double-precision operands.

The floating-point divide instructions divide the contents of the floating-point register(s) spec
by thers1field by the contents of the floating-point register(s) specified by thers2field, and write
the quotient into the floating-point register(s) specified by therd field.

Rounding is performed as specified by the FSR.RD field.

Exceptions:
fp_disabled
fp_exception_ieee_754 (OF, UF, DZ (FDIV only), NV, NX)
fp_exception_other (invalid_fp_register (FMULq, FdMULq, and FDIVq only))

Opcode op3 opf Operation

FMULs 11 0100 0 0100 1001 Multiply Single

FMULd 11 0100 0 0100 1010 Multiply Double

FMULq 11 0100 0 0100 1011 Multiply Quad

FsMULd 11 0100 0 0110 1001 Multiply Single to Double

FdMULq 11 0100 0 0110 1110 Multiply Double to Quad

FDIVs 11 0100 0 0100 1101 Divide Single

FDIVd 11 0100 0 0100 1110 Divide Double

FDIVq 11 0100 0 0100 1111 Divide Quad

Suggested Assembly Language Syntax

fmuls fregrs1, fregrs2, fregrd

fmuld fregrs1, fregrs2, fregrd

fmulq fregrs1, fregrs2, fregrd

fsmuld fregrs1, fregrs2, fregrd

fdmulq fregrs1, fregrs2, fregrd

fdivs fregrs1, fregrs2, fregrd

fdivd fregrs1, fregrs2, fregrd

fdivq fregrs1, fregrs2, fregrd

10 op3 rs2rd rs1

31 141924 18 13 02530 29 4

opf

5

t reg-
r(s)

docu-
ple-
A.19 Floating-Point Square Root

Format (3):

Description:

These instructions generate the square root of the floating-point operand in the floating-poin
ister(s) specified by thers2 field, and place the result in the destination floating-point registe
specified by therd field.

Rounding is performed as specified by the FSR.RD field.

Implementation Note:
See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a
ment available from SPARC International, for information on whether the FSQRT instructions are im
mented in hardware or software in the various SPARC-V9 implementations.

Exceptions:
fp_disabled
fp_exception_ieee_754 (IEEE_754_exception (NV, NX))
fp_exception_other (invalid_fp_register (FSQRTq))

Opcode op3 opf Operation

FSQRTs 11 0100 0 0010 1001 Square Root Single

FSQRTd 11 0100 0 0010 1010 Square Root Double

FSQRTq 11 0100 0 0010 1011 Square Root Quad

Suggested Assembly Language Syntax

fsqrts fregrs2, fregrd

fsqrtd fregrs2, fregrd

fsqrtq fregrs2, fregrd

10 op3 rs2rd —

31 141924 18 13 02530 29 4

opf

5

ss any
e.

on.

tually
ere a

ess
ecause

out
our-

ions
a store

rrently
main-

re,
A.20 Flush Instruction Memory

Format (3):

Description:

FLUSH ensures that the doubleword specified as the effective address is consistent acro
local caches and, in a multiprocessor system, will eventually become consistent everywher

In the following discussion PFLUSH refers to the processor that executed the FLUSH instructi
FLUSH ensures that instruction fetches from the specified effective address by PFLUSH appear to
execute after any loads, stores, and atomic load-stores to that address issued by PFLUSH prior to the
FLUSH. In a multiprocessor system, FLUSH also ensures that these values will even
become visible to the instruction fetches of all other processors. FLUSH behaves as if it w
store with respect to MEMBAR-induced orderings. See A.32, “Memory Barrier.”

FLUSH operates on at least the doubleword containing the addressed location.

The effective address operand for the FLUSH instruction is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1. The least significant two address bits of the effective addr
are unused and should be supplied as zeros by software. Bit 2 of the address is ignored, b
FLUSH operates on at least a doubleword.

Programming Notes:
(1) Typically, FLUSH is used in self-modifying code. See H.1.6, “Self-Modifying Code,” for information ab

use of the FLUSH instruction in portable self-modifying code. The use of self-modifying code is disc
aged.

(2) The order in which memory is modified can be controlled by using FLUSH and MEMBAR instruct
interspersed appropriately between stores and atomic load-stores. FLUSH is needed only between
and a subsequent instruction fetch from the modified location. When multiple processes may concu
modify live (that is, potentially executing) code, care must be taken to ensure that the order of update
tains the program in a semantically correct form at all times.

(3) The memory model guarantees in a uniprocessor thatdata loads observe the results of the most recent sto
even if there is no intervening FLUSH.

Opcode op3 Operation

FLUSH 11 1011 Flush Instruction Memory

Suggested Assembly Language Syntax

flush address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—

hard-
g the

(impl.

H may
tine for
ries of
h the

-
ndent
(4) FLUSH may be time-consuming. Some implementations may trap rather than implement FLUSH in
ware. In a multiprocessor configuration, FLUSH requires all processors that may be referencin
addressed doubleword to flush their instruction caches, a potentially disruptive activity.

(5) In a multiprocessor system, the time it takes for a FLUSH to take effect is implementation-dependent
dep. #122). No mechanism is provided to ensure or test completion.

(6) Because FLUSH is designed to act on a doubleword, and because, on some implementations, FLUS
trap to system software, it is recommended that system software provide a user-callable service rou
flushing arbitrarily sized regions of memory. On some implementations, this routine would issue a se
FLUSH instructions; on others, it might issue a single trap to system software that would then flus
entire region.

Implementation Notes:

(1) IMPL. DEP. #42: If FLUSH is not implemented in hardware, it causes an illegal_instruction excep-
tion and the function of FLUSH is performed by system software. Whether FLUSH traps is imple-
mentation-dependent.

(2) The effect of a FLUSH instruction as observed from PFLUSH is immediate. Other processors in a multipro
cessor system eventually will see the effect of the FLUSH, but the latency is implementation-depe
(impl. dep. #122).

Exceptions:
(none)

mory
active
nly

gister

one
n is
the

HW
dow
A.21 Flush Register Windows

Format (3):

Description:

FLUSHW causes all active register windows except the current window to be flushed to me
at locations determined by privileged software. FLUSHW behaves as a NOP if there are no
windows other than the current window. At the completion of the FLUSHW instruction, the o
active register window is the current one.

Programming Note:
The FLUSHW instruction can be used by application software to switch memory stacks or examine re
contents for previous stack frames.

FLUSHW acts as a NOP if CANSAVE = NWINDOWS – 2. Otherwise, there is more than
active window, so FLUSHW causes a spill exception. The trap vector for the spill exceptio
based on the contents of OTHERWIN and WSTATE. The spill trap handler is invoked with
CWP set to the window to be spilled (that is, (CWP+ CANSAVE + 2) mod NWINDOWS). See
6.3.6, “Register Window Management Instructions.”

Programming Note:
Typically, the spill handler will save a window on a memory stack and return to reexecute the FLUS
instruction. Thus, FLUSHW will trap and reexecute until all active windows other than the current win
have been spilled.

Exceptions:
spill_n_normal
spill_n_other

Opcode op3 Operation

FLUSHW 10 1011 Flush Register Windows

Suggested Assembly Language Syntax

flushw

31 24 02530 29 19 18

—10 op3 —

14 13 12

— i=0

A.22 Illegal Instruction Trap

Format (2):

Description:

The ILLTRAP instruction causes anillegal_instruction exception. Theconst22value is ignored by
the hardware; specifically, this field isnot reserved by the architecture for any future use.

Compatibility Note:
Except for its name, this instruction is identical to the SPARC-V8 UNIMP instruction.

Exceptions:
illegal_instruction

Opcode op op2 Operation

ILLTRAP 00 000 illegal_instruction trap

Suggested Assembly Language Syntax

illtrap const22

00 000 const22—

31 2124 02530 29 22

nding
A.23 Implementation-Dependent Instructions

Format (3):

Description:

IMPL. DEP. #106: The IMPDEP1 and IMPDEP2 instructions are completely implementation-dependent.
Implementation-dependent aspects include their operation, the interpretation of bits 29..25 and 18..0 in
their encodings, and which (if any) exceptions they may cause.

See I.1.2, “Implementation-Dependent and Reserved Opcodes,” for information about exte
the SPARC-V9 instruction set using the implementation-dependent instructions.

Compatibility Note:
These instructions replace the CPopn instructions in SPARC-V8.

Exceptions:
illegal_instruction (if the implementation does not define the instructions)
implementation-dependent (if the implementation defines the instructions)

Opcode op3 Operation

IMPDEP1 11 0110 Implementation-Dependent Instruction 1

IMPDEP2 11 0111 Implementation-Dependent Instruction 2

10 op3 impl-depimpl-dep

31 1824 02530 29 19

en by

, into

MPL
A.24 Jump and Link

Format (3):

Description:

The JMPL instruction causes a register-indirect delayed control transfer to the address giv
“ r[rs1] + r[rs2]” if i field = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

The JMPL instruction copies the PC, which contains the address of the JMPL instruction
registerr[rd]. The high-order 32-bits of the PC value stored inr[rd] are implementation-depen-
dent when PSTATE.AM = 1 (impl. dep. #125). The value written intor[rd] is visible to the
instruction in the delay slot.

If either of the low-order two bits of the jump address is nonzero, amem_address_not_aligned
exception occurs.

Programming Note:
A JMPL instruction withrd = 15 functions as a register-indirect call using the standard link register.

JMPL with rd = 0 can be used to return from a subroutine. The typical return address is “r[31] + 8,” if a
nonleaf routine (one that uses the SAVE instruction) is entered by a CALL instruction, or “r[15] + 8” if a
leaf routine (one that does not use the SAVE instruction) is entered by a CALL instruction or by a J
instruction withrd = 15.

Exceptions:
mem_address_not_aligned

Opcode op3 Operation

JMPL 11 1000 Jump and Link

Suggested Assembly Language Syntax

jmpl address, regrd

31 24 02530 29 19 18

rd10 op3

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

—

rom

ory
A.25 Load Floating-Point

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The load single floating-point instruction (LDF) copies a word from memory intof[rd].

The load doubleword floating-point instruction (LDDF) copies a word-aligned doubleword f
memory into a double-precision floating-point register.

The load quad floating-point instruction (LDQF) copies a word-aligned quadword from mem
into a quad-precision floating-point register.

Opcode op3 rd Operation

LDF 10 000
0

0..31 Load Floating-Point Register

LDDF 10 001
1

† Load Double Floating-Point Register

LDQF 10 001
0

† Load Quad Floating-Point Register

LDFSRD 10 000
1

0 Load Floating-Point State Register Lower

LDXFSR 10 000
1

1 Load Floating-Point State Register

— 10 000
1

2..31 Reserved

Suggested Assembly Language Syntax

ld [address], fregrd

ldd [address], fregrd

ldq [address], fregrd

ld [address], %fsr

ldx [address], %fsr

The LDFSR instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the LDXFSR instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

ions
lower

that
FSR.

n is
load

and

ermine
ligned
ly when
The load floating-point state register lower instruction (LDFSR) waits for all FPop instruct
that have not finished execution to complete, and then loads a word from memory into the
32 bits of the FSR. The upper 32 bits of FSR are unaffected by LDFSR.

The load floating-point state register instruction (LDXFSR) waits for all FPop instructions
have not finished execution to complete, and then loads a doubleword from memory into the

Compatibility Note:
SPARC-V9 supports two different instructions to load the FSR; the SPARC-V8 LDFSR instructio
defined to load only the lower 32 bits into the FSR, whereas LDXFSR allows SPARC-V9 programs to
all 64 bits of the FSR.

Load floating-point instructions access the primary address space (ASI = 8016). The effective
address for these instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

LDF, LDFSR, LDDF, and LDQF cause amem_address_not_aligned exception if the effective
memory address is not word-aligned; LDXFSR causes amem_address_not_aligned exception if the
address is not doubleword-aligned. If the floating-point unit is not enabled (per FPRS.FEF
PSTATE.PEF), or if no FPU is present, a load floating-point instruction causes anfp_disabled
exception.

IMPL. DEP. #109(1): LDDF requires only word alignment. However, if the effective address is word-aligned
but not doubleword-aligned, LDDF may cause an LDDF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the LDDF instruction and return.

IMPL. DEP. #111(1): LDQF requires only word alignment. However, if the effective address is word-aligned
but not quadword-aligned, LDQF may cause an LDQF_mem_address_not_aligned exception. In this case
the trap handler software shall emulate the LDQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not det
that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of misa
loads is expected to be fast, it is recommended that compilers issue sets of single-precision loads on
they can determine that double- or quadword operands arenot properly aligned.

Implementation Note:
IMPL. DEP. #44: If a load floating-point instruction traps with any type of access error, the contents
of the destination floating-point register(s) remain unchanged or are undefined.

Exceptions:
async_data_error
illegal_instruction (op3=2116 andrd = 2..31)
fp_disabled
LDDF_mem_address_not_aligned (LDDF only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQF only) (impl. dep. #111)
fp_exception_other (invalid_fp_register (LDQF only))
mem_address_not_aligned
data_access_MMU_miss
data_access_exception
data_access_error
data_access_protection

em-

ord-

ned

SI) to

hese

and
cause
A.26 Load Floating-Point from Alternate Space

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The load single floating-point from alternate space instruction (LDFA) copies a word from m
ory into f[rd].

The load doubleword floating-point from alternate space instruction (LDDFA) copies a w
aligned doubleword from memory into a double-precision floating-point register.

The load quad floating-point from alternate space instruction (LDQFA) copies a word-alig
quadword from memory into a quad-precision floating-point register.

Load floating-point from alternate space instructions contain the address space identifier (A
be used for the load in theimm_asifield if i = 0, or in the ASI register ifi = 1. The access is privi-
leged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for t
instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

LDFA, LDDFA, and LDQFA cause amem_address_not_aligned exception if the effective memory
address is not word-aligned; If the floating-point unit is not enabled (per FPRS.FEF
PSTATE.PEF), or if no FPU is present, load floating-point from alternate space instructions
an fp_disabled exception. LDFA, LDDFA and LDQFA cause aprivileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Opcode op3 rd Operation

LDFAPASI 11 000
0

0..31 Load Floating-Point Register from Alternate space

LDDFAPASI 11 001
1

† Load Double Floating-Point Register from Alternate space

LDQFAPASI 11 001
0

† Load QuadFloating-Point Register from Alternate space

Suggested Assembly Language Syntax

lda [regaddr] imm_asi, fregrd
lda [reg_plus_imm] %asi , fregrd

ldda [regaddr] imm_asi, fregrd
ldda [reg_plus_imm] %asi , fregrd

ldqa [regaddr] imm_asi, fregrd
ldqa [reg_plus_imm] %asi , fregrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

ermine
ligned
ly when

egis-
IMPL. DEP. #109(2): LDDFA requires only word alignment. However, if the effective address is word-
aligned but not doubleword-aligned, LDDFA may cause an LDDF_mem_address_not_aligned exception.
In this case the trap handler software shall emulate the LDDF instruction and return.

IMPL. DEP. #111(2): LDQFA requires only word alignment. however, if the effective address is word-
aligned but not quadword-aligned, LDQFA may cause an ldqf_mem_address_not_aligned exception. In
this case the trap handler software shall emulate the LDQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sequences of single-precision loads when they could not det
that double- or quadword operands were properly aligned. For SPARC-V9, since emulation of mis-a
loads is expected to be fast, it is recommended that compilers issue sets of single-precision loads on
they can determine that double- or quadword operands arenot properly aligned.

Implementation Note:
If a load floating-point instruction traps with any type of access error, the destination floating-point r
ter(s) either remain unchanged or are undefined. (impl. dep. #44)

Exceptions:
async_data_error
fp_disabled
LDDF_mem_address_not_aligned (LDDFA only) (impl. dep. #109)
LDQF_mem_address_not_aligned (LDQFA only) (impl. dep. #111)
fp_exception_other (invalid_fp_register (LDQFA only))
mem_address_not_aligned
privileged_action
data_access_MMU_miss
data_access_exception
data_access_error
data_access_protection

word

ctively.
A.27 Load Integer

Format (3):

Description:

The load integer instructions copy a byte, a halfword, a word, an extended word, or a double
from memory. All except LDD copy the fetched value intor[rd]. A fetched byte, halfword, or
word is right-justified in the destination registerr[rd]; it is either sign-extended or zero-filled on
the left, depending on whether the opcode specifies a signed or unsigned operation, respe

The load doubleword integer instructions (LDD) copy a doubleword from memory into anr-regis-
ter pair. The word at the effective memory address is copied into the evenr register. The word at

Opcode op3 Operation

LDSB 00 1001 Load Signed Byte

LDSH 00 1010 Load Signed Halfword

LDSW 00 1000 Load Signed Word

LDUB 00 0001 Load Unsigned Byte

LDUH 00 0010 Load Unsigned Halfword

LDUW 00 0000 Load Unsigned Word

LDX 00 1011 Load Extended Word

LDDD 00 0011 Load Doubleword

Suggested Assembly Language Syntax

ldsb [address], regrd

ldsh [address], regrd

ldsw [address], regrd

ldub [address], regrd

lduh [address], regrd

lduw [address], regrd (synonym: ld)

ldx [address], regrd

ldd [address], regrd

The LDD instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that the LDX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

d

ouble-
es an

cally.

-
s
t

use
gested

pre-

w in
the effective memory address + 4 is copied into the following odd-numberedr register. The upper
32 bits of both the even-numbered and odd-numberedr registers are zero-filled. Note that a loa
doubleword withrd = 0 modifies onlyr[1]. The least significant bit of therd field in an LDD
instruction is unused and should be set to zero by software. An attempt to execute a load d
word instruction that refers to a misaligned (odd-numbered) destination register caus
illegal_instruction exception.

IMPL. DEP. #107(1): It is implementation-dependent whether LDD is implemented in hardware. If not, an
attempt to execute it will cause an unimplemented_ldd exception.

Load integer instructions access the primary address space (ASI = 8016). The effective address is
“ r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates atomi

LDUH and LDSH cause amem_address_not_aligned exception if the address is not halfword
aligned. LDUW and LDSW cause amem_address_not_aligned exception if the effective address i
not word-aligned. LDX and LDD cause amem_address_not_aligned exception if the address is no
doubleword-aligned.

Programming Note:
LDD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines beca
of data path and register-access difficulties. In some systems it may trap to emulation code. It is sug
that programmers and compilers avoid using these instructions.

If LDD is emulated in software, an LDX instruction should be used for the memory access in order to
serve atomicity.

Compatibility Note:
The SPARC-V8 LD instruction has been renamed LDUW in SPARC-V9. The LDSW instruction is ne
SPARC-V9.

Exceptions:
async_data_error
unimplemented_LDD (LDD only (impl. dep. #107))
illegal_instruction (LDD with oddrd)
mem_address_not_aligned (all except LDSB, LDUB)
data_access_exception
data_access_protection
data_access_MMU_miss
data_access_error

A.28 Load Integer from Alternate Space

Format (3):

Description:

Opcode op3 Operation

LDSBAPASI 01 1001 Load Signed Byte from Alternate space

LDSHAPASI 01 1010 Load Signed Halfword from Alternate space

LDSWAPASI 01 1000 Load Signed Word from Alternate space

LDUBAPASI 01 0001 Load Unsigned Byte from Alternate space

LDUHAPASI 01 0010 Load Unsigned Halfword from Alternate space

LDUWAPASI 01 0000 Load Unsigned Word from Alternate space

LDXA PASI 01 1011 Load Extended Word from Alternate space

LDDAD, PASI 01 0011 Load Doubleword from Alternate space

Suggested Assembly Language Syntax

ldsba [regaddr] imm_asi, reg rd

ldsha [regaddr] imm_asi, reg rd

ldswa [regaddr] imm_asi, reg rd

lduba [regaddr] imm_asi, reg rd

lduha [regaddr] imm_asi, reg rd

lduwa [regaddr] imm_asi, reg rd (synonym:lda)

ldxa [regaddr] imm_asi, reg rd

ldda [regaddr] imm_asi, reg rd

ldsba [reg_plus_imm] %asi , reg rd

ldsha [reg_plus_imm] %asi , reg rd

ldswa [reg_plus_imm] %asi , reg rd

lduba [reg_plus_imm] %asi , reg rd

lduha [reg_plus_imm] %asi , reg rd

lduwa [reg_plus_imm] %asi , reg rd (synonym:lda)

ldxa [reg_plus_imm] %asi , reg rd

ldda [reg_plus_imm] %asi , reg rd

The LDDA instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the LDXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

ended

ed or

from
en
ered

pt to
n reg-

) to be

hese

cally.

-

es
t is sug-

er to

ew
The load integer from alternate space instructions copy a byte, a halfword, a word, an ext
word, or a doubleword from memory. All except LDDA copy the fetched value intor[rd]. A
fetched byte, halfword, or word is right-justified in the destination registerr[rd]; it is either sign-
extended or zero-filled on the left, depending on whether the opcode specifies a sign
unsigned operation, respectively.

The load doubleword integer from alternate space instruction (LDDA) copies a doubleword
memory into anr-register pair. The word at the effective memory address is copied into the evr
register. The word at the effective memory address + 4 is copied into the following odd-numb
r register. The upper 32 bits of both the even-numbered and odd-numberedr registers are zero-
filled. Note that a load doubleword withrd = 0 modifies onlyr[1]. The least significant bit of the
rd field in an LDDA instruction is unused and should be set to zero by software. An attem
execute a load doubleword instruction that refers to a misaligned (odd-numbered) destinatio
ister causes anillegal_instruction exception.

IMPL. DEP. #107(2): It is implementation-dependent whether LDDA is implemented in hardware. If not, an
attempt to execute it will cause an unimplemented_ldd exception.

The load integer from alternate space instructions contain the address space identifier (ASI
used for the load in theimm_asifield if i = 0, or in the ASI register ifi = 1. The access is privi-
leged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for t
instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

A successful load (notably, load extended and load doubleword) instruction operates atomi

LDUHA, and LDSHA cause amem_address_not_aligned exception if the address is not halfword
aligned. LDUWA and LDSWA cause amem_address_not_aligned exception if the effective
address is not word-aligned; LDXA and LDDA cause amem_address_not_aligned exception if the
address is not doubleword-aligned.

These instructions cause aprivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is
zero.

Programming Note:
LDDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machin
because of data path and register-access difficulties. In some systems it may trap to emulation code. I
gested that programmers and compilers avoid using this instruction.

If LDDA is emulated in software, an LDXA instruction should be used for the memory access in ord
preserve atomicity.

Compatibility Note:
The SPARC-V8 instruction LDA has been renamed LDUWA in SPARC-V9. The LDSWA instruction is n
in SPARC-V9.

Exceptions:
async_data_error
privileged_action
unimplemented_LDD (LDDA only (impl. dep. #107))
illegal_instruction (LDDA with odd rd)
mem_address_not_aligned (all except LDSBA and LDUBA)
data_access_exception
data_access_protection

data_access_MMU_miss
data_access_error

n reg-

rred
BA,
ord

mory
A.29 Load-Store Unsigned Byte

Format (3):

Description:

The load-store unsigned byte instruction copies a byte from memory intor[rd], and then rewrites
the addressed byte in memory to all ones. The fetched byte is right-justified in the destinatio
isterr[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or defe
traps. In a multiprocessor system, two or more processors executing LDSTUB, LDSTU
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doublew
simultaneously are guaranteed to execute them in an undefined but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Exceptions:
async_data_error
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss

Opcode op3 Operation

LDSTUB 00 1101 Load-Store Unsigned Byte

Suggested Assembly Language Syntax

ldstub [address], regrd

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

y into
ed in

rred
BA,
ord

th-

.

mory
A.30 Load-Store Unsigned Byte to Alternate Space

Format (3):

Description:

The load-store unsigned byte into alternate space instruction copies a byte from memor
r[rd], then rewrites the addressed byte in memory to all ones. The fetched byte is right-justifi
the destination registerr[rd] and zero-filled on the left.

The operation is performed atomically, that is, without allowing intervening interrupts or defe
traps. In a multiprocessor system, two or more processors executing LDSTUB, LDSTU
CASA, CASXA, SWAP, or SWAPA instructions addressing all or parts of the same doublew
simultaneously are guaranteed to execute them in an undefined, but serial order.

LDSTUBA contains the address space identifier (ASI) to be used for the load in theimm_asifield
if i = 0, or in the ASI register ifi = 1. The access is privileged if bit seven of the ASI is zero; o
erwise, it is not privileged. The effective address is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1.

LDSTUBA causes aprivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is zero

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Exceptions:
async_data_error
privileged_action
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss

Opcode op3 Operation

LDSTUBAPASI 01 1101 Load-Store Unsigned Byte into Alternate space

Suggested Assembly Language Syntax

ldstuba [regaddr] imm_asi, regrd

ldstuba [reg_plus_imm] %asi , regrd

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 i=1 simm13

(

A.31 Logical Operations

Format (3):

Description:

These instructions implement bitwise logical operations. They compute “r[rs1] op r[rs2]” if i = 0,
or “r[rs1] op sign_ext(simm13)” if i = 1, and write the result intor[rd].

ANDcc, ANDNcc, ORcc, ORNcc, XORcc, and XNORcc modify the integer condition codesicc
andxcc). They seticc.v, icc.c, xcc.v, andxcc.cto zero,icc.n to bit 31 of the result,xcc.nto bit 63

Opcode op3 Operation

AND 00 0001 And

ANDcc 01 0001 And and modify cc’s

ANDN 00 0101 And Not

ANDNcc 01 0101 And Not and modify cc’s

OR 00 0010 Inclusive Or

ORcc 01 0010 Inclusive Or and modify cc’s

ORN 00 0110 Inclusive Or Not

ORNcc 01 0110 Inclusive Or Not and modify cc’s

XOR 00 0011 Exclusive Or

XORcc 01 0011 Exclusive Or and modify cc’s

XNOR 00 0111 Exclusive Nor

XNORcc 01 0111 Exclusive Nor and modify cc’s

Suggested Assembly Language Syntax

and regrs1, reg_or_imm, regrd

andcc regrs1, reg_or_imm, regrd

andn regrs1, reg_or_imm, regrd

andncc regrs1, reg_or_imm, regrd

or regrs1, reg_or_imm, regrd

orcc regrs1, reg_or_imm, regrd

orn regrs1, reg_or_imm, regrd

orncc regrs1, reg_or_imm, regrd

xor regrs1, reg_or_imm, regrd

xorcc regrs1, reg_or_imm, regrd

xnor regrs1, reg_or_imm, regrd

xnorcc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

the
of the result,icc.zto 1 if bits 31:0 of the result are zero (otherwise to 0), andxcc.zto 1 if all 64 bits
of the result are zero (otherwise to 0).

ANDN, ANDNcc, ORN, and ORNcc logically negate their second operand before applying
main (AND or OR) operation.

Programming Note:
XNOR and XNORcc are identical to the XOR-Not and XOR-Not-cc logical operations, respectively.

Exceptions:
(none)

rder
com-
the

before
em-
d-
re

s to all
ffect on

s
cifiable

cannot
become
ng the

in a

con-
aring
A.32 Memory Barrier

Format (3):

Description:

The memory barrier instruction, MEMBAR, has two complementary functions: to express o
constraints between memory references and to provide explicit control of memory-reference
pletion. Themembar_maskfield in the suggested assembly language is the bitwise OR of
cmask andmmask instruction fields.

MEMBAR introduces an order constraint between classes of memory references appearing
the MEMBAR and memory references following it in a program. The particular classes of m
ory references are specified by themmaskfield. Memory references are classified as loads (inclu
ing load instructions, LDSTUB(A), SWAP(A), CASA, and CASXA) and stores (including sto
instructions, LDSTUB(A), SWAP(A), CASA, CASXA, and FLUSH). Themmaskfield specifies
the classes of memory references subject to ordering, as described below. MEMBAR applie
memory operations in all address spaces referenced by the issuing processor, but has no e
memory references by other processors. When thecmaskfield is nonzero, completion as well a
order constraints are imposed, and the order imposed can be more stringent than that spe
by themmask field alone.

A load has been performed when the value loaded has been transmitted from memory and
be modified by another processor. A store has been performed when the value stored has
visible, that is, when the previous value can no longer be read by any processor. In specifyi
effect of MEMBAR, instructions are considered to be executed as if they were processed
strictly sequential fashion, with each instruction completed before the next has begun.

Themmaskfield is encoded in bits 3 through 0 of the instruction. Table 25 specifies the order
straint that each bit ofmmask(selected when set to 1) imposes on memory references appe
before and after the MEMBAR. From zero to four mask bits may be selected in themmask field.

Opcode op3 Operation

MEMBAR 10 1000 Memory Barrier

Suggested Assembly Language Syntax

membar membar_mask

31 141924 18 13 12 02530 29

10 0 op3 0 1111 i=1 —

4 3

mmask

6

4

7

cmask

sing of
the
lied.

dix
F,
els

mory
Thecmaskfield is encoded in bits 6 through 4 of the instruction. Bits in thecmaskfield, illustrated
in table 26, specify additional constraints on the order of memory references and the proces
instructions. Ifcmask is zero, then MEMBAR enforces the partial ordering specified by
mmaskfield; if cmaskis nonzero, then completion as well as partial order constraints are app

For information on the use of MEMBAR, see 8.4.3, “The MEMBAR Instruction,” and Appen
J, “Programming With the Memory Models.” Chapter 8, “Memory Models,” and Appendix
“SPARC-V9 MMU Requirements,” contain additional information about the memory mod
themselves.

The encoding of MEMBAR is identical to that of the RDASR instruction, except thatrs1 = 15,
rd = 0, and i = 1.

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Compatibility Note:
MEMBAR with mmask= 816 andcmask= 016 (“membar #StoreStore ”) is identical in function to the
SPARC-V8 STBAR instruction, which is deprecated.

Table 25—MEMBAR mmask Encodings

Mask bit Name Description

mmask<3> #StoreStore The effects of all stores appearing prior to the MEMBAR instruction
must be visible to all processors before the effect of any stores following
the MEMBAR. Equivalent to the deprecated STBAR instruction

mmask<2> #LoadStore All loads appearing prior to the MEMBAR instruction must have been
performed before the effect of any stores following the MEMBAR is vis-
ible to any other processor.

mmask<1> #StoreLoad The effects of all stores appearing prior to the MEMBAR instruction
must be visible to all processors before loads following the MEMBAR
may be performed.

mmask<0> #LoadLoad All loads appearing prior to the MEMBAR instruction must have been
performed before any loads following the MEMBAR may be performed.

Table 26—MEMBAR cmask Encodings

Mask bit Function Name Description

cmask<2> Synchronization
barrier

#Sync All operations (including nonmemory reference operations)
appearing prior to the MEMBAR must have been performed
and the effects of any exceptions become visible before any
instruction after the MEMBAR may be initiated.

cmask<1> Memory issue
barrier

#MemIssue All memory reference operations appearing prior to the
MEMBAR must have been performed before any memory
operation after the MEMBAR may be initiated.

cmask<0> Lookaside
barrier

#Lookaside A store appearing prior to the MEMBAR must complete
before any load following the MEMBAR referencing the
same address can be initiated.

Exceptions:
(none)

A.33 Move Floating-Point Register on Condition (FMOVcc)

For Integer Condition Codes:

For Floating-Point Condition Codes:

Opcode op3 cond Operation icc/xcc test

FMOVA 11 0101 1000 Move Always 1

FMOVN 11 0101 0000 Move Never 0

FMOVNE 11 0101 1001 Move if Not Equal not Z

FMOVE 11 0101 0001 Move if Equal Z

FMOVG 11 0101 1010 Move if Greater not (Z or (N xor V))

FMOVLE 11 0101 0010 Move if Less or Equal Zor (N xor V)

FMOVGE 11 0101 1011 Move if Greater or Equal not (N xor V)

FMOVL 11 0101 0011 Move if Less N xor V

FMOVGU 11 0101 1100 Move if Greater Unsigned not (C or Z)

FMOVLEU 11 0101 0100 Move if Less or Equal Unsigned (C or Z)

FMOVCC 11 0101 1101 Move if Carry Clear(Greater or Equal, Unsigned) not C

FMOVCS 11 0101 0101 Move if Carry Set (Less than, Unsigned) C

FMOVPOS 11 0101 1110 Move if Positive not N

FMOVNEG 11 0101 0110 Move if Negative N

FMOVVC 11 0101 1111 Move if Overflow Clear not V

FMOVVS 11 0101 0111 Move if Overflow Set V

Opcode op3 cond Operation fcc test

FMOVFA 11 0101 1000 Move Always 1

FMOVFN 11 0101 0000 Move Never 0

FMOVFU 11 0101 0111 Move if Unordered U

FMOVFG 11 0101 0110 Move if Greater G

FMOVFUG 11 0101 0101 Move if Unordered or Greater Gor U

FMOVFL 11 0101 0100 Move if Less L

FMOVFUL 11 0101 0011 Move if Unordered or Less Lor U

FMOVFLG 11 0101 0010 Move if Less or Greater Lor G

FMOVFNE 11 0101 0001 Move if Not Equal Lor G or U

FMOVFE 11 0101 1001 Move if Equal E

FMOVFUE 11 0101 1010 Move if Unordered or Equal Eor U

FMOVFGE 11 0101 1011 Move if Greater or Equal Eor G

FMOVFUGE 11 0101 1100 Move if Unordered or Greater or Equal Eor G or U

FMOVFLE 11 0101 1101 Move if Less or Equal Eor L

FMOVFULE 11 0101 1110 Move if Unordered or Less or Equal Eor L or U

FMOVFO 11 0101 1111 Move if Ordered Eor L or G

Format (4):

Encoding of the opf_cc field (also see table 38 on page 273):

Encoding of opf field (opf_cc opf_low):

opf_cc Condition code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 —

110 xcc

111 —

Instruction variation opf_cc opf_low opf

FMOVScc %fcc n,rs2,rd 0nn 00 0001 0nn00 0001

FMOVDcc %fcc n,rs2,rd 0nn 00 0010 0nn00 0010

FMOVQcc %fcc n,rs2,rd 0nn 00 0011 0nn00 0011

FMOVScc %icc , rs2,rd 100 00 0001 1 0000 0001

FMOVDcc %icc , rs2,rd 100 00 0010 1 0000 0010

FMOVQcc %icc , rs2,rd 100 00 0011 1 0000 0011

FMOVScc %xcc, rs2,rd 110 00 0001 1 1000 0001

FMOVDcc %xcc, rs2,rd 110 00 0010 1 1000 0010

FMOVQcc %xcc, rs2,rd 110 00 0011 1 1000 0011

31 1924 18 1314 11 5 4 010172530 29

10 rd op3 cond opf_cc opf_low rs20

For Integer Condition Codes:

Programming Note:
To select the appropriate condition code, include “%icc ” or “%xcc” before the registers.

For Floating-Point Condition Codes:

Suggested Assembly Language Syntax

fmov{s,d,q}a i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}n i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ne i_or_x_cc, fregrs2, fregrd (synonyms: fmov { s,d,q } nz)

fmov{s,d,q}e i_or_x_cc, fregrs2, fregrd (synonyms: fmov { s,d,q } z)

fmov{s,d,q}g i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}le i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}ge i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}l i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}gu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}leu i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}cc i_or_x_cc, fregrs2, fregrd (synonyms: fmov { s,d,q } geu)

fmov{s,d,q}cs i_or_x_cc, fregrs2, fregrd (synonyms: fmov { s,d,q } lu)

fmov{s,d,q}pos i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}neg i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vc i_or_x_cc, fregrs2, fregrd

fmov{s,d,q}vs i_or_x_cc, fregrs2, fregrd

Suggested Assembly Language Syntax

fmov{s,d,q}a %fcc n, fregrs2, fregrd

fmov{s,d,q}n %fcc n, fregrs2, fregrd

fmov{s,d,q}u %fcc n, fregrs2, fregrd

fmov{s,d,q}g %fcc n, fregrs2, fregrd

fmov{s,d,q}ug %fcc n, fregrs2, fregrd

fmov{s,d,q}l %fcc n, fregrs2, fregrd

fmov{s,d,q}ul %fcc n, fregrs2, fregrd

fmov{s,d,q}lg %fcc n, fregrs2, fregrd

fmov{s,d,q}ne %fcc n, fregrs2, fregrd (synonyms: fmov { s,d,q } nz)

fmov{s,d,q}e %fcc n, fregrs2, fregrd (synonyms: fmov { s,d,q } z)

fmov{s,d,q}ue %fcc n, fregrs2, fregrd

fmov{s,d,q}ge %fcc n, fregrs2, fregrd

fmov{s,d,q}uge %fcc n, fregrs2, fregrd

fmov{s,d,q}le %fcc n, fregrs2, fregrd

fmov{s,d,q}ule %fcc n, fregrs2, fregrd

fmov{s,d,q}o %fcc n, fregrs2, fregrd

i-

cc and
t:

is sug-
ance.
Description:

These instructions copy the floating-point register(s) specified byrs2 to the floating-point regis-
ter(s) specified byrd if the condition indicated by thecondfield is satisfied by the selected cond
tion code. The condition code used is specified by theopf_cc field of the instruction. If the
condition is FALSE, then the destination register(s) are not changed.

These instructions do not modify any condition codes.

Programming Note:
Branches cause most implementations’ performance to degrade significantly. Frrequently, the MOV
FMOVcc instructions can be used to avoid branches. For example, the following C language segmen

double A, B, X;
if (A > B) then X = 1.03; else X = 0.0;

can be coded as

! assume A is in %f0; B is in %f2; %xx points to constant area
ldd [%xx+C_1.03],%f4 ! X = 1.03
fcmpd %fcc3,%f0,%f2 ! A > B
fble ,a %fcc3,label
! following only executed if the branch is taken
fsubd %f4,%f4,%f4 ! X = 0.0

label:...

This takes four instructions including a branch.

Using FMOVcc, this could be coded as

ldd [%xx+C_1.03],%f4 ! X = 1.03
fsubd %f4,%f4,%f6 ! X’ = 0.0
fcmpd %fcc3,%f0,%f2 ! A > B
fmovdle %fcc3,%f6,%f4 ! X = 0.0

This also takes four instructions, but requires no branches and may boost performance significantly. It
gested that MOVcc and FMOVcc be used instead of branches wherever they would improve perform

Exceptions:
fp_disabled
fp_exception_other (invalid_fp_register (quad forms only))
fp_exception_other (ftt = unimplemented_FPop (opf_cc= 1012 or 1112)

modify
A.34 Move F-P Register on Integer Register Condition (FMOVr)

Format (4):

Encoding ofopf_low field:

Description:

If the contents of integer registerr[rs1] satisfy the condition specified in thercond field, these
instructions copy the contents of the floating-point register(s) specified by thers2 field to the
floating-point register(s) specified by therd field. If the contents ofr[rs1] do not satisfy the condi-
tion, the floating-point register(s) specified by therd field are not modified.

These instructions treat the integer register contents as a signed integer value; they do not
any condition codes.

Opcode op3 rcond Operation Test

— 11 0101 000 Reserved —

FMOVRZ 11 0101 001 Move if Register Zero r[rs1] = 0

FMOVRLEZ 11 0101 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

FMOVRLZ 11 0101 011 Move if Register Less Than Zero r[rs1] < 0

— 11 0101 100 Reserved —

FMOVRNZ 11 0101 101 Move if Register Not Zero r[rs1] ≠ 0

FMOVRGZ 11 0101 110 Move if Register Greater Than Zero r[rs1] > 0

FMOVRGEZ 11 0101 111 Move if Register Greater Than or Equal to Zero r[rs1] ≥ 0

Instruction variation opf_low

FMOVSrcond rs1, rs2, rd 0 0101

FMOVDrcond rs1, rs2, rd 0 0110

FMOVQrcond rs1, rs2, rd 0 0111

Suggested Assembly Language Syntax

fmovr{s,d,q}e regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}z)

fmovr{s,d,q}lez regrs1, fregrs2, fregrd

fmovr{s,d,q}lz regrs1, fregrs2, fregrd

fmovr{s,d,q}ne regrs1, fregrs2, fregrd (synonym: fmovr{s,d,q}nz)

fmovr{s,d,q}gz regrs1, fregrs2, fregrd

fmovr{s,d,q}gez regrs1, fregrs2, fregrd

31 141924 18 13 12 9 5 4 0102530 29

10 rd op3 0 rcond opf_low rs2rs1

Implementation Note:
If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero) bit, use
the following table to determine whetherrcond is TRUE:

Exceptions:
fp_disabled
fp_exception_other (invalid_fp_register (quad forms only))
fp_exception_other (unimplemented_FPop (rcond= 0002 or 1002))

Branch Test

FMOVRNZ not Z

FMOVRZ Z

FMOVGEZ not N

FMOVRLZ N

FMOVRLEZ N or Z

FMOVRGZ N nor Z

A.35 Move Integer Register on Condition (MOVcc)

For Integer Condition Codes:

For Floating-Point Condition Codes:

Opcode op3 cond Operation icc/xcc test

MOVA 10 1100 1000 Move Always 1

MOVN 10 1100 0000 Move Never 0

MOVNE 10 1100 1001 Move if Not Equal not Z

MOVE 10 1100 0001 Move if Equal Z

MOVG 10 1100 1010 Move if Greater not (Z or (N xorV))

MOVLE 10 1100 0010 Move if Less or Equal Z or (N xorV)

MOVGE 10 1100 1011 Move if Greater or Equal not (N xorV)

MOVL 10 1100 0011 Move if Less N xorV

MOVGU 10 1100 1100 Move if Greater Unsigned not (C orZ)

MOVLEU 10 1100 0100 Move if Less or Equal Unsigned (C orZ)

MOVCC 10 1100 1101 Move if Carry Clear (Greater or Equal, Unsigned) not C

MOVCS 10 1100 0101 Move if Carry Set (Less than, Unsigned) C

MOVPOS 10 1100 1110 Move if Positive not N

MOVNEG 10 1100 0110 Move if Negative N

MOVVC 10 1100 1111 Move if Overflow Clear not V

MOVVS 10 1100 0111 Move if Overflow Set V

Opcode op3 cond Operation fcc test

MOVFA 10 1100 1000 Move Always 1

MOVFN 10 1100 0000 Move Never 0

MOVFU 10 1100 0111 Move if Unordered U

MOVFG 10 1100 0110 Move if Greater G

MOVFUG 10 1100 0101 Move if Unordered or Greater Gor U

MOVFL 10 1100 0100 Move if Less L

MOVFUL 10 1100 0011 Move if Unordered or Less Lor U

MOVFLG 10 1100 0010 Move if Less or Greater Lor G

MOVFNE 10 1100 0001 Move if Not Equal Lor G or U

MOVFE 10 1100 1001 Move if Equal E

MOVFUE 10 1100 1010 Move if Unordered or Equal Eor U

MOVFGE 10 1100 1011 Move if Greater or Equal Eor G

MOVFUGE 10 1100 1100 Move if Unordered or Greater or Equal Eor G or U

MOVFLE 10 1100 1101 Move if Less or Equal Eor L

MOVFULE 10 1100 1110 Move if Unordered or Less or Equal Eor L or U

MOVFO 10 1100 1111 Move if Ordered Eor L or G

Format (4):

For Integer Condition Codes:

Programming Note:
To select the appropriate condition code, include “%icc ” or “%xcc” before the register or immediate field.

cc2 cc1 cc0 Condition code

000 fcc0

001 fcc1

010 fcc2

011 fcc3

100 icc

101 Reserved

110 xcc

111 Reserved

Suggested Assembly Language Syntax

mova i_or_x_cc, reg_or_imm11, regrd

movn i_or_x_cc, reg_or_imm11, regrd

movne i_or_x_cc, reg_or_imm11, regrd (synonym: movnz)

move i_or_x_cc, reg_or_imm11, regrd (synonym: movz)

movg i_or_x_cc, reg_or_imm11, regrd

movle i_or_x_cc, reg_or_imm11, regrd

movge i_or_x_cc, reg_or_imm11, regrd

movl i_or_x_cc, reg_or_imm11, regrd

movgu i_or_x_cc, reg_or_imm11, regrd

movleu i_or_x_cc, reg_or_imm11, regrd

movcc i_or_x_cc, reg_or_imm11, regrd (synonym: movgeu)
movcs i_or_x_cc, reg_or_imm11, regrd (synonym: movlu)

movpos i_or_x_cc, reg_or_imm11, regrd

movneg i_or_x_cc, reg_or_imm11, regrd

movvc i_or_x_cc, reg_or_imm11, regrd

movvs i_or_x_cc, reg_or_imm11, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

cond rs2i=0

rd10 op3 cond simm11i=1

17

cc2

cc2

11

cc1

cc1

10

cc0

cc0

he

RUE.
teger

cc and
ment
For Floating-Point Condition Codes:

Programming Note:
To select the appropriate condition code, include “%fcc0 ,” “ %fcc1 ,” “ %fcc2 ,” or “%fcc3 ” before the
register or immediate field.

Description:

These instructions test to see ifcondis TRUE for the selected condition codes. If so, they copy t
value inr[rs2] if i field = 0, or “sign_ext(simm11)” if i = 1 into r[rd]. The condition code used is
specified by thecc2, cc1, andcc0fields of the instruction. If the condition is FALSE, thenr[rd] is
not changed.

These instructions copy an integer register to another integer register if the condition is T
The condition code that is used to determine whether the move will occur can be either in
condition code (icc or xcc) or any floating-point condition code (fcc0, fcc1, fcc2, or fcc3).

These instructions do not modify any condition codes.

Programming Note:
Branches cause many implementations’ performance to degrade significantly. Frequently, the MOV
FMOVcc instructions can be used to avoid branches. For example, the C language if-then-else state

if (A > B) then X = 1; else X = 0;

can be coded as

cmp %i0,%i2
bg,a %xcc,label

or %g0,1,%i3 ! X = 1

or %g0,0,%i3 ! X = 0

label:...

Suggested Assembly Language Syntax

mova %fcc n, reg_or_imm11, regrd

movn %fcc n, reg_or_imm11, regrd

movu %fcc n, reg_or_imm11, regrd

movg %fcc n, reg_or_imm11, regrd

movug %fcc n, reg_or_imm11, regrd

movl %fcc n, reg_or_imm11, regrd

movul %fcc n, reg_or_imm11, regrd

movlg %fcc n, reg_or_imm11, regrd

movne %fcc n, reg_or_imm11, regrd (synonym: movnz)

move %fcc n, reg_or_imm11, regrd (synonym: movz)

movue %fcc n, reg_or_imm11, regrd

movge %fcc n, reg_or_imm11, regrd

movuge %fcc n, reg_or_imm11, regrd

movle %fcc n, reg_or_imm11, regrd

movule %fcc n, reg_or_imm11, regrd

movo %fcc n, reg_or_imm11, regrd

gested
This takes four instructions including a branch. Using MOVcc this could be coded as

cmp %i0,%i2
or %g0,1,%i3 ! assume X = 1
movle %xcc,0,%i3 ! overwrite with X = 0

This takes only three instructions and no branches and may boost performance significantly. It is sug
that MOVcc and FMOVcc be used instead of branches wherever they would increase performance.

Exceptions:
illegal_instruction (cc2 cc1 cc0= 1012 or 1112)
fp_disabled (cc2 cc1 cc0= 0002, 0012, 0102, or 0112 and the FPU is disabled)

n-
A.36 Move Integer Register on Register Condition (MOVR)

Format (3):

Description:
If the contents of integer registerr[rs1] satisfies the condition specified in thercond field, these
instructions copyr[rs2] (if i = 0) or sign_ext(simm10) (if i = 1) into r[rd]. If the contents ofr[rs1]
does not satisfy the condition thenr[rd] is not modified. These instructions treat the register co
tents as a signed integer value; they do not modify any condition codes.
Implementation Note:

If this instruction is implemented by tagging each register value with an N (negative) and a Z (zero) bit, use
the following table to determine ifrcond is TRUE:

Opcode op3 rcond Operation Test

— 10 1111 000 Reserved —

MOVRZ 10 1111 001 Move if Register Zero r[rs1] = 0

MOVRLEZ 10 1111 010 Move if Register Less Than or Equal to Zero r[rs1] ≤ 0

MOVRLZ 10 1111 011 Move if Register Less Than Zero r[rs1] < 0

— 10 1111 100 Reserved —

MOVRNZ 10 1111 101 Move if Register Not Zero r[rs1] ≠ 0

MOVRGZ 10 1111 110 Move if Register Greater Than Zero r[rs1] > 0

MOVRGEZ 10 1111 111 Move if Register Greater Than or Equal to Zeror[rs1] ≥ 0

Suggested Assembly Language Syntax

movrz regrs1, reg_or_imm10, regrd (synonym: movre)

movrlez regrs1, reg_or_imm10, regrd

movrlz regrs1, reg_or_imm10, regrd

movrnz regrs1, reg_or_imm10, regrd (synonym: movrne)

movrgz regrs1, reg_or_imm10, regrd

movrgez regrs1, reg_or_imm10, regrd

Branch Test

MOVRNZ not Z

MOVRZ Z

MOVRGEZ not N

MOVRLZ N

MOVRLEZ N or Z

MOVRGZ N nor Z

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm10i=1

rcond

rcond

10 9

Exceptions:
illegal_instruction (rcond= 0002 or 1002)

or

pro-
ers and

nega-
A.37 Multiply and Divide (64-bit)

Format (3):

Description:

MULX computes “r[rs1] × r[rs2]” if i = 0 or “r[rs1] × sign_ext(simm13)” if i = 1, and writes the
64-bit product intor[rd]. MULX can be used to calculate the 64-bit product for signed
unsigned operands (the product is the same).

SDIVX and UDIVX compute “r[rs1] ÷ r[rs2]” if i = 0 or “r[rs1] ÷ sign_ext(simm13)” if i = 1,
and write the 64-bit result intor[rd]. SDIVX operates on the operands as signed integers and
duces a corresponding signed result. UDIVX operates on the operands as unsigned integ
produces a corresponding unsigned result.

For SDIVX, if the largest negative number is divided by –1, the result should be the largest
tive number. That is:

8000 0000 0000 000016 ÷ FFFF FFFF FFFF FFFF16 = 8000 0000 0000 000016.

These instructions do not modify any condition codes.

Exceptions:
division_by_zero

Opcode op3 Operation

MULX 00 1001 Multiply (signed or unsigned)

SDIVX 10 1101 Signed Divide

UDIVX 00 1101 Unsigned Divide

Suggested Assembly Language Syntax

mulx regrs1, reg_or_imm, regrd
sdivx regrs1, reg_or_imm, regrd
udivx regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

hey

s of

om-
s on

er

e

A.38 Multiply (32-bit)

Format (3):

Description:

The multiply instructions perform 32-bit by 32-bit multiplications, producing 64-bit results. T
compute “r[rs1]<31:0>× r[rs2]<31:0>” if i = 0, or “r[rs1]<31:0>× sign_ext(simm13)<31:0>” if
i = 1. They write the 32 most significant bits of the product into the Y register and all 64 bit
the product intor[rd].

Unsigned multiply (UMUL, UMULcc) operates on unsigned integer word operands and c
putes an unsigned integer doubleword product. Signed multiply (SMUL, SMULcc) operate
signed integer word operands and computes a signed integer doubleword product.

UMUL and SMUL do not affect the condition code bits. UMULcc and SMULcc write the integ
condition code bits,icc andxcc, as follows. Note that 32-bit negative (icc.N) and zero (icc.Z) con-
dition codes are set according to thelesssignificant word of the product, and not according to th
full 64-bit result.

Opcode op3 Operation

UMULD 00 1010 Unsigned Integer Multiply

SMULD 00 1011 Signed Integer Multiply

UMULccD 01 1010 Unsigned Integer Multiply and modify cc’s

SMULccD 01 1011 Signed Integer Multiply and modify cc’s

Suggested Assembly Language Syntax

umul regrs1, reg_or_imm, regrd

smul regrs1, reg_or_imm, regrd

umulcc regrs1, reg_or_imm, regrd

smulcc regrs1, reg_or_imm, regrd

The UMUL, UMULcc, SMUL, and SMULcc instructions are deprecated; they are
provided only for compatibility with previous versions of the architecture. They
should not be used in new SPARC-V9 software. It is recommended that the MULX
instruction be used in their place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

docu-
ed by
Programming Note:
32-bit overflow after UMUL / UMULcc is indicated by Y≠ 0.

32-bit overflow after SMUL / SMULcc is indicated by Y≠ (r[rd] >> 31), where “>>” indicates 32-bit arith-
metic right shift.

Implementation Note:
An implementation may assume that the smaller operand typically will ber[rs2] or simm13.

Implementation Note:
See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a
ment available from SPARC International, for information on whether these instructions are implement
hardware or software in the various SPARC-V9 implementations.

Exceptions:
(none)

Bit UMULcc / SMULcc

icc.N Set if product[31] = 1

icc.Z Set if product[31:0] = 0

icc.V Zero

icc.C Zero

xcc.N Set if product[63] = 1

xcc.Z Set if product[63:0] = 0

xcc.V Zero

xcc.C Zero

le
f

e

-

are
step
A.39 Multiply Step

Format (3):

Description:

MULScc treats the lower 32 bits of bothr[rs1] and the Y register as a single 64-bit, right-shiftab
doubleword register. The least significant bit ofr[rs1] is treated as if it were adjacent to bit 31 o
the Y register. The MULScc instruction adds, based on the least significant bit of Y.

Multiplication assumes that the Y register initially contains the multiplier,r[rs1] contains the
most significant bits of the product, andr[rs2] contains the multiplicand. Upon completion of th
multiplication, the Y register contains the least significant bits of the product.

Note that a standard MULScc instruction hasrs1 = rd.

MULScc operates as follows:

(1) The multiplicand isr[rs2] if i = 0, or sign_ext(simm13) if i = 1.

(2) A 32-bit value is computed by shiftingr[rs1] right by one bit with
“CCR.icc.nxor CCR.icc.v” replacing bit 31 ofr[rs1]. (This is the proper sign for the pre
vious partial product.)

(3) If the least significant bit of Y = 1, the shifted value from step (2) and the multiplicand
added. If the least significant bit of the Y = 0, then 0 is added to the shifted value from
(2).

Opcode op3 Operation

MULSccD 10 0100 Multiply Step and modify cc’s

Suggested Assembly Language Syntax

mulscc regrs1, reg_or_imm, regrd

The MULScc instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the MULX instruction be used in its place.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

. The

ted
(4) The sum from step (3) is written intor[rd]. The upper 32-bits ofr[rd] are undefined. The
integer condition codes are updated according to the addition performed in step (3)
values of the extended condition codes are undefined.

(5) The Y register is shifted right by one bit, with the least significant bit of the unshif
r[rs1] replacing bit 31of Y.

Exceptions:
(none)

A.40 No Operation

Format (2):

Description:

The NOP instruction changes no program-visible state (except the PC and nPC).

Note that NOP is a special case of the SETHI instruction, withimm22= 0 andrd = 0.

Exceptions:
(none)

Opcode op op2 Operation

NOP 00 100 No Operation

Suggested Assembly Language Syntax

nop

31 24 02530 29 22 21

00 op op2 0

-

r this
A.41 Population Count

Format (3):

Description:

POPC counts the number of one bits inr[rs2] if i = 0, or the number of one bits in
sign_ext(simm13) if i = 1, and stores the count inr[rd]. This instruction does not modify the con
dition codes.

Implementation Note:
Instruction bits 18 through 14 must be zero for POPC. Other encodings of this field (rs1) may be used in
future versions of the SPARC architecture for other instructions.

Programming Note:
POPC can be used to “find first bit set” in a register. A C program illustrating how POPC can be used fo
purpose follows:

int ffs(zz) /* finds first 1 bit, counting from the LSB */
unsigned zz;
{

return popc (zz ^ (∼ (–zz))); /* for nonzero zz */
}

Inline assembly language code forffs() is

neg %IN, %M_IN ! –zz(2’s complement)
xnor %IN, %M_IN, %TEMP ! ^ ∼ –zz (exclusive nor)
popc %TEMP,%RESULT ! result = popc(zz ^ ∼ –zz)
movrz %IN,%g0,%RESULT ! %RESULT should be 0 for %IN=0

whereIN , M_IN, TEMP, andRESULT are integer registers.

Example:
IN = ...00101000! 1st 1 bit from rt is 4th bit
–IN = ...11011000
∼ –IN = ...00100111
IN ^ ∼ –IN = ...00001111
popc(IN ^ ∼ –IN) = 4

Exceptions:
illegal_instruction (instruction<18:14>≠ 0)

Opcode op3 Operation

POPC 10 1110 Population Count

Suggested Assembly Language Syntax

popc reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

0 0000 rs2i=0

rd10 op3 0 0000 simm13i=1

execu-
shall
A.42 Prefetch Data

Format (3) PREFETCH:

Format (3) PREFETCHA:

Description:

In nonprivileged code, a prefetch instruction has the same observable effect as a NOP; its
tion is nonblocking and cannot cause an observable trap. In particular, a prefetch instruction
not trap if it is applied to an illegal or nonexistent memory address.

IMPL. DEP. #103(1): Whether the execution of a PREFETCH instruction has observable effects in privi-
leged code is implementation-dependent.

Opcode op3 Operation

PREFETCH 10 1101 Prefetch Data

PREFETCHAPASI 11 1101 Prefetch Data from Alternate Space

fcn Prefetch function

0 Prefetch for several reads

1 Prefetch for one read

2 Prefetch for several writes

3 Prefetch for one write

4 Prefetch page

5–15 Reserved

16–31 Implementation-dependent

Suggested Assembly Language Syntax

prefetch [address], prefetch_fcn

prefetcha [regaddr] imm_asi, prefetch_fcn

prefetcha [reg_plus_imm] %asi, prefetch_fcn

31 24 02530 29 19 18 14 13 12 5 4

fcn11 op3 rs1 simm13i=1

fcn11 op3 rs1 i=0 — rs2

31 24 02530 29 19 18

fcn11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

fcn11 op3 rs1 simm13i=1

l.

efetch-
most

ove-
pecified

from

ion has
s not

dress
s

er-

types

r

IMPL. DEP. #103(2): Whether the execution of a PREFETCH instruction can cause a
data_access_mmu_miss exception is implementation-dependent.

Whether prefetch always succeeds when theMMU is disabled is implementation-dependent (imp
dep. # 117).

Implementation Note:
Any effects of prefetch in privileged code should be reasonable (e.g., handling ECC errors, no page pr
ing allowed within code that handles page faults). The benefits of prefetching should be available to
privileged code.

Execution of a prefetch instruction initiates data movement (or preparation for future data m
ment or address mapping) to reduce the latency of subsequent loads and stores to the s
address range.

A successful prefetch initiates movement of a block of data containing the addressed byte
memory toward the processor.

IMPL. DEP. #103(3): The size and alignment in memory of the data block is implementation-dependent;
the minimum size is 64 bytes and the minimum alignment is a 64-byte boundary.

Programming Note:
Software may prefetch 64 bytes beginning at an arbitrary addressaddress by issuing the instructions

prefetch [address], prefetch_fcn

prefetch [address + 63], prefetch_fcn

Implementation Note:
Prefetching may be used to help manage memory cache(s). A prefetch from a nonprefetchable locat
no effect. It is up to memory management hardware to determine how locations are identified a
prefetchable.

Prefetch instructions that donot load from an alternate address space access the primary ad
space (ASI_PRIMARY{_LITTLE}). Prefetch instructions thatdo load from an alternate addres
space contain the address space identifier (ASI) to be used for the load in theimm_asifield if
i = 0, or in the ASI register ifi = 1. The access is privileged if bit seven of the ASI is zero; oth
wise, it is not privileged. The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1.

Variants of the prefetch instruction can be used to prepare the memory system for different
of accesses.

IMPL. DEP. #103(4): An implementation may implement none, some, or all of these variants. A variant not
implemented shall execute as a nop. An implemented variant may support its full semantics, or may sup-
port just the simple common-case prefetching semantics.

A.42.1 Prefetch Variants

The prefetch variant is selected by thefcnfield of the instruction.fcnvalues 5..15 are reserved fo
future extensions of the architecture.

erent
An
of the

ded to
ple-
below
ented

cessor,

r hand,

variant

data
(read or

riting

e in
IMPL. DEP. #103(5): PREFETCH fcn values of 16..31 are implementation-dependent.

Each prefetch variant reflects an intent on the part of the compiler or programmer. This is diff
from other instructions in SPARC-V9 (except BPN), all of which specify specific actions.
implementation may implement a prefetch variant by any technique, as long as the intent
variant is achieved.

The prefetch instruction is designed to treat the common cases well. The variants are inten
provide scalability for future improvements in both hardware and compilers. If a variant is im
mented, then it should have the effects described below. In case some of the variants listed
are implemented and some are not, there is a recommended overloading of the unimplem
variants (see the Implementation Note labeled “Recommended Overloadings” in A.42.2).

A.42.1.1 Prefetch for Several Reads (fcn = 0)

The intent of this variant is to cause movement of data into the data cache nearest the pro
with “reasonable” efforts made to obtain the data.

Implementation Note:
If, for example, some TLB misses are handled in hardware, then they should be handled. On the othe
a multiple ECC error is reasonable cause for cancellation of a prefetch.

This is the most important case of prefetching.

If the addressed data is already present (and owned, if necessary) in the cache, then this
has no effect.

A.42.1.2 Prefetch for One Read (fcn = 1)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
read from the given address, because that data is expected to be read once and not reused
written) soon after that.

If the data is already present in the cache, then this variant has no effect.

Programming Note:
The intended use of this variant is in streaming large amounts of data into the processor without overw
data in cache memory.

A.42.1.3 Prefetch for Several Writes (and Possibly Reads) (fcn = 2)

The intent of this variant is to cause movement of data in preparation for writing.

If the addressed data is already present in the data cache, then this variant has no effect.

Programming Note:
An example use of this variant is to write a dirty cache line back to memory, or to initialize a cache lin
preparation for a partial write.

d, so it

data
after it

re or
at it is

e fault.

has no

s issued
issued.
roceed.

e faults.

unim-

d be
teger
Implementation Note:
On a multiprocessor, this variant indicates that exclusive ownership of the addressed data is neede
may have the additional effect of obtaining exclusive ownership of the addressed cache line.

Implementation Note:
On a uniprocessor, there is no distinction between Prefetch for Several Reads and this variant.

A.42.1.4 Prefetch for One Write (fcn = 3)

This variant indicates that, if possible, the data cache should be minimally disturbed by the
written to this address, because that data is not expected to be reused (read or written) soon
has been written once.

If the data is already present in the cache, then this variant has no effect.

A.42.1.5 Prefetch Page (fcn = 4)

In a virtual-memory system, the intended action of this variant is for the supervisor softwa
hardware to initiate asynchronous mapping of the referenced virtual address, assuming th
legal to do so.

Programming Note:
The desire is to avoid a later page fault for the given address, or at least to shorten the latency of a pag

In a nonvirtual-memory system, or if the addressed page is already mapped, this variant
effect.

The referenced page need not be mapped when the instruction completes. Loads and store
before the page is mapped should block just as they would if the prefetch had never been
When the activity associated with the mapping has completed, the loads and stores may p

Implementation Note:
An example of mapping activity is DMA from secondary storage.

Implementation Note:
Use of this variant may be disabled or restricted in privileged code that is not permitted to cause pag

A.42.1.6 Implementation-Dependent Prefetch (fcn = 16..31)

These values are available for implementations to use. An implementation shall treat any
plemented prefetchfcn values as NOPs (impl. dep. #103).

A.42.2 General Comments

There is no variant of PREFETCH for instruction prefetching. Instruction prefetching shoul
encoded using the Branch Never (BPN) form of the BPcc instruction (see A.7, “Branch on In
Condition Codes with Prediction (BPcc)”).

exe-
ost of
signifi-

nts,

e effi-

Several
ch for
or Sev-

riants

che,” so
large

small,
One error to avoid in thinking about prefetch instructions is that they should have “no cost to
cute.” As long as the cost of executing a prefetch instruction is well less than one-third the c
a cache miss, use of prefetching is a net win. It does not appear that prefetching causes a
cant number of useless fetches from memory, though it may increase the rate ofuseful fetches
(and hence the bandwidth), because it more efficiently overlaps computing with fetching.

Implementation Note:
Recommended Overloadings.There are four recommended sets of overloadings for the prefetch varia
based on a simplistic classification of SPARC-V9 systems into cost (low-costvs. high-cost) and processor
multiplicity (uniprocessorvs. multiprocessor) categories. These overloadings are chosen to help ensur
cient portability of software across a range of implementations.

In a uniprocessor, there is no need to support multiprocessor cache protocols; hence, Prefetch for
Reads and Prefetch for Several Writes may behave identically. In a low-cost implementation, Prefet
One Read and Prefetch for One Write may be identical to Prefetch for Several Reads and Prefetch f
eral Writes, respectively.

Programming Note:
A SPARC-V9 compiler that generates PREFETCH instructions should generate each of the four va
where it is most appropriate. The overloadings suggested in the previousImplementation NoteNOTEensure
that such code will be portable and reasonably efficient across a range of hardware configurations.

Implementation Note:
The Prefetch for One Read and Prefetch for One Write variants assume the existence of a “bypass ca
that the bulk of the “real cache” remains undisturbed. If such a bypass cache is used, it should be
enough to properly shield the processor from memory latency. Such a cache should probably be
highly associative, and use a FIFO replacement policy.

Exceptions:

Multiplicity Cost Prefetch for ..

Could be overloaded
to mean the same as

 Prefetch for ..

Uniprocessor Low

One read Several writes

Several reads Several writes

One write Several writes

Several writes —

Uniprocessor High

One read —

Several reads Several writes

One write —

Several writes —

Multiprocessor Low

One read Several reads

Several reads —

One write Several writes

Several writes —

Multiprocessor High

One read —

Several reads —

One write —

Several writes —

data_access_MMU_miss (implementation-dependent (impl. dep. #103))
illegal_instruction (fcn=5..15)

A.43 Read Privileged Register

Format (3):

Opcode op3 Operation

RDPRP 10 1010 Read Privileged Register

rs1 Privileged register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15 FQ

16..30 —

31 VER

31 141924 18 13 02530 29

10 rd op3 rs1 —

XTL
turns

TPC,

ith

rd of
tion-

ust be
e, an

n the
point
Description:

The rs1 field in the instruction determines the privileged register that is read. There are MA
copies of the TPC, TNPC, TT, and TSTATE registers. A read from one of these registers re
the value in the register indexed by the current value in the trap level register (TL). A read of
TNPC, TT, or TSTATE when the trap level is zero (TL = 0) causes anillegal_instruction exception.

RDPR instructions withrs1 in the range 16..30 are reserved; executing a RDPR instruction w
rs1 in that range causes anillegal_instruction exception.

A read from the FQ (Floating-Point Deferred-Trap Queue) register copies the front doublewo
the queue intor[rd]. The semantics of reading the FQ and the data returned are implementa
dependent (impl. dep. #24). However, the address of a trapping floating-point instruction m
available to the privileged trap handler. On an implementation with a floating-point queu
attempt to execute RDPR of FQ when the queue is empty (FSR.qne= 0) shall cause an
fp_exception exception with FSR.ftt set to 4 (sequence_error). In an implementation without a float-
ing-point queue, an attempt to execute RDPR of FQ shall cause either anillegal_instruction excep-
tion or an fp_exception_other exception with FSR.ftt set to 3 (unimplemented_FPop) (impl. dep.
#25).

Programming Note:
On an implementation with precise floating-point traps, the address of a trapping instruction will be i
TPC[TL] register when the trap code begins execution. On an implementation with deferred floating-
traps, the address of the trapping instruction might be a value obtained from the FQ.

Exceptions:
privileged_opcode
illegal_instruction ((rs1 = 16..30) or ((rs1≤3) and (TL = 0)))

Suggested Assembly Language Syntax

rdpr %tpc, regrd

rdpr %tnpc, regrd

rdpr %tstate, regrd

rdpr %tt, regrd

rdpr %tick, regrd

rdpr %tba, regrd

rdpr %pstate, regrd

rdpr %tl, regrd

rdpr %pil, regrd

rdpr %cwp, regrd

rdpr %cansave, regrd

rdpr %canrestore, regrd

rdpr %cleanwin, regrd

rdpr %otherwin, regrd

rdpr %wstate, regrd

rdpr %fq, regrd

rdpr %ver, regrd

fp_exception_other (sequence_error) (RDPR of FQ when FSR.qne= 0 in a system with an
FQ; (impl. dep. #25)

illegal_instruction (RDPR of FQ in a system without an FQ; (impl. dep. #25)

hed

e
to use
A.44 Read State Register

Format (3):

Description:

These instructions read the specified state register intor[rd].

Note that RDY, RDCCR, RDASI, RDPC, RDTICK, RDFPRS, and RDASR are distinguis
only by the value in thers1 field.

If rs1≥ 7, an ancillary state register is read. Values ofrs1 in the range 7..14 are reserved for futur
versions of the architecture; values in the range 16..31 are available for implementations
(impl. dep. #8). A RDASR instruction withrs1 = 15, rd = 0, andi = 0 is defined to be an STBAR
instruction (see A.51). An RDASR instruction withrs1 = 15, rd = 0, andi = 1 is defined to be a

Opcode op3 rs1 Operation

RDYD 10 1000 0 Read Y Register

— 10 1000 1 reserved

RDCCR 10 1000 2 Read Condition Codes Register

RDASI 10 1000 3 Read ASI Register

RDTICKPNPT 10 1000 4 Read Tick Register

RDPC 10 1000 5 Read Program Counter

RDFPRS 10 1000 6 Read Floating-Point Registers Status Register

RDASRPASR 10 1000 7−14 Read Ancillary State Register (reserved)

See text 10 1000 15 See text

RDASRPASR 10 1000 16−31 Implementation-dependent (impl. dep. #47)

Suggested Assembly Language Syntax

rd %y, regrd

rd %ccr , regrd

rd %asi , regrd

rd %tick , regrd

rd %pc , regrd

rd %fprs , regrd

rd asr_regrs1, regrd

The RDY instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that all instructions which reference the Y register be avoided.

31 141924 18 13 02530 29

10 rd op3 rs1 —

12

i=0

t

efore

the

l reg-
9.x, a
rs.

SR,

xten-
MEMBAR instruction (see A.32). RDASR withrs1 = 15 andrd≠0 is reserved for future versions
of the architecture; it causes anillegal_instruction exception.

RDTICK causes aprivileged_action exception if PSTATE.PRIV = 0 and TICK.NPT = 1.

For RDPC, the high-order 32-bits of the PC value stored inr[rd] are implementation-dependen
when PSTATE.AM = 1 (impl. dep. #125).

RDFPRS waits for all pending FPops and loads of floating-point registers to complete b
reading the FPRS register.

IMPL. DEP. #47: RDASR instructions with rd in the range 16..31 are available for implementation-depen-
dent uses (impl. dep. #8). For a RDASR instruction with rs1 in the range 16 .. 31, the following are imple-
mentation-dependent: the interpretation of bits 13:0 and 29:25 in the instruction, whether the instruction is
privileged (impl. dep. #9), and whether the instruction causes an illegal_instruction exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending
SPARC-V9 instruction set using read/write ASR instructions.

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-contro
isters. See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revision
document available from SPARC International, for information on implemented ancillary state registe

Compatibility Note:
The SPARC-V8 RDPSR, RDWIM, and RDTBR instructions do not exist in SPARC-V9 since the P
WIM, and TBR registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (RDASR only; implementation-dependent (impl. dep. #47))
illegal_instruction (RDASR withrs1 = 1 or 7..14; RDASR withrs1 = 15 andrd≠0; RDASR

with rs1 = 16..31 and the implementation does not define the instruction as an e
sion; implementation-dependent (impl. dep. #47))

privileged_action (RDTICK only)

as the
o the

tion in
A.45 RETURN

Format (3):

Description:

The RETURN instruction causes a delayed transfer of control to the target address and h
window semantics of a RESTORE instruction; that is, it restores the register window prior t
last SAVE instruction. The target address is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1. Registersr[rs1] andr[rs2] come from theold window.

The RETURN instruction may cause an exception. It may cause awindow_fill exception as part of
its RESTORE semantics or it may cause amem_address_not_aligned exception if either of the two
low-order bits of the target address are nonzero.

Programming Note:
To reexecute the trapped instruction when returning from a user trap handler, use the RETURN instruc
the delay slot of a JMPL instruction, for example:

jmpl %l6,%g0 ! Trapped PC supplied to user trap handler
return %l7 ! Trapped nPC supplied to user trap handler

Programming Note:
A routine that uses a register window may be structured either as

save %sp,- framesize, %sp
. . .
ret ! Same as jmpl %i7 + 8, %g0
restore ! Something useful like “restore %o2,%l2,%o0”

or as

save %sp,- framesize, %sp
. . .
return %i7 + 8
nop ! Could do some useful work in the caller’s

! window e.g. “or %o1, %o2,%o0”

Exceptions:
mem_address_not_aligned
fill_n_normal (n = 0..7)

Opcode op3 Operation

RETURN 11 1001 RETURN

Suggested Assembly Language Syntax

return address

31 24 02530 29 19 18

—10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1—

fill_n_other (n = 0..7)

; that

exe-

like

ruc-
ction
WP.

soft-

toring
A.46 SAVE and RESTORE

Format (3):

Description (Effect on Nonprivileged State):

The SAVE instruction provides the routine executing it with a new register window. Theout regis-
ters from the old window become thein registers of the new window. The contents of theout and
the local registers in the new window are zero or contain values from the executing process
is, the process sees a clean window.

The RESTORE instruction restores the register window saved by the last SAVE instruction
cuted by the current process. Thein registers of the old window become theout registers of the
new window. Thein andlocal registers in the new window contain the previous values.

Furthermore, if and only if a spill or fill trap is not generated, SAVE and RESTORE behave
normal ADD instructions, except that the source operandsr[rs1] and/orr[rs2] are read from the
old window (that is, the window addressed by the original CWP) and the sum is written intor[rd]
of thenew window (that is, the window addressed by the new CWP).

Note that CWP arithmetic is performed modulo the number of implemented windows,NWIN-
DOWS.

Programming Note:
Typically, if a SAVE (RESTORE) instruction traps, the spill (fill) trap handler returns to the trapped inst
tion to reexecute it. So, although the ADD operation is not performed the first time (when the instru
traps), it is performed the second time the instruction executes. The same applies to changing the C

Programming Note:
The SAVE instruction can be used to atomically allocate a new window in the register file and a new
ware stack frame in memory. See H.1.2, “Leaf-Procedure Optimization,” for details.

Programming Note:
There is a performance tradeoff to consider between using SAVE/RESTORE and saving and res
selected registers explicitly.

Opcode op3 Operation

SAVE 11 1100 Save caller’s window

RESTORE 11 1101 Restore caller’s window

Suggested Assembly Language Syntax

save regrs1, reg_or_imm, regrd

restore regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

10 op3 rs1 simm13i=1rd

SAVE

trap
dler

d. It
–

e

t pro-
incre-

ner-
, as
P

ATE
dows”

Y

Description (effect on privileged state):

If the SAVE instruction does not trap, it increments the CWP (mod NWINDOWS) to provide a
new register window and updates the state of the register windows by decrementing CAN
and incrementing CANRESTORE.

If the new register window is occupied (that is, CANSAVE = 0), a spill trap is generated. The
vector for the spill trap is based on the value of OTHERWIN and WSTATE. The spill trap han
is invoked with the CWP set to point to the window to be spilled (that is, old CWP+ 2).

If CANSAVE ≠ 0, the SAVE instruction checks whether the new window needs to be cleane
causes aclean_window trap if the number of unused clean windows is zero, that is, (CLEANWIN
CANRESTORE) = 0. Theclean_window trap handler is invoked with the CWP set to point to th
window to be cleaned (that is, old CWP+ 1).

If the RESTORE instruction does not trap, it decrements the CWP (mod NWINDOWS) to restore
the register window that was in use prior to the last SAVE instruction executed by the curren
cess. It also updates the state of the register windows by decrementing CANRESTORE and
menting CANSAVE.

If the register window to be restored has been spilled (CANRESTORE = 0), a fill trap is ge
ated. The trap vector for the fill trap is based on the values of OTHERWIN and WSTATE
described in 7.5.2.1, “Trap Type for Spill/Fill Traps.” The fill trap handler is invoked with CW
set to point to the window to be filled, that is, old CWP – 1.

Programming Note:
The vectoring of spill and fill traps can be controlled by setting the value of the OTHERWIN and WST
registers appropriately. For details, see the unnumbered subsection titled “Splitting the Register Win
in H.2.3, “Client-Server Model.”

Programming Note:
The spill (fill) handler normally will end with a SAVED (RESTORED) instruction followed by a RETR
instruction.

Exceptions:
clean_window (SAVE only)
fill_n_normal (RESTORE only,n=0..7)
fill_n_other (RESTORE only,n = 0..7)
spill_n_normal (SAVE only,n = 0..7)
spill_n_other (SAVE only,n = 0..7)

illed

0).

ate
onsis-
A.47 SAVED and RESTORED

Format (3):

Description:

SAVED and RESTORED adjust the state of the register-windows control registers.

SAVED increments CANSAVE. If OTHERWIN = 0, it decrements CANRESTORE.
If OTHERWIN≠0, it decrements OTHERWIN.

RESTORED increments CANRESTORE. If CLEANWIN< (NWINDOWS-1), RESTORED
increments CLEANWIN. If OTHERWIN = 0, it decrements CANSAVE.
If OTHERWIN ≠ 0, it decrements OTHERWIN.

Programming Note:
The spill (fill) handlers use the SAVED (RESTORED) instruction to indicate that a window has been sp
(filled) successfully. See H.2.2, “Example Code for Spill Handler,” for details.

Programming Note:
Normal privileged software would probably not do a SAVED or RESTORED from trap level zero (TL =
However, it is not illegal to do so, and does not cause a trap.

Programming Note:
Executing a SAVED (RESTORED) instruction outside of a window spill (fill) trap handler is likely to cre
an inconsistent window state. Hardware will not signal an exception, however, since maintaining a c
tent window state is the responsibility of privileged software.

Exceptions:
privileged_opcode
illegal_instruction (fcn=2..31)

Opcode op3 fcn Operation

SAVEDP 11 0001 0 Window has been Saved

RESTOREDP 11 0001 1 Window has been Restored

— 11 0001 2..31 Reserved

Suggested Assembly Language Syntax

saved

restored

31 1924 18 02530 29

10 fcn op3 —

s

ss than

he neg-
A.48 SETHI

Format (2):

Description:

SETHI zeroes the least significant 10 bits and the most significant 32 bits ofr[rd], and replaces
bits 31 through 10 ofr[rd] with the value from itsimm22 field.

SETHI does not affect the condition codes.

A SETHI instruction withrd = 0 and imm22= 0 is defined to be a NOP instruction, which i
defined in A.40.

Programming Note:
The most common form of 64-bit constant generation is creating stack offsets whose magnitude is le
232. The code below can be used to create the constant 0000 0000 ABCD 123416:

sethi %hi(0xabcd1234),%o0
or %o0, 0x234, %o0

The following code shows how to create a negative constant. Note that the immediate field of thexor
instruction is sign extended and can be used to get 1s in all of the upper 32 bits. For example, to set t
ative constant FFFF FFFF ABCD 123416:

sethi %hi(0x5432edcb),%o0! note 0x5432EDCB, not 0xABCD1234
xor %o0, 0x1e34, %o0 ! part of imm. overlaps upper bits

Exceptions:
(none)

Opcode op op2 Operation

SETHI 00 100 Set High 22 Bits of Low Word

Suggested Assembly Language Syntax

sethi const22, regrd

sethi %hi (value), regrd

31 2224 21 02530 29

00 rd 100 imm22

A.49 Shift

Format (3):

Description:

When i = 0 andx = 0, the shift count is the least significant five bits ofr[rs2]. When i = 0 and
x = 1, the shift count is the least significant six bits ofr[rs2]. Wheni = 1 andx = 0, the shift count
is the immediate value specified in bits 0 through 4 of the instruction. Wheni = 1 andx = 1, the
shift count is the immediate value specified in bits 0 through 5 of the instruction.

SLL and SLLX shift all 64 bits of the value inr[rs1] left by the number of bits specified by the
shift count, replacing the vacated positions with zeroes, and write the shifted result tor[rd].

Opcode op3 x Operation

SLL 10 0101 0 Shift Left Logical - 32 Bits

SRL 10 0110 0 Shift Right Logical - 32 Bits

SRA 10 0111 0 Shift Right Arithmetic - 32 Bits

SLLX 10 0101 1 Shift Left Logical - 64 Bits

SRLX 10 0110 1 Shift Right Logical - 64 Bits

SRAX 10 0111 1 Shift Right Arithmetic - 64 Bits

Suggested Assembly Language Syntax

sll regrs1, reg_or_shcnt, regrd

srl regrs1, reg_or_shcnt, regrd

sra regrs1, reg_or_shcnt, regrd

sllx regrs1, reg_or_shcnt, regrd

srlx regrs1, reg_or_shcnt, regrd

srax regrs1, reg_or_shcnt, regrd

i x Shift count

0 0 bits 4 .. 0 ofr[rs2]

0 1 bits 5 .. 0 ofr[rs2]

1 0 bits 4..0 of instruction

1 1 bits 5..0 of instruction

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0 x

rd10 op3 —rs1 shcnt32i=1 x=0

rd10 op3 —rs1 shcnt64i=1 x=1

6

ft
tten to

ft
ritten

ft
t

ft

2-bit

nto
SRL shifts the low 32 bits of the value inr[rs1] right by the number of bits specified by the shi
count. Zeroes are shifted into bit 31. The upper 32 bits are set to zero, and the result is wri
r[rd].

SRLX shifts all 64 bits of the value inr[rs1] right by the number of bits specified by the shi
count. Zeroes are shifted into the vacated high-order bit positions, and the shifted result is w
to r[rd].

SRA shifts the low 32 bits of the value inr[rs1] right by the number of bits specified by the shi
count, and replaces the vacated positions with bit 31 ofr[rs1]. The high order 32 bits of the resul
are all set with bit 31 ofr[rs1], and the result is written tor[rd].

SRAX shifts all 64 bits of the value inr[rs1] right by the number of bits specified by the shi
count, and replaces the vacated positions with bit 63 ofr[rs1]. The shifted result is written to
r[rd].

No shift occurs when the shift count is zero, but the high-order bits are affected by the 3
shifts as noted above.

These instructions do not modify the condition codes.

Programming Note:
“Arithmetic left shift by 1 (and calculate overflow)” can be effected with the ADDcc instruction.

Programming Note:
The instruction “sra rs1,0, rd” can be used to convert a 32-bit value to 64 bits, with sign extension i
the upper word. “srl rs1,0, rd” can be used to clear the upper 32 bits ofr[rd].

Exceptions:
(none)

ed or
eset

g.

s exe-
tware-
bout

e is
A.50 Software-Initiated Reset

Format (3):

Description:

SIR is used to generate a software-initiated reset (SIR). It may be executed in either privileg
nonprivileged mode, with slightly different effect. As with other traps, a software-initiated r
performs different actions when TL = MAXTL than it does when TL< MAXTL.

When executed in user mode, the action of SIR is conditional on the SIR_enable control fla

IMPL. DEP. #116: The location of the SIR_enable control flag and the means of accessing the SIR_enable
control flag are implementation-dependent. In some implementations it may be permanently zero.

When SIR_enable is 0, SIR executes without effect (as a NOP) in user mode. When SIR i
cuted in privileged mode or in user mode with SIR_enable = 1, the processor performs a sof
initiated reset. See 7.6.2.5, “Software-Initiated Reset (SIR) Traps,” for more information a
software-initiated resets.

Programming Note:
This instruction is never illegal. It is not a privileged instruction, even though its action in privileged mod
different than in user mode.

Exceptions:
software_initiated_reset

Opcode op3 rd Operation

SIR 11 0000 15 Software-initiated reset

Suggested Assembly Language Syntax

sir simm13

31 1924 18 02530 29

10 0 1111 op3

14 13

0 0000 simm13

12

i=1

by

emory.

that

mory

rations
mory by
llowed
d not to

sors.
A.51 Store Barrier

Format (3):

Description:

The store barrier instruction (STBAR) forcesall store and atomic load-store operations issued
a processor prior to the STBAR to complete their effects on memory beforeany store or atomic
load-store operations issued by that processor subsequent to the STBAR are executed by m

Note that the encoding of STBAR is identical to that of the RDASR instruction except
rs1 = 15 andrd = 0, and is identical to that of the MEMBAR instruction except that bit 13 (i) = 0.

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Compatibility Note:
STBAR is identical in function to a MEMBAR instruction withmmask= 816. STBAR is retained for com-
patibility with SPARC-V8.

Implementation Note:
For correctness, it is sufficient for a processor to stop issuing new store and atomic load-store ope
when an STBAR is encountered and resume after all stores have completed and are observed in me
all processors. More efficient implementations may take advantage of the fact that the processor is a
to issue store and load-store operations after the STBAR, as long as those operations are guarantee
become visible before all the earlier stores and atomic load-stores have become visible to all proces

Exceptions:
(none)

Opcode op3 Operation

STBARD 10 1000 Store Barrier

Suggested Assembly Language Syntax

stbar

The STBAR instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the MEMBAR instruction be used in its place.

31 141924 18 13 02530 29

10 0 op3 0 1111 —

12

0

ting-

t reg-

uting

ting
A.52 Store Floating-Point

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The store single floating-point instruction (STF) copiesf [rd] into memory.

The store double floating-point instruction (STDF) copies a doubleword from a double floa
point register into a word-aligned doubleword in memory.

The store quad floating-point instruction (STQF) copies the contents of a quad floating-poin
ister into a word-aligned quadword in memory.

The store floating-point state register lower instruction (STFSR) waits for any currently exec
FPop instructions to complete, and then writes the lower 32 bits of the FSR into memory.

The store floating-point state register instruction (STXFSR) waits for any currently execu
FPop instructions to complete, and then writes all 64 bits of the FSR into memory.

Opcode op3 rd Operation

STF 10 0100 0..31 Store Floating-Point Register

STDF 10 0111 † Store Double Floating-Point Register

STQF 10 0110 † Store Quad Floating-Point Register

STFSRD 10 0101 0 Store Floating-Point State Register Lower

STXFSR 10 0101 1 Store Floating-Point State Register

— 10 0101 2..31 Reserved

Suggested Assembly Language Syntax

st freg rd , [address]

std freg rd , [address]

stq freg rd , [address]

st %fsr , [address]

stx %fsr , [address]

The STFSR instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the STXFSR instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

store
FSR.

gister
truc-

e that
stores
en they
Compatibility Note:
SPARC-V9 needs two store-FSR instructions, since the SPARC-V8 STFSR instruction is defined to
only 32 bits of the FSR into memory. STXFSR allows SPARC-V9 programs to store all 64 bits of the

STFSR and STXFSR zero FSR.ftt after writing the FSR to memory.

Implementation Note:
FSR.ftt should not be zeroed until it is known that the store will not cause a precise trap.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1.

STF, STFSR, STDF, and STQF cause amem_address_not_aligned exception if the effective mem-
ory address is not word-aligned; STXFSR causes amem_address_not_aligned exception if the
address is not doubleword-aligned. If the floating-point unit is not enabled for the source re
rd (per FPRS.FEF and PSTATE.PEF), or if the FPU is not present, a store floating-point ins
tion causes anfp_disabled exception.

IMPL. DEP. #110(1): STDF requires only word alignment in memory. If the effective address is word-
aligned but not doubleword-aligned, it may cause an STDF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the STDF instruction and return.

IMPL. DEP. #112(1): STQF requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, it may cause an STQF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the STQF instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not determin
double- or quadword operands were properly aligned. For SPARC-V9, since emulation of misaligned
is expected to be fast, it is recommended that compilers issue sets of single-precision stores only wh
can determine that double- or quadword operands arenot properly aligned.

Exceptions:
async_data_error
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDF only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQF only) (impl. dep. #112)
data_access_exception
data_access_protection
data_access_MMU_miss
data_access_error
illegal_instruction (op3= 2516 andrd = 2..31)
fp_exception_other (invalid_fp_register (STQF only))

word

s of a

SI) to

hese

rnate
A.53 Store Floating-Point into Alternate Space

† Encoded floating-point register value, as described in 5.1.4.1

Format (3):

Description:

The store single floating-point into alternate space instruction (STFA) copiesf[rd] into memory.

The store double floating-point into alternate space instruction (STDFA) copies a double
from a double floating-point register into a word-aligned doubleword in memory.

The store quad floating-point into alternate space instruction (STQFA) copies the content
quad floating-point register into a word-aligned quadword in memory.

Store floating-point into alternate space instructions contain the address space identifier (A
be used for the load in theimm_asifield if i = 0, or in the ASI register ifi = 1. The access is privi-
leged if bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for t
instructions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

STFA, STDFA, and STQFA cause amem_address_not_aligned exception if the effective memory
address is not word-aligned. If the floating-point unit is not enabled for the source registerrd (per
FPRS.FEF and PSTATE.PEF), or if the FPU is not present, store floating-point into alte
space instructions cause anfp_disabled exception.

STFA, STDFA, and STQFA cause aprivileged_action exception if PSTATE.PRIV = 0 and bit 7 of
the ASI is zero.

Opcode op3 rd Operation

STFAPASI 11 0100 0..31 Store Floating-Point Register to Alternate Space

STDFAPASI 11 0111 † Store Double Floating-Point Register to Alternate Space

STQFAPASI 11 0110 † Store Quad Floating-Point Register to Alternate Space

Suggested Assembly Language Syntax

sta freg rd , [regaddr] imm_asi

sta freg rd , [reg_plus_imm] %asi

stda freg rd , [regaddr] imm_asi

stda freg rd , [reg_plus_imm] %asi

stqa freg rd , [regaddr] imm_asi

stqa freg rd , [reg_plus_imm] %asi

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

e that
stores
en they
IMPL. DEP. #110(2): STDFA requires only word alignment in memory. If the effective address is word-
aligned but not doubleword-aligned, it may cause an STDF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the STDFA instruction and return.

IMPL. DEP. #112(2): STQFA requires only word alignment in memory. If the effective address is word-
aligned but not quadword-aligned, it may cause an STQF_mem_address_not_aligned exception. In this
case the trap handler software shall emulate the STQFA instruction and return.

Programming Note:
In SPARC-V8, some compilers issued sets of single-precision stores when they could not determin
double- or quadword operands were properly aligned. For SPARC-V9, since emulation of misaligned
is expected to be fast, it is recommended that compilers issue sets of single-precision stores only wh
can determine that double- or quadword operands arenot properly aligned.

Exceptions:
async_data_error
fp_disabled
mem_address_not_aligned
STDF_mem_address_not_aligned (STDFA only) (impl. dep. #110)
STQF_mem_address_not_aligned (STQFA only) (impl. dep. #112)
privileged_action
data_access_exception
data_access_protection
data_access_MMU_miss
data_access_error
fp_exception_other (invalid_fp_register (STQFA only))

teger,

t

ttempt
A.54 Store Integer

Format (3):

Description:
The store integer instructions (except store doubleword) copy the whole extended (64-bit) in
the less-significant word, the least significant halfword, or the least significant byte ofr[rd] into
memory.

The store doubleword integer instruction (STD) copies two words from anr register pair into
memory. The least significant 32 bits of the even-numberedr register are written into memory a
the effective address, and the least significant 32 bits of the following odd-numberedr register are
written into memory at the “effective address + 4.” The least significant bit of therd field of a
store doubleword instruction is unused and should always be set to zero by software. An a
to execute a store doubleword instruction that refers to a misaligned (odd-numbered)rd causes an
illegal_instruction exception.

IMPL. DEP. #108(1): IT is implementation-dependent whether STD is implemented in hardware. if not, an
attempt to execute it will cause an unimplemented_STD exception.

Opcode op3 Operation

STB 00 0101 Store Byte

STH 00 0110 Store Halfword

STW 00 0100 Store Word

STX 00 1110 Store Extended Word

STDD 00 0111 Store Doubleword

Suggested Assembly Language Syntax

stb regrd, [address] (synonyms: stub , stsb)

sth regrd, [address] (synonyms: stuh , stsh)

stw regrd, [address] (synonyms: st , stuw , stsw)

stx regrd, [address]

std regrd, [address]

The STD instruction isdeprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that the STX instruction be used in its place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

ically.

d.
d.
e-

use
ulation
The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1.

A successful store (notably, store extended and store doubleword) instruction operates atom

STH causes amem_address_not_aligned exception if the effective address is not halfword-aligne
STW causes amem_address_not_aligned exception if the effective address is not word-aligne
STX and STD causes amem_address_not_aligned exception if the effective address is not doubl
word-aligned.

Programming Note:
STD is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machines beca
of data path and register-access difficulties. In some SPARC-V9 systems it may cause a trap to em
code; therefore, STD should be avoided.

If STD is emulated in software, STX should be used in order to preserve atomicity.

Compatibility Note:
The SPARC-V8 ST instruction has been renamed STW in SPARC-V9.

Exceptions:
async_data_error
unimplemented_STD (STD only) (impl. dep. #108)
illegal_instruction (STD with oddrd)
mem_address_not_aligned (all except STB)
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss

whole
t-sig-

t

ttempt
A.55 Store Integer into Alternate Space

Format (3):

Description:
The store integer into alternate space instructions (except store doubleword) copy the
extended (64-bit) integer, the less-significant word, the least-significant halfword, or the leas
nificant byte ofr[rd] into memory.

The store doubleword integer instruction (STDA) copies two words from anr register pair into
memory. The least-significant 32 bits of the even-numberedr register are written into memory a
the effective address, and the least-significant 32 bits of the following odd-numberedr register are
written into memory at the “effective address + 4.” The least significant bit of therd field of a
store doubleword instruction is unused and should always be set to zero by software. An a

Opcode op3 Operation

STBAPASI 01 0101 Store Byte into Alternate space

STHAPASI 01 0110 Store Halfword into Alternate space

STWAPASI 01 0100 Store Word into Alternate space

STXAPASI 01 1110 Store Extended Word into Alternate space

STDAD, PASI 01 0111 Store Doubleword into Alternate space

Suggested Assembly Language Syntax

stba regrd, [regaddr] imm_asi (synonyms: stuba , stsba)

stha regrd, [regaddr] imm_asi (synonyms: stuha , stsha)

stwa regrd, [regaddr] imm_asi (synonyms: sta , stuwa , stswa)

stxa regrd, [regaddr] imm_asi

stda regrd, [regaddr] imm_asi

stba regrd, [reg_plus_imm] %asi (synonyms: stuba , stsba)

stha regrd, [reg_plus_imm] %asi (synonyms: stuha , stsha)

stwa regrd, [reg_plus_imm] %asi (synonyms: sta , stuwa , stswa)

stxa regrd, [reg_plus_imm] %asi

stda regrd, [reg_plus_imm] %asi

The STDA instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the STXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

e used

truc-

ically.

-
-

s

es
to emu-
to execute a store doubleword instruction that refers to a misaligned (odd-numbered)rd causes an
illegal_instruction exception.

IMPL. DEP. #108(2): It is implementation-dependent whether STDA is implemented in hardware. If not, an
attempt to execute it will cause an unimplemented_STD exception.

Store integer to alternate space instructions contain the address space identifier (ASI) to b
for the store in theimm_asifield if i = 0, or in the ASI register ifi = 1. The access is privileged if
bit seven of the ASI is zero; otherwise, it is not privileged. The effective address for these ins
tions is “r[rs1] + r[rs2]” if i = 0, or “r[rs1]+sign_ext(simm13)” if i = 1.

A successful store (notably, store extended and store doubleword) instruction operates atom

STHA causes amem_address_not_aligned exception if the effective address is not halfword
aligned. STWA causes amem_address_not_aligned exception if the effective address is not word
aligned. STXA and STDA cause amem_address_not_aligned exception if the effective address i
not doubleword-aligned.

A store integer into alternate space instruction causes aprivileged_action exception if
PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

Programming Note:
STDA is provided for compatibility with SPARC-V8. It may execute slowly on SPARC-V9 machin
because of data path and register-access difficulties. In some SPARC-V9 systems it may cause a trap
lation code; therefore, STDA should be avoided.

If STDA is emulated in software, STXA should be used in order to preserve atomicity.

Compatibility Note:
The SPARC-V8 STA instruction is renamed STWA in SPARC-V9.

Exceptions:
async_data_error
unimplemented_STD (STDA only) (impl. dep. #108)
illegal_instruction (STDA with oddrd)
privileged_action
mem_address_not_aligned (all except STBA)
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss

) of

thetic
A.56 Subtract

Format (3):

Description:

These instructions compute “r[rs1] – r[rs2]” if i = 0, or “r[rs1] – sign_ext(simm13)” if i = 1, and
write the difference intor[rd].

SUBC and SUBCcc (“SUBtract with carry”) also subtract the CCR register’s 32-bit carry (icc.c)
bit; that is, they compute “r[rs1] – r[rs2] – icc.c” or “ r[rs1] – sign_ext(simm13) –icc.c,” and write
the difference intor[rd].

SUBcc and SUBCcc modify the integer condition codes (CCR.icc and CCR.xcc). 32-bit overflow
(CCR.icc.v) occurs on subtraction if bit 31 (the sign) of the operands differ and bit 31 (the sign
the difference differs fromr[rs1]<31>. 64-bit overflow (CCR.xcc.v) occurs on subtraction if bit 63
(the sign) of the operands differ and bit 63 (the sign) of the difference differs fromr[rs1]<63>.
Programming Note:

A SUBcc withrd = 0 can be used to effect a signed or unsigned integer comparison. See the CMP syn
instruction in Appendix G.

Programming Note:
SUBC and SUBCcc read the 32-bit condition codes’ carry bit (CCR.icc.c), not the 64-bit condition codes’
carry bit (CCR.xcc.c).

Compatibility Note:
SUBC and SUBCcc were named SUBX and SUBXcc, respectively, in SPARC-V8.

Exceptions:
(none)

Opcode op3 Operation

SUB 00 0100 Subtract

SUBcc 01 0100 Subtract and modify cc’s

SUBC 00 1100 Subtract with Carry

SUBCcc 01 1100 Subtract with Carry and modify cc’s

Suggested Assembly Language Syntax

sub regrs1, reg_or_imm, regrd

subcc regrs1, reg_or_imm, regrd

subc regrs1, reg_or_imm, regrd

subccc regrs1, reg_or_imm, regrd

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

ry
is,

more
ns
m in an

mory

docu-
these
A.57 Swap Register with Memory

Format (3):

Description:

SWAP exchanges the lower 32 bits ofr[rd] with the contents of the word at the addressed memo
location. The upper 32 bits ofr[rd] are set to zero. The operation is performed atomically, that
without allowing intervening interrupts or deferred traps. In a multiprocessor system, two or
processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instructio
addressing any or all of the same doubleword simultaneously are guaranteed to execute the
undefined but serial order.

The effective address for these instructions is “r[rs1] + r[rs2]” if i = 0, or
“ r[rs1] + sign_ext(simm13)” if i = 1. This instruction causes amem_address_not_aligned exception
if the effective address is not word-aligned.

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Implementation Note:
See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a
ment available from SPARC International, for information on the presence of hardware support for
instructions in the various SPARC-V9 implementations.

Exceptions:
mem_address_not_aligned
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss

Opcode op3 Operation

SWAPD 00 1111 SWAP register with memory

Suggested Assembly Language Syntax

swap [address], regrd

The SWAP instruction is deprecated; it is provided only for compatibility with pre-
vious versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the CASA (or CASXA) instruction be used in its
place.

31 24 02530 29 19 18 14 13 12 5 4

rd11 op3 rs1 simm13i=1

rd11 op3 rs1 i=0 — rs2

async_data_error

m-
at
o or
c-

te them

in the
I

-

mory

docu-
r this
A.58 Swap Register with Alternate Space Memory

Format (3):

Description:

SWAPA exchanges the lower 32 bits ofr[rd] with the contents of the word at the addressed me
ory location. The upper 32 bits ofr[rd] are set to zero. The operation is performed atomically, th
is, without allowing intervening interrupts or deferred traps. In a multiprocessor system, tw
more processors executing CASA, CASXA, SWAP, SWAPA, LDSTUB, or LDSTUBA instru
tions addressing any or all of the same doubleword simultaneously are guaranteed to execu
in an undefined, but serial order.

The SWAPA instruction contains the address space identifier (ASI) to be used for the load
imm_asifield if i = 0, or in the ASI register ifi = 1. The access is privileged if bit seven of the AS
is zero; otherwise, it is not privileged. The effective address for this instruction is “r[rs1] + r[rs2]”
if i = 0, or “r[rs1] + sign_ext(simm13)” if i = 1.

This instruction causes amem_address_not_aligned exception if the effective address is not word
aligned. It causes aprivileged_action exception if PSTATE.PRIV = 0 and bit 7 of the ASI is zero.

The coherence and atomicity of memory operations between processors and I/O DMA me
accesses are implementation-dependent (impl. dep #120).

Implementation Note:
See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revision 9.x, a
ment available from SPARC International, for information on the presence of hardware support fo
instruction in the various SPARC-V9 implementations.

Opcode op3 Operation

SWAPAD, PASI 01 1111 SWAP register with Alternate space memory

Suggested Assembly Language Syntax

swapa [regaddr] imm_asi, regrd

swapa [reg_plus_imm] %asi, regrd

The SWAPA instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that the CASXA instruction be used in its place.

31 24 02530 29 19 18

rd11 op3 imm_asi

14 13 12 5 4

rs1 rs2i=0

rd11 op3 rs1 simm13i=1

Exceptions:
mem_address_not_aligned
privileged_action
data_access_exception
data_access_error
data_access_protection
data_access_MMU_miss
async_data_error

en-
31 of

um is

, the
ed

tic

-add
it
A.59 Tagged Add

Format (3):

Description:

These instructions compute a sum that is “r[rs1] + r[rs2]” if i = 0, or “r[rs1] + sign_ext(simm13)”
if i = 1.

TADDcc modifies the integer condition codes (icc andxcc), and TADDccTV does so also, if it
does not trap.

A tag_overflow exception occurs if bit 1 or bit 0 of either operand is nonzero, or if the addition g
erates 32-bit arithmetic overflow (i.e., both operands have the same value in bit 31, and bit
the sum is different).

If TADDccTV causes a tag overflow, atag_overflow exception is generated, andr[rd] and the inte-
ger condition codes remain unchanged. If a TADDccTV does not cause a tag overflow, the s
written intor[rd], and the integer condition codes are updated. CCR.icc.v is set to 0 to indicate no
32-bit overflow. If a TADDcc causes a tag overflow, the 32-bit overflow bit (CCR.icc.v) is set to 1;
if it does not cause a tag overflow, CCR.icc.v is cleared.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the
CCR.xccbits) are also updated as they would be for a normal ADD instruction. In particular
setting of the CCR.xcc.vbit is not determined by the tag overflow condition (tag overflow is us
only to set the 32-bit overflow bit). CCR.xcc.v is set only based on the normal 64-bit aritheme
overflow condition, like a normal 64-bit add.
Compatibility Note:

TADDccTV traps based on the 32-bit overflow condition, just as in SPARC-V8. Although the tagged
instructions set the 64-bit condition codes CCR.xcc, there is no form of the instruction that traps the 64-b
overflow condition.

Opcode op3 Operation

TADDcc 10 0000 Tagged Add and modify cc’s

TADDccTVD 10 0010 Tagged Add and modify cc’s, or Trap on Overflow

Suggested Assembly Language Syntax

taddcc regrs1, reg_or_imm, regrd

taddcctv regrs1, reg_or_imm, regrd

The TADDccTV instruction is deprecated; it is provided only for compatibility
with previous versions of the architecture. It should not be used in new SPARC-V9
software. It is recommended that TADDcc followed by BPVS be used in its place
(with instructions to save the pre-TADDcc integer condition codes, if necessary).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

Exceptions:
tag_overflow (TADDccTV only)

r

rates
bit)

dition,

bit

ular,
is
it
A.60 Tagged Subtract

Format (3):

Description:

These instructions compute “r[rs1] – r[rs2]” if i = 0, or “r[rs1] – sign_ext(simm13)” if i = 1.

TSUBcc modifies the integer condition codes (icc andxcc); TSUBccTV also modifies the intege
condition codes, if it does not trap.

A tag overflow occurs if bit 1 or bit 0 of either operand is nonzero, or if the subtraction gene
32-bit arithmetic overflow; that is, the operands have different values in bit 31 (the 32-bit sign
and the sign of the 32-bit difference in bit 31 differs from bit 31 ofr[rs1].

If TSUBccTV causes a tag overflow, atag_overflow exception is generated andr[rd] and the inte-
ger condition codes remain unchanged. If a TSUBccTV does not cause a tag overflow con
the difference is written intor[rd], and the integer condition codes are updated. CCR.icc.v is set to
0 to indicate no 32-bit overflow. If a TSUBcc causes a tag overflow, the 32-bit overflow
(CCR.icc.v) is set to 1; if it does not cause a tag overflow, CCR.icc.v is cleared.

In either case, the remaining integer condition codes (both the other CCR.icc bits and all the
CCR.xcc bits) are also updated as they would be for a normal subtract instruction. In partic
the setting of the CCR.xcc.vbit is not determined by the tag overflow condition (tag overflow
used only to set the 32-bit overflow bit). CCR.xcc.v is set only based on the normal 64-b
arithemetic overflow condition, like a normal 64-bit subtract.

Opcode op3 Operation

TSUBcc 10 0001 Tagged Subtract and modify cc’s

TSUBccTVD 10 0011 Tagged Subtract and modify cc’s, or Trap on Overflow

Suggested Assembly Language Syntax

tsubcc regrs1, reg_or_imm, regrd

tsubcctv regrs1, reg_or_imm, regrd

The TSUBccTV instruction is deprecated; it is provided only for compatibility with
previous versions of the architecture. It should not be used in new SPARC-V9 soft-
ware. It is recommended that TSUBcc followed by BPVS be used in its place (with
instructions to save the pre-TSUBcc integer condition codes, if necessary).

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

ged-
n

Compatibility Note:
TSUBccTV traps are based on the 32-bit overflow condition, just as in SPARC-V8. Although the tag
subtract instructions set the 64-bit condition codes CCR.xcc, there is no form of the instruction that traps o
64-bit overflow.

Exceptions:
tag_overflow (TSUBccTV only)

A.61 Trap on Integer Condition Codes (Tcc)

Format (4):

Opcode op3 cond Operation icc test

TA 11 1010 1000 Trap Always 1

TN 11 1010 0000 Trap Never 0

TNE 11 1010 1001 Trap on Not Equal not Z

TE 11 1010 0001 Trap on Equal Z

TG 11 1010 1010 Trap on Greater not (Z or (N xor V))

TLE 11 1010 0010 Trap on Less or Equal Z (N xor V)

TGE 11 1010 1011 Trap on Greater or Equal not (N xor V)

TL 11 1010 0011 Trap on Less N xor V

TGU 11 1010 1100 Trap on Greater Unsigned not (C or Z)

TLEU 11 1010 0100 Trap on Less or Equal Unsigned (C or Z)

TCC 11 1010 1101 Trap on Carry Clear(Greater than or Equal, Unsigned) not C

TCS 11 1010 0101 Trap on Carry Set (Less Than, Unsigned) C

TPOS 11 1010 1110 Trap on Positive or zero not N

TNEG 11 1010 0110 Trap on Negative N

TVC 11 1010 1111 Trap on Overflow Clear not V

TVS 11 1010 0111 Trap on Overflow Set V

cc1 cc0 Condition codes

00 icc

01 —

10 xcc

11 —

5 4

10 cond op3 rs1 i=0 — rs2

31 141924 18 13 12 02530 29

—

28 7 6

cc1cc0

11 10

10 cond op3 rs1 i=1 —— cc1cc0 sw_trap_#

er-
.

When

rap
pter 7,

sed for

e,
Description:

The Tcc instruction evaluates the selected integer condition codes (icc or xcc) according to the
condfield of the instruction, producing either a TRUE or FALSE result. If TRUE and no high
priority exceptions or interrupt requests are pending, then atrap_instruction exception is generated
If FALSE, atrap_instruction exception does not occur and the instruction behaves like a NOP.

The software trap number is specified by the least significant seven bits of “r[rs1] + r[rs2]” if
i = 0, or the least significant seven bits of “r[rs1] + sw_trap_#” if i = 1.

When i = 1, bits 7 through 10 are reserved and should be supplied as zeros by software.
i = 0, bits 5 through 10 are reserved, and the most significant 57 bits of “r[rs1] + r[rs2]” are
unused, and both should be supplied as zeros by software.

Description (Effect on Privileged State):

If a trap_instruction traps, 256 plus the software trap number is written into TT[TL]. Then the t
is taken, and the processor performs the normal trap entry procedure, as described in Cha
“Traps.”

Programming Note:
Tcc can be used to implement breakpointing, tracing, and calls to supervisor software. It can also be u
run-time checks, such as out-of-range array indexes, integer overflow, etc.

Compatibility Note:
Tcc is upward compatible with the SPARC-V8 Ticc instruction, with one qualification: a Ticc withi = 1 and
simm13< 0 may execute differently on a SPARC-V9 processor. Use of thei = 1 form of Ticc is believed to
be rare in SPARC-V8 software, andsimm13< 0 is probably not used at all, so it is believed that, in practic
full software compatibillity will be achieved.

Exceptions:
trap_instruction

Suggested Assembly Language Syntax

ta i_or_x_cc, software_trap_number

tn i_or_x_cc, software_trap_number

tne i_or_x_cc, software_trap_number (synonym: tnz)

te i_or_x_cc, software_trap_number (synonym: tz)

tg i_or_x_cc, software_trap_number

tle i_or_x_cc, software_trap_number

tge i_or_x_cc, software_trap_number

tl i_or_x_cc, software_trap_number

tgu i_or_x_cc, software_trap_number

tleu i_or_x_cc, software_trap_number

tcc i_or_x_cc, software_trap_number (synonym: tgeu)

tcs i_or_x_cc, software_trap_number (synonym: tlu)

tpos i_or_x_cc, software_trap_number

tneg i_or_x_cc, software_trap_number

tvc i_or_x_cc, software_trap_number

tvs i_or_x_cc, software_trap_number

illegal_instruction (cc1 cc0= 012 or 112)

A.62 Write Privileged Register

Format (3):

Opcode op3 Operation

WRPRP 11 0010 Write Privileged Register

rd Privileged register

0 TPC

1 TNPC

2 TSTATE

3 TT

4 TICK

5 TBA

6 PSTATE

7 TL

8 PIL

9 CWP

10 CANSAVE

11 CANRESTORE

12 CLEANWIN

13 OTHERWIN

14 WSTATE

15..31 Reserved

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

pera-

least
one
L). A
an

state.

care

g

ure;

e state
truc-
Description:

This instruction stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor sign_ext(simm13)” if
i = 1 to the writable fields of the specified privileged state register. Note the exclusive-or o
tion.

The rd field in the instruction determines the privileged register that is written. There are at
four copies of the TPC, TNPC, TT, and TSTATE registers, one for each trap level. A write to
of these registers sets the register indexed by the current value in the trap level register (T
write to TPC, TNPC, TT, or TSTATE when the trap level is zero (TL = 0) causes
illegal_instruction exception.

A WRPR of TL does not cause a trap or return from trap; it does not alter any other machine
Programming Note:

A WRPR of TL can be used to read the values of TPC, TNPC, and TSTATE for any trap level, however,
must be taken that traps do not occur while the TL register is modified.

The WRPR instruction is anondelayed-write instruction. The instruction immediately followin
the WRPR observes any changes made to processor state made by the WRPR.

WRPR instructions withrd in the range 15..31 are reserved for future versions of the architect
executing a WRPR instruction withrd in that range causes anillegal_instruction exception.
Programming Note:

On an implementation that provides a floating-point queue, supervisor software should be aware of th
of the FQ before disabling the floating-point unit (changing PSTATE.PEF from 1 to 0 with a WRPR ins
tion) (impl. dep. #24). Typically, supervisor software ensures that the FQ is empty (FSR.qne= 0) before dis-
abling the floating-point unit.

Exceptions:
privileged_opcode
illegal_instruction ((rd = 15..31) or ((rd ≤ 3) and (TL = 0)))

Suggested Assembly Language Syntax

wrpr regrs1, reg_or_imm, %tpc

wrpr regrs1, reg_or_imm, %tnpc

wrpr regrs1, reg_or_imm, %tstate

wrpr regrs1, reg_or_imm, %tt

wrpr regrs1, reg_or_imm, %tick

wrpr regrs1, reg_or_imm, %tba

wrpr regrs1, reg_or_imm, %pstate

wrpr regrs1, reg_or_imm, %tl

wrpr regrs1, reg_or_imm, %pil

wrpr regrs1, reg_or_imm, %cwp

wrpr regrs1, reg_or_imm, %cansave

wrpr regrs1, reg_or_imm, %canrestore

wrpr regrs1, reg_or_imm, %cleanwin

wrpr regrs1, reg_or_imm, %otherwin

wrpr regrs1, reg_or_imm, %wstate

ive-
A.63 Write State Register

Format (3):

† Syntax for WRASR with rd=16..31 may vary (impl. dep. #48)

Description:

WRY, WRCCR, WRFPRS, and WRASI stores the value “r[rs1] xor r[rs2]” if i = 0, or “r[rs1] xor
sign_ext(simm13)” if i = 1, to the writable fields of the specified state register. Note the exclus
or operation.

Note that WRY, WRCCR, WRASI, WRFPRS, and WRASR are distinguished only by therd field.

Opcode op3 rd Operation

WRYD 11 0000 0 Write Y register

— 11 0000 1 Reserved

WRCCR 11 0000 2 Write Condition Codes Register

WRASI 11 0000 3 Write ASI register

WRASRPASR 11 0000 4, 5 Write Ancillary State Register (reserved)

WRFPRS 11 0000 6 Write Floating-Point Registers Status register

WRASRPASR 11 0000 7..14 Write Ancillary State Register (reserved)

See text 11 0000 15 See text

WRASRPASR 11 0000 16.. 31 Implementation-dependent (impl. dep. #48)

Suggested Assembly Language Syntax

wr regrs1, reg_or_imm, %y

wr regrs1, reg_or_imm, %ccr

wr regrs1, reg_or_imm, %asi

wr regrs1, reg_or_imm, %fprs

wr regrs1, reg_or_imm, asr_regrd †

The WRY instruction is deprecated; it is provided only for compatibility with previ-
ous versions of the architecture. It should not be used in new SPARC-V9 software.
It is recommended that all instructions which reference the Y register be avoided.

31 24 02530 29 19 18

rd10 op3 —

14 13 12 5 4

rs1 rs2i=0

rd10 op3 rs1 simm13i=1

ee

.

the

ew

PRS

l reg-
9.x, a
spe-

the

he
ASR

nden-
re that
WRASR writes a value to the ancillary state register (ASR) indicated byrd. The operation per-
formed to generate the value written may berd-dependent or implementation-dependent (s
below). A WRASR instruction is indicated byop= 216, rd = 4, 5, or ≥ 7 andop3= 3016.

An instruction withop= 216, op3= 3016, rd = 15,rs1 = 0, andi = 1 is defined as a SIR instruction
See A.50, “Software-Initiated Reset.” Whenop= 216, op3= 3016, andrd = 15, if eitherrs1≠0 or
i ≠1, then anillegal_instruction exception shall be generated.

IMPL. DEP. #48: WRASR instructions with rd in the range 16..31 are available for implementation-depen-
dent uses (impl. dep. #8). For a WRASR instruction with rd in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 18:0 in the instruction, the operation(s) performed (for
example, XOR) to generate the value written to the ASR, whether the instruction is privileged (impl. dep.
#9), and whether the instruction causes an illegal_instruction exception.

See I.1.1, “Read/Write Ancillary State Registers (ASRs),” for a discussion of extending
SPARC-V9 instruction set using read/write ASR instructions.

The WRY, WRCCR, WRFPRS, and WRASI instructions arenot delayed-write instructions. The
instruction immediately following a WRY, WRCCR, WRFPRS, or WRASI observes the n
value of the Y, CCR, FPRS, or ASI register.

WRFPRS waits for any pending floating-point operations to complete before writing the F
register.

Implementation Note:
Ancillary state registers may include (for example) timer, counter, diagnostic, self-test, and trap-contro
isters. See <Italic>Implementation Characteristics of Current SPARC-V9-based Products, Revision
document available from SPARC International, for information on ancillary state registers provided by
cific implementations.

Compatibility Note:
The SPARC-V8 WRIER, WRPSR, WRWIM, and WRTBR instructions do not exist in SPARC-V9, since
IER, PSR, TBR, and WIM registers do not exist in SPARC-V9.

Exceptions:
privileged_opcode (WRASR only; implementation-dependent (impl. dep. #48))
illegal_instruction (WRASR with rd = 16..31 and the implementation does not define t

instruction as an extension; implementation-dependent (impl. dep. #48), or WR
with rd equal to 1, 4, 5, or in the range 7..14), WRASR withrd equal to 15 andrs1≠0
or i ≠1

B IEEE Std 754-1985 Requirements for SPARC-V9
The IEEE Std 754-1985 floating-point standard contains a number of implementation-depe
cies. This appendix specifies choices for these implementation-dependencies, to ensu
SPARC-V9 implementations are as consistent as possible.

ating-

trap.

ute
ay be
t
an

that

that

echa-

from,

the
cess
mat,
cant
B.1 Traps Inhibit Results
As described in 5.1.7, “Floating-Point State Register (FSR),” and elsewhere, when a flo
point trap occurs:

— The destination floating-point register(s) (thef registers) are unchanged.

— The floating-point condition codes (fcc0, fcc1, fcc2, andfcc3) are unchanged.

— The FSR.aexc (accrued exceptions) field is unchanged.

— The FSR.cexc(current exceptions) field is unchanged except forIEEE_754_exceptions; in
that case,cexccontains a bit set to “1” corresponding to the exception that caused the
Only one bit shall be set incexc.

Instructions causing anfp_exception_other trap due to unfinished or unimplemented FPops exec
as if by hardware; that is, a trap is undetectable by user software, except that timing m
affected. A user-mode trap handler invoked for anIEEE_754_exception, whether as a direct resul
of a hardwarefp_exception_ieee_754 trap or as an indirect result of supervisor handling of
unfinished_FPop or unimplemented_FPop, can rely on the following:

— The address of the instruction that caused the exception will be available to it.

— The destination floating-point register(s) are unchanged from their state prior to
instruction’s execution.

— The floating-point condition codes (fcc0, fcc1, fcc2, andfcc3) are unchanged.

— The FSRaexc field is unchanged.

— The FSRcexcfield contains exactly one bit set to 1, corresponding to the exception
caused the trap.

— The FSRftt, qne, andreserved fields are zero.

Supervisor software is responsible for enforcing these requirements if the hardware trap m
nism does not.

B.2 NaN Operand and Result Definitions

An untrapped floating-point result can be in a format that is either the same as, or different
the format of the source operands. These two cases are described separately below.

B.2.1 Untrapped Result in Different Format from Operands

F[sdq]TO[sdq] with a quiet NaN operand:
No exception caused; result is a quiet NaN. The operand is transformed as follows:

NaN transformation: The most significant bits of the operand fraction are copied to
most significant bits of the result fraction. When converting to a narrower format, ex
low-order bits of the operand fraction are discarded. When converting to a wider for
excess low-order bits of the result fraction are set to 0. The quiet bit (the most signifi

es a
.

uish

c-
bit of the result fraction) is always set to 1, so the NaN transformation always produc
quiet NaN. The sign bit is copied from the operand to the result without modification

F[sdq]TO[sdq] with a signaling NaN operand:
Invalid exception; result is the signaling NaN operand processed by theNaN transforma-
tion above to produce a quiet NaN.

FCMPE[sdq] with any NaN operand:
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any signaling NaN operand:
Invalid exception; the selected floating-point condition code is set to unordered.

FCMP[sdq] with any quiet NaN operand but no signaling NaN operand:
No exception; the selected floating-point condition code is set to unordered.

B.2.2 Untrapped Result in Same Format as Operands

No NaN operand:
For an invalid operation such assqrt(–1.0) or 0.0÷ 0.0, the result is the quiet NaN with
sign = zero, exponent = all ones, and fraction = all ones. The sign is zero to disting
such results from storage initialized to all ones.

One operand, a quiet NaN:
No exception; result is the quiet NaN operand.

One operand, a signaling NaN:
Invalid exception; result is the signaling NaN with its quiet bit (most significant bit of fra
tion field) set to 1.

Two operands, both quiet NaNs:
No exception; result is thers2 (second source) operand.

Two operands, both signaling NaNs:
Invalid exception; result is thers2 operand with the quiet bit set to 1.

Two operands, only one a signaling NaN:
Invalid exception; result is the signaling NaN operand with the quiet bit set to 1.

Two operands, neither a signaling NaN, only one a quiet NaN:
No exception; result is the quiet NaN operand.

p-
rands

st nor-

d over-
els; if

st nor-
r-

e

In table 27 NaNn means that the NaN is in rsn, Q means quiet, S signaling.

QSNaNn means a quiet NaN produced by theNaN transformation on a signaling NaN from rsn;
the invalid exception is always indicated. The QNaNn results in the table never generate an exce
tion, but IEEE 754 specifies several cases of invalid exceptions, and QNaN results from ope
that are both numbers.

B.3 Trapped Underflow Definition (UFM = 1)
Underflow occurs if the exact unrounded result has magnitude between zero and the smalle
malized number in the destination format.

IMPL. DEP. #55: Whether tininess (in IEEE 754 terms) is detected before or after rounding is implementa-
tion-dependent. It is recommended that tininess be detected before rounding.

Note that the wrapped exponent results intended to be delivered on trapped underflows an
flows in IEEE 754 are irrelevant to SPARC-V9 at the hardware and supervisor software lev
they are created at all, it would be by user software in a user-mode trap handler.

B.4 Untrapped Underflow Definition (UFM = 0)

Underflow occurs if the exact unrounded result has magnitude between zero and the smalle
malized number in the destination format,and the correctly rounded result in the destination fo
mat is inexact.

Table 28 summarizes what happens when an exactunrounded valueu satisfying

0 ≤ |u| ≤ smallest normalized number

would round, if no trap intervened, to arounded valuer which might be zero, subnormal, or th
smallest normalized value. “UF” means underflow trap (with ufc set incexc), “NX” means inexact
trap (with nxc set incexc), “uf” means untrapped underflow exception (with ufc set incexcand
ufa inaexc), and “nx” means untrapped inexact exception (with nxc set incexc and nxa inaexc).

Table 27—Untrapped Floating-Point Results

rs2 operand

Number QNaN2 SNaN2

rs1
operand

None IEEE 754 QNaN2 QSNaN2

Number IEEE 754 QNaN2 QSNaN2

QNaN1 QNaN1 QNaN2 QSNaN2

SNaN1 QSNaN1 QSNaN1 QSNaN2

-

p
d: if
is 1,

p
d: if

754-
.

-V9
n
n

† If tininess is detected after rounding and NXM = 1, then NX, otherwise “None” (impl. dep.
#55).

B.5 Integer Overflow Definition

F[sdq]TOi :
When a NaN, infinity, large positive argument≥ 2147483648.0, or large negative argu
ment≤ –2147483649.0 is converted to an integer, the invalid_current (nvc) bit of FSR.cexc
should be set andfp_exception_IEEE_754 should be raised. If the floating-point invalid tra
is disabled (FSR.TEM.NVM = 0), no trap occurs and a numerical result is generate
the sign bit of the operand is 0, the result is 2147483647; if the sign bit of the operand
the result is –2147483648.

F[sdq]TOx:
When a NaN, infinity, large positive argument≥ 263, or large negative argument≤ –
(263 + 1), is converted to an extended integer, the invalid_current (nvc) bit of FSR.cexc
should be set andfp_exception_IEEE_754 should be raised. If the floating-point invalid tra
is disabled (FSR.TEM.NVM = 0), no trap occurs and a numerical result is generate
the sign bit of the operand is 0, the result is 263 – 1; if the sign bit of the operand is 1, the
result is –263.

B.6 Floating-Point Nonstandard Mode

SPARC-V9 implementations are permitted but not encouraged to deviate from IEEE Std
1985 requirements when the nonstandard mode (NS) bit of the FSR is set (impl. dep. #18)

C SPARC-V9 Implementation Dependencies
This appendixchapterprovides a summary of all implementation dependencies in the SPARC
standard. The notation “IMPL. DEP. #nn:” is used to identify the definition of an implementatio
dependency; the notation “(impl. dep. #nn)” is used to identify a reference to an implementatio
dependency. The numbernn provides an index into table 29 on page 282.

Table 28—Untrapped Floating-Point Underflow

Underflow trap:
Inexact trap:

UFM = 1
NXM = ?

UFM = 0
NXM = 1

UFM = 0
NXM = 0

u = r

r is minimum normal None None None

r is subnormal UF None None

r is zero None None None

u ≠ r

r is minimum normal UF† NX uf nx

r is subnormal UF NX uf nx

r is zero UF NX uf nx

rrent
design
ocu-

by
of the

xe-
her an
ware

lements
ation,

ion but
ents of

9 sys-
teristic

uction)
tency).
RC-
along

enta-
SPARC International maintains a document, <Italic>Implementation Characteristics of Cu
SPARC-V9-based Products, Revision 9.x, which describes the implementation-dependent
features of SPARC-V9-compliant implementations. Contact SPARC International for this d
ment at

SPARC International
535 Middlefield Rd, Suite 210

Menlo Park, CA 94025
(415) 321-8692

C.1 Definition of an Implementation Dependency

The SPARC-V9 architecture is amodel that specifies unambiguously the behavior observed
software on SPARC-V9 systems. Therefore, it does not necessarily describe the operation
hardware of any actual implementation.

An implementation isnot required to execute every instruction in hardware. An attempt to e
cute a SPARC-V9 instruction that is not implemented in hardware generates a trap. Whet
instruction is implemented directly by hardware, simulated by software, or emulated by firm
is implementation-dependent (impl. dep. #1).

The two levels of SPARC-V9 compliance are described in 1.2.6, “SPARC-V9 Compliance.”

Some elements of the architecture are defined to be implementation-dependent. These e
include certain registers and operations that may vary from implementation to implement
and are explicitly identified as such in thisappendixchapter.

Implementation elements (such as instructions or registers) that appear in an implementat
are not defined in this document (or its updates) are not considered to be SPARC-V9 elem
that implementation.

C.2 Hardware Characteristics

Hardware characteristics that do not affect the behavior observed by software on SPARC-V
tems are not considered architectural implementation dependencies. A hardware charac
may be relevant to the user system design (for example, the speed of execution of an instr
or may be transparent to the user (for example, the method used for achieving cache consis
The SPARC International document, <Italic>Implementation Characteristics of Current SPA
V9-based Products, Revision 9.x, provides a useful list of these hardware characteristics,
with the list of implementation-dependent design features of SPARC-V9-compliant implem
tions.

In general, hardware characteristics deal with

— Instruction execution speed

— Whether instructions are implemented in hardware

ARC-

ted by

ciated
le-

ciated
ARC

sible
cata-
ple-

each
pen-

e def-
r refer-
gisters,

rs, or
ct the
— The nature and degree of concurrency of the various hardware units comprising a SP
V9 implementation.

C.3 Implementation Dependency Categories

Many of the implementation dependencies can be grouped into four categories, abbrevia
their first letters throughout thisappendixchapter:

Value (v):
The semantics of an architectural feature are well-defined, except that a value asso
with it may differ across implementations. A typical example is the number of imp
mented register windows (Implementation dependency #2).

Assigned Value (a):
The semantics of an architectural feature are well-defined, except that a value asso
with it may differ across implementations and the actual value is assigned by SP
International. Typical examples are theimpl field of Version register (VER) (Implement-
entation dependency #13) and the FSR.ver field (Implementation dependency #19).

Functional Choice (f):
The SPARC-V9 architecture allows implementors to choose among several pos
semantics related to an architectural function. A typical example is the treatment of a
strophic error exception, which may cause either a deferred or a disrupting trap (Im
mentation dependency #31).

Total Unit (t) :
The existence of the architectural unit or function is recognized, but details are left to
implementation. Examples include the handling of I/O registers (Implementation de
dency #7) and some alternate address spaces (Implementation dependency #29).

C.4 List of Implementation Dependencies

Table 29 provides a complete list of the implementation dependencies in the architecture, th
inition of each, and references to the page numbers in the standard where each is defined o
enced. Most implementation dependencies occur because of the address spaces, I/O re
registers (including ASRs), the type of trapping used for an exception, the handling of erro
miscellaneous non-SPARC-V9-architectural units such as the MMU or caches (which affe
FLUSH instruction).

Table 29—Implementation Dependencies

Number Category Def / Ref
page # Description

1 f 8, 281 Software emulation of instructions
Whether an instruction is implemented directly by hardware, sim-
ulated by software, or emulated by firmware is implementation-
dependent.

2 v 15, 30, 32, 58 Number of IU registers
An implementation of the IU may contain from 64 to 528 general-
purpose 64-bitr registers. This corresponds to a grouping of the
registers into two sets of eight globalr registers, plus a circular
stack of from three to 32 sets of 16 registers each, known as regis-
ter windows. Since the number of register windows present
(NWINDOWS) is implementation-dependent, the total number of
registers is also implementation-dependent.

3 f 85 Incorrect IEEE Std 754-1985 results
An implementation may indicate that a floating-point instruction
did not produce a correct IEEE Std 754-1985 result by generating
a special floating-point unfinished or unimplemented exception. In
this case, privileged mode software shall emulate any functionality
not present in the hardware.

4-5 — — Reserved

6 f 18, 121 I/O registers privileged status
Whether I/O registers can be accessed by nonprivileged code is
implementation-dependent.

7 t 18, 121 I/O register definitions
The contents and addresses of I/O registers are implementation-
dependent.

8 t 20, 30, 35, 60,
214, 215, 245,

286, 54

RDASR/WRASR target registers
Software can use read/write ancillary state register instructions to
read/write implementation-dependent processor registers (ASRs
16-31).

9 f 20, 36, 60, 245,
79, 242

RDASR/WRASR privileged status
Whether each of the implementation-dependent read/write ancil-
lary state register instructions (for ASRs 16-31) is privileged is
implementation-dependent.

10-12 — — Reserved

13 a 57 VER.impl
VER.impl uniquely identifies an implementation or class of soft-
ware-compatible implementations of the architecture. Values
FFF016..FFFF16 are reserved and are not available for assignment.

14-15 — — Reserved

16 t 30 IU deferred-trap queue
The existence, contents, and operation of an IU deferred-trap
queue are implementation-dependent; it is not visible to user appli-
cation programs under normal operating conditions.

17 — — Reserved

18 f 44, 250 Nonstandard IEEE 754-1985 results
Bit 22 of the FSR, FSR_nonstandard_fp (NS), when set to 1,
causes the FPU to produce implementation-defined results that
may not correspond to IEEE Standard 754-1985.

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

19 a 45 FPU version, FSR.ver
Bits 19:17 of the FSR, FSR.ver, identify one or more implementa-
tions of the FPU architecture.

20-21 — — Reserved

22 f 50 FPU TEM, cexc, and aexc
An implementation may choose to implement the TEM,cexc, and
aexc fields in hardware in either of two ways (see 5.1.7.11 for
details).

23 f 61, 115, 115 Floating-point traps
Floating-point traps may be precise or deferred. If deferred, a
floating-point deferred-trap queue (FQ) must be present.

24 t 30, 212 FPU deferred-trap queue (FQ)
The presence, contents of, and operations on the floating-point
deferred-trap queue (FQ) are implementation-dependent.

25 f 47, 212, 213,
213

RDPR of FQ with nonexistent FQ
On implementations without a floating-point queue, an attempt to
read the FQ with an RDPR instruction shall cause either anillegal_
instruction exception or anfp_exception_other exception with
FSR.ftt set to 4 (sequence_error).

26-28 — — Reserved

29 t 18,74, 75 Address space identifier (ASI) definitions
The following ASI assignments are implementation-dependent:
restricted ASIs 0016..0316, 0516..0B16, 0D16..0F16, 1216..1716,
and 1A16..7F16; and unrestricted ASIs C016.. FF16.

30 f 74 ASI address decoding
An implementation may choose to decode only a subset of the 8-
bit ASI specifier; however, it shall decode at least enough of the
ASI to distinguishASI_PRIMARY, ASI_PRIMARY_LITTLE, ASI_
AS_IF_USER_PRIMARY, ASI_AS_IF_USER_PRIMARY_LITTLE,
ASI_PRIMARY_NOFAULT, ASI_PRIMARY_NOFAULT_LITTLE,
ASI_SECONDARY, ASI_SECONDARY_LITTLE, ASI_AS_IF_USER_
SECONDARY, ASI_AS_IF_USER_SECONDARY_LITTLE, ASI_
SECONDARY_NOFAULT, and ASI_SECONDARY_NOFAULT_LIT-
TLE. If ASI_NUCLEUSandASI_NUCLEUS_LITTLE are supported
(impl. dep. #124), they must be decoded also. Finally, an imple-
mentation must always decode ASI bit<7> while
PSTATE.PRIV = 0, so that an attempt by nonprivileged software
to access a restricted ASI will always cause aprivileged_action
exception.

31 f 90, 93, 114, 115,
115

Catastrophic error exceptions
The causes and effects of catastrophic error exceptions are imple-
mentation-dependent. They may cause precise, deferred, or dis-
rupting traps.

32 t 96 Deferred traps
Whether any deferred traps (and associated deferred-trap queues)
are present is implementation-dependent.

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

33 f 98, 114, 114,
114, 114, 115,

116

Trap precision
Exceptions that occur as the result of program execution may be
precise or deferred, although it is recommended that such excep-
tions be precise. Examples includemem_address_not_aligned and
division_by_zero.

34 f 100 Interrupt clearing
How quickly a processor responds to an interrupt request and the
method by which an interrupt request is removed are implementa-
tion-dependent.

35 t 93, 102, 103,
104, 113, 115

Implementation-dependent traps
Trap type (TT) values 06016..07F16 are reserved for implementa-
tion-dependent exceptions. The existence ofimplementation_
dependent_n traps and whether any that do exist are precise,
deferred, or disrupting is implementation-dependent.

36 f 104 Trap priorities
The priorities of particular traps are relative and are implementa-
tion-dependent, because a future version of the architecture may
define new traps, and implementations may define implementa-
tion-dependent traps that establish new relative priorities.

37 f 97 Reset trap
Some of a processor’s behavior during a reset trap is implementa-
tion-dependent.

38 f 108 Effect of reset trap on implementation-dependent registers
Implementation-dependent registers may or may not be affected
by the various reset traps.

39 f 94 Entering error_state on implementation-dependent errors
The processor may enter error_state when an implementation-
dependent error condition occurs.

40 f 94 Error_state processor state
What occurs after error_state is entered is implementation-depen-
dent, but it is recommended that as much processor state as possi-
ble be preserved upon entry to error_state.

41 — — Reserved

42 t,f,v 168 FLUSH instruction
If FLUSH is not implemented in hardware, it causes anillegal_
instruction exception and its function is performed by system soft-
ware. Whether FLUSH traps is implementation-dependent.

43 — — Reserved

44 f 174, 177 Data access FPU trap
If a load floating-point instruction traps with any type of access
error exception, the contents of the destination floating-point regis-
ter(s) either remain unchanged or are undefined.

45 - 46 — — Reserved

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

47 t 214,215, 215,
215

RDASR
RDASR instructions withrd in the range 16..31 are available for
implementation-dependent uses (impl. dep. #8). For an RDASR
instruction withrs1 in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 13:0 and 29:25 in
the instruction, whether the instruction is privileged (impl. dep.
#9), and whether it causes anillegal_instruction trap.

48 t 244, 244,245,
245, 245

WRASR
WRASR instructions withrd in the range 16..31 are available for
implementation-dependent uses (impl. dep. #8). For a WRASR
instruction withrd in the range 16..31, the following are imple-
mentation-dependent: the interpretation of bits 18:0 in the instruc-
tion, the operation(s) performed (for example,xor) to generate the
value written to the ASR, whether the instruction is privileged
(impl. dep. #9), and whether it causes anillegal_instruction trap.

49-54 — — Reserved

55 f 49, 49,249, 250 Floating-point underflow detection
Whether "tininess" (in IEEE 754 terms) is detected before or after
rounding is implementation-dependent. It is recommended that
tininess be detected before rounding.

56-100 — — Reserved

101 v 21,54, 55, 55,
56, 57

Maximum trap level
It is implementation-dependent how many additional levels, if any,
past level 4 are supported.

102 f 114 Clean windows trap
An implementation may choose either to implement automatic
“cleaning” of register windows in hardware, or generate aclean_
window trap, when needed, for window(s) to be cleaned by soft-
ware.

103 f 206, 206, 207,
207, 207, 209,

210

Prefetch instructions
The following aspects of the PREFETCH and PREFETCHA
instructions are implementation-dependent: (1) whether they have
an observable effect in privileged code; (2) whether they can cause
a data_access_MMU_miss exception; (3) the attributes of the
block of memory prefetched: its size (minimum = 64 bytes) and its
alignment (minimum = 64-byte alignment); (4) whether each vari-
ant is implemented as a NOP, with its full semantics, or with com-
mon-case prefetching semantics; (5) whether and how variants
16..31 are implemented.

104 a 57 VER.manuf
VER.manufcontains a 16-bit semiconductor manufacturer code.
This field is optional, and if not present reads as zero. VER.manuf
may indicate the original supplier of a second-sourced chip in
cases involving mask-level second-sourcing. It is intended that the
contents of VER.manuftrack the JEDEC semiconductor manufac-
turer code as closely as possible. If the manufacturer does not have
a JEDEC semiconductor manufacturer code, SPARC International
will assign a VER.manuf value.

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

105 f 51 TICK register
The difference between the values read from the TICK register on
two reads should reflect the number of processor cycles executed
between the reads. If an accurate count cannot always be returned,
any inaccuracy should be small, bounded, and documented. An
implementation may implement fewer than 63 bits in
TICK.counter; however, the counter as implemented must be able
to count for at least 10 years without overflowing. Any upper bits
not implemented must read as zero.

106 f 85,171 IMPDEPn instructions
The IMPDEP1 and IMPDEP2 instructions are completely imple-
mentation-dependent. Implementation-dependent aspects include
their operation, the interpretation of bits 29:25 and 18:0 in their
encodings, and which (if any) exceptions they may cause.

107 f 179, 179,181,
181

Unimplemented LDD trap
It is implementation-dependent whether LDD and LDDA are
implemented in hardware. If not, an attempt to execute either will
cause anunimplemented_LDD trap.

108 f 117,229, 230,
232, 232

Unimplemented STD trap
It is implementation-dependent whether STD and STDA are
implemented in hardware. If not, an attempt to execute either will
cause anunimplemented_STD trap.

109 f 115,174, 174,
177

LDDF_mem_address_not_aligned
LDDF and LDDFA require only word alignment. However, if the
effective address is word-aligned but not doubleword-aligned,
either may cause anLDDF_mem_address_not_aligned trap, in
which case the trap handler software shall emulate the LDDF (or
LDDFA) instruction and return.

110 f 116,226, 226,
228, 228

STDF_mem_address_not_aligned
STDF and STDFA require only word alignment in memory. How-
ever, if the effective address is word-aligned but not doubleword-
aligned, either may cause anSTDF_mem_address_not_aligned
trap, in which case the trap handler software shall emulate the
STDF or STDFA instruction and return.

111 f 116,174, 174,
177

LDQF_mem_address_not_aligned
LDQF and LDQFA require only word alignment. However, if the
effective address is word-aligned but not quadword-aligned, either
may cause anLDQF_mem_address_not_aligned trap, in which
case the trap handler software shall emulate the LDQF (or
LDQFA) instruction and return.

112 f 117,226, 226,
228, 228

STQF_mem_address_not_aligned
STQF and STQFA require only word alignment in memory. How-
ever, if the effective address is word-aligned but not quadword-
aligned, either may cause anSTQF_mem_address_not_aligned
trap, in which case the trap handler software shall emulate the
STQF or STQFA instruction and return.

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

113 f 52, <ImplDep-
Def>119

Implemented memory models
Whether the Partial Store Order (PSO) or Relaxed Memory Order
(RMO) models are supported is implementation-dependent.

114 f 92 RED_state trap vector address (RSTVaddr)
The RED_state trap vector is located at an implementation-depen-
dent address referred to as RSTVaddr.

115 f 92 RED_state processor state
What occurs after the processor enters RED_state is implementa-
tion-dependent.

116 f 223 SIR_enable control flag
The location of the SIR_enable control flag and the means of
accessing the SIR_enable control flag are implementation-depen-
dent. In some implementations, it may be permanently zero.

117 f 207, <ImplDep-
Def>282

MMU disabled prefetch behavior
Whether Prefetch and Non-faulting Load always succeed when the
MMU is disabled is implementation-dependent.

118 f <ImplDep-
Def>121

Identifying I/O locations
The manner in which I/O locations are identified is implementa-
tion-dependent.

119 f 53,<ImplDep-
Def>129

Unimplemented values for PSTATE.MM
The effect of writing an unimplemented memory-mode designa-
tion into PSTATE.MM is implementation-dependent.

120 f <ImplDep-
Def>121, 130,
153, 182, 187,
224, 234, 235

Coherence and atomicity of memory operations
The coherence and atomicity of memory operations between pro-
cessors and I/O DMA memory accesses are implementation-
dependent.

121 f <ImplDep-
Def>121

Implementation-dependent memory model
An implementation may choose to identify certain addresses and
use an implementation-dependent memory model for references to
them.

122 f <ImplDep-
Def>131, 168,

168

FLUSH latency
The latency between the execution of FLUSH on one processor
and the point at which the modified instructions have replaced out-
dated instructions in a multiprocessor is implementation-depen-
dent.

123 f 18, 121, 130 Input/output (I/O) semantics
The semantic effect of accessing input/output (I/O) registers is
implementation-dependent.

124 v 75, 74,
<ImplDep-

Def>122, 96

Implicit ASI when TL > 0
When TL > 0, the implicit ASI for instruction fetches, loads, and
stores is implementation-dependent. See F.4.4, “Contexts,” for
more information.

125 f 53, 80, 151, 172,
215

Address masking
When PSTATE.AM = 1, the value of the high-order 32-bits of the
PC transmitted to the specified destination register(s) by CALL,
JMPL, RDPC, and on a trap is implementation-dependent.

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

mem-
ter 8,

must
y.

ly to
must

s
nd I/O

o-
e mem-
s any

erly per-
.

D Formal Specification of the Memory Models
This appendix provides a formal description of the SPARC-V9 processor’s interaction with
ory. The formal description is more complete and more precise than the description of Chap
“Memory Models,” and therefore represents the definitive specification. Implementations
conform to this model, and programmers must use this description to resolve any ambiguit

This formal specification is not intended to be a description of an actual implementation, on
describe in a precise and rigorous fashion the behavior that any conforming implementation
provide.

D.1 Processors and Memory

The system model consists of a collection of processors, P0, P1,..Pn-1. Each processor executes it
own instruction stream.1 Processors may share address space and access to real memory a
locations.

To improve performance, processors may interpose acacheor caches in the path between the pr
cessor and memory. For data and I/O references, caches are required to be transparent. Th
ory model specifies the functional behavior of the entire memory subsystem, which include

126 v 58, 58, 59, 59,
59, 60

Register Windows State Registers Width
Privileged registers CWP, CANSAVE, CANRESTORE, OTHER-
WIN, and CLEANWIN contain values in the range
0..NWINDOWS-1. The effect of writing a value greater than
NWINDOWS-1 to any of these registers is undefined.Although the
width of each of these five registers is nominally 5 bits, the width
is implementation-dependent and shall be between
log2(NWINDOWS) and 5 bits, inclusive. If fewer than 5 bits are
implemented, the unimplemented upper bits shall read as 0 and
writes to them shall have no effect. All five registers should have
the same width.

127 f 52, 56 PSTATE PID bits
The presence and semantics of PSTATE.PID1 and PSTATE.PID0
are implementation-dependent. The presence of TSTATE bits 19
and 18 is implementation-dependent. If PSTATE bit 11 (10) is
implemented, TSTATE bit 19 (18) shall be implemented and con-
tain the state of PSTATE bit 11 (10) from the previous trap level..
If PSTATE bit 11 (10) is not implemented, TSTATE bit 19 (18)
shall read as zero. Software intended to run on multiple implemen-
tations should only write these bits to values previously read from
PSTATE, or to zeroes.

1. Processors are equivalent to their software abstraction, processes, provided that context switching is prop
formed. See Appendix J, “Programming With the Memory Models,” for an example of context switch code

Table 29—Implementation Dependencies (Continued)

Number Category Def / Ref
page # Description

chieve

require
LUSH
d data
O oper-

mem-
since
order.
der of

e pro-
emory

tion
s and

ely

ial
cts of

rocess

te to
ing con-
instruc-
es on

omic
such as
e of
em-

ion,
e

form of caching. Implementations must use appropriate cache coherency mechanisms to a
this transparency.1

The SPARC-V9 memory model requires that all data references be consistent but does not
that instruction references or input/output references be maintained consistent. The F
instruction or an appropriate operating system call may be used to ensure that instruction an
spaces are consistent. Likewise, system software is needed to manage the consistency of I/
ations.

The memory model is a local property of a processor that determines the order properties of
ory references. The ordering properties have global implications when memory is shared,
the memory model determines what data is visible to observing processors and in what
Moreover, the operative memory model of the observing processor affects the apparent or
shared data reads and writes that it observes.

D.2 An Overview of the Memory Model Specification

The underlying goal of the memory model is to place the weakest possible constraints on th
cessor implementations and to provide a precise specification of the possible orderings of m
operations so that shared-memory multiprocessors can be constructed.

An execution traceis a sequence of instructions with a specified initial instruction. An execu
trace constitutes one possible execution of a program and may involve arbitrary reordering
parallel execution of instructions. Aself-consistentexecution trace is one that generates precis
the same results as those produced by a program order execution trace.

A program order execution trace is an execution trace that begins with a specified init
instruction and executes one instruction at a time in such a fashion that all the semantic effe
each instruction take effect before the next instruction is begun. The execution trace this p
generates is defined to beprogram order.

A program is defined by the collection of all possible program order execution traces.

Dependence orderis a partial order on the instructions in an execution trace that is adequa
ensure that the execution trace is self-consistent. Dependence order can be constructed us
ventional data dependence analysis techniques. Dependence order holds only between
tions in the instruction trace of a single processor; instructions that are part of execution trac
different processors are never dependence-ordered.

Memory order is a total order on the memory reference instructions (loads, stores, and at
load/stores) which satisfies the dependence order and, possibly, other order constraints
those introduced implicitly by the choice of memory model or explicitly by the appearanc
memory barrier (MEMBAR) instructions in the execution trace. The existence of a global m
ory order on the performance of all stores implies that memory access is write-atomic.2

1. Philip Bitar and Alvin M. Despain, “Multiprocessor Cache Synchronization: Issues, Innovations, Evolut”
Proc. 13th Annual International Symposium on Computer Architecture, Computer Architecture News 14:2, Jun
1986, pp.424-433.

-V9
), and

r I/O

and
emain

dress
store
sys-

The
action.
de by

tate
ludes

ion of

Palo

o have

ormal
er, a
A memory model is a set of rules that constrain the order of memory references. The SPARC
architecture supports three memory models: total store order (TSO), partial store order (PSO
relaxed memory order (RMO). The memory models are defined only for memory and not fo
locations. See 8.2, “Memory, Real Memory, and I/O Locations,” for more information.

The formal definition used in the SPARC-V8 specification1 remains valid for the definition of
PSO and TSO, except for the FLUSH instruction, which has been modified slightly.2 The
SPARC-V9 architecture introduces a new memory model, RMO, which differs from TSO
PSO in that it allows load operations to be reordered as long as single thread programs r
self-consistent.

D.3 Memory Transactions
D.3.1 Memory Transactions

A memory transaction is one of the following:

Store:
A request by a processor to replace the value of a specified memory location. The ad
and new value are bound to the store transaction when the processor initiates the
transaction. A store is complete when the new value is visible to all processors in the
tem.

Load:
A request by a processor to retrieve the value of the specified memory location.
address is bound to the load transaction when the processor initiates the load trans
A load is complete when the value being returned cannot be modified by a store ma
another processor.

Atomic:
A load/storepair with the guarantee that no other memory transaction will alter the s
of the memory between the load and the store. The SPARC-V9 instruction set inc
three atomic instructions: LDSTUB, SWAP and CAS.3 An atomic transaction is consid-
ered to be both a load and a store.4

2. W.W. Collier, “Reasoning About Parallel Architectures”, Prentice-Hall, 1992 includes an excellent discuss
write-atomicity and related memory model topics.

1. Pradeep Sindhu, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Memory Models,” Xerox
Alto Research Center Report CSL-91-11, December 1991.

2. In SPARC-V8, a FLUSH instruction needs at least five instruction execution cycles before it is guaranteed t
local effects; in SPARC-V9 this five-cycle requirement has been removed.

3. There are three generic forms. CASA and CASXA reference 32-bit and 64-bit objects respectively. Both n
and alternate ASI forms exist for LDSTUB and SWAP. CASA and CASXA only have alternate forms, howev
CASA (CASXA) with ASI = ASI_PRIMARY{_LITTLE} is equivalent to CAS (CASX). Synthetic instructions
for CAS and CASX are suggested in G.3, “Synthetic Instructions.”

space
emory

y
eci-
te

bove
ons

ssor

re

oces-

ct to

a bit-

tions

re the
e scope

ther it
lready
e store

lation
ecify

n an I/O
el level
Flush:
A request by a processor to force changes in the data space aliased to the instruction
to become consistent. Flush transactions are considered to be store operations for m
model purposes.

Memory transactions are referred to by capital letters:Xna, which denotes a specific memor
transactionX by processorn to memory addressa. The processor index and the address are sp
fied only if needed. The predicateS(X)is true if and only ifX has store semantics. The predica
L(X) is true if and only ifX has load semantics.

MEMBAR instructions are not memory transactions; rather they convey order information a
and beyond the implicit ordering implied by the memory model in use. MEMBAR instructi
are applied in program order.

D.3.2 Program Order

Theprogram order is a per-processor total order that denotes the sequence in which procen
logically executes instructions. The program order relation is denoted by<p such thatXn <p Yn is
true if and only if the memory transactionXn is caused by an instruction that is executed befo
the instruction that caused memory transactionYn.

Program order specifies a unique total order for all memory transactions initiated by one pr
sor.

Memory barrier (MEMBAR) instructions executed by the processor are ordered with respe
<p. The predicateM(X,Y) is true if and only ifX <p Y and there exists a MEMBAR instruction
that ordersX andY (that is, it appears in program order betweenX andY).MEMBAR instructions
can be either ordering or sequencing and may be combined into a single instruction using
encoded mask.1

Ordering MEMBAR instructions impose constraints on the order in which memory transac
are performed.

Sequencing MEMBARs introduce additional constraints that are required in cases whe
memory transaction has side-effects beyond storing data. Such side-effects are beyond th
of the memory model, which is limited to order and value semantics for memory.2

4. Even though the store part of a CASA is conditional, it is assumed that the store will always take place whe
does or not in a particular implementation. Since the value stored when the condition fails is the value a
present, and since the CASA operation is atomic, no observing processor can determine whether th
occurred or not.

1. The Ordering MEMBAR instruction uses 4 bits of its argument to specify the existence of an order re
depending on whetherX andYhave load or store semantics. The Sequencing MEMBAR uses three bits to sp
completion conditions. The MEMBAR encoding is specified in A.32.

2. Sequencing constraints have other effects, such as controlling when a memory error is recognized or whe
access reaches global visibility. The need for sequencing constraints is always associated with I/O and kern
programming and not usually with normal, user-level application programming.

ory

uctions
oncur-
mically

instruc-

s. In
h will

em-
branch
Control
e pre-

rdering
r

s and
some
ing a

on and
r load-
ct free,

dware
ly, by
a pro-
ction
neces-
This definition of program order is equivalent to the definition given in the SPARC-V8 mem
model specification.

D.3.3 Dependence Order

Dependence order is a partial order that captures the constraints that hold between instr
that access the same processor register or memory location. In order to allow maximum c
rency in processor implementations, dependence order assumes that registers are dyna
renamed to avoid false dependences arising from register reuse.

Two memory transactionX andY are dependence ordered, denoted byX <d Y, if and only if they
are program ordered,X <p Y , and at least one of the following conditions is true:

(1) The execution ofY is conditional onX, and S(Y) is true.

(2) Y reads a register that is written byX.

(3) X and Y access the same memory location andS(X) andL(Y) are both true.

The dependence order also holds between the memory transactions associated with the
tions. It is important to remember that partial ordering is transitive.

Rule (1) includes all control dependences that arise from the dynamic execution of program
particular, a store or atomic memory transaction that is executed after a conditional branc
depend on the outcome of that branch instruction, which in turn will depend on one or more m
ory transactions that precede the branch instruction. Loads after an unresolved conditional
may proceed, that is, a conditional branch does not dependence order subsequent loads.
dependences always order the initiation of subsequent instructions to the performance of th
ceding instructions.1

Rule (2) captures dependences arising from register use. It is not necessary to include an o
whenX reads a register that is later written byY, because register renaming will allow out-of-orde
execution in this case. Register renaming is equivalent to having an infinite pool of register
requiring all registers to be write-once. Observe that the condition code register is set by
arithmetic and logical instructions and used by conditional branch instructions thus introduc
dependence order.

Rule (3) captures ordering constraints resulting from memory accesses to the same locati
require that the dependence order reflect the program order for store-load pairs, but not fo
store or store-store pairs. A load may be executed speculatively, since loads are side-effe
provided that Rule (3) is eventually satisfied.

An actual processor implementation will maintain dependence order by score-boarding, har
interlocks, data flow techniques, compiler directed code scheduling, and so forth, or, simp
sequential program execution. The means by which the dependence order is derived from
gram is irrelevant to the memory model, which has to specify which possible memory transa
sequences are legal for a given set of data dependences. Practical implementations will not

1. Self modifying code (use of FLUSH instructions) also causes control dependences.

gram
orrect-

s
emory

itrarily
differ-

s the

otally

uires

trans-
emory
seman-
sarily use the minimal set of constraints: adding unnecessary order relations from the pro
order to the dependence order only reduces the available concurrency, but does not impair c
ness.

D.3.4 Memory Order

The sequence in which memory transactions are performed by the memory is calledmemory
order, which is a total order on all memory transactions.

In general, the memory order cannot be knowna priori. Instead, the memory order is specified a
a set of constraints that are imposed on the memory transactions. The requirement that m
transactionX must be performed before memory transactionY is denoted byX <m Y.Any mem-
ory order that satisfies these constraints is legal. The memory subsystem may choose arb
among legal memory orders, hence multiple executions of the same programs may result in
ent memory orders.

D.4 Specification of Relaxed Memory Order (RMO)

D.4.1 Value Atomicity

Memory transactions will atomically set or retrieve the value of a memory location as long a
size of the value is less than or equal to eight bytes, the unit of coherency.

D.4.2 Store Atomicity

All possible execution traces are consistent with the existence of a memory order that t
orders all transactions including all store operations.

This does not imply that the memory order is observable. Nor does it imply that RMO req
any central serialization mechanism.

D.4.3 Atomic Memory Transactions

The atomic memory transactions SWAP, LDSTUB, and CAS are performed as one memory
action that is both a load and a store with respect to memory order constraints. No other m
transaction can separate the load and store actions of an atomic memory transaction. The
tics of atomic instructions are defined in Appendix A, “Instruction Definitions.”

D.4.4 Memory Order Constraints

A memory order is legal in RMO if and only if:

(1) X <d Y & L(X)⇒ X <m Y

(2) M(X,Y)⇒ X <m Y

(3) Xa <p Ya & S(Y)⇒ X <m Y

on is a
served

cessary

ct to
ing

here
ed by
by any
tween

ARC-

that
com-

is con-
ions
ruction

the
y an
Rule (1) states that the RMO model will maintain dependence when the preceding transacti
load. Preceding stores may be delayed in the implementation, so their order may not be pre
globally.

Rule (2) states that MEMBAR instructions order the performance of memory transactions.

Rule (3) states that stores to the same address are performed in program order. This is ne
for processor self-consistency

D.4.5 Value of Memory Transactions

The value of a loadYa is the value of the most recent store that was performed with respe
memory order or the value of the most recently initiated store by the same processor. AssumY
is a load to memory locationa:

Value(La) = Value(Max<m { S | Sa <m La or Sa <p La })

whereMax<m{..} selects the most recent element with respect to the memory order and w
Value()yields the value of a particular memory transaction. This states that the value return
a load is either the result of the most recent store to that address which has been performed
processor or which has been initiated by the processor issuing the load. The distinction be
local and remote stores permits use of store-buffers, which are explicitly supported in all SP
V9 memory models.

D.4.6 Termination of Memory Transactions

Any memory transaction will eventually be performed. This is formalized by the requirement
only a finite number of memory ordered loads can be performed before a pending store is
pleted.

D.4.7 Flush Memory Transaction

Flush instructions are treated as store memory transactions as far as the memory order
cerned. Their semantics are defined in A.20, “Flush Instruction Memory.” Flush instruct
introduce a control dependence to any subsequent (in program order) execution of the inst
that was addressed by the flush.

D.5 Specification of Partial Store Order (PSO)

The specification of Partial Store Order (PSO) is that of Relaxed Memory Order (RMO) with
additional requirement that all memory transactions with load semantics are followed b
implied MEMBAR #LoadLoad | #LoadStore .

ddi-
plied

cution
f order
eferred

from
es to the
0.

issued

r

ce
been

mbar
can be

rates
s about

able (
nt to
code

omitted
D.6 Specification of Total Store Order (TSO)

The specification of Total Store Order (TSO) is that of Partial Store Order (PSO) with the a
tional requirement that all memory transactions with store semantics are followed by an im
MEMBAR #StoreStore .

D.7 Examples Of Program Executions

This subsection lists several code sequences and an exhaustive list of all possible exe
sequences under RMO, PSO and TSO. For each example, the code is followed by the list o
relations between the corresponding memory transactions. The memory transactions are r
to by numbers. In each case, the program is executed once for each memory model.

D.7.1 Observation of Store Atomicity

The code example below demonstrates how store atomicity prevents multiple processors
observing inconsistent sequences of events. In this case, processors 2 and 3 observe chang
shared variablesA andB, which are being modified by processor 1. Initially both variables are
The stores by processor 1 do not use any form of synchronization, and they may in fact be
by two independent processors.

Should processor 2 findA to have the new value (1) andB to have the old value (0), it can infe
thatA was updated beforeB. Likewise, processor 3 may findB = 1 andA = 0, which implies that
B was changed beforeA. It is impossible for both to occur in all SPARC-V9 memory models sin
there cannot exist a total order on all stores. This property of the memory models has
encoded in the assertion A1.

However, in RMO, the observing processor must separate the load operations with me
instructions. Otherwise, the loads may be reordered and no inference on the update order
made.

Figure 44 is taken from the output of the SPARC-V9 memory model simulator, which enume
all possible outcomes of short code sequences and which can be used to prove assertion
such programs.

D.7.2 Dekker’s Algorithm

The essence of Dekker’s algorithm is shown in figure 45 on page 298.1 To assure mutual exclu-
sion, each processor signals its intent to enter a critical region by asserting a dedicated variA
for processor 1 andB for processor 2). It then checks that the other processor does not wa
enter and, if it finds the other signal variable is deasserted, it enters the critical region. This
does not guarantee that any processor can enter (that requires a retry mechanism which is

1. See also DEC Litmus Test 8 described in theAlpha Architecture Handbook, Digital Equipment Corporation,
1992, p. 5-14.

roces-
here), but it does guarantee mutual exclusion, which means that it is impossible that each p
sor finds the other’s lock idle (= 0) when it enters cthe ritical section.

ST #1, A

ST #1, B

LD A, %r1

LD B, %r2

LD B, %r1

LD A, %r2

T T,P T,P

T : TSO P : PSO R : RMO <d<m

Processor 1 Processor 2 Processor 3

/*
 * Store atomicity
 * Note: will fail in RMO due to lack of membars between loads
 */

Processor 1:
 (0) st #1,[A]
 (1) st #1,[B]
Processor 2:
 (2) ld [A],%r1
 (3) ld [B],%r2
Processor 3:
 (4) ld [B],%r1
 (5) ld [A],%r2

Assertions:
A1: !(P2:%r1 = = 1 && P2:%r2 = = 0) || !(P3:%r1 = = 1 && P3:%r2 = = 0)

Possible values under all memory models:
2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m
 0 0 0 0 1 1 4 5 2 0 3 1
 0 0 0 1 1 1 4 2 0 5 3 1
 0 0 1 1 1 1 2 3 0 1 4 5
 0 1 0 0 1 1 4 5 2 0 1 3
 0 1 0 1 1 1 4 2 0 5 1 3
 0 1 1 1 1 1 2 0 1 3 4 5
 1 0 0 0 1 1 4 5 0 2 3 1
 1 0 0 1 1 1 4 0 5 2 3 1
 1 0 1 1 1 1 0 2 3 1 4 5
 1 1 0 0 1 1 4 5 0 2 1 3
 1 1 0 1 1 1 4 0 5 1 2 3
 1 1 1 1 1 1 0 1 4 2 5 3

Possible values under PSO & RMO, but not under TSO:
2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m
 0 0 1 0 1 1 2 3 1 4 5 0
 0 1 1 0 1 1 2 1 4 3 5 0
 1 1 1 0 1 1 1 4 5 0 2 3

Possible values under RMO, but not under PSO & TSO:
2:r1 2:r2 3:r1 3:r2 A B example sequence of performance in <m
 1 0 1 0 1 1 5 3 0 2 1 4

Figure 44—Store Atomicity Example

erved,
ssor 3
impact

), the
order.

s by a
D.7.3 Indirection Through Processors

Another property of the SPARC-V9 memory models is that causal update relations are pres
which is a side-effect of the existence of a total memory order. In the example below, proce
observes updates made by processor 1. Processor 2 simply copies B to C, which does not
the causal chain of events.

Again, this example intentionally exposes two potential error sources. In PSO (and RMO
stores by processor 1 are not ordered automatically and may be performed out of program
The correct code would need to insert a MEMBAR#StoreStore between these stores. In
RMO (but not in PSO), the observation process 3 needs to separate the two load instruction
MEMBAR #LoadLoad .

ST #1, A

LD B, %r1

ST #1, B

LD A, %r1
T,P,R T,P,R

Processor 1 Processor 2

/*
 * Dekker's Algorithm
 */
Processor 1:
 (0) st #1,[A]
 membar #StoreLoad
 (1) ld [B],%r1
Processor 2:
 (2) st #1,[B]
 membar #StoreLoad
 (3) ld [A],%r1

Assertions:
A1: P1:%r1 = = 1 || P2:%r1 = = 1

Possible values under all memory models:
1:r1 2:r1 A B example sequence of performance in <m
 0 1 1 1 0 1 2 3
 1 0 1 1 2 3 0 1
 1 1 1 1 2 0 3 1

Possible values under PSO & RMO, but not under TSO:
 --- none ---

Possible values under RMO, but not under PSO & TSO:
 --- none ---

T : TSO P : PSO R : RMO <d<m

Figure 45—Dekker’s Algorithm

out of
per-
, then

piler
odel
D.7.4 PSO Behavior

The code in figure 47 on page 300 shows how different results can be obtained by allowing
order performance of two stores in PSO and RMO models. A store to B is allowed to be
formed before a store to A. If two loads of processor 2 are performed between the two stores
the assertion below is satisfied for the PSO and RMO models.

D.7.5 Application to Compilers

A significant problem in a multiprocessor environment arises from the fact that normal com
optimizations which reorder code can subvert programmer intent. The SPARC-V9 memory m

ST #1, A

ST #1, B

LD B, %r1

ST %r1, C

LD C, %r1

LD A, %r2
T T,PT,P,R

Processor 1 Processor 2 Processor 3

T : TSO P : PSO R : RMO <d<m
/*
 * Indirection through processors
 * Note: Assertion will fail for PSO and RMO due to lack of
 * membar #StoreStore after P1's first store
 */
Processor 1:
 (0) st #1,[A]
 (1) st #1,[B]
Processor 2:
 (2) ld [B],%r1
 (3) st %r1,[C]
Processor 3:
 (4) ld [C],%r1
 (5) ld [A],%r2

Assertions:
A1: !(P3:%r1 = = 1 && P3:%r2 = = 0)

Possible values under all memory models:
2:r1 3:r1 3:r2 A B C example sequence of performance in <m
 0 0 0 1 1 0 4 5 0 2 1 3
 0 0 1 1 1 0 4 2 0 5 1 3
 1 0 0 1 1 1 4 5 0 1 2 3
 1 0 1 1 1 1 4 0 5 1 2 3
 1 1 1 1 1 1 0 1 2 3 4 5

Possible values under PSO & RMO, but not under TSO:
2:r1 3:r1 3:r2 A B C example sequence of performance in <m
 1 1 0 1 1 1 1 2 3 4 5 0

Possible values under RMO, but not under PSO & TSO:
 --- none ---

Figure 46—Indirection Through Processors

s that
e, the

and must

ically
is col-
tan-
can be applied to the program, rather than an execution, in order to identify transformation
can be applied, provided that the program has a proper set of MEMBARs in place. In this cas
dependence order is a program dependence order, rather than a trace dependence order,
include the dependences from all possible executions.

D.7.6 Verifying Memory Models

While defining the SPARC-V9 memory models, software tools were developed that automat
analyze and formally verify assembly-code sequences running in the models. The core of th
lection of tools is the Murphi finite-state verifier developed by David Dill and his students at S
ford University.

ST #1, A

LD A, %r

LD B, %r1

LD A, %r2
T,P

ST %r, B

T

T,P,R

Processor 1 Processor 2

T : TSO P : PSO R : RMO <d<m

/*
 * PSO behavior
 */

Processor 1:
 (0) st #1, [A]
 (1) ld [A], %r
 (2) st %r, [B]

Processor 2:
 (3) ld [B], %r1
 (4) ld [A], %r2

Assertions:
E: P2:%r1 = = 1 && P2:%r2 = = 0;

Possible values under all memory models:
 1:r 2:r1 2:r2 A B example sequence of performance in <m
 1 0 0 1 1 3 4 0 1 2
 1 0 1 1 1 0 3 4 1 2
 1 1 1 1 1 0 1 2 3 4

Possible values under PSO & RMO, but not under TSO:
 1:r 2:r1 2:r2 A B example sequence of performance in <m
 1 1 0 1 1 1 2 3 4 0

Possible values under RMO, but not under PSO & TSO:
 --- none ---

Figure 47—PSO Behavior

erly in
ork by
nly be
nding

k, and
:

For example, these tools can be used to confirm that synchronization routines operate prop
various memory models and to generate counter example traces when they fail. The tools w
exhaustively enumerating system states in a version of the memory model, so they can o
applied to fairly small assembly code examples. We found the tools to be helpful in understa
the memory models and checking our examples.1

Contact SPARC International to obtain the verification tools and a set of examples.

1. For a discussion of an earlier application of similar tools to TSO and PSO, see David Dill, Seungjoon Par
Andreas G. Nowatzyk, “Formal Specification of Abstract Memory Models” inResearch on Integrated Systems
Proceedings of the 1993 Symposium, Ed. Gaetano Borriello and Carl Ebeling, MIT Press, 1993.

e shall
6.3.11,

with
n page
uction
E Opcode Maps

E.1 Overview

This appendix contains the SPARC-V9 instruction opcode maps.

Opcodes marked with a dash ‘—’ are reserved; an attempt to execute a reserved opcod
cause a trap, unless it is an implementation-specific extension to the instruction set. See
“Reserved Opcodes and Instruction Fields,” for more information.

In this appendix and in Appendix A, “Instruction Definitions,” certain opcodes are marked
mnemonic superscripts. These superscripts and their meanings are defined in table 21 o
133. For deprecated opcodes, see the appropriate instruction pages in Appendix A, “Instr
Definitions,” for preferred substitute instructions.

E.2 Tables

†rd = 0, imm22 = 0

Table 30—op[1:0]

op [1:0]

0 1 2 3

Branches & SETHI
See table 31

CALL Arithmetic & Misc.
See table 32

Loads/Stores
See table 33

Table 31—op2[2:0] (op= 0)

op2 [2:0]

0 1 2 3 4 5 6 7

ILLTRAP
BPcc

See table 42
BiccD

See table 42
BPr

See table 43
SETHI
NOP†

FBPfcc
See table 42

FBfccD

See table 42
—

Table 32—op3[5:0] (op= 2)

op3 [5:4]

0 1 2 3

op3
[3:0]

0 ADD ADDcc TADDcc

WRYD (rd = 0)
— (rd= 1)

WRCCR (rd=2)
WRASI (rd=3)

WRASRPASR (seeA.63)
WRFPRS (rd=6)

SIR (rd=15, rs1=0, i=1)

1 AND ANDcc TSUBcc
SAVEDP (fcn = 0),

RESTOREDP (fcn = 1)

2 OR ORcc TADDccTVD WRPRP

3 XOR XORcc TSUBccTVD —

4 SUB SUBcc MULSccD
FPop1

See table 34

5 ANDN ANDNcc SLL (x = 0), SLLX (x = 1)
FPop2

See table 41

6 ORN ORNcc SRL (x = 0), SRLX (x = 1) IMPDEP1

7 XNOR XNORcc SRA (x = 0), SRAX (x = 1) IMPDEP2

8 ADDC ADDCcc

RDYD (rs1= 0)
— (rs1= 1)

RDCCR (rs1= 2)
RDASI (rs1= 3)

RDTICKPNPT (rs1= 4)
RDPC (rs1= 5)

RDFPRS (rs1=6)
RDASRPASR (seeA.44)

MEMBAR (rs1= 15,rd=0,i = 1)
STBARD (rs1= 15,rd=0,i = 0)

JMPL

9 MULX — — RETURN

A UMULD UMULccD RDPRP Tcc
See table 42

B SMULD SMULccD FLUSHW FLUSH

C SUBC SUBCcc MOVcc SAVE

D UDIVX — SDIVX RESTORE

E UDIVD UDIVccD POPC (rs1= 0)
— (rs1>0)

DONEP (fcn = 0)
RETRYP (fcn = 1)

F SDIVD SDIVccD MOVr
See table 43

—

Table 33—op3[5:0] (op= 3)

op3 [5:4]

0 1 2 3

op3
[3:0]

0 LDUW LDUWA PASI LDF LDFAPASI

1 LDUB LDUBA PASI LDFSRD, LDXFSR —
2 LDUH LDUHA PASI LDQF LDQFAPASI

3 LDDD LDDAD, PASI LDDF LDDFAPASI

4 STW STWAPASI STF STFAPASI

5 STB STBAPASI STFSRD, STXFSR —
6 STH STHAPASI STQF STQFAPASI

7 STDD STDAPASI STDF STDFAPASI

8 LDSW LDSWAPASI — —
9 LDSB LDSBAPASI — —
A LDSH LDSHAPASI — —
B LDX LDXA PASI — —
C — — — CASAPASI

D LDSTUB LDSTUBAPASI PREFETCH PREFETCHAPASI

E STX STXAPASI — CASXAPASI

F SWAPD SWAPAD, PASI — —

The
ssible

opf
[8:4]

0 1 E F

00 — FMOV — —
01 — — — —
02 — — — —
03 — — — —
04 — FADD FDIVd FDIVq

05 — — — —
06 — — FdMULq —
07 — — — —
08 — FsTO — —
09 — — — —
0A — — — —
0B — — — —
0C — — q FdTOq —
0D — FsTO — —

0E..1F — — — —
(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

F SPARC-V9 MMU Requirements

F.1 Introduction

This appendix describes the boundary conditions that all SPARC-V9 MMUs must satisfy.
appendix does not define the architecture of any specific memory management unit. It is po
to build a SPARC-V9-compliant system without an MMU.

Table 34—opf[8:0] (op= 2,op3= 3416 = FPop1)

opf[3:0]

2 3 4 5 6 7 8 9 A B C D

s FMOVd FMOVq — FNEGs FNEGd FNEGq — FABSs FABSd FABSq — —

— — — — — — — — — — — —

— — — — — — — FSQRTs FSQRTd FSQRTq — —

— — — — — — — — — — — —
s FADDd FADDq — FSUBs FSUBd FSUBq — FMULs FMULd FMULq — FDIVs

— — — — — — — — — — — —

— — — — — — — FsMULd — — — —

— — — — — — — — — — — —
x FdTOx FqTOx FxTOs — — — FxTOd — — — FxTOq —

— — — — — — — — — — — —

— — — — — — — — — — — —

— — — — — — — — — — — —

— — FiTOs — FdTOs FqTOs FiTOd FsTOd — FqTOd FiTOq FsTO

i FdTOi FqTOi — — — — — — — — — —

— — — — — — — — — — — —

This appendix is informative only.

It is not part of the SPARC-V9 specification.

s may

dress.

e of a
s may
butes

imple-

ion

(see
.3,

both

tion.
and

ces as
F.1.1 Definitions

address space:
A range of locations accessible with a 64-bit virtual address. Different address space
use the same virtual address to refer to different physical locations.

aliases:
Two virtual addresses are aliases of each other if they refer to the same physical ad

context:
A set of translations used to support a particular address space.

page:
The range of virtual addresses translated by a single translation element. The siz
page is the size of the range translated by a single translation element. Different page
have different sizes. Associated with a page or with a translation element are attri
(e.g., restricted, permission, etc.) and statistics (e.g., referenced, modified, etc.)

translation element:
Used to translate a range of virtual addresses to a range of physical addresses.

F.2 Overview

All SPARC-V9 MMUs must provide the following basic functions:

— Translate 64-bit virtual addresses to physical addresses. This translation may be
mented with one or more page sizes.

— Provide the RED_state operation, as defined in 7.2.1, “RED_state.”

— Provide a method for disabling the MMU. When the MMU is disabled, no translat
occurs: Physical Address<N:0> = Virtual Address<N:0>, whereN is implementation-
dependent. Furthermore, the disabled MMU will not perform any memory protection
F.4.2, “Memory Protection”) or prefetch and non-faulting load violation (see F.4
“Prefetch and Non-Faulting Load Violation”) checks.

IMPL. DEP. #117: Whether PREFETCH and non-faulting load always succeed when the MMU is
disabled is implementation-dependent.

— Provide page-level protections. Conventional protections (Read, Write, Execute) for
privileged and nonprivileged accesses may be provided.

— Provide page-level enabling and disabling of prefetch and non-faulting load opera
The MMU, however, need not provide separate protection mechanisms for prefetch
non-faulting load.

— Support multiple address spaces (ASIs). The MMU must support the address spa
defined in F.3.1, “Information the MMU Expects from the Processor.”

— Provide page-level statistics such as referenced and modified.

e F.8,

9
e, as
ther as
the

no
up-

es, as

he con-
MU

rom

.2.1,
The above requirements apply only to those systems that include SPARC-V9 MMUs. Se
“SPARC-V9 Systems without an MMU.”

F.3 The Processor-MMU Interface

A SPARC-V9 MMU must support at least two types of addresses:

(1) Virtual Addresses, which map all system-wide, program-visible memory. A SPARC-V
MMU may choose not to support translation for the entire 64-bit virtual address spac
long as addresses outside the supported virtual address range are treated ei
No_translation or Translation_not_valid (see F.3.3, “Information the MMU Sends to
Processor”).

(2) Physical Addresses, which map real physical memory and I/O device space. There is
minimum requirement for how many physical address bits a SPARC-V9 MMU must s
port.

A SPARC-V9 MMU translates virtual addresses from the processor into physical address
illustrated in figure 48.

Figure 48—Logical Diagram of a SPARC-V9 System with anMMU

Figure 48 shows only the address and data paths between the processor and the MMU. T
trol interface between the processor and the MMU is discussed in F.3.1, “Information the M
Expects from the Processor,” and F.3.3, “Information the MMU Sends to the Processor.”

F.3.1 Information the MMU Expects from the Processor

A SPARC-V9 MMU expects the following information to accompany each virtual address f
the processor:

RED_state:
Indicates whether the MMU should operate in RED_state, as defined in 7
“RED_state.”

Data / Instruction:
Indicates whether the access is an instruction fetch or data access (load or store).

I/O

Locations

Processor

Physical

MMU

Address

Virtual
Address

Physical
Address

Data

Space

Real

Memory

of the

(data

d, the

r the

stores
lemen-
h the

the

ap-
s. Write

ission is
is-

ute

cation
ation

with

etch-
ads
Prefetch:
Indicates whether the data (Data / Instruction = Data) access was initiated by one
SPARC-V9 prefetch instructions.

Privileged:
Indicates whether this access is privileged.

Read / Write:
Indicates whether this access is a read (instruction fetch or data load) or a write
store) operation.

Atomic:
Indicates whether this is an atomic load-store operation. Whenever atomic is asserte
value of “Read/Write” is treated by the MMU as “don’t care.”

ASI:
An 8-bit address space identifier. See 6.3.1.3, “Address Space Identifiers (ASIs),” fo
list of ASIs that the MMU must support.

F.3.2 Attributes the MMU Associates with Each Mapping

In addition to translating virtual addresses to physical addresses, a SPARC-V9 MMU also
associated attributes, either with each mapping or with each page, depending upon the imp
tation. Some of these attributes may be associated implicitly, as opposed to explicitly, wit
mapping. This information includes

Restricted:
Only privileged accesses are allowed (see F.3.1, “Information the MMU Expects from
Processor”); nonprivileged accesses are disallowed.

Read, Write, and Execute Permissions:
An MMU may allow zero or more of read, write, and execute permissions, on a per-m
ping basis. Read permission is necessary for data read accesses and atomic accesse
permission is necessary for data write accesses and atomic accesses. Execute perm
necessary for instruction accesses. At a minimum, an MMU must allow for “all perm
sions,” “no permissions,” and “no write permission”; optionally, it can provide “exec
only” and “write only,” or any combination of “read/write/execute” permissions.

Prefetchable:
The presence of this attribute indicates that accesses made with the prefetch indi
from the processor are allowed; otherwise, they are disallowed. See F.3.1, “Inform
the MMU Expects from the Processor.”

Non-faultable:
The presence of this attribute indicates that accesses made
ASI_PRIMARY_NOFAULT{_LITTLE} andASI_SECONDARY_NOFAULT{_LITTLE} are allowed;
otherwise, they are disallowed. An implementation may choose to combine the pref
able and non-faultable attributes into a single “No Side Effects” attribute; that is, “re
from this address do not cause side effects, such as clear on read.”

C-V9

. Can

ome
ly

tion.
tion.

n the
ects

, or
ssion,

dis-

hich

of the
F.3.3 Information the MMU Sends to the Processor

The processor can expect one and only one of the following signals coming from any SPAR
MMU for each translation requested:

Translation_error :
The MMU has detected an error (for example, parity error) in the translation process
cause adata_access_error or instruction_access_error exception.

No_translation:
The MMU is unable to translate the virtual address, since no translation exists for it. S
implementations may not provide this information and provide on
Translation_not_valid. Can cause either adata_access_exception or an
instruction_access_exception exception.

Translation_not_valid:
The MMU is unable to translate the virtual address, since it cannot find a valid transla
Some implementations may not provide this information and provide only No_transla
Can cause either adata_access_MMU_miss or an instruction_access_MMU_miss exception.

Privilege_violation:
The MMU has detected a privilege violation, i.e., an access to a restricted page whe
access does not have the required privilege (see F.3.1, “Information the MMU Exp
from the Processor”). Can cause either adata_access_protection or an
instruction_access_protection exception.

Protection_violation:
The MMU has detected a protection violation, which is defined to be a read, write
instruction fetch attempt to a page that does not have read, write, or execute permi
respectively. Can cause either adata_access_protection or an instruction_access_protection
exception.

Prefetch_violation:
The MMU has detected an attempt to prefetch from a page for which prefetching is
abled.

NF-Load_violation:
The MMU has detected an attempt to perform a non-faulting load from a page for w
non-faulting loads are disabled.

Translation_successful:
The MMU has successfully translated the virtual address to a physical address; none
conditions described above has been detected.

F.4 Components of the SPARC-V9 MMU Architecture

A SPARC-V9 MMU should contain the following:

— Logic that implements virtual-to-physical address translation

nate

ces

ss as

Data/
r a

ondi-
coun-
tion, or
r.”

MU

icted

rans-

that

g as

em-
— Logic that provides memory protection

— Logic that supports prefetching as noted in A.42, “Prefetch Data”

— Logic that supports non-faulting loading, as noted in 8.3, “Addressing and Alter
Address Spaces”

— A method for specifying the primary, secondary and, optionally, nucleus address spa

— A method for supplying information related to failed translations

— A method for collecting “referenced” and “modified” statistics

F.4.1 Virtual-to-Physical Address Translation

A SPARC-V9 MMU tries to translate every virtual address it receives into a physical addre
long as:

— The MMU is enabled.

— The processor indicates that this is a non-RED_state instruction fetch (see the
Instruction description in F.3.1, “Information the MMU Expects from the Processor”) o
data access with an ASI that indicates a translatable address space.

Although the MMU will attempt to translate every virtual address that meets the above two c
tions, it need not guarantee that it can provide a translation every time. When the MMU en
ters a virtual address that it cannot translate, it asserts either Translation_error, No_transla
Translation_not_valid, as discussed in F.3.3, “Information the MMU Sends to the Processo

F.4.2 Memory Protection

For each virtual address for which a SPARC-V9 MMU can provide a translation, the M
checks whether memory protection would be violated. More specifically, the MMU

— Indicates Privilege_violation (see F.3.3) if the translation information indicates a restr
page but the access was not privileged (see F.3.1)

— Indicates Protection_violation (see F.3.3) if a read, write, or instruction fetch uses a t
lation that does not grant read, write, or execute permission, respectively

— Indicates Protection_violation (see F.3.3) if an atomic load-store uses a translation
does not grant both read and write permission

F.4.3 Prefetch and Non-Faulting Load Violation

For each virtual address, the MMU checks for prefetch or non-faulting load violation as lon

— The MMU can provide a translation, and

— The MMU does not detect any memory protection violation, as discussed in F.4.2, “M
ory Protection.”

the

F.3.1)

non-

eld, as
de, it
ugh
More specifically, the MMU performs the following before sending the physical address to
rest of the memory system:

— Asserts Prefetch_violation (see F.3.3) if an access with the prefetch indication (see
uses a translation that lacks the prefetchable attribute (see F.3.2)

— Asserts NF-Load_violation (see F.3.3) if the ASI (see F.3.1) indicates this access is a
faulting load, but the translation it uses lacks the non-faultable attribute (see F.3.2)

F.4.4 Contexts

The MMU must support two contexts:

(1) Primary Context

(2) Secondary Context

In addition, it is also recommended that the MMU support a third context:

(3) Nucleus Context

On data accesss, the MMU decides which of these three contexts to use based on the ASI fi
illustrated in table 35. Because the SPARC-V9 MMU cannot determine the instruction opco
treats all data accesses with ASI_PRIMARY{_LITTLE} as normal loads or stores, even tho
the processor may issue them with load/store alternate instructions.

† Support for the nucleus context is only a recommendation; if an implementation does not support the
nucleus context it may ignore this row.

Table 35—Context Used for Data Access

MMU Inputs Output
ContextASI Mode

ASI_PRIMARY Either Primary

ASI_PRIMARY_LITTLE Either Primary

ASI_PRIMARY_NOFAULT Either Primary

ASI_PRIMARY_NOFAULT_LITTLE Either Primary

ASI_AS_IF_USER_PRIMARY Privileged Primary

ASI_AS_IF_USER_PRIMARY_LITTLE Privileged Primary

ASI_SECONDARY Either Secondary

ASI_SECONDARY_LITTLE Either Secondary

ASI_SECONDARY_NOFAULT Either Secondary

ASI_SECONDARY_NOFAULT_LITTLE Either Secondary

ASI_AS_IF_USER_SECONDARY Privileged Secondary

ASI_AS_IF_USER_SECONDARY_LITTLE Privileged Secondary

ASI_NUCLEUS † Privileged Nucleus

ASI_NUCLEUS_LITTLE † Privileged Nucleus

rated

the
nd any
p; for

struc-
not

reof,
d/or
nced, a
that a

nslation

dated

U is

led.
es the
On instruction fetch, the MMU decides which context to use based on the ASI field, as illust
in table 36. Note that the secondary context is never used for instruction fetch.

† Support for the Nucleus Context is only a recommendation; if an implementation does not support the
Nucleus Context it may ignore this row.

‡ It is implementation-dependent whether instruction fetch using ASI_NUCLEUS in nonprivileged
mode is allowed.

F.4.5 Fault Status and Fault Address

A SPARC-V9 MMU must provide the following:

— Fault status information that specifies which condition listed in F.3.3, “Information
MMU Sends to the Processor,” has resulted in a translation-related processor trap, a
other information necessary for privileged software to determine the cause of the tra
example, ASI, Read/Write, Data/Instruction, etc.

— The Fault address associated with the failed translation. Since the address from an in
tion translation failure is available in the processor as the trap PC, the MMU is
required to save the address of an instruction translation failure.

F.4.6 Referenced and Modified Statistics

A SPARC-V9 MMU shall allow, either through hardware, software, or some combination the
for the collection of “referenced” and “modified” statistics associated with translations an
physical pages. That is, there must be a method to determine if a page has been refere
method to determine if a page has been modified, and a method for clearing the indications
page has been referenced and/or modified. These statistics may be kept on either a per-tra
basis or a per-physical-page basis.

It is implementation-dependent whether the referenced and/or modified statistics are up
when an access is performed or when the translation for that access is performed.

F.5 RED_state Processing

It is recommended that the MMU perform as follows when the processor is in RED_state:

— Instruction address translation is a straight-through physical map; that is, the MM
always suppressed for instruction access in RED_state.

— Data address translation is handled normally; that is, the MMU is used if it is enab
Note that any event which causes the processor to enter RED_state also disabl
MMU, however, the handler executing in RED_state may reenable the MMU.

Table 36—Context Used for Instruction Access

ASI Mode Context

ASI_PRIMARY Either Primary

ASI_NUCLEUS† Privileged‡ Nucleus

to the
ribed in
ing

t con-
given

e or

hould

in
or that
escrip-

for the

C-V9
F.6 Virtual Address Aliasing

Hardware and privileged software must cooperate so that multiple virtual addresses aliased
same physical address appear to be consistent as defined by the memory models desc
Chapter 8, “Memory Models.” Depending upon the implementation, this may require allow
multiple translations to coexist only if they meet some implementation-dependent alignmen
straint, or it may require that software ensure that only one translation is in effect at any
time.

F.7 MMU Demap Operation

The SPARC-V9 MMU must provide a mechanism for privileged software to invalidate som
all of the virtual-to-physical address translations.

F.8 SPARC-V9 Systems without an MMU

It is possible to build a SPARC-V9 system that does not have an MMU. Such a system s
behave as if contains an MMU that is disabled.

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

G Suggested Assembly Language Syntax
This appendix supports Appendix A, “Instruction Definitions.” Each instruction description
Appendix A includes a table that describes the suggested assembly language format f
instruction. This appendix describes the notation used in those assembly language syntax d
tions and lists some synthetic instructions that may be provided by a SPARC-V9 assembler
convenience of assembly language programmers.

G.1 Notation Used

The notations defined here are also used in the syntax descriptions in Appendix A.

Items intypewriter font are literals to be written exactly as they appear. Items initalic font
are metasymbols that are to be replaced by numeric or symbolic values in actual SPAR

This appendix is informative only.

It is not part of the SPARC-V9 specification.

0
a

binary
he

e fol-

ne of

es:

ne of
assembly language code. For example, “imm_asi” would be replaced by a number in the range
to 255 (the value of theimm_asibits in the binary instruction), or by a symbol bound to such
number.

Subscripts on metasymbols further identify the placement of the operand in the generated
instruction. For example,regrs2 is a reg (register name) whose binary value will be placed in t
rs2 field of the resulting instruction.

G.1.1 Register Names

reg:
A reg is an integer register name. It may have any of the following values:1

%r0 ..%r31

%g0..%g7 (global registers; same as%r0 ..%r7)
%o0..%o7 (out registers; same as%r8 ..%r15)
%l0 ..%l7 (local registers; same as%r16 ..%r23)
%i0 ..%i7 (in registers; same as%r24 ..%r31)
%fp (frame pointer; conventionally same as%i6)
%sp (stack pointer; conventionally same as%o6)

Subscripts identify the placement of the operand in the binary instruction as one of th
lowing:

regrs1 (rs1 field)
regrs2 (rs2 field)
regrd (rd field)

freg:
An freg is a floating-point register name. It may have the following values:

%f0, %f1, %f2 .. %f63 See 5.1.4, “Floating-Point Registers”

Subscripts further identify the placement of the operand in the binary instruction as o
the following:

fregrs1 (rs1 field)
fregrs2 (rs2 field)
fregrd (rd field)

asr_reg:
An asr_reg is an Ancillary State Register name. It may have one of the following valu

%asr16 ..%asr31

Subscripts further identify the placement of the operand in the binary instruction as o
the following:

asr_regrs1 (rs1 field)
asr_regrd (rd field)

1.In actual usage, the%sp, %fp, %gn, %on, %ln, and%in forms are preferred over%rn.

it

ing
i_or_x_cc:
An i_or_x_ccspecifies a set of integer condition codes, those based on either the 32-b
result of an operation (icc) or on the full 64-bit result (xcc). It may have either of the
following values:

%icc

%xcc

fccn:
An fccnspecifies a set of floating-point condition codes. It may have any of the follow
values:

%fcc0

%fcc1

%fcc2

%fcc3

G.1.2 Special Symbol Names

Certain special symbols appear in the syntax table intypewriter font . They must be written
exactly as they are shown, including the leading percent sign (%).

The symbol names and the registers or operators to which they refer are as follows:
%asi Address Space Identifier register
%canrestore Restorable Windows register
%cansave Savable Windows register
%cleanwin Clean Windows register
%cwp Current Window Pointer register
%fq Floating-Point Queue
%fsr Floating-Point State Register
%otherwin Other Windows register
%pc Program Counter register
%pil Processor Interrupt Level register
%pstate Processor State register
%tba Trap Base Address register
%tick Tick (cycle count) register
%tl Trap Level register
%tnpc Trap Next Program Counter register
%tpc Trap Program Counter register
%tstate Trap State register
%tt Trap Type register
%ccr Condition Codes Register
%fprs Floating-Point Registers State register
%ver Version register
%wstate Window State register

ed:

r-
%y Y register

The following special symbol names are unary operators that perform the functions describ
%uhi Extracts bits 63..42 (high 22 bits of upper word) of its operand
%ulo Extracts bits 41..32 (low-order 10 bits of upper word) of its operand
%hi Extracts bits 31..10 (high-order 22 bits of low-order word) of its ope

and
%lo Extracts bits 9..0 (low-order 10 bits) of its operand

Certain predefined value names appear in the syntax table intypewriter font . They must be
written exactly as they are shown, including the leading sharp sign (#).

The value names and the values to which they refer are as follows:
#n_reads 0 (for PREFETCH instruction)
#one_read 1 (for PREFETCH instruction)
#n_writes 2 (for PREFETCH instruction)
#one_write 3 (for PREFETCH instruction)
#page 4 (for PREFETCH instruction)
#Sync 4016 (for MEMBAR instructioncmask field)
#MemIssue 2016 (for MEMBAR instructioncmask field)
#Lookaside 1016 (for MEMBAR instructioncmask field)
#StoreStore 0816 (for MEMBAR instructionmmask field)
#LoadStore 0416 (for MEMBAR instructionmmask field)
#StoreLoad 0216 (for MEMBAR instructionmmask field)
#LoadLoad 0116 (for MEMBAR instructionmmask field)
#ASI_AIUP 1016 ASI_AS_IF_USER_PRIMARY
#ASI_AIUS 1116 ASI_AS_IF_USER_SECONDARY
#ASI_AIUP_L 1816 ASI_AS_IF_USER_PRIMARY_LITTLE
#ASI_AIUS_L 1916 ASI_AS_IF_USER_SECONDARY_LITTLE
#ASI_P 8016 ASI_PRIMARY
#ASI_S 8116 ASI_SECONDARY
#ASI_PNF 8216 ASI_PRIMARY_NOFAULT
#ASI_SNF 8316 ASI_SECONDARY_NOFAULT
#ASI_P_L 8816 ASI_PRIMARY_LITTLE
#ASI_S_L 8916 ASI_SECONDARY_LITTLE
#ASI_PNF_L 8A16 ASI_PRIMARY_NOFAULT_LITTLE
#ASI_SNF_L 8B16 ASI_SECONDARY_NOFAULT_LITTLE

The full names of the ASIs may also be defined:
#ASI_AS_IF_USER_PRIMARY 1016

#ASI_AS_IF_USER_SECONDARY 1116

#ASI_AS_IF_USER_PRIMARY_LITTLE 1816

#ASI_AS_IF_USER_SECONDARY_LITTLE1916

er and
9). A
nly.
#ASI_PRIMARY 8016

#ASI_SECONDARY 8116

#ASI_PRIMARY_NOFAULT 8216

#ASI_SECONDARY_NOFAULT 8316

#ASI_PRIMARY_LITTLE 8816

#ASI_SECONDARY_LITTLE 8916

#ASI_PRIMARY_NOFAULT_LITTLE 8A16

#ASI_SECONDARY_NOFAULT_LITTLE 8B16

G.1.3 Values

Some instructions use operand values as follows:
const4 A constant that can be represented in 4 bits
const22 A constant that can be represented in 22 bits
imm_asi An alternate address space identifier (0..255)
simm7 A signed immediate constant that can be represented in 7 bits
simm10 A signed immediate constant that can be represented in 10 bits
simm11 A signed immediate constant that can be represented in 11 bits
simm13 A signed immediate constant that can be represented in 13 bits
value Any 64-bit value
shcnt32 A shift count from 0..31
shcnt64 A shift count from 0..63

G.1.4 Labels

A label is a sequence of characters that comprises alphabetic letters (a–z, A–Z [with upp
lower case distinct]), underscores (_), dollar signs ($), periods (.), and decimal digits (0-
label may contain decimal digits, but may not begin with one. A local label contains digits o

G.1.5 Other Operand Syntax

Some instructions allow several operand syntaxes, as follows:

reg_plus_imm may be any of the following:
regrs1 (equivalent toregrs1 + %g0)
regrs1+ simm13
regrs1 – simm13
simm13 (equivalent to%g0 + simm13)
simm13+ regrs1 (equivalent toregrs1 + simm13)

address may be any of the following:
regrs1 (equivalent toregrs1 + %g0)
regrs1+ simm13

res-
regrs1 – simm13
simm13 (equivalent to%g0 + simm13)
simm13+ regrs1 (equivalent toregrs1 + simm13)
regrs1+ regrs2

membar_mask is the following:
const7 A constant that can be represented in 7 bits. Typically, this is an exp

sion involving the logicalor of some combination of#Lookaside ,
#MemIssue , #Sync , #StoreStore , #LoadStore , #Store-
Load , and#LoadLoad .

prefetch_fcn (prefetch function) may be any of the following:
#n_reads

#one_read

#n_writes

#one_write

#page

0..31

regaddr (register-only address) may be any of the following:
regrs1 (equivalent toregrs1 + %g0)
regrs1+ regrs2

reg_or_imm (register or immediate value) may be either of:
regrs2
simm13

reg_or_imm10 (register or immediate value) may be either of:
regrs2
simm10

reg_or_imm11 (register or immediate value) may be either of:
regrs2
simm11

reg_or_shcnt (register or shift count value) may be any of:
regrs2
shcnt32
shcnt64

software_trap_number may be any of the following:
regrs1 (equivalent toregrs1 + %g0)
regrs1+ simm7
regrs1 – simm7
simm7 (equivalent to%g0 + simm7)
simm7+ regrs1 (equivalent toregrs1 + simm7)

usive.

yle “

nd in

,

is

struc-
or the

pro-
lways
tions.
regrs1+ regrs2

The resulting operand value (software trap number) must be in the range 0..127, incl

G.1.6 Comments

It is suggested that two types of comments be accepted by SPARC-V9 assemblers: C-st/
.../ ” comments, which may span multiple lines, and “!... ” comments, which extend from
the “! ” to the end of the line.

G.2 Syntax Design

The suggested SPARC-V9 assembly language syntax is designed so that

— The destination operand (if any) is consistently specified as the last (rightmost) opera
an assembly language instruction.

— A reference to thecontents of a memory location (in a Load, Store, CASA, CASXA
LDSTUB(A), or SWAP(A) instruction) is always indicated by square brackets([]); a ref-
erence to theaddressof a memory location (such as in a JMPL, CALL, or SETHI)
specified directly, without square brackets.

G.3 Synthetic Instructions

Table 37 describes the mapping of a set of synthetic (or “pseudo”) instructions to actual in
tions. These and other synthetic instructions may be provided in a SPARC-V9 assembler f
convenience of assembly language programmers.

Note that synthetic instructions should not be confused with “pseudo-ops,” which typically
vide information to the assembler but do not generate instructions. Synthetic instructions a
generate instructions; they provide more mnemonic syntax for standard SPARC-V9 instruc

Table 37—Mapping Synthetic to SPARC-V9 Instructions

Synthetic instruction SPARC-V9 instruction(s) Comment

cmp regrs1, reg_or_imm subcc regrs1, reg_or_imm, %g0 compare

jmp address jmpl address, %g0

call address jmpl address, %o7

iprefetch label bn,a,pt %xcc, label instruction prefetch

tst regrs1 orcc %g0, regrs1, %g0 test

ret jmpl %i7+8, %g0 return from subroutine

retl jmpl %o7+8, %g0 return from leaf subroutine

restore restore %g0, %g0, %g0 trivial restore

save save %g0, %g0, %g0 trivial save
(Warning: trivial save
should only be used in kernel
code!)

set uw value, regrd sethi %hi (value), regrd (when ((value&3FF16) = = 0))

— or —

or %g0, value, regrd (when 0≤value≤4095)

— or —

sethi %hi (value), regrd; (otherwise)

or regrd, %lo (value), regrd Warning: do not usesetuw in
the delay slot of a DCTI.

set value, regrd synonym forsetuw

set sw value, regrd sethi %hi (value), regrd (when (value> = 0) and
((value & 3FF16) = = 0))

— or —

or %g0, value, regrd (when -4096≤value≤4095)

— or —

sethi %hi (value), regrd (otherwise, if (value < 0) and
((value & 3FF16) = = 0))

sra regrd, %g0, regrd

— or —

sethi %hi (value), regrd; (otherwise, if value> = 0)

or regrd, %lo (value), regrd

— or —

sethi %hi (value), regrd; (otherwise, if value<0)

or regrd, %lo (value), regrd

sra regrd, %g0, regrd Warning: do not usesetsw in
the delay slot of a CTI.

setx value, reg, regrd sethi %uhi(value), reg create 64-bit constant

or reg, %ulo(value), reg (“reg” is used as a temporary
register)sllx reg,32, reg

sethi %hi(value), regrd Note:set x optimizations are
possible, but not enumer-
ated here. The worst-case is
shown.Warning: do not use
set x in the delay slot of a
CTI.

or regrd, reg, regrd

or regrd, %lo(value), regrd

Table 37—Mapping Synthetic to SPARC-V9 Instructions (Continued)

Synthetic instruction SPARC-V9 instruction(s) Comment

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

signx regrs1, regrd sra regrs1, %g0, regrd sign-extend 32-bit value to
64 bitssignx regrd sra regrd, %g0, regrd

not regrs1, regrd xnor regrs1, %g0, regrd one’s complement

not regrd xnor regrd, %g0, regrd one’s complement

neg regrs2, regrd sub %g0, regrs2, regrd two’s complement

neg regrd sub %g0, regrd, regrd two’s complement

cas [regrs1], regrs2, regrd casa [regrs1]#ASI_P, regrs2, regrd compare and swap

casl [regrs1], regrs2, regrd casa [regrs1]#ASI_P_L, regrs2, regrd compare and swap, little-endian

casx [regrs1], regrs2, regrd casxa [regrs1]#ASI_P, regrs2, regrd compare and swap extended

casxl [regrs1], regrs2, regrd casxa [regrs1]#ASI_P_L, regrs2, regrd compare and swap extended,
little-endian

inc regrd add regrd, 1, regrd increment by 1

inc const13, regrd add regrd, const13, regrd increment by const13

inccc regrd addcc regrd, 1, regrd incr by 1; set icc & xcc

inccc const13, regrd addcc regrd, const13, regrd incr by const13; set icc & xcc

dec regrd sub regrd, 1, regrd decrement by 1

dec const13, regrd sub regrd, const13, regrd decrement by const13

deccc regrd subcc regrd, 1, regrd decr by 1; set icc & xcc

deccc const13, regrd subcc regrd, const13, regrd decr by const13; set icc & xcc

btst reg_or_imm, regrs1 andcc regrs1, reg_or_imm, %g0 bit test

bset reg_or_imm, regrd or regrd, reg_or_imm, regrd bit set

bclr reg_or_imm, regrd andn regrd, reg_or_imm, regrd bit clear

btog reg_or_imm, regrd xor regrd, reg_or_imm, regrd bit toggle

clr regrd or %g0, %g0, regrd clear (zero) register

clrb [address] stb %g0, [address] clear byte

clrh [address] sth %g0, [address] clear halfword

clr [address] stw %g0, [address] clear word

clrx [address] stx %g0, [address] clear extended word

clruw regrs1, regrd srl regrs1, %g0, regrd copy and clear upper word

clruw regrd srl regrd, %g0, regrd clear upper word

mov reg_or_imm, regrd or %g0, reg_or_imm, regrd

mov %y, regrd rd %y, regrd

mov %asrn, regrd rd %asr n, regrd

mov reg_or_imm, %y wr %g0, reg_or_imm, %y

mov reg_or_imm, %asr n wr %g0, reg_or_imm, %asr n

Table 37—Mapping Synthetic to SPARC-V9 Instructions (Continued)

Synthetic instruction SPARC-V9 instruction(s) Comment

mples

sump-
those
archi-

nven-

sub-

cture
t

from
ecutes

at any
f the
H Software Considerations
This appendix describes how software can use the SPARC-V9 architecture effectively. Exa
do not necessarily conform to any specific Application Binary Interface (ABI).

H.1 Nonprivileged Software

This subsection describes software conventions that have proven or may prove useful, as
tions that compilers may make about the resources available, and how compilers can use
resources. It does not discuss how supervisor software (an operating system) may use the
tecture. Although a set of software conventions is described, software is free to use other co
tions more appropriate for specific applications.

The following are the primary goals for many of the software conventions described in this
section:

— Minimizing average procedure-call overhead

— Minimizing latency due to branches

— Minimizing latency due to memory access

H.1.1 Registers

Register usage is a critical resource allocation issue for compilers. The SPARC-V9 archite
provides windowed integer registers (in, out, local), global integer registers, and floating-poin
registers.

H.1.1.1 In and Out Registers

The in andout registers are used primarily for passing parameters to and receiving results
subroutines, and for keeping track of the memory stack. When a procedure is called and ex
a SAVE instruction, the caller’souts become the callee’sins.

One of a procedure’sout registers (%o6) is used as its stack pointer,%sp. It points to an area in
which the system can store%r16 ..%r31 (%l0 ..%l7 and%i0 ..%i7) when the register file over-
flows (spill trap), and is used to address most values located on the stack. A trap can occur
time1, which may precipitate a subsequent spill trap. During this spill trap, the contents o
user’s register window at the time of the original trap are spilled to the memory to which its%sp
points.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

r

ed

e

ting

elay-

ncy,
to the

han

han six
gram-
ame-
any of

a

aining
A procedure may store temporary values in itsout registers (except%sp) with the understanding
that those values are volatile across procedure calls.%spcannot be used for temporary values fo
the reasons described in H.1.1.3, “Register Windows and %sp.”

Up to six parameters1 may be passed by placing them inout registers%o0..%o5; additional
parameters are passed in the memory stack. The stack pointer is implicitly passed in%o6, and a
CALL instruction places its own address in%o7.2 Floating-point parameters may also be pass
in floating-point registers.

After a callee is entered and its SAVE instruction has been executed, the caller’sout registers are
accessible as the callee’sin registers.

The caller’s stack pointer%sp (%o6) automatically becomes the current procedure’s fram
pointer%fp (%i6) when the SAVE instruction is executed.

The callee finds its first six integer parameters in%i0 ..%i5 , and the remainder (if any) on the
stack.

A function returns a scalar integer value by writing it into itsins (which are the caller’souts),
starting with%i0 . A scalar floating-point value is returned in the floating-point registers, star
with %f0.

A procedure’s return address, normally the address of the instruction just after the CALL’s d
slot instruction, is as%i7+8 .3

H.1.1.2 Local Registers

The locals are used for automatic4 variables and for most temporary values. For access efficie
a compiler may also copy parameters (that is, those past the sixth) from the memory stack in
locals and use them from there.

See H.1.4, “Register Allocation within a Window,” for methods of allocating more or fewer t
eight registers for local values.

1. For example, due to an error in executing an instruction (for example, amem_address_not_aligned trap), or due
to any type of external interrupt.

1. Six is more than adequate, since the overwhelming majority of procedures in system code take fewer t
parameters. According to studies cited by Weicker (Weicker, R. P., “Dhrystone: A Synthetic Systems Pro
ming Benchmark,”CACM27:10, October 1984), at least 97% (measured statically) take fewer than six par
ters. The average number of parameters did not exceed 2.1, measured either statically or dynamically, in
these studies.

2. If a JMPL instruction is used in place of a CALL, it should place its address in%o7 for consistency.

3. For convenience, SPARC-V9 assemblers may provide a “ret ” (return) synthetic instruction that generates
“ jmpl %i7+8 , %g0” hardware instruction. See G.3, “Synthetic Instructions.”

4. In the C language, an automatic variable is a local variable whose lifetime is no longer than that of its cont
procedure.

. If

rap

alk-
le to
e user
a user

hen,
the

archi-

the

e no

al
viron-
n-
eneral

l
t be a

imple-
H.1.1.3 Register Windows and %sp

Some caveats about the use of%spand the SAVE and RESTORE instructions are appropriate
the operating system and user code use register windows, it is essential that

— %spalwayscontains a correct value, so that when (and if) a register window spill/fill t
occurs, the register window can be correctly stored to or reloaded from memory.1

— Nonprivileged code uses SAVE and RESTORE instructions carefully. In particular, “w
ing” the call chain through the register windows using RESTOREs, expecting to be ab
return to where one started using SAVEs, does not work as one might suppose. Sinc
code cannot disable traps, a trap (e.g., an interrupt) could write over the contents of
register window that has “temporarily” been RESTOREd2. The safe method is to flush the
register windows to user memory (the stack) by using the FLUSHW instruction. T
user code can safely “walk” the call chain through user memory, instead of through
register windows.

To avoid such problems, consider all data memory at addresses just less than%sp to be volatile,
and the contents of all register windows “below” the current one to be volatile.

H.1.1.4 Global Registers

Unlike theins, locals, andouts, theglobals are not part of any register window. Theglobals are a
set of eight registers with global scope, like the register sets of more traditional processor
tectures. An ABI may define conventions that theglobals (except%g0) must obey. For example,
if the convention assumes thatglobalsare volatile across procedure calls, either the caller or
callee must take responsibility for saving and restoring their contents.

Global register%g0has a hardwired value of zero; it always reads as zero, and writes to it hav
program-visible effect.

Typically, theglobal registers other than%g0are used for temporaries, global variables, or glob
pointers — either user variables, or values maintained as part of the program’s execution en
ment. For example, one could useglobals in the execution environment by establishing a conve
tion that global scalars are addressed via offsets from a global base register. In the most g
case, memory accessed at an arbitrary address requires six instructions; for example,

sethi %uhi(address), tmp
or tmp , %ulo(address), tmp
sllx tmp , 32, tmp
sethi %hi(address), reg
or reg , %lo(address), reg
ld [reg +tmp], reg

1. Typically, the SAVE instruction is used to generate a new%spvalue while shifting to a new register window, al
in one atomic operation. When SAVE is used this way, synchronization of the two operations should no
problem.

2. Another reason this might fail is that user code has no way to determine how many register windows are
mented by the hardware.

ingle-

ingly

ssed as
o be
differ-

, and to
oint

rs use
aram-

n for

nd effi-

rame
stack

m’s
tack

call

stack
deal-

cca-
s to
Use of a global base register for frequently accessed global values would provide faster (s
instruction) access to 213 bytes of those values; for example,

ld [%g n+offset], reg

Additional global registers could be used to provide single-instruction access to correspond
more global values.

H.1.1.5 Floating-Point Registers

There are sixteen quad-precision floating-point registers. The registers can also be acce
thirty-two double-precision registers. In addition, the first eight quad registers can als
accessed as thirty-two single-precision registers. Floating-point registers are accessed with
ent instructions than the integer registers; their contents can be moved among themselves
or from memory. See 5.1.4, “Floating-Point Registers,” for more information about floating-p
register aliasing.

Like the global registers, the floating-point registers must be managed by software. Compile
the floating-point registers for user variables and compiler temporaries, pass floating-point p
eters, and return floating-point results in them.

H.1.1.6 The Memory Stack

A stack is maintained to hold automatic variables, temporary variables, and return informatio
each invocation of a procedure. When a procedure is called, astack frame is allocated; it is
released when the procedure returns. The use of a stack for this purpose allows simple a
cient implementation of recursive procedures.

Under certain conditions, optimization can allow a leaf procedure to use its caller’s stack f
instead of one of its own. In that case, the procedure allocates no space of its own for a
frame. See H.1.2, “Leaf-Procedure Optimization,” for more information.

The stack pointer%sp must always maintain the alignment required by the operating syste
ABI. This is at least doubleword alignment, possibly with a constant offset to increase s
addressability using constant offset addressing.

H.1.2 Leaf-Procedure Optimization

A leaf procedure is one that is a “leaf” in the program’s call graph; that is, one that does not
(e.g., via CALL or JMPL) any other procedures.

Each procedure, including leaf procedures, normally uses a SAVE instruction to allocate a
frame and obtain a register window for itself, and a corresponding RESTORE instruction to
locate it. The time costs associated with this are

— Possible generation of register-window spill/fill traps at runtime. This only happens o
sionally,1 but when either a spill or fill trap does occur, it costs several machine cycle
process.

f which

,
of the

gis-

stack
called
its

s:

es vol-

oce-
ed

t is

. If
g

er win-

o per-
— The cycles expended by the SAVE and RESTORE instructions themselves.

There are also space costs associated with this convention, the cumulative cache effects o
may be nonnegligible. The space costs include

— The space occupied on the stack by the procedure’s stack frame

— The two words occupied by the SAVE and RESTORE instructions

Of the above costs, the trap-processing cycles typically are the most significant.

Some leaf procedures can be made to operatewithout their own register window or stack frame
using their caller’s instead. This can be done when the candidate leaf procedure meets all
following conditions:1

— It contains no references to%sp, except in its SAVE instruction.

— It contains no references to%fp.

— It refers to (or can be made to refer to) no more than eight of the thirty-two integer re
ters, including%o7 (the return address).

If a procedure conforms to the above conditions, it can be made to operate using its caller’s
frame and registers, an optimization that saves both time and space. This optimization is
leaf procedure optimization. The optimized procedure may safely use only registers that
caller already assumes to be volatile across a procedure call.

The optimization can be performed at the assembly language level using the following step

(1) Change all references to registers in the procedure to registers that the caller assum
atile across the call.

(a) Leave references to%o7 unchanged.

(b) Leave any references to%g0..%g7 unchanged.

(c) Change%i0 ..%i5 to %o0..%o5, respectively. If anin register is changed to anout
register that was already referenced in the original unoptimized version of the pr
dure, all original references to thatout register must be changed to refer to an unus
out or global register.

(d) Change references to eachlocal register into references to any unused register tha
assumed to be volatile across a procedure call.

(2) Delete the SAVE instruction. If it was in a delay slot, replace it with a NOP instruction
its destination register was not%g0 or %sp, convert the SAVE into the correspondin
ADD instruction instead of deleting it.

1. The frequency of overflow and underflow traps depends on the application and on the number of regist
dows (NWINDOWS) implemented in hardware.

1. Although slightly less restrictive conditions could be used, the optimization would become more complex t
form and the incremental gain would usually be small.

h as
ADD
allo-
d so

syn-

lling
tive

rences

e call.

leaf

ace-

mple of

e pro-

ed to

r
ndary

ruction.
such
(3) If the RESTORE’s implicit addition operation is used for a productive purpose (suc
setting the procedure’s return value), convert the RESTORE to the corresponding
instruction. Otherwise, the RESTORE is only used for stack and register-window de
cation; replace it with a NOP instruction (it is probably in the delay slot of the RET, an
cannot be deleted).

(4) Change the RET (return) synthetic instruction to RETL (return-from-leaf-procedure
thetic instruction).

(5) Perform any optimizations newly made possible, such as combining instructions or fi
the delay slot of the RETL (or the delay slot occupied by the SAVE) with a produc
instruction.

After the above changes, there should be no SAVE or RESTORE instructions, and no refe
to in or local registers in the procedure body. All original references toins are now toouts. All
other register references are to registers that are assumed to be volatile across a procedur

Costs of optimizing leaf procedures in this way include

— Additional intelligence in a peephole optimizer to recognize and optimize candidate
procedures

— Additional intelligence in debuggers to properly report the call chain and the stack tr
back for optimized leaf procedures1

H.1.3 Example Code for a Procedure Call

This subsection illustrates common parameter-passing conventions and gives a simple exa
leaf-procedure optimization.

The code fragment in example 1 shows a simple procedure call with a value returned, and th
cedure itself.

Sincesum3 does not call any other procedures (i.e., it is a leaf procedure), it can be optimiz
become:

sum3:
add %o0, %o1, %o0
retl ! (must use RETL, not RET,
add %o0, %o2, %o0 ! to return from leaf procedure)

H.1.4 Register Allocation within a Window

The usual SPARC-V9 software convention is to allocate eight registers (%l0 ..%l7) for local val-
ues. A compiler could allocate more registers for local values at the expense of having feweouts
and ins available for argument passing. For example, if instead of assuming that the bou

1. A debugger can recognize an optimized leaf procedure by scanning it, noting the absence of a SAVE inst
Compilers often constrain the SAVE, if present, to appear within the first few instructions of a procedure; in
a case, only those instruction positions need be examined.

.

between local values and input arguments is between r[23] and r[24] (%l7 and%i0), software
could, by convention, assume that the boundary is between r[25] and r[26] (%i1 and%i2). This
would provide ten registers for local values and sixin andout registers. This is shown in table 38

Table 38—Register Allocation within a Window

Standard
register
model

10 local
register
model

Arbitrary
register
model

Registers for local values 8 10 n

In / out registers

Reserved for%sp / %fp 1 1 1

Reserved for return address 1 1 1

Available for argument passing 6 4 14− n

Total ins / outs 8 6 16− n

! CALLER:
! int i; /* compiler assigns "i" to register %l7 */
! i = sum3(1, 2, 3);

...
mov 1, %o0 ! first arg to sum3 is 1
mov 2, %o1 ! second arg to sum3 is 2
call sum3 ! the call to sum3
mov 3, %o2 ! last parameter to sum3 in delay slot
mov %o0, %l7 ! copy return value to %l7 (variable "i")
...

#define SA(x) (((x)+15)&(~0x1F)) /* rounds "x" up to extended word boundary
*/
#define MINFRAME ((16+1+6)*8) /* minimum size stack frame, in bytes;

 * 16 extended words for saving the
current

 * register window,
 * 1 extended word for “hidden parameter”,
 * and 6 extended words in which a callee
 * can store its arguments.
 */

! CALLEE:
! int sum3(a, b, c)
! int a, b, c; /* args received in %i0, %i1, and %i2 */
! {
! return a+b+c;
! }
sum3:

save %sp,-SA(MINFRAME),%sp! set up new %sp; alloc min. stack frame
add %i0, %i1, %l7 ! compute sum in local %l7
add %l7, %i2, %l7 ! (or %i0 could have been used directly)
ret ! return from sum3, and...
restore %l7, 0, %o0 ! move result into output reg & restore

Example 1—Simple Procedure Call with Value Returned

for use
other
es for

ribed

and
-V9’s

more
ue to
nifi-
g local

code
are

con-
r-

e with
gister

ified

ode

tion
ered

pro-
H.1.5 Other Register-Window-Usage Models

So far, this appendix has described SPARC-V9 software conventions that are appropriate
in a general-purpose multitasking computer system. However, SPARC-V9 is used in many
applications, notably embedded and/or real-time systems. In such applications, other schem
allocation of SPARC-V9’s register windows might be more nearly optimal than the one desc
above.

One possibility is to avoid using the normal register-window mechanism by not using SAVE
RESTORE instructions. Software would see 32 general-purpose registers instead of SPARC
usual windowed register file. In this mode, SPARC-V9 would operate like processors with
traditional (flat) register architectures. Procedure call times would be more determinate (d
lack of spill/fill traps), but for most types of software, average procedure call time would sig
cantly increase, due to increased memory traffic for parameter passing and saving/restorin
variables.

Effective use of this software convention would require compilers to generate different
(direct register spills/fills to memory and no SAVE/RESTORE instructions) than for the softw
conventions described above.

It would be awkward, at best, to attempt to mix (link) code that uses the SAVE/RESTORE
vention with code that does not use it. If both conventionswereused in the same system, two ve
sions of each library would be required.

It would be possible to run user code with one register-usage convention and supervisor cod
another. With sufficient intelligence in supervisor software, user processes with different re
conventions could be run simultaneously.1

H.1.6 Self-Modifying Code

If a program includes self-modifying code, it must issue a FLUSH instruction for each mod
doubleword of instructions (or a call to supervisor software having an equivalent effect).

Note that self-modifying code intended to be portablemust use FLUSH instruction(s) (or a call to
supervisor software having equivalent effect) after storing into the instruction stream.

All SPARC-V9 instruction accesses are big-endian. If a program is running in little-endian m
and wishes to modify instructions, it must do one of the following:

— Use an explicit big-endian ASI to write the modified instruction to memory, or

— Reverse the byte ordering shown in the instruction formats in Appendix A, “Instruc
Definitions,” before doing a little-endian store, since the stored data will be reord
before the bytes are written to memory.

1. Although technically possible, this is not to suggest that there would be significant utility in mixing user
cesses with differing register-usage conventions.

st of

is in
TATE
PU
user

in-
ws to

ranch

used
ments.

s any
his
n of a
can
is is
H.1.7 Thread Management

SPARC-V9 provides support for the efficient management of user-level threads. The co
thread switching can be reduced by using the following features:

User Management of FPU:
The FEF bit in the FPRS register allows nonprivileged code to manage the FPU. This
addition to the management done by the supervisor code via the PEF bit in the PS
register. A thread-management library can implement efficient switching of the F
among threads by manipulating the FEF bit in the FPRS register and by providing a
trap handler (with support from the supervisor software) for thefp_disabled exception. See
the description of User Traps in H.2.4, “User Trap Handlers.”

FLUSHW Instruction :
The FLUSHW instruction is an efficient way for a thread library to flush the register w
dows during a thread switch. The instruction executes as a NOP if there are no windo
flush.

H.1.8 Minimizing Branch Latency

The SPARC-V9 architecture contains several instructions that can be used to minimize b
latency. These are described below.

Conditional Moves:
The conditional move instructions for both integer and floating-point registers can be
to eliminate branches from the code generated for simple expressions and/or assign
The following example illustrates this.

The C code segment

double x,y;
int i;
...
i = (x > y) ? 1 : 2;

can be compiled to use a conditional move as follows:

fcmp %fcc1, x, y ! x and y are double regs
mov 1, i ! i is int; assume x > y
movfle %fcc1, 2, i ! fix i if wrong

Branch or Move Based on Register Contents:
The use of register contents as conditions for branch and move instructions allow
integer register (other thanr0) to hold a boolean value or the results of a comparison. T
allows conditions to be used more efficiently in nested cases. It allows the generatio
condition to be moved further from its use, thereby minimizing latency. In addition, it
eliminate the need for additional arithmetic instructions to set the condition codes. Th
illustrated in the following example.

The test for finding the maximum of an array of integers,

if (A[i] > max)
max = A[i];

the

cy of

sum-

tency

loop

ickly.
s is

ftware
ing
d
n

can be compiled as follows, allowing the condition for the loop to be set before
sequence and checked after it:

ldx [addr_of_Ai], Ai
sub Ai, max, tmp
movrgz tmp, Ai, max

H.1.9 Prefetch

The SPARC-V9 architecture includes a prefetch instruction intended to help hide the laten
accessing memory.1

As a general rule, given a loop of the following form (using C for assembly language, and as
ing a cache line size of 64 bytes and that A and B are arrays of 8-byte values)

for (i = 0; i < N; i++) {
load A[i]

load B[i]

...

}

which takes C cycles per iteration (assuming all loads hit in cache) and given L cycles of la
to memory, prefetch instructions may be inserted for data that will be neededceiling(L/C') itera-
tions in the future, where C' is number of cycles per iteration of the modified loop. Thus, the
would be transformed into

K = ceiling(L/C');
for (i = 0; i < N; i++) {

load A[i]

load B[i]

prefetch A[i+K]

prefetch B[i+K]

...

}

This ensures that the loads will find their data in the cache, and will thus complete more qu
The first K iterations will not get any benefit from prefetching, so if the number of iteration
small (see below), then prefetching will not help.

1. Two papers describing the use of prefetch instructions are Callahan, D., K. Kennedy, A. Porterfield, “So
Prefetching,”Proceedings of the Fourth International Conference on Architectural Support for Programm
Languages and Operating Systems, April 1991, pp. 40-52, and Mowry, T., M. Lam, and A. Gupta, “Design an
Evaluation of a Compiler Algorithm for Prefetching,”Proceedings of the Fifth International Conference o
Architectural Support for Programming Languages and Operating Systems, October 1992, pp. 62-73.

ill in
struc-

eed not
ny as

is not
hing
In the
g.

smart
ies to
Note that in cases of contiguous access (like this one), many of the prefetch instructions w
fact be unnecessary and may slow the program down. To avoid this, note that the prefetch in
tion always obtains at least 64 (cache-line-aligned) bytes.

/* Round up access to next cache line. */
K' = (ceiling(L/C') + 7) & ~7;

for (i = 0; i < N; i++) {

load A[i]

load B[i]

if (((int)(A+i) & 63) = = 0) {

prefetch A[i+K']

prefetch B[i+K']

}

...

}

or (unrolled eight times, assuming A and B are arrays of 8-byte values)

/* Be sure that we access the next cache line. */
K'' = ceiling(L/C') + 7;

for (i = 0; i < N; i++) {

load A[i]

load B[i]

prefetch A[i+K'']

prefetch B[i+K'']

...

load A[i+1]

load B[i+2]

... (no prefetching)

...

load A[i+7]

load B[i+7]

...

}

In the first case, the prefetching is performed exactly when needed, and thus the distance n
be adjusted. However, the prefetching may not start on the first iteration, resulting in as ma
K' + 7 iterations without prefetching.

In the second case, the prefetching occurs somewhere within a cache line, and thus, it
known exactly how long it will be until the next cache line is needed. However, by prefetc
seven further ahead, we ensure that the next cache line will be prefetched soon enough.
worst case, as many as K'' (≤ K' + 7) iterations will execute without any benefit from prefetchin

Table 39 illustrates the cost tradeoffs between no prefetching, naive prefetching, and
prefetching (the second choice) for a small loop (two cycles) with varying uncovered latenc

; that

tions, a
cost of
lling,

ven if
maxi-

for N.

ided,
er. For
rands

he; the
ate for

cases
eteriz-
in the
ABI.

mpiler
xecu-
memory. Some of the latency may be overlapped with execution of surrounding instructions
which is not is uncovered.

Here, we treat the arrays accessed as if one were not in the cache. Thus, every eight itera
cache line must be fetched from memory in the no-prefetch case; and thus, the amortized
an iteration is C + L/8. The cost estimate for the smart case ignores any benefits from unro
since it is reasonable to expect that the loop would be unrolled or pipelined in this fashion, e
prefetching were not used. The startup costs assume an alignment within the cache that
mizes the initial misses. The break-even cost was chosen by solving the following equation

N ∗ (C + L/8) = WM ∗ L + N ∗ (7C + C')/8 {e.g., 3N = 16 + 2.25N⇒ N = 21}

Of course, this is a simplified model.

Another possibility to consider is the worst-case cost of prefetching. If, in the example prov
everything accessed is always cached, then the smart-prefetching loop takes 12.5% long
each memory latency, there is a break-even point (in terms of how often one of the array ope
is cached) at which the prefetching loop begins to run faster. Table 40 illustrates this.

Note that one uncached operand corresponds to one load out of sixteen missing the cac
operand miss rate is sixteen times higher than the load miss rate. Note that this is the miss r
this loop alone; extrapolation from whole-program miss rates is not advised.

Binaries that run efficiently across different SPARC-V9 implementations can be created for
like this (where memory accesses are regular, though not necessarily contiguous) by param
ing the prefetch distance by machine type. In privileged code the machine type is available
VER register; nonprivileged code should be able to obtain this from the operating system or
Based on information about known machines and estimated loop execution times, a co
could precalculate values for K'' (assuming smart prefetching) and store them in a table. At e
tion time, the proper value for K'' would be fetched from the table before entering the loop.

Table 39—Prefetch Cost Tradeoffs

Limit cycles/iteration Smart startup costs

No pf Naive Smart Worst Worst

C C' L K K'' C+L/8 C' (7C+C')/8 Misses Breakeven

2 4 8 4 11 3 4 2.25 2 N = 21

2 4 16 8 15 4 4 2.25 2 N = 18

2 4 32 16 23 6 4 2.25 3 N = 26

Table 40—Cache Break-Even Points

L C-cached C-missed C-smart

Break-even
% cached
operands

Break-even
loop cache miss

rate

8 2 3 2.25 75% 1.56%

16 2 4 2.25 88% 0.75%

32 2 6 2.25 94% 0.375%

64 2 10 2.25 97% 0.188%

block-
int in

use of
uld be
used.
am-
data),
ected
ed bus

ing of
rticular

visi-
se are
struc-
red to

load

ve the

read-
ge “–

d by

than

s to
rds)
For regular but noncontiguous accesses, a prefetch would be issued for every load. If cache
ing is used, the prefetching strategy must be adjusted accordingly, since there is no po
prefetching data that is expected to be in the cache already.

The prefetch variant should be chosen based on what is known about the local and global
the data prefetched. If the data is not being written locally, then variant 0 (several reads) sho
used. If it is being written (and possibly also read), then variant 2 (several writes) should be
If, in addition, it is known that this is likely to be the last use of the data for some time (for ex
ple, if the loop iteration count is one million and dependence analysis reveals no reuse of
then it is appropriate to use either variant 1 (one read) or 3 (one write). If reuse of data is exp
to occur soon, then use of variants 1 or 3 is not appropriate, because of the risk of increas
and memory traffic on a multiprocessor.

If the hardware does not implement all variants, it is expected to provide a sensible overload
the unimplemented variants. Thus, correct use of a specific variant need not be tied to a pa
SPARC-V9 implementation or multi/uniprocessor configuration.

H.1.10 Nonfaulting Load

The SPARC-V9 architecture includes a way to specify load instructions that do not generate
ble faults, so that compilers can have more freedom in scheduling instructions. Note that the
not speculative loads, which may fault if their results are later used; these are normal load in
tions, but tagged to indicate to the kernel and/or hardware that a fault should not be delive
the code executing the instruction.

Five important rules govern the use of nonfaulting loads:

(1) Volatile memory references in the source language should not use nonfaulting
instructions.

(2) Code compiled for debugging should not use nonfaulting loads, because they remo
ability to detect common errors.

(3) If nonfaulting loads are used, page zero should be a page of zero values, mapped
only. Compilers that routinely use negative offsets to register pointers should map pa
1” similarly, if the operating software permits it.

(4) Any use of nonfaulting loads in privileged code must be aware of how they are treate
the host SPARC-V9 implementation.

(5) Nonfaulting loads from unaligned addresses may be substantially more expensive
nonfaulting loads from other addresses.

Nonfaulting loads can be used to solve three scheduling problems.

— On super-scalar machines, it is often desirable to obtain the right mix of instruction
avoid conflicts for any given execution unit. A nonfaulting load can be moved (backwa
past a basic block boundary to even out the instruction mix.

g load
a reg-

th a
ad

e loads
elined.

ved
dis-
— On pipelined machines, there may be latency between loads and uses. A nonfaultin
can be moved past a block boundary to place more instructions between a load into
ister and the next use of that register.

— Software pipelining improves the scheduling of loops, but if a loop iteration begins wi
load instruction and contains an early exit, it may not be eligible for pipelining. If the lo
is replaced with a nonfaulting load, then the loop can be pipelined.

In the branch-laden code shown in example 2, nonfaulting loads could be used to separat
from uses. The result also has a somewhat better mix of instructions and is somewhat pip
The basic blocks are separated.

In the loop shown in example 3, nonfaulting loads allow pipelining. This loop might be impro
further using unrolling, prefetching, and multiple FCCs, but that is beyond the scope of this
cussion.

Source Code:
while (x ! = 0 && x -> key ! = goal) x = x -> next;

With Normal Loads:
entry:

brnz,a x,loop !

ldx [x],t1 ! (pre)load1 (key)

loop:

cmp t1,goal ! use1

bpe %xcc,out

nop ! no filling from loop.

ldx [x+8],x ! load2 (next)

brnz,a x,loop ! use2

ldx [x],t1 ! load1

out: ...

With Nonfaulting Loads:
entry:

mov x,t2
mov #ASI_PNF, %asi
ldxa [t2]%asi,t1 ! (pre)load1 (nf-load for key)

loop:
mov t2,x ! begin loop body
brz,pn t2,out
ldxa [t2+8]%asi,t2 ! load2 (nf-load for next)

cmp t1,goal ! use1
bpne %xcc,loop
ldxa [t2],%asi,t1 ! use2, load1 ! nf-load for x

out: ...

Example 2—Branch-Laden Code with Nonfaulting Loads

chitec-
ple-
and

y for
d to

ep-
hes).

g if it
H.2 Supervisor Software

This subsection discusses how supervisor software can use the SPARC-V9 privileged ar
ture. It is intended to illustrate how the architecture can be used in an efficient manner. An im
mentation may choose to utilize different strategies based on its requirements
implementation-specific aspects of the architecture.

H.2.1 Trap Handling

The SPARC-V9 privileged architecture provides support for efficient trap handling, especiall
window traps. The following features of the SPARC-V9 privileged architecture can be use
write efficient trap handlers:

Multiple Trap Levels :
The trap handlers for trap levels less than MAXTL – 1 can be written to ignore exc
tional conditions and execute the common case efficiently (without checks and branc
For example, the fill/spill handlers can access pageable memory without first checkin

Example 3—Loop with Nonfaulting Loads

Source Code:
d_ne_index (double * d1, double * d2) {

int i = 0;

while(d1[i] = = d2[i]) i++;

return i;

}

With Normal Loads:
mov 0,t
mov 0,i

loop:
lddf [d1+t],a1
lddf [d2+t],a2 ! load
add t,8,t
fcmpd a1,a2 ! use
fbe,a loop ! fcc use
add i,1,i

With Nonfaulting Loads:
lddf [d1],a1
lddf [d2],a2
mov 8,t
mov 0,i

loop:
fcmpd a1,a2 ! use, fcc def
lddfa [d1+t],%asi,a1
lddfa [d2+t],%asi,a2 ! load
add t,8,t
fbe,a loop ! fcc use
add i,1,i

ndled

that
pport
areas

it reg-
, the
struc-

stored)
ad
e

gister.

f the
t a

sor

global
.

ir of
hus

cated
the
code

cli-
nted effi-

cross-
is resident. If the memory is not resident, the access will cause a trap that will be ha
at the next trap level.

Vectoring of Fill/Spill Traps :
Supervisor software can set up the vectoring of fill/spill traps prior to executing code
uses register windows and may cause spill/fill traps. This feature can be used to su
SPARC-V8 and SPARC-V7 binaries. These binaries create stack frames with save
for 32-bit registers. SPARC-V9 binaries create stack frames with save areas for 64-b
isters. By setting up the spill/fill trap vector based on the type of binary being executed
trap handlers can avoid checking and branching to use the appropriate load/store in
tions.

Saved Trap State:
Trap handlers need not save (restore) processor state that is automatically saved (re
on a trap (return from trap). For example, the fill/spill trap handlers can lo
ASI_AS_IF_USER_PRIMARY{_LITTLE} into the ASI register in order to access th
user’s address space without the overhead of having to save and restore the ASI re

SAVED and RESTORED Instructions:
The SAVED (RESTORED) instruction provides an efficient way to update the state o
register windows after successfully spilling (filling) a register window. They implemen
default policy of spilling (filling) one register window at a time. If desired, the supervi
software can implement a different policy by directly updating the state registers.

Alternate Globals:
The alternate global registers can be used to avoid saving and restoring the normal
registers. They can be used like the local registers of the trap window in SPARC-V8

Large Trap Vectors for Spill/Fill :
The definition of the spill and fill trap vectors with reserved space between each pa
vectors allows spill and fill trap handlers to be up to thirty-two instructions long, t
avoiding a branch in the handler.

H.2.2 Example Code for Spill Handler

The code in example 4 shows a spill handler for a SPARC-V9 user binary. The handler is lo
at the vector for trap typespill_0_normal (08016). It is assumed that supervisor software has set
WSTATE register to 0 before executing the user binary. The handler is invoked when user
executes a SAVE instruction that results in a window overflow.

H.2.3 Client-Server Model

SPARC-V9 provides mechanisms to support client-server computing efficiently. A call from a
ent to a server (where the client and server have separate address spaces) can be impleme
ciently using a software trap that switches the address space. This is often referred to as across-
domain call. A system call in most operating systems can be viewed as a special case of a
domain call. The following features are useful in implementing a cross-domain call:

ng the
ther
can set
RE-
et to

the sim-
neral

access
ovided
ntially

s on
ted
r trap
p han-
Splitting the Register Windows

The register windows can be shared efficiently between multiple address spaces by usi
OTHERWIN register and providing additional trap handlers to handle spill/fill traps for the o
(not the current) address spaces. On a cross-domain call (a software trap), the supervisor
the OTHERWIN register to the number of register windows used by the client (equal to CAN
STORE) and CANRESTORE to zero. At the same time the WSTATE bit vectors can be s
vector the spill/fill traps appropriately for each address space.

The sequence in example 5 shows a cross-domain call and return. The example assumes
ple case, where only a single client-server pair can occupy the register windows. More ge
schemes can be developed along the same lines.

ASI_SECONDARY{_LITTLE}

Supervisor software can use these unrestricted ASIs to support cross-address-space
between clients and nonprivileged servers. For example, some services that are currently pr
as part of a large monolithic supervisor can be separated out as nonprivileged servers (pote
occupying a separate address space). This is often referred to as themicrokernel approach.

H.2.4 User Trap Handlers

Supervisor software can provide efficient support for user (nonprivileged) trap handler
SPARC-V9. The RETURN instruction allows nonprivileged code to retry an instruction poin
to by the previous stack frame. This provides the semantics required for returning from a use
handler without any change in processor state. Supervisor software can invoke the user tra

T_NORMAL_SPILL_0:
!Set ASI to access user addr space
wr #ASI_AIUP, %asi
stxa %l0, [%sp+(8* 0)]%asi !Store window in memory stack
stxa %l1, [%sp+(8* 1)]%asi
stxa %l2, [%sp+(8* 2)]%asi
stxa %l3, [%sp+(8* 3)]%asi
stxa %l4, [%sp+(8* 4)]%asi
stxa %l5, [%sp+(8* 5)]%asi
stxa %l6, [%sp+(8* 6)]%asi
stxa %l7, [%sp+(8* 7)]%asi
stxa %i0, [%sp+(8* 8)]%asi
stxa %i1, [%sp+(8* 9)]%asi
stxa %i2, [%sp+(8*10)]%asi
stxa %i3, [%sp+(8*11)]%asi
stxa %i4, [%sp+(8*12)]%asi
stxa %i5, [%sp+(8*13)]%asi
stxa %i6, [%sp+(8*14)]%asi
stxa %i7, [%sp+(8*15)]%asi
saved ! Update state
retry ! Retry trapped instruction

! Restores old %asi

Example 4—Spill Handler

eces-
. The
dler by first creating a new register window (and stack frame) on its behalf and passing the n
sary arguments (including the PC and nPC for the trapped instruction) in the local registers
code in example 6 shows how a user trap handler may be invoked and how it returns:

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

cross_domain_call:
save ! create a new register window for the server
.. ! Switch to the execution environment for the server;
.. ! Save trap state as necessary.

! Set CWP for caller in TSTATE
rdpr %tstate, %g1
rdpr %cwp, %g2
bclr TSTATE_CWP, %g1
wrpr %g1, %g2, %tstate
rdpr %canrestore, %g1
wrpr %g0, 0, %canrestore
wrpr %g0, %g1, %otherwin
rdpr %wstate, %g1
sll %g1, 3, %g1 ! Move WSTATE_NORMAL (client’s

! vector)to WSTATE_OTHER
or %g1, WSTATE_SERVER, %g1 ! Set WSTATE_NORMAL to the

! vector for the server
wrpr %g0, %g1, %wstate
.. ! Load trap state for server
done ! Execute server code

cross_domain_return:
rdpr %otherwin, %g1
wrpr %g0, %g1, %canrestore
wrpr %g0, 0, %otherwin
rdpr %wstate, %g1
srl %g1, 3, %g1
wrpr %g0, %g1, %wstate ! Reset WSTATE_NORMAL to

! client’s vector
.. ! Restore saved trap state as necessary; this includes

! the return PC for the caller.
restore ! Go back to the caller’s register window.

! Set CWP for caller in TSTATE
rdpr %tstate, %g1
rdpr %cwp, %g2
bclr TSTATE_CWP, %g1
wrpr %g1, %g2, %tstate

done ! return to the caller

Example 5—Cross-Domain Call and Return

cture.
y state

C-V9
ction
I Extending the SPARC-V9 Architecture
This appendix describes how extensions can be effectively added to the SPARC-V9 archite
It describes how new instructions can be added through the use of read and write ancillar
register (ASR) and implementation-dependent (IMPDEP1/IMPDEP2) instructions.

I.1 Addition of SPARC-V9 Extensions

There are two approved methods of adding extensions to an implementation of the SPAR
architecture. An implementor who wishes to define and implement a new SPARC-V9 instru
should, if possible, use one of the following methods.

T_EXAMPLE_TRAP: ! Supervisor trap handler for T_EXAMPLE_TRAP trap
save ! Create a window for the user trap handler

!Set CWP for new window in TSTATE
rdpr %tstate, %l6
rdpr %cwp, %l5
bclr TSTATE_CWP, %l6
wrpr %l6, %l5, %tstate

rdpr %tpc,%l6 !Put PC for trapped instruction in local register
rdpr %tnpc,%l7 !Put nPC for trapped instruction in local register
.. !Get the address of the user trap handler in %l5;

! for example, from a supervisor data structure.

wrpr %l5, %tnpc ! Put PC for user trap handler in %tnpc.
done ! Execute user trap handler.

USER_EXAMPLE_TRAP: !User trap handler for T_EXAMPLE_TRAP trap

.. !Execute trap handler logic. Local registers
! can be used as scratch.

jmpl %l6 !Return to retry the trapped instruction.
return %l7

Example 6—User Trap Handler

This appendix is informative only.

It is not part of the SPARC-V9 specification.

Programs that make use of SPARC-V9 architectural extensions
may not be portable and likely will not conform to any current or
future SPARC-V9 binary standards.

— WARNING —

tion-
SR)
that

so
signed
ad the

The
ple-
will be

codes
rved
com-
Hard-
e, but

future
this in

plica-
erved

few
must

atible

either
rs. The
-V8, as

P1,
lated,

ational
e can
rward
inat-
I.1.1 Read/Write Ancillary State Registers (ASRs)

The first method of adding instructions to SPARC-V9 is through the use of the implementa
dependent Write Ancillary State Register (WRASR) and Read Ancillary State Register (RDA
instructions operating on ASRs 16..31. Through a read/write instruction pair, any instruction
requires anrs1, reg_or_imm, andrd field can be implemented. A WRASR instruction can al
perform an arbitrary operation on two register sources, or on one register source and a
immediate value, and place the result in an ASR. A subsequent RDASR instruction can re
result ASR and place its value in an integer destination register.

I.1.2 Implementation-Dependent and Reserved Opcodes

The meaning of “reserved” for SPARC-V9 opcodes differs from its meaning in SPARC-V8.
SPARC-V9 definition of “reserved” allows implementations to use reserved opcodes for im
mentation-specific purposes. While a hardware implementation that uses reserved opcodes
SPARC-V9-compliant, SPARC-V9 ABI-compliant programs cannot use these reserved op
and remain compliant. A SPARC-V9 platform that implements instructions using rese
opcodes must provide software libraries that provide the interface between SPARC-V9 ABI-
pliant programs and these instructions. Graphics libraries provide a good example of this.
ware platforms have many diverse implementations of graphics acceleration hardwar
graphics application programs are insulated from this diversity through libraries.

There is no guarantee that a reserved opcode will not be used for additional instructions in a
version of the SPARC architecture. Implementors who use reserved opcodes should keep
mind.

In some cases forward compatibility may not be an issue; for example, in an embedded ap
tion, binary compatibility may not be an issue. These implementations can use any res
opcodes for extensions.

Even when forward compatibility is an issue, future SPARC revisions are likely to contain
changes to opcode assignments, given that backward compatibility with previous versions
be maintained. It is recommended that implementations wishing to remain forward-comp
use the new IMPDEP1 and IMPDEP2 reserved opcodes withop3[5:0] = 11 01102 and 11 01112.

Compatibility Note:
IMPDEP1 and IMPDEP2 replace the SPARC-V8 CPop1 and CPop2 opcodes. SPARC-V9 includes n
the SPARC-V8 coprocessor opcodes nor any other SPARC-V8 architectural support for coprocesso
coprocessor opcodes were eliminated because they have not been used in SPARC-V7 and SPARC
witnessed by the lack of coprocessor implementations.

It is further recommended that SPARC International be notified of any use of IMPDE
IMPDEP2, or other reserved opcodes. When and if future revisions to SPARC are contemp
and if any SPARC-V9 implementations have made use of reserved opcodes, SPARC Intern
will make every effort not to use those opcodes. By going through SPARC International, ther
be feedback and coordination in the choice of opcodes that maximizes the probability of fo
compatibility. Given the historically small number of implementation-specific changes, coord
ing through SPARC International should be sufficient to ensure future compatibility.

itive
eci-
ec-
how

nger
eaker
f mem-
del.
odel

h the

. The
uired

P, and
e cop-
and-
n and
n the
e, and

ansition
EM-
BAR
jacent
(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

J Programming With the Memory Models
This appendix describes how to program with the SPARC-V9 memory models. An intu
description of the models is provided in Chapter 8, “Memory Models.” A complete formal sp
fication appears in Appendix D, “Formal Specification of the Memory Models.” In this subs
tion, general programming guidelines are given first, followed by specific examples showing
low-level synchronization can be implemented in TSO, PSO, and RMO.

Note that code written for a weaker memory model will execute correctly in any of the stro
memory models. Furthermore, the only possible difference between code written for a w
memory model and the corresponding code for a stronger memory model is the presence o
ory ordering instructions (MEMBARs) that are not needed for the stronger memory mo
Hence, transforming code from/to a stronger memory model to/from a weaker memory m
means adding/removing certain memory ordering instructions.1 The required memory ordering
directives are monotonically ordered with respect to the strength of the memory model, wit
weakest memory model requiring the strongest memory ordering instructions.

The code examples given below are written to run correctly using the RMO memory model
comments on the MEMBAR instructions indicate which ordering constraints (if any) are req
for the PSO and TSO memory models.

J.1 Memory Operations

Programs access memory via five types of operations, namely, load, store, LDSTUB, SWA
compare-and-swap. Load copies a value from memory or an I/O location to a register. Stor
ies a value from a register into memory or an I/O location. LDSTUB, SWAP, and compare-
swap are atomic load-store instructions that store a value into memory or an I/O locatio
return the old value in a register. The value written by the atomic instructions depends o
instruction. LDSTUB stores all ones in the accessed byte, SWAP stores the supplied valu

1. MEMBAR instructions specify seven independent ordering constraints; thus, there are cases where the tr
to a stronger memory model allows the use of a less restrictive MEMBAR instruction, but still requires a M
BAR instruction. To demonstrate this property, the code examples given in this subsection use multiple MEM
instructions if some of the ordering constraints are needed in some but not all memory models. Multiple, ad
MEMBAR instructions can always be replaced with a single MEMBAR instruction byORing the arguments.

This appendix is informative only.

It is not part of the SPARC-V9 specification.

pplied

EM-
res
emory.

this
tions

tores

ome

mory
TSO
cy is
del is

mory
nitiate

egree
per-

r mul-

y the
prop-
oper-

pletely

d that
roces-
compare-and-swap stores the supplied value only if the old value equals the second su
value.

Memory order and consistency are controlled by MEMBAR instructions. For example, a M
BAR #StoreStore (equivalent to a STBAR in SPARC-V8) ensures that all previous sto
have been performed before subsequent stores and atomic load-stores are executed by m
This particular memory order is guaranteed implicitly in TSO, but PSO and RMO require
instruction if the correctness of a program depends on the order in which two store instruc
can be observed by another processor.1

FLUSH is not a memory operation, but it is relevant here in the context of synchronizing s
with instruction execution. When a processor modifies an instruction at addressA, it does a store
to A followed by a FLUSHA. The FLUSH ensures that the change made by the store will bec
visible to the instruction fetch units of all processors in the system.

J.2 Memory Model Selection

Given that all SPARC-V9 systems are required to support TSO, programs written for any me
model will be able to run on any SPARC-V9 system. However, a system running with the
model generally will offer lower performance than PSO or RMO, because less concurren
exposed to the CPU and the memory system. The motivation for weakening the memory mo
to allow the CPU to issue multiple, concurrent memory references in order to hide me
latency and increase access bandwidth. For example, PSO and RMO allow the CPU to i
new store operations before an outstanding store has completed.

Using a weaker memory model for an MP (multiprocessor) application that exhibits a high d
of read-write memory sharing with fine granularity and a high frequency of synchronization o
ations may result in frequent MEMBAR instructions.

In general, it is expected that the weaker memory models offer a performance advantage fo
tiprocessor SPARC-V9 implementations.

J.3 Processors and Processes

In the SPARC-V9 memory models, the term “processor” may be replaced systematically b
term “process” or “thread,” as long as the code for switching processes or threads is written
erly. The correct process-switch sequence is given in J.8, “Process Switch Sequence.” If an
ating system implements this process-switch sequence, application programmers may com
ignore the difference between a process/thread and a processor.

1. Memory order is of concern only to programs containing multiple threads that share writable memory an
may run on multiple processors, and to those programs which reference I/O locations. Note that from the p
sor’s point of view, I/O devices behave like other processors.

tion is
lan-
tomic

erally

the

serve
single

upport
s of a
, and
mples

istent

onizes
ty:

y in
aking

ugh
es to

r.

-write
them-
im-
Note
 lock.

rtable

and

ory
J.4 Higher-Level Programming Languages and Memory Models

The SPARC-V9 memory models are defined at the machine instruction level. Special atten
required to write the critical parts of MP/MT (multi-threaded) applications in a higher-level
guage. Current higher-level languages do not support memory ordering instructions and a
operations. As a result, MP/MT applications that are written in a higher-level language gen
will rely on a library of MP/MT support functions, for example, theparmacs library from
Argonne National Laboratory.1 The details of constructing and using such libraries are beyond
scope of this document.

Compiler optimizations such as code motion and instruction scheduling generally do not pre
the order in which memory is accessed but they do preserve the data dependencies of a
thread. Compilers do not, in general, deal with the additional dependency requirements to s
sharing read-write data among multiple concurrent threads. Hence, the memory semantic
SPARC-V9 system in general are not preserved by optimizing compilers. For this reason
because memory ordering directives are not available from higher-level languages, the exa
presented in this subsection use assembly language.

Future compilers may have the ability to present the programmer with a sequentially cons
memory model despite the underlying hardware’s providing a weaker memory model.2

J.5 Portability And Recommended Programming Style

Whether a program is portable across various memory models depends on how it synchr
access to shared read-write data. Two aspects of a program’s style are relevant to portabili

— Good semanticsrefers to whether the synchronization primitives chosen and the wa
which they are used are such that changing the memory model does not involve m
any changes to the code that uses the primitives.

— Good structure refers to whether the code for synchronization is encapsulated thro
the use of primitives such that when the memory model is changed, required chang
the code are confined to the primitives.

Good semantics are a prerequisite for portability, while good structure makes porting easie

Programs that use single-writer/multiple-reader locks to protect all access to shared read
data are portable across all memory models. The code that implements the lock primitives
selves is portable across all models only if it is written to run correctly on RMO. If the lock pr
itives are collected into a library, then, at worst, only the library routines must be changed.
that mutual exclusion (mutex) locks are a degenerate type of single-writer/multiple-readers

Programs that use write locks to protect write accesses but read without locking are po
across all memory models only if writes to shared data are separated by MEMBAR#Store-

1. Lusk, E. L., R.A. Overbeek, “Use of Monitors in Fortran: A Tutorial on the Barrier, Self-scheduling Do-Loop,
Askfor Monitors,” TR# ANL-84-51, Argonne National Laboratory, June 1987.

2. See Gharachorloo, K., S.V. Adve, A. Gupta, J.L. Hennessy, and M.D. Hill, “Programming for Different Mem
Consistency Models,” Journal of Parallel and Distributed Systems, 15:4, August 1992.

rong
the
he
rou-

cks,
isely,
most

d, and
lso
ritten
trong
shown

writer/
niza-
such
the

to a

RC-V9-
tial con-
r tech-
ly (and
Store instructions, and if reading the lock is followed by a MEMBAR#LoadLoad instruc-
tion. If the MEMBAR instructions are omitted, the code is portable only across TSO and St
Consistency,1 but generally it will not work with PSO and RMO. The code that implements
lock primitives is portable across all models only if it is written to run correctly on RMO. If t
lock routines are collected into a library, the only possible changes not confined to the library
tines are the MEMBAR instructions.

Programs that do synchronization without using single-writer/multiple-reader locks, write lo
or their equivalent are, in general, not portable across different memory models. More prec
the memory models are ordered from RMO (which is the weakest, least constrained, and
concurrent), PSO, TSO, to sequentially consistent (which is the strongest, most constraine
least concurrent). A program written to run correctly for any particular memory model will a
run correctly in any of the stronger memory models, but not vice versa. Thus, programs w
for RMO are the most portable, those written for TSO are less so, and those written for s
consistency are the least portable. This general relationship between the memory models is
graphically in figure 49.

Figure 49—Portability Relations among Memory Models

The style recommendations may be summarized as follows: Programs should use single-
multiple-reader locks, or their equivalent, when possible. Other lower-level forms of synchro
tion (such as Dekker’s algorithm for locking) should be avoided when possible. When use of
low-level primitives is unavoidable, it is recommended that the code be written to work on
RMO model to ensure portability. Additionally, lock primitives should be collected together in
library and written for RMO to ensure portability.

1. Programs that assume a sequentially consistent memory are not guaranteed to run correctly on any SPA
compliant system, since TSO is the strongest memory model required to be supported. However, sequen
sistency is the most natural and intuitive programming model. This motivates the development of compile
niques that allow programs written for sequential consistency to be translated into code that runs correct
efficiently) on systems with weaker memory models.

Strong Consistency

TSO

PSO

RMO

that

in
r the
at the

d loca-
re

nzero
. The
er of
ver-

its by

buffer,
ducer
ocess
Appendix D, “Formal Specification of the Memory Models,” describes a tool and method
allows short code sequences to be formally verified for correctness.

J.6 Spin Locks

A spin lock is a lock for which the “lock held” condition is handled by busy waiting. The code
example 7 shows how spin locks can be implemented using LDSTUB. A nonzero value fo
lock represents the locked condition, while a zero value means that the lock is free. Note th
code busy waits by doing loads to avoid generating expensive stores to a potentially share
tion. TheMEMBAR #StoreStore in UnLockWithLDSTUB ensures that pending stores a
completed before the store that frees the lock.

The code in example 8 shows how spin locks can be implemented using CASA. Again, a no
value for the lock represents the locked condition, while a zero value means the lock is free
nonzero lock value (ID) is supplied by the caller and may be used to identify the current own
the lock. This value is available while spinning and could be used to maintain a time-out or to
ify that the thread holding the lock is still running. As in the previous case, the code busy-wa
doing loads, not stores.

J.7 Producer-Consumer Relationship

In a producer-consumer relationship,the producer process generates data and puts it into a
while the consumer process takes data from the buffer and uses it. If the buffer is full, the pro
process stalls when trying to put data into the buffer. If the buffer is empty, the consumer pr
stalls when trying to remove data.

LockWithLDSTUB (lock)

retry:
ldstub [lock],%l0
tst %l0
be out
nop

loop:
ldub [lock],%l0
tst %l0
bne loop
nop
ba,a retry

out:
membar #LoadLoad | #LoadStore

UnLockWithLDSTUB (lock)
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
stub %g0,[lock]

Example 7—Lock and Unlock Using LDSTUB

cer and
Figure 50 shows the buffer data structure and register usage. Example 9 shows the produ
consumer code. The code assumes the existence of two procedures,IncrHead andIncrTail ,

LockWithCAS (lock , ID)
retry:

mov [ID],%l0
cas [lock],%g0,%l0
tst %l0
be out
nop

loop:
ld [lock],%l0
tst %l0
bne loop
nop
ba,a retry

out:
membar #LoadLoad | #LoadStore !See example 7

UnLockWithCAS (lock)
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
st %g0,[lock]

Example 8—Lock and Unlock Using CAS

rn the
which increment the head and tail pointers of the buffer in a wraparound manner and retu
incremented value, but do not modify the pointers in the buffer.

bufhead

buftail

bufdata

l

l

l

buffer Buffer Empty Condition:
bufhead == buftail

Buffer Full Condition:
IncrTail (buffer) == bufheadbuffer+4

(= %i0)

Buffer Data Structure:

Register Usage:
%i0 and%i1

%o0

%l0 and%l1

parameters

local values

result

Figure 50—Data Structures for Producer-Consumer Code

Produce (buffer , data)
call IncrTail

full:
ld [%i0],%l0
cmp %l0,%o0
be full
ld [%i0+4],%l0
st %i1,[%l0]
membar #StoreStore !RMO and PSO only
st %o0,[%i0+4]

Consume(buffer)
ld [%i0],%l0

empty:
ld [%i0+4],%l1
cmp %l0,%l1
be empty
call IncrHead
ld [%l0],%l0
membar #LoadStore !RMO only
st %o0,[%i0]
mov %l0,%o0

Example 9—Producer and Consumer Code

ure that

on a
lin-

variable
es)

rocessor

hat
process

quence
ble by

sing
may

em in
it
(and

opriate
uiv-
J.8 Process Switch Sequence

This subsection provides code that must be used during process or thread switching to ens
the memory model seen by a process or thread is the one seen by a processor. TheHeadSe-
quence must be inserted at the beginning of a process or thread when it starts executing
processor. TheTailSequence must be inserted at the end of a process or thread when it re
quishes a processor.

Example 10 shows the head and tail sequences. The two sequences refer to a per-process
tailDone. The value 0 fortailDonemeans that the process is running, while the value –1 (all on
means that the process has completed its tail sequence and may be migrated to another p
if the process is runnable. When a new process is created,tailDone is initialized to –1.

The MEMBAR in HeadSequence is required to be able to provide a switching sequence t
ensures that the state observed by a process in its source processor will also be seen by the
in its destination processor. Since FLUSHes and stores are totally ordered, the head se
need not do anything special to ensure that FLUSHes performed prior to the switch are visi
the new processor.

Programming Note:
A conservative implementation may simply use a MEMBAR with all barriers set.

J.9 Dekker’s Algorithm

Dekker’s algorithm is the classical sequence for synchronizing entry into a critical section u
loads and stores only. The reason for showing this example here is to illustrate how one
ensure that a store followed by a load in issuing order will be executed by the memory syst
that order. Dekker’s algorithm isnot a valid synchronization primitive for SPARC-V9, because
requires a sequentially consistent (SC) memory model in order to work. Dekker’s algorithm
similar synchronization sequences) can be coded on RMO, PSO, and TSO by adding appr
MEMBAR instructions. This example also illustrates how future compilers can provide the eq
alent of sequential consistency on systems with weaker memory models.

HeadSequence (tailDone)
nrdy:

ld [tailDone],%l0
cmp %l0,-1
bne nrdy
st %g0, [tailDone]
membar #StoreLoad

TailSequence (tailDone)
mov -1,%l0
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only (combine with above)
st %l0,[tailDone]

Example 10—Process or Thread Switch Sequence

any
n,

dead-
with-

n each
as no

ategy
, such

at the
king.
Example 11 shows the entry and exit sequences for Dekker’s algorithm. The locationsA andB are
used for synchronization;A = 0 means that process P1 is outside its critical section, while
other value means that P1 is inside it; similarly,B = 0 means that P2 is outside its critical sectio
and any other value means that P2 is inside it.

Dekker’s algorithm guarantees mutual exclusion, but it does not guarantee freedom from
lock. In this case, it is possible that both processors end up trying to enter the critical region
out success. The code above tries to address this problem by briefly releasing the lock i
retry loop. However, both stores are likely to be combined in a store buffer, so the release h
chance of success. A more realistic implementation would use a probabilistic back-off str
that increases the released period exponentially while waiting. If any randomization is used
an algorithm will avoid deadlock with arbitrarily high probability.

J.10 Code Patching

The code patching example illustrates how to modify code that is potentially being executed
time of modification. Two common uses of code patching are in debuggers and dynamic lin

P1Entry ()
mov -1,%l0

busy:
st %l0,[A]
membar #StoreLoad
ld [B],%l1
tst %l1
bne,a busy
st %g0,[A]

P1Exit ()
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
st %g0,[A]

P2Entry ()
mov -1,%l0

busy:
st %l0,[B]
membar #StoreLoad
ld [A],%l1
tst %l1
bne,a busy
st %g0,[B]

P2Exit ()
membar #StoreStore !RMO and PSO only
membar #LoadStore !RMO only
st %g0,[B]

Example 11—Dekker’s Algorithm

nce is

ion

cution

first,
ea

n this
ssor to
send

ade in

been
ed,

ne
mem-
on the
Code patching involves a modifying process,Pm, and one or more target processesPt. For sim-
plicity, assume that the sequence to be modified is four instructions long: the old seque
(Old1, Old2, Old3, Old4), and the new sequence is (New1, New2, New3, New4). There are two
examples:noncooperative modification, in which the changes are made without cooperat
from Pt; andcooperativemodification, in which the changes require explicit cooperation fromPt.

In noncooperative modification, illustrated in example 12, changes are made in reverse exe
order. The three partially modified sequences (Old1, Old2, Old3, New4), (Old1, Old2, New3,
New4), and (Old1, New2, New3, New4) must be legal sequences forPt, in thatPt must do the right
thing if it executes any of them. Additionally, none of the locations to be modified, except the
may be the target of a branch. The code assumes that%i0 contains the starting address of the ar
to be patched and%i1 , %i2 , %i3 , and%i4 containNew1, New2, New3, andNew4.

The constraint that all partially modified sequences must be legal is quite restrictive. Whe
constraint cannot be satisfied, noncooperative code patching may require the target proce
execute FLUSH instructions. One method of triggering such a non-local FLUSH would be to
an interrupt to the target processor.

In cooperative code patching, illustrated in example 13, changes to instructions can be m
any order. WhenPm is finished with the changes, it writes into the shared variabledoneto notify
Pt. Pt waits fordoneto change from 0 to some other value as a signal that the changes have
completed. The code assumes that%i0 contains the starting address of the area to be patch
%i1 , %i2 , %i3 , and%i4 containNew1, New2, New3, andNew4, and%g1contains the address
of done. The FLUSH instructions inPt ensure that the instruction buffer ofPt’s processor is
flushed so that the old instructions are not executed.

J.11 Fetch_and_Add

Fetch_and_Addperforms the sequencea = a + b atomically with respect to otherFetch_and_Adds
to locationa. Two versions ofFetch_and_Addare shown. The first (example 14) uses the routi
LockWithLDSTUBdescribed above. This approach uses a lock to guard the value. Since the
ory model dependency is embodied in the lock access routines, the code does not depend
memory model.1

NonCoopPatch (addr , instructions ...)
st %i4,[%i0+12]
flush %i0+12
membar #StoreStore !RMO and PSO only
st %i3,[%i0+8]
flush %i0+8
membar #StoreStore !RMO and PSO only
st %i2,[%i0+4]
flush %i0+4
membar #StoreStore !RMO and PSO only
st %i1,[%i0]
flush %i0

Example 12—Nonxooperative Code Patching

ans
t and

e

Fetch_and_Addoriginally was invented to avoid lock contention and to provide an efficient me
to maintain queues and buffers without cumbersome locks. Hence, using a lock is inefficien
contrary to the intentions of theFetch_and_Add. The CAS synthetic instruction allows a mor
efficient version, as shown in example 15.

1. Inlining of the lock-access functions with subsequent optimization may break this code.

CoopPatch (addr , instructions ...) !%i0 = addr , %i1..%i4 = instruction s
st %i1,[%i0]
st %i2,[%i0+4]
st %i3,[%i0+8]
st %i4,[%i0+12]
mov -1,%l0
membar #StoreStore !RMO and PSO only
st %l0,[%g1]

TargetCode ()
wait:

ld [%g1],%l0
cmp %l0,0
be wait
flush A
flush A+4
flush A+8
flush A+12

A:
Old1
Old2
Old3
Old4

Example 13—Cooperative Code Patching

/*Fetch and Add using LDSTUB*/
int Fetch_And_Add(Index, Increment, Lock)

int *Index;
int Increment;
int *Lock;
{

int old_value;
LockWithLDSTUB(Lock);
old_value = *Index;
*Index = old_value + Increment;
UnlockWithLDSTUB(Lock);
return(old_value);

}

Example 14—Fetch and Add Using LDSTUB

en
e the
te,

lock

lock

ration
means

ry ver-
, pass-

by the

arrier.

on the
ultiple
J.12 Barrier Synchronization

Barrier synchronization ensures that each ofN processes is blocked until all of them reach a giv
state. The point in the flow of control at which this state is reached is called the barrier; henc
name. The code uses the variableCountinitialized toN. As each process reaches its desired sta
it decrementsCount and waits forCount to reach zero before proceeding further.

Similar to the fetch and add operation, barrier synchronization is easily implemented using a
to guard the counter variable, as shown in example 16.

The CAS implementation of barrier synchronization, shown in example 17, avoids the extra
access.

A practical barrier synchronization must be reusable because it is typically used once per ite
in applications that require many iterations. Barriers that are based on counters must have
to reset the counter. One solution to this problem is to alternate between two complementa
sions of the barrier: one that counts down to 0 and the other that counts up to N. In this case
ing one barrier also initializes the counter for the next barrier.

Passing a barrier can also signal that the results of one iteration are ready for processing
next iteration. In this case, RMO and PSO require aMEMBAR #StoreStore instruction prior to
the barrier code to ensure that all local results become globally visible prior to passing the b

Barrier synchronization among a large number of processors will lead to access contention
counter variable, which may degrade performance. This problem can be solved by using m

FetchAndAddCAS(address , increment) !%i0 = address , %i1 = increment
retry:

ld [%i0],%l0
add %l0,%i1,%l1
cas [%i0],%l0,%l1
cmp %l0,%l1
bne retry
mov %l1,%o0 !return old value

Example 15—Fetch and Add Using CAS

/*Barrier Synchronization using LDSTUB*/
Barrier(Count,Lock)
int *Count;
int *Lock;
{

LockWithLdstUB(Lock);
*Count = *Count - 1;
UnlockWithLdstUB(Lock);
while(*Count > 0) { ; /*busy-wait*/ }

}

Example 16—Barrier Synchronization Using LDSTUB

n and

As in
owever,

plicit
e next
of the

ches,
ry tree

this, the
ces, in

operly
respect

tions.
con-
counters. The butterfly barrier uses a divide-and-conquer technique to avoid any contentio
can be implemented without atomic operations.1

J.13 Linked List Insertion and Deletion

Linked lists are dynamic data structures that might be used by a multi-threaded application.
the previous examples, a lock can be used to guard access to the entire data structure. H
single locks guarding large and frequently shared data structures can be inefficient.

In example 18, the CAS synthetic instruction is used to operate on a linked list without ex
locking. Each list element starts with an address field that contains either the address of th
list element or zero. The head of the list is the address of a variable that holds the address
first list element. The head is zero for empty lists.

In the example, there is little difference in performance between the CAS and lock approa
however, more complex data structures can allow more concurrency. For example, a bina
allows the concurrent insertion and removal of nodes in different branches.

J.14 Communicating With I/O Devices

I/O accesses may be reordered just as other memory reference are reordered. Because of
programmer must take special care to meet the constraint requirements of physical devi
both the uniprocessor and multiprocessor cases.

Accesses to I/O locations require sequencing MEMBARs under certain circumstances to pr
manage the order of accesses arriving at the device, and the order of device accesses with
to memory accesses. The following rules describe the use of MEMBARs in these situa
Maintaining the order of accesses to multiple devices will require higher-level software
structs, which are beyond the scope of this discussion.

1. Brooks, E. D., “The Butterfly Barrier,”International Journal of Parallel Programming 15(4), pp. 295-307, 1986.

BarrierCAS (Count) !%i0 = address of counter variable
retry:

ld [%i0],%l0
add %l0,-1,%l1
cas [%i0],%l0,%l1
cmp %l0,%l1
bne retry
nop

wait:
ld [%i0],%l0
tst %l0
bne wait
nop

Example 17—Barrier Synchronization Using CAS

r I/

s
tib-

any

e of

dress
his is
(1) Accesses to the same I/O location address:

— A store followed by a store is ordered in all memory models.

— A load followed by a load requires a MEMBAR#LoadLoad in RMO only..
Compatibility Note:

This MEMBAR is not needed in implementations that provide SPARC-V8 compatibility fo
O accesses in RMO.

— A load followed by a store is ordered in all memory models.

— A store followed by a load requires MEMBAR#Lookaside between the accesse
for all memory models; however, implementations that provide SPARC-V8 compa
lity for I/O accesses in any of TSO, PSO, and RMO do not need the MEMBAR in
model that provides this compatibility.

(2) Accesses to different I/O location addresses:

— The appropriate ordering MEMBAR is required to guarantee order within a rang
addresses assigned to a device.

— Device-specific synchronization of completion, such as reading back from an ad
after a store, may be required to coordinate accesses to multiple devices. T
beyond the scope of this discussion.

(3) Accesses to an I/O location address and a memory address.

ListInsert (Head, Element) !%i0 = Head addr, %i1 = Element addr
retry:

ld [%i0],%l0
st %l0, [%i1]
mov %i1, %l1
cas [%i0],%l0,%l1
cmp %l0,%l1
bne retry
nop

ListRemove (Head) !%i0 = Head addr
retry:

ld [%i0],%o0
tst %o0
be empty
nop
ld [%o0],%l0
cas [%i0],%o0,%l0
cmp %o0,%l0
bne retry

empty:
nop

Example 18—List Insertion and Removal

ss if
cess

rols
t

nge of
lobal
hav-
mers

ently
to any

regis-
transfer

re that
ired to
— A MEMBAR #MemIssue is required between an I/O access and a memory acce
it is required that the I/O access reaches global visibility before the memory ac
reaches global visibility. For example, if the memory location is a lock that cont
access to an I/O address, then MEMBAR#MemIssue is required between the las
access to the I/O location and the store that clears the lock.

(4) Accesses to different I/O location addresses within an implementation-dependent ra
addresses are strongly ordered once they reach global visiblity. Beyond the point of g
visibility there is no guarantee of global order of accesses arriving at different devices
ing disjoint implementation-dependent address ranges defining the device. Program
can rely on this behavior from implementations.

(5) Accesses to I/O locations protected by a lock in shared memory that is subsequ
released, with attention to the above barrier rules, are strongly ordered with respect
subsequent accesses to those locations that respect the lock.

J.14.1 I/O Registers With Side Effects

I/O registers with side effects are commonly used in hardware devices such as UARTs. One
ter is used to address an internal register of the I/O device, and a second register is used to
data to or from the selected internal register.

In examples 19 and 20, let X be the address of a device with two such registers; X.P is a port reg-
ister, and X.D is a data register. The address of an internal register is stored into X.P; that internal
register can then be read or written by loading into or storing from X.D.

Access to these registers, of course, must be protected by a mutual-exclusion lock to ensu
multiple threads accessing the registers do not interfere. The sequencing MEMBAR is requ
ensure that the store actually completes before the load is issued.

st %i1, [X+P]
membar #StoreStore ! PSO and RMO only
st %i2, [X+D]

Example 19—I/O Registers With Side-Effects: Store Followed by Store

st %i1, [X+P]
membar #StoreLoad |#MemIssue ! RMO only
ld [X+D], %i2

Example 20—I/O Registers With Side-Effects: Store Followed by Load

ent of
der the

tus and

re that
ded to
since
of the

iptor
ble to
scrip-
ddress

ing the
barrier

e that

loads
. The
J.14.2 The Control and Status Register (CSR)

A control and status register is an I/O location which is updated by an I/O device independ
access by the processor. For example, such a register might contain the current sector un
head of a disk drive.

In example 21, let Y be the address of a control and status register that is read to obtain sta
written to assert control. Bits read differ from the last data that was stored to them.

Access to these registers, of course, must be protected by a mutual-exclusion lock to ensu
multiple threads accessing the registers do not interfere. The sequencing MEMBAR is nee
ensure the value produced by the load comes from the register and not from the write buffer
the write has side-effects. No MEMBAR is needed between the load and the store, because
anti-dependency on the memory address.

J.14.3 The Descriptor

In example 22, let A be the address of a descriptor in memory. After initializing the descr
with information, the address of the descriptor is stored into device register D or made availa
some other portion of the program that will make decisions based upon the value(s) in the de
tor. It is important to ensure that the stores of the data have completed before making the a
(and hence the data in the descriptor) visible to the device or program component.

Access must be protected by a mutual-exclusion lock to ensure that multiple threads access
registers do not interfere. In addition, the agent reading the descriptor must use a load-
MEMBAR after reading D to ensure that the most recent values are read.

J.14.4 Lock-Controlled Access to a Device Register

Let A be a lock in memory that is used to control access to a device register D. The cod
accesses the device might look like that show in example 23.

The sequencing MEMBAR is needed to ensure that another CPU which grabs the lock and
from the device register will actually see any changes in the device induced by the store

ld [Y], %i1 ! obtain status
st %i2, [Y] ! write a command
membar #Lookaside ! make sure we really read the register
ld [Y], %i3 ! obtain new status

Example 21—Accessing a Control/Status Register

st %i1, [A]
st %i2, [A+4]
... ! more stores
membar #StoreStore ! PSO and RMO only
st A, [D]

Example 22—Accessing a Memory Descriptor

ect-
evice

-V9

exe-
C-V9-

odel,
memory

level
er-

xecute
or a
ordering MEMBARs in the lock and unlock code (see J.6, “Spin Locks”), while ensuring corr
ness when protecting ordinary memory, are insufficient for this purpose when accessing d
registers. Compare with J.14.1, “I/O Registers With Side Effects.”

(This Annex is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

K Changes From SPARC-V8 to SPARC-V9
SPARC-V9 is complimentary to the SPARC-V8 architecture; it does not replace it. SPARC
was designed to be a higher-performance peer to SPARC-V8.

Application software for the 32-bit SPARC-V8 (Version 8) microprocessor architecture can
cute, unchanged, on SPARC-V9 systems. SPARC-V8 software executes natively on SPAR
conformant processors; no special compatibility mode is required.

Changes to the SPARC-V9 architecture since SPARC-V8 are in six main areas: the trap m
data formats, the registers, alternate address space access, the instruction set, and the
model.

K.1 Trap Model

The trap model, visible only to privileged software, has changed substantially.

— Instead of one level of traps, four or more levels are now supported. This allows first-
trap handlers, notably register window spill and fill (formerly called overflow and und
flow) traps, to execute much faster. This is because such trap handlers can now e
without costly run-time checks for lower-level trap conditions, such as page faults

set A, %l1 ! address of lock
set D, %l2 ! address of device register
call lock ! lock(A);
mov %l1, %o0
ld [%l2], %i1 ! read the register

... ! do some computation

st %i2, [%l2] ! write the register
membar #MemIssue ! all memory models
call unlock ! unlock(A);
mov %l1, %o0

Example 23—Accessing a Device Register

This appendix is informative only.

It is not part of the SPARC-V9 specification.

nce

ister)

d of

in

r” to

ts and

ol the
data
misaligned stack pointer. Also, multiple trap levels support more robust fault-tolera
mechanisms.

— Most traps no longer change the CWP. Instead, the trap state (including the CWP reg
is saved in register stacks called TSTATE, TT, TPC, and TNPC.

— New instructions (DONE and RETRY) are used to return from a trap handler, instea
RETT.

— A new instruction (RETURN) is provided for returning from a trap handler running
nonprivileged mode, providing support for user trap handlers.

— Terminology about privileged-mode execution has changed, from “supervisor/use
“privileged/nonprivileged.”

— A new processor state, RED_state, has been added to facilitate processing rese
nested traps that would exceed MAXTL.

K.2 Data Formats

Data formats for extended (64-bit) integers have been added.

K.3 Little-Endian Support

Data accesses can be either big-endian or little-endian. Bits in the PSTATE register contr
implicit endianness of data accesses. Special ASI values are provided to allow specific
accesses to be in a specific endianness.

K.4 Registers

These privileged SPARC-V8 registers have been deleted:

— PSR: Processor State Register

— TBR: Trap Base Register

— WIM: Window Invalid Mask

These registers have been widened from 32 to 64 bits:

— All integer registers

— All state registers: FSR, PC, nPC, Y

The contents of the following register has changed:

— FSR: Floating-Point State Register:fcc1, fcc2, andfcc3 (additional floating-point condi-
tion code) bits have been added and the register widened to 64-bits..

ters,

uring
, the
These SPARC-V9 registers are fields within a register in SPARC-V8:

— PIL: Processor Interrupt Level register

— CWP: Current Window Pointer register

— TT[MAXTL]: Trap Type register

— TBA: Trap Base Address register

— VER: Version register

— CCR: Condition Codes Register

These registers have been added:

— Sixteen additional double-precision floating-point registers,f[32]..f[62], which are
aliased with and overlap eight additional quad-precision floating-point regis
f[32]..f[60]

— FPRS: Floating-Point Register State register

— ASI: ASI register

— PSTATE: Processor State register

— TL: Trap Level register

— TPC[MAXTL]: Trap Program Counter register

— TNPC[MAXTL]: Trap Next Program Counter register

— TSTATE[MAXTL]: Trap State register

— TICK: Hardware clock-tick counter

— CANSAVE: Savable windows register

— CANRESTORE: Restorable windows register

— OTHERWIN: Other windows register

— CLEANWIN: Clean windows register

— WSTATE: Window State register

The SPARC-V9 CWP register is incremented during a SAVE instruction and decremented d
a RESTORE instruction. Although this is the opposite of PSR.CWP’s behavior in SPARC-V8

must
are.

stores

e.

rder.
ction

C-V8
-V8

-bit

ition

sults.
are

e-
only software it should affect is a few trap handlers that operate in privileged mode, and that
be rewritten for SPARC-V9 anyway. This change will have no effect on nonprivileged softw

K.5 Alternate Space Access

In SPARC-V8, access to all alternate address spaces is privileged. In SPARC-V9, loads and
to ASIs 0016..7f16 are privileged; those to ASIs 8016..FF16 are nonprivileged. That is, load- and
store-alternate instructions to one-half of the alternate spaces can now be used in user cod

K.6 Little-Endian Byte Order

In SPARC-V8, all instruction and data accesses were performed in big-endian byte o
SPARC-V9 supports both big- and little-endian byte orders for data accesses only; instru
accesses in SPARC-V9 are always performed using big-endian order.

K.7 Instruction Set

All changes to the instruction set were made such that application software written for SPAR
can run unchanged on a SPARC-V9 processor. Application software written for SPARC
should not even be able to detect that its instructions now process 64 bit values.

The definitions of the following instructions were extended or modified to work with the 64
model:

— FCMP, FCMPE: Floating-Point Compare—can set any of the four floating-point cond
codes

— LDUW, LDUWA(same as “LD, LDA” in SPARC-V8)

— LDFSR, STFSR: Load/Store FSR: only affect low-order 32 bits of FSR

— RDASR/WRASR: Read/Write State Registers: access additional registers

— SAVE/RESTORE

— SETHI

— SRA, SRL, SLL: Shifts: split into 32-bit and 64-bit versions

— Tcc: (was Ticc) operates with either the 32-bit integer condition codes (icc), or the 64-bit
integer condition codes (xcc)

— All other arithmetic operations now operate on 64-bit operands and produce 64-bit re
Application software written for SPARC-V8 cannot detect that arithmetic operations
now 64 bits wide. This is due to retention of the 32-bit integer condition codes (icc), addi-
tion of 64-bit integer condition codes (xcc), and the carry-propagation rules of 2’s-compl
ment arithmetic.

nd/or

nd

ance
The following instructions have been added to provide support for 64-bit operations a
addressing:

— F[sdq]TOx: Convert floating point to 64-bit word

— FxTO[sdq]: Convert 64-bit word to floating point

— FMOV[dq]: Floating-point Move, double and quad

— FNEG[dq]: Floating-point Negate, double and quad

— FABS[dq]: Floating-point Absolute Value, double and quad

— LDDFA, STDFA, LDFA, STFA: Alternate address space forms of LDDF, STDF, LDF, a
STF

— LDSW: Load a signed word

— LDSWA: Load a signed word from an alternate space

— LDX: Load an extended word

— LDXA: Load an extended word from an alternate space

— LDXFSR: Load all 64 bits of the FSR register

— STX: Store an extended word

— STXA: Store an extended word into an alternate space

— STXFSR: Store all 64 bits of the FSR register

The following instructions have been added to support the new trap model:

— DONE: Return from trap and skip instruction that trapped

— RDPR and WRPR: Read and Write privileged registers

— RESTORED: Adjust state of register windows after RESTORE

— RETRY: Return from trap and reexecute instruction that trapped

— RETURN: Return

— SAVED: Adjust state of register windows after SAVE

— SIR: Signal Monitor (generate Software Initiated Reset)

The following instructions have been added to support implementation of higher-perform
systems:

— BPcc: Branch on integer condition code with prediction

— BPr: Branch on integer register contents with prediction

— CASA, CASXA: Compare and Swap from an alternate space

— FBPfcc: Branch on floating-point condition code with prediction

ruc-

be

gis-

e regis-

ion).

eak
n nearly
nstanta-
— FLUSHW: Flush windows

— FMOVcc: Move floating-point register if condition code is satisfied

— FMOVr: Move floating-point register if integer register contents satisfy condition

— LDQF(A), STQF(A): Load/Store Quad Floating-point (in an alternate space)

— MOVcc: Move integer register if condition code is satisfied

— MOVr: Move integer register if register contents satisfy condition

— MULX: Generic 64-bit multiply

— POPC: Population Count

— PREFETCH, PREFETCHA: Prefetch Data

— SDIVX, UDIVX: Signed and Unsigned 64-bit divide

The definitions of the following instructions have changed:

— IMPDEPn: Implementation-Dependent instructions (replace SPARC-V8 CPop inst
tions)

The following instruction was added to support memory synchronization:

— MEMBAR: Memory barrier

The following instructions have been deleted:

— Coprocessor loads and stores

— RDTBR and WRTBR: TBR no longer exists. It has been replaced by TBA, which can
read/written with RDPR/WRPR instructions.

— RDWIM and WRWIM: WIM no longer exists. WIM has been subsumed by several re
ter-window state registers.

— RDPSR and WRPSR: PSR no longer exists. It has been replaced by several separat
ters which are read/written with other instructions.

— RETT: Return from trap (replaced by DONE/RETRY).

— STDFQ: Store Double from Floating-point Queue (replaced by the RDPR FQ instruct

K.8 Memory Model

SPARC-V9 defines a new memory model called Relaxed Memory Order (RMO). This very w
model allows the CPU hardware to schedule memory accesses such as loads and stores i
any order, as long as the program computes the correct answer. Hence, the hardware can i

ading to

uc-
-

an
. O.

ch-
Pro-
neously adjust to resource contentions and schedule accesses in the most efficient order, le
much faster memory operations and better performance.

(This Bibliography is not a part of SPARC-V9/R1.4.5,
<Italic>The SPARC Architecture Manual;

it is included for information only.)

Bibliography

General References

For general information, see the following:

-----. The SPARC Architecture Manual, Version 8, Prentice-Hall, Inc., 1992.

Boney, Joel [1992]. “SPARC Version 9 Points the Way to the Next Generation RISC,”SunWorld,
October 1992, pp. 100-105.

Catanzaro, Ben, ed.The SPARC Technical Papers, Springer-Verlag, 1991.

Cmelik, R. F., S. I. Kong, D. R. Ditzel, and E. J. Kelly, “An Analysis of MIPS and SPARC Instr
tion Set Utilization on the SPEC Benchmarks,”Proceedings of the Fourth International Sympo
sium on Architectural Support for Programming Languages and Operating Systems, April 8-11,
1991.

Dewar, R. B. K. and M. Smosna.Microprocessors: A Programmer’s View, McGraw-Hill, Inc.,
1990.

Ditzel, David R. [1993]. “SPARC Version 9: Adding 64-Bit Addressing and Robustness to
Existing RISC Architecture.” Videotape available from University Video Communications, P
Box 5129, Stanford, CA, 94309.

Garner, R. B. [1988]. “SPARC: The Scalable Processor Architecture,”SunTechnology, vol. 1, no.
3, Summer, 1988; also appeared in M. Hall and J. Barry (eds.),The SunTechnology Papers,
Springer-Verlag, 1990, pp. 75-99.

Garner, R. B., A. Agrawal, F. Briggs, E. W. Brown, D. Hough, W. N. Joy, S. Kleiman, S. Mu
nick, M. Namjoo, D. Patterson, J. Pendleton, K. G. Tan, and R. Tuck [1988]. “The Scalable
cessor Architecture (SPARC),” 33rd AnnualIEEE Computer Conference (COMPCON), February,
1988, San Francisco, CA.

This bibliography is informative only.

It is not part of the SPARC-V9 specification.

Y,

ess,

,

essors
ive and

ction

em-

mory

Con-
Hennessy, J. and D. Patterson.Computer Architecture: A Quantitative Approach, Morgan Kauf-
man Publishers, Inc., San Mateo, CA. 1990.

IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754-1985, IEEE, New York, N
1985.

Katevenis, M. [1983]. Reduced Instruction Set Computer Architectures forVLSI, Ph.D. disserta-
tion, Computer Science Div., Univ. of California, Berkeley, 1983; also published by M.I.T. Pr
Cambridge, MA, 1985.

Kleiman, S. and D. Williams [1988]. “SunOS on SPARC,”33rd AnnualIEEE Comp. Conf. (COM-
PCON), February, 1988, San Francisco, CA; also appeared in M. Hall and J. Barry (eds.)The
SunTechnology Papers, Springer-Verlag, 1990, pp. 13-27.

Muchnick, S. [1988]. “Optimizing Compilers for SPARC,”SunTechnology, Summer 1988, pp. 64-
71; also appeared in W. Stallings (ed.),Reduced Instruction Set Computers(2nd edition), IEEE
Computer Society Press, 1990, pp. 160-173, and in M. Hall and J. Barry (eds.),The SunTechnol-
ogy Papers, Springer-Verlag, 1990, pp. 41-68.

Patterson, D. [1985]. “Reduced Instruction Set Computers,”Communications of theACM, vol. 28,
no. 1, January, 1985.

Patterson, D., and D. R. Ditzel, “The Case for the Reduced Instruction Set Computer,”Computer
Architecture News, vol 8, no. 7, 1980.

Memory Model References

The concept of a memory model has become a significant one as shared memory multiproc
are more widely used. The issues are complex and interesting, and have created an act
extensive literature. A partial annotated list of references is as follows:

Collier, W. W.Reasoning About Parallel Architectures, Prentice Hall, 1992.

Provides a mathematical framework for the study of parallel processors and their intera
with memory.

Dill, David, Seungjoon Park, and Andreas G. Nowatzyk, “Formal Specification of Abstract M
ory Models” inResearch on Integrated Systems: Proceedings of the 1993 Symposium, Ed. Gaet-
ano Borriello and Carl Ebeling, MIT Press, 1993.

Describes an application of software tools to the verification of the TSO and PSO me
models.

Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbon, A. Gupta, and J. Hennessy. “Memory
sistency and Event Ordering in Scalable Shared-Memory Multiprocessors,”Proceedings of the
17th Annual International Symposium on Computer Architecture, May 1990, pp. 15-29.

Provides an overview of contemporary research in memory models.

ent

about

tency
e

emory

ro-

ry sys-

ciated

ory

mod-

port

ssing

ting
Gharachorloo, K., S. Adve, A. Gupta, J. Hennessy, and M. Hill. “Programming for Differ
Memory Consistency Models,”Journal of Parallel and Distributed Processing, 15:4, August
1992.

This paper proposes a new programming model which allows programmers to reason
programs that have not been reduced to sequential consistency.

Gharachorloo, K., A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Consis
Models for Shared Memory Multiprocessors,”Proceedings of the 4th International Conferenc
on Architectural Support for Programming Languages and Operating Systems, pp. 245-257,
ACM, New York, 1991.

This paper discusses the performance benefits that can be obtained when a relaxed m
model is used in a shared-memory model processor.

Lamport, Leslie. “How to Make a Multiprocessor Computer That Correctly Executes Multip
cess Programs,” IEEE Transactions on Computers, C-28, 9, September 1979, pp. 690-691.

Defines sequential consistency and shows how it can be used in simple shared-memo
tems.

Reynal, M.Algorithms for Mutual Exclusion, MIT Press, 1986.

Provides an overview of the mutual exclusion problem and the extensive literature asso
with it.

Scheurich, C., and M. Dubois. “Dependency and Hazard Resolution in Multiprocessors,”Pro-
ceedings of the 14th International Symposium on Computer Architecture, pp. 234-243, IEEE CS
Press, Los Alamitos, CA, 1987.

Sindhu, Predeep, Jean-Marc Frailong, and Michel Ceklov. “Formal Specification of Mem
Models,” Xerox Palo Alto Research Center Report CSL-91-11, December 1991.

Introduces the formal framework used to define the SPARC-V8 TSO and PSO memory
els.

Treiber, R. Kent. “Systems Programming: Coping with Parallelism,” IBM Research Re
RJ5118 (53162), 1986.

Provides an overview of the operational issues for systems programming in a multiproce
environment.

Prefetching

Callahan, D., K. Kennedy, A. Porterfield. “Software Prefetching,”Proceedings of the Fourth
International Conference on Architectural Support for Programming Languages and Opera
Systems, April 1991, pp. 40-52.

ch-
m-
Mowry, T., M. Lam, and A. Gupta. “Design and Evaluation of a Compiler Algorithm for Prefet
ing.” Proceedings of the Fifth International Conference on Architectural Support for Progra
ming Languages and Operating Systems, October 1992, pp. 62-73.

A
a field of instructions, 66, 138, 141, 144, 147, 148, 152
ABI, seeSPARC-V9 Application Binary Interface (ABI)
accrued exception (aexc) field of FSR register, 46, 48, 100, 247, 254
activation record, seestack frame
ADD instruction, 137, 299
ADDC instruction, 137
ADDcc instruction, 137, 222, 299
ADDCcc instruction, 137
address, 120

aliased, 120
physical, 120, 281
virtual, 120, 281

address, 295
address aliases, 281
address mask (AM) field of PSTATE register, 53, 151, 172, 215
address space, 4, 281, 282
address space identifier (ASI), 9, 16, 17, 50, 63, 67, 69, 73, 120, 121, 174, 179, 207, 227, 254, 283, 317, 341

architecturally specified, 122
restricted, 74, 122, 254
unrestricted, 74, 122, 254

address space identifier (ASI) register, 16, 21, 50, 56, 73, 89, 122, 157, 176, 181, 183, 207, 227, 232, 235, 245,
316

addressing conventions, 17, 70
addressing modes, 4
ADDX instruction (SPARC-V8), 137
ADDXcc instruction (SPARC-V8), 137
aexc, seeaccrued exception (aexc) field of FSR register
AG, seealternate globals enable (AG) field of PSTATE register
aggregate data values, seedata aggregates
alias

address, 120
floating-point registers, 36

alignment, 304
data (load/store), 17, 69, 121
doubleword, 17, 69, 121
extended-word, 69
halfword, 17, 69, 121
instructions, 17, 69, 121
integer registers, 179, 181
memory, 121
quadword, 17, 69, 121
stack pointer, 304
word, 17, 69, 121

alternate address space, 207
alternate global registers, 15, 30, 30, 316

alternate globals enable (AG) field of PSTATE register, 30, 31, 54
alternate space instructions, 18, 50, 341
AM, seeaddress mask (AM) field of PSTATE register
ancillary state registers (ASRs), 18, 35, 36, 60, 214, 215, 244, 245, 252, 253, 292, 321
AND instruction, 184
ANDcc instruction, 184, 299
ANDN instruction, 184, 299
ANDNcc instruction, 184
annul bit, 35, 138

in conditional branches, 141
annulled branches, 138
application program, 9, 14, 16, 30, 46, 47, 50, 61, 104, 341
architectural extensions, 7, 321
arguments to a subroutine, 302
arithmetic overflow, 41
ASI register, seeaddress space identifier (ASI) register
ASI, seeaddress space identifier (ASI)
ASI_AS_IF_USER_PRIMARY, 75, 123, 254, 287, 316
ASI_AS_IF_USER_PRIMARY_LITTLE, 75, 123, 254, 287, 316
ASI_AS_IF_USER_SECONDARY, 75, 123, 254, 287
ASI_AS_IF_USER_SECONDARY_LITTLE, 75, 123, 254, 287
ASI_NUCLEUS, 75, 75, 122, 254, 287
ASI_NUCLEUS_LITTLE, 75, 122, 254, 287
ASI_PRIMARY, 73, 75, 75, 122, 123, 254, 287
ASI_PRIMARY_LITTLE, 52, 75, 122, 254, 287
ASI_PRIMARY_NOFAULT, 75, 75, 123, 254, 284, 287
ASI_PRIMARY_NOFAULT_LITTLE, 75, 254
ASI_SECONDARY, 75, 75, 123, 254, 287, 317
ASI_SECONDARY_LITTLE, 75, 254, 287, 317
ASI_SECONDARY_NOFAULT, 75, 75, 123, 254, 284, 287
ASI_SECONDARY_NOFAULT_LITTLE, 75, 254, 287
asr_reg, 292
assembler

synthetic instructions, 297
assigned value

implementation-dependent, 252
async_data_error exception, 113, 133, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
atomic, 130, 230, 232

memory operations, 127, 130
atomic load-store instructions, 69, 152

compare and swap, 98, 152
load-store unsigned byte, 182, 234, 235
load-store unsigned byte to alternate space, 183
swapr register with alternate space memory, 235
swapr register with memory, 152, 234

atomicity, 121, 224, 258
automatic variables, 302

B
BA instruction, 147, 278
BCC instruction, 146, 278
BCLR synthetic instruction, 299
BCS instruction, 146, 278

BE instruction, 146, 278
Berkeley RISCs, xiv, 5
BG instruction, 146, 278
BGE instruction, 146, 278
BGU instruction, 146, 278
bibliography, 345
Bicc instructions, 35, 42, 146, 273, 278
big-endian btye order, 9
big-endian byte order, 17, 52, 70
binary compatibility, 6
bit vector concatenation, 3
BL instruction, 278
BLE instruction, 146, 278
BLEU instruction, 146, 278
BN instruction, 146, 147, 209, 278, 297
BNE instruction, 146, 278
BNEG instruction, 146, 278
BPA instruction, 148, 278
BPCC instruction, 148, 278
BPcc instructions, 35, 41, 42, 66, 67, 148, 209
BPCS instruction, 148, 278
BPE instruction, 148, 278
BPG instruction, 148, 278
BPGE instruction, 148, 278
BPGU instruction, 148, 278
BPL instruction, 148, 278
BPLE instruction, 148, 278
BPLEU instruction, 148, 278
BPN instruction, 148, 278
BPNE instruction, 148, 278
BPNEG instruction, 148, 278
BPOS instruction, 146, 278
BPPOS instruction, 148, 278
BPr instructions, 35, 66, 67, 138, 273, 278
BPVC instruction, 148, 278
BPVS instruction, 148, 278
branch

annulled, 138
delayed, 63
elimination, 81
fcc-conditional, 141, 144
icc-conditional, 147
prediction bit, 138
unconditional, 141, 144, 147, 149
with prediction, 5

branch if contents of integer register match condition instructions, 138
branch on floating-point condition codes instructions, 140
branch on floating-point condition codes with prediction instructions, 143
branch on integer condition codes instructions, 146
branch on integer condition codes with prediction instructions, 148
BRGEZ instruction, 138
BRGZ instruction, 138
BRLEZ instruction, 138
BRLZ instruction, 138

BRNZ instruction, 138
BRZ instruction, 138
BSET synthetic instruction, 299
BTOG synthetic instruction, 299
BTST synthetic instruction, 299
BVC instruction, 146, 278
BVS instruction, 146, 278
byte, 9

addressing, 70, 71
data format, 23
order, 17, 70
order, big-endian, 17, 52
order, implicit, 52
order, little-endian, 17, 52

C
C condition code bit, seecarry (C) bit of condition fields of CCR
cache

coherence in RED_state, 92
data, 125
in RED_state, 92
instruction, 125
memory, 253
miss, 209
non-consistent instruction cache, 125
system, 6

call chain
walking, 303

CALL instruction, 19, 33, 34, 35, 151, 172, 302, 304
CALL synthetic instruction, 297
CANRESTORE, seerestorable windows (CANRESTORE) register
CANSAVE, seesavable windows (CANSAVE) register
carry (C) bit of condition fields of CCR, 41
CAS synthetic instruction, 127, 299
CASA instruction, 98, 130, 152, 182, 183, 234, 235, 299
CASX synthetic instruction, 127, 130, 299
CASXA instruction, 98, 130, 152, 182, 183, 234, 235, 299
catastrophic_error exception, 89, 91, 98, 99, 113, 114, 115
cc0 field of instructions, 66, 144, 148, 159, 195
cc1 field of instructions, 66, 144, 148, 159, 195
cc2 field of instructions, 66, 195
CCR, seecondition codes (CCR) register
certificate of compliance, 8
cexc, seecurrent exception (cexc) field of FSR register
CLE, seecurrent_little-endian (CLE) field of PSTATE register
clean register window, 9, 33, 58, 60, 82, 86, 88, 114, 217
clean windows (CLEANWIN) register, 58, 60, 82, 83, 86, 87, 88, 211, 242, 259
clean_window exception, 60, 82, 87, 98, 101, 114, 218, 256
clock cycle, 51
clock-tick register (TICK), 51, 116, 211, 242, 257
CLR synthetic instruction, 299
CMP synthetic instruction, 233, 297
coherence, 120, 258

memory, 121, 224
unit, memory, 122

compare and swap instructions, 98, 152
comparison instruction, 76, 233
compatibility note, 4
compatibility with SPARC-V8, 4, 19, 30, 40, 43, 54, 58, 76, 78, 85, 104, 114, 115, 116, 121, 142, 145, 160,

170, 171, 174, 179, 181, 187, 215, 224, 226, 230, 232, 233, 237, 239, 241, 245, 322, 336
compatibility with SPARC-V9, 137
compliance, 8

certificate of, 8
certification process, 8
Level I, 7
Level II, 8

compliant SPARC-V9 implementation, 7
concatenation of bit vectors, 3
concurrency, 15
cond field of instructions, 66, 141, 144, 147, 148, 189, 195
condition codes, 153

floating-point, 141
integer, 41

condition codes (CCR) register, 21, 89, 137, 157, 202, 245
conditional branches, 141, 144, 147
conditional move instructions, 20
conforming SPARC-V9 implementation, 7
const22 field of instructions, 170
constants

generating, 220
contexts

Nucleus, 122, 287
control and status registers, 35
control-transfer instructions (CTIs), 19, 157
conventions

software, 301
convert between floating-point formats instructions, 162, 248
convert floating-point to integer instructions, 161, 250
convert integer to floating-point instructions, 163
coprocessor, 322
counter field of TICK register, 51
CPopn instructions (SPARC-V8), 171, 322
cross-domain call, 316
CTI, seecontrol-transfer instructions (CTIs)
current exception (cexc) field of FSR register, 44, 46, 48, 84, 115, 247, 254
current window, 9
current window pointer (CWP) register, 9, 15, 21, 33, 56, 58, 58, 60, 82, 87, 89, 157, 169, 211, 217, 218, 242,

259
current_little_endian (CLE) field of PSTATE register, 52, 52, 122
CWP, seecurrent window pointer (CWP) register

D
d16hi field of instructions, 66, 138
d16lo field of instructions, 66, 138
data access

RED_state, 92

data aggregate
argument passed by value, 302
examples of, 302

data alignment, seealignment
data cache, 125
data flow order constraints

memory reference instructions, 124
register reference instructions, 124

data formats
byte, 23
doubleword, 23
extended word, 23
halfword, 23
quadword, 23
tagged word, 23
word, 23

data memory, 131
data types, 23

floating-point, 23
signed integer, 23
unsigned integer, 23

data_access_error exception, 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_exception exception, 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_MMU_miss exception, 114, 153, 174, 177, 179, 181, 182, 183, 210, 226, 228, 230, 232, 234, 236,

256
data_access_protection exception, 114, 153, 175, 177, 179, 181, 182, 183, 226, 228, 230, 232
data_protection exception, 234, 236
DEC synthetic instruction, 299
DECcc synthetic instruction, 299
deferred trap, 95, 95, 96, 99, 254

avoiding, 96
floating-point, 212

deferred-trap queue, 95
floating-point (FQ), 47, 61, 96, 211, 243
integer unit, 61

Dekker's algorithm, 326
delay instruction, 19, 35, 138, 141, 144, 150, 157, 216, 302, 306
delayed branch, 63
delayed control transfer, 35, 138
deprecated instructions

BCC, 146
BCS, 146
BE, 146
BG, 146
BGE, 146
BGU, 146
Bicc, 146
BLE, 146
BLEU, 146
BN, 146
BNE, 146
BNEG, 146
BPOS, 146
BVC, 146

BVS, 146
FBE, 140
FBfcc, 140
FBG, 140
FBGE, 140
FBL, 140
FBLE, 140
FBLG, 140
FBN, 140
FBNE, 140
FBO, 140
FBU, 140
FBUE, 140
FBUGE, 140
FBUL, 140
FBULE, 140
LDDA , 180
LDFSR, 173
MULScc, 202
SDIV, 154
SDIVcc, 154
SMULcc, 200
STFSR, 225
SWAP, 234
SWAPA, 235
TSUBccTV, 237, 238
UDIVcc, 154
UMULcc, 200

destination register, 13
dirty bits, seelower and upper registers dirty (DL and DU) fields of FPRS register
disp19 field of instructions, 66, 144, 148
disp22 field of instructions, 66, 141, 147
disp30 field of instructions, 66, 151
disrupting traps, 95, 96, 97, 98, 254
divide instructions, 19, 154, 199
divide-by-zero mask (DZM) bit of TEM field of FSR register, 48
division_by_zero exception, 77, 98, 104, 114, 156, 199
division-by-zero accrued (dza) bit of aexc field of FSR register, 49
division-by-zero current (dzc) bit of cexc field of FSR register, 49
DL, seelower registers dirty (DL) field of FPRS register
DONE instruction, 20, 41, 42, 89, 91, 95
doublet, 9
doubleword, 9, 17, 69, 121

addressing, 70, 72
in memory, 35

doubleword data format, 23
DU, seeupper registers dirty (DU) field of FPRS register
dza, seedivision-by-zero accrued (dza) bit of aexc field of FSR register
dzc, seedivision-by-zero current (dzc) bit of cexc field of FSR register
DZM, seedivide-by-zero mask (DZM) bit of TEM field of FSR register

E
emulating multiple unsigned condition codes, 81

enable floating-point (FEF) field of FPRS register, 42, 53, 84, 99, 114, 142, 145, 174, 176, 226, 227, 243
enable floating-point (PEF) field of PSTATE register, 42, 53, 84, 99, 114, 142, 145, 174, 176, 226, 227, 309
enable RED_state (RED) field of PSTATE register, 91
error_state processor state, 56, 90, 91, 94, 105, 106, 109, 110, 111, 112, 117, 255
exceptions, 21, 89

async_data_error, 113, 133, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
catastrophic, 98
catastrophic_error, 89, 91, 99, 113, 114, 115
clean_window, 60, 82, 87, 98, 101, 114, 218, 256
data_access_error, 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_exception, 114, 153, 174, 177, 179, 181, 182, 183, 226, 228, 230, 232, 234, 236
data_access_MMU_miss, 114, 153, 174, 177, 179, 181, 182, 183, 210, 226, 228, 230, 232, 234, 236, 256
data_access_protection, 114, 153, 175, 177, 179, 181, 226, 228, 230, 232
data_protection, 234, 236
division_by_zero, 77, 98, 104, 114, 156, 199
externally_initiated_reset (XIR), 56, 108, 110
fill_n_normal, 98, 114, 216, 218
fill_n_other, 98, 114, 216, 218
floating-point, 10, 99
fp_disabled, 16, 42, 84, 98, 114, 142, 145, 158, 160, 161, 162, 163, 164, 165, 166, 174, 176, 177, 191,

193, 197, 226, 227, 228, 309
fp_exception, 45
fp_exception_ieee_754, 44, 48, 99, 100, 104, 115, 158, 160, 161, 162, 163, 165, 166, 247
fp_exception_other, 40, 47, 61, 85, 104, 115, 158, 160, 161, 162, 163, 164, 165, 166, 174, 177, 191, 193,

213, 226, 228, 247
illegal_instruction, 35, 47, 58, 85, 115, 133, 139, 150, 157, 168, 170, 171, 174, 179, 181, 197, 198, 205,

212, 213, 215, 219, 226, 229, 230, 231, 232, 241, 243, 245, 254, 255, 256
implementation_dependent_n, 91, 104, 255
instruction_access, 97
instruction_access_error, 98, 115, 133
instruction_access_exception, 115, 133
instruction_access_MMU_miss, 115, 133
internal_processor_error, 91, 115, 133
invalid_exception, 161
LDDF_mem_address_not_aligned, 70, 98, 115, 174, 177, 226, 228, 257
LDQF_mem_address_not_aligned, 70, 116, 174, 177, 257
mem_address_not_aligned, 69, 98, 116, 153, 172, 174, 177, 179, 181, 216, 226, 228, 230, 232, 234, 236
persistence, 100
power_on_reset (POR), 108, 116
privileged_action, 51, 73, 97, 116, 153, 176, 177, 181, 183, 215, 227, 228, 232, 236
privileged_instruction (SPARC-V8), 116
privileged_opcode, 98, 116, 157, 212, 215, 219, 243, 245
r_register_access_error (SPARC-V8), 115
software_initiated reset (SIR), 105
software_initiated_reset, 97
software_initiated_reset (SIR), 97, 111, 116, 223
spill_n_normal, 98, 116, 169, 218
spill_n_other, 116, 169, 218
STDF_mem_address_not_aligned, 70, 98, 116, 226, 228, 257
STQF_mem_address_not_aligned, 70, 116, 226, 228, 257
tag_overflow, 77, 98, 104, 117, 237, 239
trap_instruction, 98, 117, 241
unimplemented_LDD, 98, 117, 179, 181, 257
unimplemented_STD, 98, 117, 230, 232, 257

watchdog_reset (WDR), 108
window_fill, 58, 59, 60, 82, 216, 305
window_overflow, 301
window_spill, 58, 60, 305

exceptions, also seetrap types
execute protection, 282
execute unit, 123
execute_state, 90, 105, 106, 110, 111, 117
extended word, 10
extended word addressing, 70, 72
extended word data format, 23
extensions

architectural, 7, 321
externally_initiated_reset (XIR), 56, 91, 93, 97, 108, 110, 111

F
f registers, 16, 36, 100, 247, 255
FABSd instruction, 164, 275, 276, 277
FABSq instruction, 164, 275, 276, 277
FABSs instruction, 164, 275
FADDd instruction, 158, 275
FADDq instruction, 158, 275
FADDs instruction, 158, 275
FBA instruction, 141, 278
FBE instruction, 140, 278
FBfcc instructions, 35, 43, 84, 99, 114, 140, 142, 273, 278
FBG instruction, 140, 278
FBGE instruction, 140, 278
FBL instruction, 140, 278
FBLE instruction, 140, 278
FBLG instruction, 140, 278
FBN instruction, 140, 141, 278
FBNE instruction, 140, 278
FBO instruction, 140, 278
FBPA instruction, 143, 144, 278
FBPcc instructions, 66
FBPE instruction, 143, 278
FBPfcc instructions, 35, 43, 66, 67, 84, 99, 142, 143, 273, 278
FBPG instruction, 143, 278
FBPGE instruction, 143, 278
FBPL instruction, 143, 278
FBPLE instruction, 143, 278
FBPLG instruction, 143, 278
FBPN instruction, 143, 144, 278
FBPNE instruction, 143, 278
FBPO instruction, 143, 278
FBPU instruction, 143, 278
FBPUE instruction, 143, 278
FBPUG instruction, 143, 278
FBPUGE instruction, 143, 278
FBPUL instruction, 143, 278
FBPULE instruction, 143, 278
FBU instruction, 140, 278

FBUE instruction, 140, 278
FBUG instruction, 140, 278
FBUGE instruction, 140, 278
FBUL instruction, 140, 278
FBULE instruction, 140, 278
fcc, seefloating-point condition codes (fcc) fields of FSR register
fcc-conditional branches, 141, 144
fccN, 10
FCMP* instructions, 43, 159
FCMPd instruction, 159, 248, 277
FCMPE* instructions, 43, 159
FCMPEd instruction, 159, 248, 277
FCMPEq instruction, 159, 248, 277
FCMPEs instruction, 159, 248, 277
FCMPq instruction, 159, 248, 277
FCMPs instruction, 159, 248, 277
fcn field of instructions, 157, 206
FDIVd instruction, 165, 275
FDIVq instruction, 165, 275
FDIVs instruction, 165, 275
FdMULq instruction, 165, 275
FdTOi instruction, 161, 250, 275
FdTOq instruction, 162, 248, 275
FdTOs instruction, 162, 248, 275
FdTOx instruction, 161, 275, 276, 277
FEF, seeenable floating-point (FEF) field of FPRS register
fill register window, 33, 58, 59, 82, 83, 86, 87, 88, 114, 217, 218, 219, 316
fill_n_normal exception, 98, 114, 216, 218
fill_n_other exception, 98, 114, 216, 218
FiTOd instruction, 163, 275
FiTOq instruction, 163, 275
FiTOs instruction, 163, 275
floating-point add and subtract instructions, 158
floating-point compare instructions, 43, 159, 159, 248
floating-point condition code bits, 141
floating-point condition codes (fcc) fields of FSR register, 43, 46, 100, 141, 144, 159, 247, 292
floating-point data type, 23
floating-point deferred-trap queue (FQ), 47, 61, 96, 211, 212, 243, 254
floating-point enable (FEF) field of FPRS register, 309
floating-point exception, 10, 99
floating-point move instructions, 164
floating-point multiply and divide instructions, 165
floating-point operate (FPop) instructions, 10, 20, 36, 45, 48, 67, 84, 99, 114, 115, 174
floating-point queue, seefloating-point deferred-trap queue (FQ)
floating-point registers, 40, 247, 255, 304
floating-point registers state (FPRS) register, 42, 215, 245
floating-point square root instructions, 166
floating-point state (FSR) register, 43, 48, 50, 174, 225, 226, 247, 250, 254
floating-point trap type (ftt) field of FSR register, 10, 43, 45, 48, 61, 84, 85, 115, 212, 226, 247
floating-point trap types

fp_disabled, 53
FPop_unfinished, 85
FPop_unimplemented, 85
hardware_error, 10, 45, 47

IEEE_754_exception, 10, 46, 46, 48, 50, 100, 115, 247
invalid_fp_register, 10, 40, 46, 158, 160, 161, 162, 163, 164, 165, 166, 174, 177, 191, 193, 226, 228
numeric values, 45
sequence_error, 45, 46, 47, 61, 212, 213
unfinished_FPop, 10, 46, 46, 50, 247, 253
unimplemented_FPop, 10, 46, 46, 50, 85, 191, 212, 247, 253

floating-point traps
deferred, 212
precise, 212

floating-point unit (FPU), 10, 16
FLUSH instruction, 131, 167, 253, 258, 308, 324

in multiprocess environment, 132
flush instruction memory instruction, 167, 324
FLUSH latency, 258
flush register windows instruction, 169
FLUSHW instruction, 20, 83, 86, 87, 116, 169, 303
FMOVA instruction, 188
FMOVCC instruction, 188
FMOVcc instructions, 41, 42, 43, 66, 67, 80, 84, 188, 191, 196, 197, 278
FMOVccd instruction, 277
FMOVccq instruction, 277
FMOVccs instruction, 277
FMOVCS instruction, 188
FMOVd instruction, 164, 275, 276, 277
FMOVE instruction, 188
FMOVFA instruction, 188
FMOVFE instruction, 188
FMOVFG instruction, 188
FMOVFGE instruction, 188
FMOVFL instruction, 188
FMOVFLE instruction, 188
FMOVFLG instruction, 188
FMOVFN instruction, 188
FMOVFNE instruction, 188
FMOVFO instruction, 188
FMOVFU instruction, 188
FMOVFUE instruction, 188
FMOVFUG instruction, 188
FMOVFUGE instruction, 188
FMOVFUL instruction, 188
FMOVFULE instruction, 188
FMOVG instruction, 188
FMOVGE instruction, 188
FMOVGU instruction, 188
FMOVL instruction, 188
FMOVLE instruction, 188
FMOVLEU instruction, 188
FMOVN instruction, 188
FMOVNE instruction, 188
FMOVNEG instruction, 188
FMOVPOS instruction, 188
FMOVq instruction, 164, 275, 276, 277
FMOVr instructions, 67, 84, 192
FMOVRGEZ instruction, 192

FMOVRGZ instruction, 192
FMOVRLEZ instruction, 192
FMOVRLZ instruction, 192
FMOVRNZ instruction, 192
FMOVRZ instruction, 192
FMOVs instruction, 164, 275
FMOVVC instruction, 188
FMOVVS instruction, 188
FMULd instruction, 165, 275
FMULq instruction, 165, 275
FMULs instruction, 165, 275
FNEGd instruction, 164, 275, 276, 277
FNEGq instruction, 164, 275, 276, 277
FNEGs instruction, 164, 275
formats

instruction, 63
fp_disabled floating-point trap type, 16, 42, 53, 84, 98, 114, 142, 145, 158, 160, 161, 162, 163, 164, 165, 166,

174, 176, 177, 191, 193, 197, 226, 227, 228, 309
fp_exception exception, 45, 48
fp_exception_ieee_754 exception, 44, 48, 99, 100, 104, 115, 158, 160, 161, 162, 163, 165, 166, 247
fp_exception_other exception, 40, 47, 61, 85, 104, 115, 158, 160, 161, 162, 163, 164, 165, 166, 174, 177, 191,

193, 212, 213, 226, 228, 247
FPop instructions, seefloating-point operate (FPop) instructions
FPop_unimplemented floating-point trap type, 85
FPop1 instructions, 10
FPop2 instructions, 10
FPRS, seefloating-point register state (FPRS) register
FPU, seefloating-point unit
FQ, seefloating-point deferred-trap queue (FQ)
FqTOd instruction, 162, 248, 275
FqTOi instruction, 161, 250, 275
FqTOs instruction, 162, 248, 275
FqTOx instruction, 161, 275, 276, 277
frame pointer register, 302
freg, 292
FsMULd instruction, 165, 275
FSQRTd instruction, 166, 275
FSQRTq instruction, 166, 275
FSQRTs instruction, 166, 275
FsTOd instruction, 162, 248, 275
FsTOi instruction, 161, 250, 275
FsTOq instruction, 162, 248, 275
FsTOx instruction, 161, 275, 276, 277
FSUBd instruction, 158, 275
FSUBq instruction, 158, 275
FSUBs instruction, 158, 275
ftt, seefloating-point trap type (ftt) field of FSR register
function return value, 302
functional choice

implementation-dependent, 252
FxTOd instruction, 163, 275, 276, 277
FxTOq instruction, 163, 275, 276, 277
FxTOs instruction, 163, 275, 276, 277

G
generating constants, 220
global registers, 4, 15, 30, 30, 30, 303

H
halfword, 10, 17, 69, 121

addressing, 70, 72
data format, 23

halt, 105
hardware

dependency, 251
traps, 101

hardware_error floating-point trap type, 10, 45, 47
has, 7
hexlet, 10

I
i field of instructions, 66, 137, 154, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 195, 198, 199, 200, 202,

205, 206, 214, 216
I/O, seeinput/output (I/O)
i_or_x_cc, 292
icc field of CCR register, 41, 42, 137, 147, 149, 155, 156, 184, 196, 200, 202, 203, 233, 237, 241
icc-conditional branches, 147
IE, seeinterrupt enable (IE) field of PSTATE register
IEEE Std 754-1985, 10, 15, 44, 46, 48, 50, 85, 247, 249, 250, 253, 254
IEEE_754_exception floating-point trap type, 10, 46, 46, 48, 50, 100, 115, 247
IER register (SPARC-V8), 245
illegal_instruction exception, 35, 47, 58, 85, 115, 133, 139, 150, 157, 168, 170, 171, 174, 179, 181, 197, 198,

205, 210, 212, 213, 215, 219, 226, 229, 230, 231, 232, 241, 243, 245, 254, 255, 256
ILLTRAP instruction, 115, 170, 273
imm_asi field of instructions, 67, 73, 152, 173, 176, 178, 180, 182, 183, 206
imm22 field of instructions, 67
IMPDEPn instructions, seeimplementation-dependent (IMPDEPn) instructions
IMPL, 171
impl field of VER register, 45
impl_dep (PID) fields of PSTATE register, 52
implementation, 10
implementation dependency, 7, 251
implementation note, 4
implementation number (impl) field of VER register, 57
implementation_dependent_n exception, 91, 104, 115, 255
implementation-dependent, 10

assigned value (a), 252
functional choice (c), 252
total unit (t), 252
trap, 108
value (v), 252

implementation-dependent (IMPDEPn) instructions, 85, 171, 257, 321
implicit

ASI, 73
byte order, 52

in registers, 15, 30, 33, 217, 301
INC synthetic instruction, 299
INCcc synthetic instruction, 299
inexact accrued (nxa) bit of aexc field of FSR register, 49, 250
inexact current (nxc) bit of cexc field of FSR register, 48, 49, 249, 250
inexact mask (NXM) bit of TEM field of FSR register, 48, 48
inexact quotient, 154, 155
infinity , 250
initiated, 11
input/output (I/O), 6, 18
input/output (I/O) locations, 120, 121, 130, 253, 258

order, 121
value semantics, 121

instruction
access in RED_state, 92
alignment, 17, 69, 121
cache, 125
dispatch, 98
execution, 98
fetch, 69
formats, 4, 63
memory, 131
reordering, 124

instruction fields, 11
a, 66, 138, 141, 147, 148, 152
cc0, 66, 144, 148, 159, 195
cc1, 66, 144, 148, 159, 195
cc2, 66, 195
cond, 66, 141, 144, 147, 148, 189, 195
const22, 170
d16hi, 66, 138
d16lo, 66, 138
disp19, 66, 144, 148
disp22, 66, 141, 147
disp30, 66, 151
fcn, 157, 206
i, 66, 137, 154, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 195, 198, 199, 200, 202, 205, 206, 214,

216
imm_asi, 67, 73, 152, 173, 176, 178, 180, 206
imm22, 67
mmask, 67, 224
op3, 67, 137, 152, 154, 157, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200, 202, 206, 211,

214, 216
opf, 67, 158, 159, 161, 162, 163, 164, 165, 166
opf_cc, 67, 189
opf_low, 67, 189, 192
p, 67, 138, 139, 144, 148
rcond, 67, 138, 192, 198
rd, 13, 68, 137, 152, 154, 158, 161, 162, 163, 164, 165, 166, 172, 173, 176, 178, 180, 182, 183, 184, 189,

192, 195, 198, 199, 200, 202, 205, 211, 214, 321
reg_or_imm, 321
reserved, 133
rs1, 13, 68, 137, 138, 152, 154, 158, 159, 165, 167, 172, 173, 176, 178, 180, 182, 183, 184, 192, 198,

199, 200, 202, 206, 211, 214, 216, 321

rs2, 13, 68, 137, 152, 154, 158, 159, 161, 162, 163, 164, 165, 166, 167, 172, 173, 176, 178, 180, 182,
183, 184, 189, 192, 195, 198, 199, 200, 202, 205, 206, 216

simm10, 68, 198
simm11, 68, 195
simm13, 68, 137, 154, 167, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200, 202, 205, 206, 216
sw_trap#, 68
undefined, 171

instruction set architecture, 5, 10, 11
instruction_access exception, 97
instruction_access_error exception, 98, 115, 133
instruction_access_exception exception, 115, 133
instruction_access_MMU_miss exception, 115, 133
instructions

atomic, 152
atomic load-store, 69, 98, 152, 182, 183, 234, 235
branch if contents of integer register match condition, 138
branch on floating-point condition codes, 140
branch on floating-point condition codes with prediction, 143
branch on integer condition codes, 146
branch on integer condition codes with prediction, 148
compare and swap, 98, 152
comparison, 76, 233
conditional move, 20
control-transfer (CTIs), 19, 157
convert between floating-point formats, 162, 248
convert floating-point to integer, 161, 250
convert integer to floating-point, 163
divide, 19, 154, 199
floating-point add and subtract, 158
floating-point compare, 43, 159, 159, 248
floating-point move, 164
floating-point multiply and divide, 165
floating-point operate (FPop), 20, 45, 48, 99, 174
floating-point square root, 166
flush instruction memory, 167, 324
flush register windows, 169
implementation-dependent (IMPDEPn), 85, 171
jump and link, 19, 172
load, 323
load floating-point, 69, 173
load floating-point from alternate space, 176
load integer, 69, 178
load integer from alternate space, 180
load-store unsigned byte, 98, 152, 182, 234, 235
load-store unsigned byte to alternate space, 183
logical, 184
move floating-point register if condition is true, 188
move floating-point register if contents of integer register satisfy condition, 192
move integer register if condition is satisfied, 194
move integer register if contents of integer register satisfies condition, 198
move on condition, 5
multiply, 19, 199, 200, 200
multiply step, 19, 202
prefetch data, 206

read privileged register, 211
read state register, 20, 214
register window management, 20
reserved, 85
reserved fields, 133
shift, 19, 221
software-initiated reset, 223
store, 323
store floating point, 69
store floating-point, 225
store floating-point into alternate space, 227
store integer, 69, 229, 231
subtract, 233
swapr register with alternate space memory, 235
swapr register with memory, 234
synthetic, 297
tagged add, 237
tagged arithmetic, 19
test-and-set, 131
timing, 133
trap on integer condition codes, 240
write privileged register, 242
write state register, 244

integer condition codes, seeicc field of CCR register
integer divide instructions, seedivide instructions
integer multiply instructions, seemultiply instructions
integer unit (IU), 11, 11, 15
integer unit deferred-trap queue, 61
internal_processor_error exception, 91, 115, 133

and RED_state, 93
interrupt enable (IE) field of PSTATE register, 54, 96, 99, 115
interrupt level, 54
interrupt request, 11, 21, 89, 133
interrupts, 54
invalid accrued (nva) bit of aexc field of FSR register, 49
invalid current (nvc) bit of cexc field of FSR register, 49, 250
invalid mask (NVM) bit of TEM field of FSR register, 48
invalid_exception exception, 161
invalid_fp_register floating-point trap type, 10, 40, 46, 158, 160, 161, 162, 163, 164, 165, 166, 174, 177, 191,

193, 226, 228
IPREFETCH synthetic instruction, 297
ISA, seeinstruction set architecture
issue unit, 123, 124
issued, 11
italic font

in assembly language syntax, 291
IU, seeinteger unit

J
JMP synthetic instruction, 297
JMPL instruction, 19, 33, 35, 116, 172, 216, 297, 304
jump and link instruction, 19, 172

L
LD instruction (SPARC-V8), 179
LDA instruction (SPARC-V8), 181
LDD instruction, 35, 98, 117, 178, 257
LDDA instruction, 35, 61, 98, 180, 257
LDDF instruction, 70, 98, 115, 173
LDDF_mem_address_not_aligned exception, 70, 98, 115, 174, 177, 228, 257
LDDFA instruction, 70, 98, 176
LDF instruction, 173
LDFSR instruction, 43, 45, 48, 50, 173
LDQF instruction, 70, 116, 173
LDQF_mem_address_not_aligned exception, 70, 116, 174, 177, 257
LDQFA instruction, 70, 176
LDSB instruction, 178
LDSBA instruction, 180
LDSH instruction, 178
LDSHA instruction, 180
LDSTUB insruction, 69
LDSTUB instruction, 98, 127, 131, 182, 327
LDSTUBA instruction, 98, 183
LDSW instruction, 178
LDSWA instruction, 180
LDUB instruction, 178
LDUBA instruction, 180
LDUH instruction, 178
LDUHA instruction, 180
LDUW instruction, 178
LDUWA instruction, 180
LDX instruction, 98, 178
LDXA instruction, 98, 180
LDXFSR instruction, 43, 45, 48, 50, 173
leaf procedure, 11, 82, 304, 304

optimization, 305, 306
Level I compliance, 7
Level II compliance, 8
little-endian byte order, 11, 17, 52
load floating-point from alternate space instructions, 176
load floating-point instructions, 173
load instructions, 69, 323
load integer from alternate space instructions, 180
load integer instructions, 178
LoadLoad MEMBAR relationship, 127, 187
loads

non-faulting, 123, 123
loads from alternate space, 18, 50, 73, 341
load-store alignment, 17, 69, 121
load-store instructions, 17, 98

compare and swap, 98, 152
load-store unsigned byte, 152, 182, 234, 235
load-store unsigned byte to alternate space, 183
swapr register with alternate space memory, 235
swapr register with memory, 152, 234

LoadStore MEMBAR relationship, 127, 128, 187

local registers, 15, 30, 33, 217, 302, 307
logical instructions, 184
Lookaside MEMBAR relationship, 187
lower registers dirty (DL) field of FPRS register, 42

M
manual

audience, 1
fonts, 3
where to start, 1

manufacturer (manuf) field of VER register, 57, 256
mask number (mask) field of VER register, 57
maximum trap levels (maxtl) field of VER register, 57
MAXTL , 54, 90, 106, 223
maxtl, seemaximum trap levels (maxtl) field of VER register
may, 11
mem_address_not_aligned exception, 69, 98, 116, 153, 172, 174, 177, 179, 181, 216, 226, 228, 230, 232, 234,

236
MEMBAR instruction, 67, 76, 121, 125, 126–128, 129, 131, 167, 186, 214, 224, 324
membar_mask, 295
MemIssue MEMBAR relationship, 187
memory

alignment, 121
atomicity, 258
coherence, 120, 121, 258
coherency unit, 122
data, 131
instruction, 131
ordering unit, 121
page, 281
real, 120, 121
stack layout, 304

memory access instructions, 17
memory management unit (MMU), 6, 114, 115, 253, 291

address translation, 286
ASI input, 283
atomic input, 283
context, 281
Data / Instr input, 283
diagram, 283
disabled, 207
disabling, 282
fault address, 288
fault status, 288
in RED_state, 92
memory protection, 286
modified statistics, 282, 288
NF-Load_violation output, 285
No_translation output, 284
Non-faultable attribute, 284
Nucleus Context, 287
Prefetch input, 283
Prefetch_violation output, 285

Prefetchable attribute, 284
Primary Context, 286
Privilege input, 283
Privilege_violation output, 285, 286
Protection_violation output, 285, 286
Read / Write input, 283
Read, Write, and Execute attributes, 284
RED_state, 92, 288
RED_state input, 283
referenced statistics, 282, 288
Restricted attribute, 284
Secondary Context, 286
Translation_error output, 284
Translation_not_valid output, 284
Translation_successful output, 285

memory model, 119–132
barrier synchronization, 333, 334
Dekker's algorithm, 326
issuing order, 330
mode control, 129
mutex (mutual exclusion) locks, 326
operations, 323
overview, 119
partial store order (PSO), 119, 128, 130, 257, 323
portability and recommended programming style, 324
processors and processes, 324
programming with, 323–335
relaxed memory order (RMO), 119, 128, 130, 257, 323
sequential consistency, 120
SPARC-V9, 128
spin lock, 327
strong, 120
strong consistency, 120, 325, 330
total store order (TSO), 92, 119, 129, 130, 323
weak, 120

memory operations
atomic, 130

memory order, 125
program order, 124

memory reference instructions
data flow order constraints, 124

memory_model (MM) field of PSTATE register, 52, 92, 125, 129, 130, 258
microkernel, 317
MM, seememory_model (MM) field of PSTATE register
mmask field of instructions, 67, 224
MMU, seememory management unit (MMU)
mode

nonprivileged, 6, 15, 75
privileged, 15, 51, 85, 122
user, 30, 50, 303

MOV synthetic instruction, 299
MOVA instruction, 194
MOVCC instruction, 194
MOVcc instructions, 41, 42, 43, 66, 68, 80, 191, 194, 196, 197, 278

MOVCS instruction, 194
move floating-point register if condition is true, 188
move floating-point register if contents of integer register satisfy condition, 192
MOVE instruction, 194
move integer register if condition is satisfied instructions, 194
move integer register if contents of integer register satisfies condition instructions, 198
move on condition instructions, 5
MOVFA instruction, 194
MOVFE instruction, 194
MOVFG instruction, 194
MOVFGE instruction, 194
MOVFL instruction, 194
MOVFLE instruction, 194
MOVFLG instruction, 194
MOVFN instruction, 194
MOVFNE instruction, 194
MOVFO instruction, 194
MOVFU instruction, 194
MOVFUE instruction, 194
MOVFUG instruction, 194
MOVFUGE instruction, 194
MOVFUL instruction, 194
MOVFULE instruction, 194
MOVG instruction, 194
MOVGE instruction, 194
MOVGU instruction, 194
MOVL instruction, 194
MOVLE instruction, 194
MOVLEU instruction, 194
MOVN instruction, 194
MOVNE instruction, 194
MOVNEG instruction, 194
MOVPOS instruction, 194
MOVr instruction, 67
MOVr instructions, 68, 81, 198
MOVRGEZ instruction, 198
MOVRGZ instruction, 198
MOVRLEZ instruction, 198
MOVRLZ instruction, 198
MOVRNZ instruction, 198
MOVRZ instruction, 198
MOVVC instruction, 194
MOVVS instruction, 194
MULScc (multiply step) instruction, 19, 202
multiple unsigned condition codes

emulating, 81
multiply instructions, 19, 199, 200, 200
multiply step instruction, seeMULScc (multiply step) instruction
multiply/divide register, seeY register
multiprocessor synchronization instructions, 5, 152, 234, 235
multiprocessor system, 5, 125, 167, 208, 210, 234, 235, 258
MULX instruction, 199
must, 11
mutex (mutual exclusion) locks, 326

N
N condition code bit, seenegative (N) bit of condition fields of CCR
NaN (not-a-number), 161, 248, 250

quiet, 159, 160, 248
signaling, 43, 159, 160, 162, 248

NEG synthetic instruction, 299
negative (N) bit of condition fields of CCR, 41
negative infinity, 250
nested traps, 5
next program counter (nPC), 11, 21, 35, 35, 55, 63, 95, 97, 157, 204, 318
non-faulting load, 11, 123, 123, 123
non-leaf routine, 172
nonprivileged

mode, 6, 9, 12, 15, 45, 75
registers, 30
software, 42

nonprivileged trap (NPT) field of TICK register, 51, 215
nonstandard floating-point (NS) field of FSR register, 44, 44, 250, 254
nonstandard modes

in FPU, 44
non-virtual memory, 209
NOP instruction, 141, 144, 147, 204, 206, 220, 241
normal traps, 90, 101, 106, 106, 108
NOT synthetic instruction, 299
note

compatibility, 4
implementation, 4
programming, 4

nPC, seenext program counter (nPC)
NPT, seenonprivileged trap (NPT) field of TICK register)
NS, seenonstandard floating-point (NS) field of FSR register
Nucleus Context, 122, 287
number of windows (maxwin) field of VER register, 58, 87
nva, seeinvalid accrued (nva) bit of aexc field of FSR register
nvc, seeinvalid current (nvc) bit of cexc field of FSR register
NVM, seeinvalid mask (NVM) bit of TEM field of FSR register
NWINDOWS, 12, 15, 32, 33, 58, 217, 218, 253, 259
nxa, seeinexact accrued (nxa) bit of aexc field of FSR register
nxc, seeinexact current (nxc) bit of cexc field of FSR register
NXM, seeinexact mask (NXM) bit of TEM field of FSR register

O
object-oriented programming, 6
octlet, 12
ofa, seeoverflow accrued (ofa) bit of aexc field of FSR register
ofc, seeoverflow current (ofc) bit of cexc field of FSR register
OFM, seeoverflow mask (OFM) bit of TEM field of FSR register
op3 field of instructions, 67, 137, 152, 154, 157, 167, 169, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200,

202, 206, 211, 214, 216
opcode, 12

reserved, 321
opf field of instructions, 67, 158, 159, 161, 162, 163, 164, 165, 166

opf_cc field of instructions, 67, 189
opf_low field of instructions, 67, 189, 192
optimized leaf procedure, seeleaf procedure (optimized)
OR instruction, 184, 299
ORcc instruction, 184, 297
ordering unit

memory, 121
ORN instruction, 184
ORNcc instruction, 184
other windows (OTHERWIN) register, 58, 59, 60, 83, 86, 87, 169, 211, 218, 242, 259, 317
out register #7, 34, 151, 172, 215
out registers, 15, 30, 33, 217, 301
overflow, 86

window, 316
overflow (V) bit of condition fields of CCR, 41, 77
overflow accrued (ofa) bit of aexc field of FSR register, 49
overflow current (ofc) bit of cexc field of FSR register, 48, 49
overflow mask (OFM) bit of TEM field of FSR register, 48, 48

P
p field of instructions, 67, 138, 139, 144, 148
page attributes, 281
page descriptor cache (PDC), 114, 115
page fault, 209
page-level protections, 282
parameters to a subroutine, 302
parity error, 115
partial store order (PSO) memory model, 52, 119, 120, 128, 130, 257, 323
PC, seeprogram counter (PC)
PDC, seepage descriptor cache (PDC)
PEF, seeenable floating-point (PEF) field of PSTATE register
physical address, 120, 281, 282
PID0, PID1 fields of PSTATE register, 52
PIL, seeprocessor interrupt level (PIL) register
POPC instruction, 205
positive infinity, 250
power failure, 97, 110
power-on reset, 51, 92, 93, 97, 109
power-on reset (POR) trap, 108
power-on_reset, 91
precise floating-point traps, 212
precise trap, 94, 95, 95, 96, 254
predict bit, 139
prefetch

for one read, 208
for one write, 209
for several reads, 208
for several writes, 208
implementation dependent, 209
instruction, 209
page, 209

prefetch data instruction, 206
PREFETCH instruction, 69, 149, 206, 256

prefetch_fcn, 295
PREFETCHA instruction, 206, 256
prefetchable, 12
PRIV, seeprivileged (PRIV) field of PSTATE register
privileged, 11, 12

mode, 12, 15, 51, 85, 122, 223
registers, 51
software, 6, 33, 45, 53, 73, 101, 169, 256, 288

privileged (PRIV) field of PSTATE register, 14, 53, 116, 122, 153, 176, 183, 215, 227, 232, 235
privileged_action exception, 51, 73, 97, 116, 153, 176, 177, 181, 183, 215, 227, 228, 232, 236
privileged_instruction exception (SPARC-V8), 116
privileged_opcode exception, 98, 116, 157, 212, 215, 219, 243, 245
processor, 12, 15

execute unit, 123
halt, 94, 105
issue unit, 123, 124
model, 123
reorder unit, 123
self-consistency, 124
state diagram, 90

processor interrupt level (PIL) register, 54, 96, 99, 100, 115, 211, 242
processor state (PSTATE) register, 21, 30, 51, 52, 56, 89, 91, 157, 211, 242
processor states

error_state, 56, 91, 94, 105, 106, 109, 110, 111, 112, 117, 255
execute_state, 105, 106, 110, 111, 117
RED_state, 90, 91, 94, 101, 105, 106, 108, 109, 110, 111, 112, 117, 130, 258

program counter (PC), 12, 21, 35, 35, 55, 63, 89, 95, 97, 151, 157, 172, 204, 318
program order, 124, 124
programming note, 4
protection

execute, 282
read, 282
write, 282

PSO, seepartial store ordering (PSO) memory model
PSR register (SPARC-V8), 245
PTD, seepage table descriptor (PTD)
PTE, seepage table entry (PTE)

Q
qne, seequeue not empty (qne) field of FSR register
quadlet, 12
quadword, 12, 17, 69, 121

addressing, 71, 73
data format, 23

queue not empty (qne) field of FSR register, 47, 47, 61, 212, 213, 243, 247
quiet NaN (not-a-number), 43, 159, 160, 248

R
r register, 30

#15, 34, 151, 172
alignment, 179, 181

r registers, 253
r_register_access_error exception (SPARC-V8), 115
rcond field of instructions, 67, 138, 192, 198
rd field of instructions, 13, 68, 137, 152, 154, 158, 161, 162, 163, 164, 165, 166, 172, 173, 176, 178, 180, 182,

183, 184, 189, 192, 195, 198, 199, 200, 202, 205, 211, 214, 321
RD, seerounding direction (RD) field of FSR register
RDASI instruction, 214
RDASR instruction, 18, 61, 214, 224, 256, 299, 321
RDCCR instruction, 214
RDFPRS instruction, 214
RDPC instruction, 35, 214
RDPR instruction, 47, 51, 52, 58, 61, 85, 211, 215
RDTICK instruction, 214, 215
RDY instruction, 36, 214, 299
read privileged register instruction, 211
read protection, 282
read state register instructions, 20, 214
read-after-write memory hazard, 124
real memory, 120, 121
real-time software, 308
RED, seeenable RED_state (RED) field of PSTATE register
RED_state, 13, 90, 91, 94, 101, 105, 106, 108, 109, 110, 111, 112, 117, 282

andinternal_processor_error exception, 93
cache behavior, 92
cache coherence in, 92
data access, 92
instruction access, 92
memory management unit (MMU) in, 92
restricted environment, 92

RED_state (RED) field of PSTATE register, 53, 91, 93
RED_state processor state, 130, 258
RED_state trap table, 101
RED_state trap vector, 91, 92, 258
RED_state trap vector address (RSTVaddr), 258
reference MMU, 6, 291
references, 345
reg, 291
reg_or_imm, 296
reg_or_imm field of instructions, 296, 321
reg_plus_imm, 295
regaddr, 295
register

allocation within a window, 307
destination, 13
renaming mechanism, 124
sets, 29, 33
window usage models, 308

register reference instructions
data flow order constraints, 124

register window management instructions, 20
register windows, 4, 5, 15, 33, 301, 303

clean, 9, 58, 60, 82, 86, 88, 114
fill , 33, 58, 59, 82, 83, 86, 87, 88, 114, 218, 219
spill, 33, 58, 59, 82, 83, 85, 86, 87, 88, 116, 218, 219

registers
address space identifier (ASI), 89, 122, 157, 176, 181, 183, 207, 227, 232, 235, 245, 316
alternate global, 15, 30, 30, 316
ancillary state registers (ASRs), 18, 36, 60, 252, 321
ASI, 50, 56
clean windows (CLEANWIN), 58, 60, 82, 83, 86, 87, 88, 211, 242, 259
clock-tick (TICK), 116
condition codes register (CCR), 56, 89, 137, 157, 202, 245
control and status, 29, 35
current window pointer (CWP), 15, 33, 56, 58, 58, 60, 87, 89, 157, 169, 211, 217, 218, 242, 259
f, 36, 100, 247, 255
floating-point, 16, 40, 255, 304
floating-point deferred-trap queue (FQ), 212
floating-point registers state (FPRS), 42, 215, 245
floating-point state (FSR), 43, 48, 50, 174, 225, 247, 250, 254
frame pointer, 302
global, 4, 15, 30, 30, 30, 303
IER (SPARC-V8), 245
in, 15, 30, 33, 217, 301
input/output (I/O), 18, 252
local, 15, 30, 33, 217, 302, 307
nonprivileged, 30
other windows (OTHERWIN), 58, 59, 60, 83, 86, 87, 169, 211, 218, 242, 259, 317
out, 15, 30, 33, 217, 301
out #7, 34, 151, 172, 215
privileged, 51
processor interrupt level (PIL), 54, 211, 242
processor state (PSTATE), 30, 51, 52, 56, 89, 157, 211, 242
PSR (SPARC-V8), 245
PSTATE, 91
r, 30, 253
r register

#15, 34, 151, 172, 215
restorable windows (CANRESTORE), 16, 33, 58, 59, 60, 82, 83, 86, 87, 211, 218, 219, 242, 259, 317
savable windows (CANSAVE), 16, 33, 58, 59, 82, 83, 86, 87, 169, 211, 218, 219, 242, 259
stack pointer, 301, 303
TBR (SPARC-V8), 245
TICK, 51, 211, 242
trap base address (TBA), 14, 57, 89, 100, 211, 242
trap level (TL), 54, 54, 55, 56, 57, 60, 89, 94, 157, 211, 212, 219, 223, 242, 243
trap next program counter (TNPC), 55, 95, 113, 211, 242
trap program counter (TPC), 55, 95, 113, 211, 212, 242
trap state (TSTATE), 52, 56, 157, 211, 242
trap type (TT), 56, 57, 60, 101, 105, 110, 111, 211, 241, 242, 255
version register (VER), 57, 211
WIM (SPARC-V8), 245
window state (WSTATE), 58, 60, 87, 169, 211, 218, 242, 316, 317
working, 29
Y, 35, 36, 154, 200, 202, 245

relaxed memory order (RMO) memory model, 5, 52, 119, 128, 130, 257, 323
renaming mechanism

register, 124
reorder unit, 123
reordering

instruction, 124
reserved, 13

fields in instructions, 133
instructions, 85
opcodes, 321

reset
externally initiated (XIR), 91, 93, 97, 111
externally_initiated (XIR), 91
externally_initiated_reset (XIR), 56, 110
power_on_reset (POR) trap, 116
power-on, 51, 91, 92, 93, 97, 109
processing, 91
request, 91, 116
reset

trap, 51, 56, 96, 97
software_initiated (SIR), 91
software_initiated_reset (SIR), 97, 111, 116
software-initiated, 93, 97, 105
trap, 13, 51, 95, 97, 105, 255
trap table, 13
watchdog, 56, 91, 93, 94, 97, 109, 110, 111

Reset, Error, and Debug state, 90
restorable windows (CANRESTORE) register, 16, 33, 58, 59, 60, 82, 83, 86, 87, 211, 218, 219, 242, 259, 317
RESTORE instruction, 6, 20, 33, 35, 58, 59, 82, 86, 114, 217, 303, 305, 306, 308
RESTORE synthetic instruction, 297
RESTORED instruction, 20, 83, 88, 218, 219, 316
restricted, 13
restricted address space identifier, 73, 74, 254
RET synthetic instruction, 297, 306
RETL synthetic instruction, 297, 306
RETRY instruction, 20, 41, 42, 88, 89, 91, 95, 96, 97, 157, 218
return address, 302, 305
return from trap (DONE) instruction, seeDONE instruction
return from trap (RETRY) instruction, seeRETRY instruction
RETURN instruction, 19, 35, 114, 116, 216, 317
RMO, seerelaxed memory ordering (RMO) memory model
rounding

in signed division, 155
rounding direction (RD) field of FSR register, 44, 158, 161, 162, 163, 165, 166
routine

non-leaf, 172
rs1 field of instructions, 13, 68, 137, 138, 152, 154, 158, 159, 165, 167, 172, 173, 176, 178, 180, 182, 183, 184,

192, 198, 199, 200, 202, 206, 211, 214, 216, 321
rs2 field of instructions, 13, 68, 137, 152, 154, 158, 159, 161, 162, 163, 164, 165, 166, 167, 172, 173, 176, 178,

180, 184, 189, 192, 195, 198, 199, 200, 202, 205, 206
RSTVaddr, 92, 101, 258

S
savable windows (CANSAVE) register, 16, 33, 58, 59, 82, 83, 86, 87, 169, 211, 218, 219, 242, 259
SAVE instruction, 6, 20, 33, 35, 58, 59, 60, 82, 85, 86, 87, 114, 116, 172, 216, 217, 302, 303, 305, 306, 308
SAVE synthetic instruction, 297
SAVED instruction, 20, 83, 88, 218, 219, 316

SDIV instruction, 36, 154
SDIVcc instruction, 36, 154
SDIVX instruction, 199
self-consistency

processor, 124
self-modifying code, 167, 308
sequence_error floating-point trap type, 10, 45, 46, 47, 61, 115, 212, 213
sequential consistency memory model, 120
SET synthetic instruction, 297
SETHI instruction, 19, 67, 76, 204, 220, 273, 297, 304
shall (special term), 13
shared memory, 119, 325, 326, 327, 332
shift instructions, 19, 76, 221
should (special term), 13
side effects, 13, 120, 121, 123
signal handler, seetrap handler
signal monitor instruction, 223
signaling NaN (not-a-number), 43, 159, 160, 162, 248
signed integer data type, 23
sign-extended 64-bit constant, 68
sign-extension, 299
SIGNX synthetic instruction, 299
simm10 field of instructions, 68, 198
simm11 field of instructions, 68, 195
simm13field of instructions, 68, 137, 154, 167, 172, 173, 176, 178, 180, 182, 183, 184, 199, 200, 202, 205, 206,

216
SIR instruction, 89, 97, 111, 116, 223
SIR, seesoftware_initiated_reset (SIR)
SIR_enable control flag, 223, 258
SLL instruction, 221
SLLX instruction, 221, 297
SMUL instruction, 36, 200
SMULcc instruction, 36, 200
software conventions, 301
software trap, 101, 101, 241
software_initiated_reset (SIR), 91, 97, 105, 108, 111, 116, 223
software_trap_number, 296
software-initiated_reset, 93, 97
SPARC Architecture Committee, 7
SPARC-V8 compatibility, 4, 19, 30, 40, 43, 54, 58, 76, 78, 104, 114, 115, 116, 121, 137, 142, 145, 160, 170,

171, 174, 179, 181, 187, 215, 224, 226, 230, 232, 233, 237, 239, 241, 245, 322, 336
SPARC-V8 compatiblity, 85
SPARC-V9 Application Binary Interface (ABI), 6, 7, 75
SPARC-V9 features, 4
SPARC-V9 memory models, 128
SPARC-V9-NP, 7
special terms

shall, 13
should, 13

special traps, 90, 101
speculative load, 13
spill register window, 33, 58, 59, 82, 83, 85, 86, 87, 88, 116, 218, 219, 316
spill windows, 217
spill_n_normal exception, 98, 116, 169, 218

spill_n_other exception, 116, 169, 218
spin lock, 327
SRA instruction, 221, 299
SRAX instruction, 221
SRL instruction, 221
SRLX instruction, 221
ST instruction, 299
stack frame, 217
stack pointer alignment, 304
stack pointer register, 301, 303
STB instruction, 229, 231, 299
STBA instruction, 229, 231
STBAR instruction, 76, 125, 127, 187, 214, 224
STD instruction, 35, 98, 117, 229, 231, 257
STDA instruction, 35, 61, 98, 229, 231, 257
STDF instruction, 70, 116, 225
STDF_mem_address_not_aligned exception, 70, 98, 116, 226, 228, 257
STDFA instruction, 70, 98, 227
STF instruction, 225
STFSR instruction, 43, 45, 48, 50, 225
STH instruction, 229, 231, 299
STHA instruction, 229, 231
store floating-point instructions, 225
store floating-point into alternate space instructions, 227
store instructions, 69, 323
store integer instructions, 229, 231
StoreLoad MEMBAR relationship, 127, 187
stores to alternate space, 18, 50, 73, 341
StoreStore MEMBAR relationship, 127, 187
STQF instruction, 70, 116, 225
STQF_mem_address_not_aligned exception, 70, 116, 226, 228, 257
STQFA instruction, 70, 227
strong consistency memory model, 120, 325, 330
strong ordering, seestrong consistency memory model
STW instruction, 229, 231
STWA instruction, 229, 231
STX instruction, 98, 229, 231
STXA instruction, 98, 229, 231
STXFSR instruction, 43, 45, 48, 50, 225
SUB instruction, 233, 299
SUBC instruction, 233
SUBcc instruction, 76, 233, 297
SUBCcc instruction, 233
subtract instructions, 233
SUBX instruction (SPARC-V8), 233
SUBXcc instruction (SPARC-V8), 233
supervisor software, 13, 18, 30, 31, 46, 47, 48, 61, 89, 95, 105, 111, 243, 249, 253, 301, 315, 316, 317
supervisor-mode trap handler, 101
sw_trap# field of instructions, 68
SWAP instruction, 69, 127, 131, 182, 183, 234, 327
swapr register with alternate space memory instructions, 235
swapr register with memory instructions, 152, 234
SWAPA instruction, 182, 183, 235
Sync MEMBAR relationship, 187

synthetic instructions, 2
BCLR, 299
BSET, 299
BTOG, 299
BTST, 299
CALL , 297
CAS, 299
CASX, 299
CLR, 299
CMP, 233, 297
DEC, 299
DECcc, 299
INC, 299
INCcc, 299
IPREFETCH, 297
JMP, 297
MOV, 299
NEG, 299
NOT, 299
RESTORE, 297
RET, 297, 306
RETL, 297, 306
SAVE, 297
SET, 297
SIGNX, 299
TST, 297

synthetic instructions in assembler, 2, 297
system call, 316
system software, 116, 122, 123, 132, 168, 255, 303, 304, 308, 309, 316, 317

T
TA instruction, 278
TADDcc instruction, 77, 237
TADDccTV instruction, 77, 117, 237
tag overflow, 77
tag_overflow exception, 77, 98, 104, 117, 237, 239
tagged add instructions, 237
tagged arithmetic, 77
tagged arithmetic instructions, 19
tagged word data format, 23
task switching, seecontext switching
TBR register (SPARC-V8), 245
Tcc instructions, 21, 41, 42, 66, 89, 101, 117, 240, 278
TCS instruction, 278
TE instruction, 278
TEM, seetrap enable mask (TEM) field of FSR register
test-and-set instruction, 131
TG instruction, 278
TGE instruction, 278
TGU instruction, 278
threads, seemultithreaded software
Ticc instruction (SPARC-V8), 241
TICK, seeclock-tick register (TICK)

timing
instruction, 133

tininess (floating-point), 49, 249, 256
TL instruction, 278
TLB, seepage descriptor cache (PDC)
TLE instruction, 278
TLE, seetrap_little_endian (TLE) field of PSTATE register
TLEU instruction, 278
TN instruction, 278
TNE instruction, 278
TNEG instruction, 278
total order, 126
total store order (TSO) memory model, 52, 92, 119, 129, 130, 323
total unit

implementation-dependent, 252
TPOS instruction, 278
Translation Lookaside Buffer (TLB), seepage descriptor cache (PDC)
trap, 14, 21, 21, 89, 302
trap base address (TBA) register, 14, 57, 89, 100, 211, 242
trap categories

deferred, 95, 96, 99
disrupting, 96, 97, 98
precise, 95, 95, 96
reset, 97

trap enable mask (TEM) field of FSR register, 44, 48, 99, 100, 115, 254
trap handler, 157

supervisor-mode, 101
user, 46, 249, 317

trap level, 54
trap level (TL) register, 54, 54, 55, 56, 57, 60, 89, 94, 157, 211, 212, 219, 223, 242, 243
trap model, 97
trap next program counter (TNPC) register, 55, 95, 113, 211, 242
trap on integer condition codes instructions, 240
trap priorities, 104
trap processing, 91, 105
trap program counter (TPC) register, 55, 95, 113, 211, 212, 242
trap stack, 5, 106
trap state (TSTATE) register, 52, 56, 157, 211, 242
trap type (TT) register, 56, 57, 60, 90, 101, 105, 110, 111, 211, 241, 242, 255
trap types, also seeexceptions
trap vector

RED_state, 91
trap_instruction exception, 98, 117, 241
trap_little_endian (TLE) field of PSTATE register, 52, 52
traps

also seeexceptions
causes, 21
deferred, 95, 254
disrupting, 95, 254
hardware, 101
implementation-dependent, 108
nested, 5
normal, 90, 101, 106, 106, 108
precise, 94, 95, 254

reset, 56, 95, 96, 97, 105, 255
software, 101, 241
software-initiated reset (SIR), 108
special, 90, 101
window fill, 101
window spill, 101

TSO, seetotal store ordering (TSO) memory model
TST synthetic instruction, 297
TSUBcc instruction, 77
TSUBccTV instruction, 77, 117
TVC instruction, 278
TVS instruction, 278
typewriter font

in assembly language syntax, 291

U
UDIV instruction, 36
UDIVcc instruction, 36, 154
UDIVX instruction, 199
ufa, seeunderflow accrued (ufa) bit of aexc field of FSR register
ufc, seeunderflow current (ufc) bit of cexc field of FSR register
UFM, seeunderflow mask (UFM) bit of TEM field of FSR register
UMUL instruction, 36, 200
UMULcc instruction, 36, 200
unassigned, 14
unconditional branches, 141, 144, 147, 149
undefined, 14
underflow, 86
underflow accrued (ufa) bit of aexc field of FSR register, 49, 249
underflow current (ufc) bit of cexc field of FSR register, 48, 49, 249
underflow mask (UFM) bit of TEM field of FSR register, 48, 48, 49, 249
unfinished_FPop floating-point trap type, 10, 46, 46, 50, 85, 247, 253
UNIMP instruction (SPARC-V8), 170
unimplemented_FPop floating-point trap type, 10, 46, 46, 50, 85, 191, 212, 247, 253
unimplemented_LDD exception, 98, 117, 179, 181, 257
unimplemented_STD exception, 98, 117, 230, 232, 257
unrestricted, 14
unrestricted address space identifier, 74, 254, 317
unsigned integer data type, 23
upper registers dirty (DU) field of FPRS register, 42
user

mode, 30, 48, 50, 223, 303
program, 253
software, 308
trap handler, 46, 249, 317

user application program, seeapplication program

V
V condition code bit, seeoverflow (V) bit of condition fields of CCR
value

implementation-dependent, 252

value semantics of input/output (I/O) locations, 121
variables

automatic, 302
ver, seeversion (ver) field of FSR register
version (ver) field of FSR register, 45, 254
version register (VER), 57, 211
virtual address, 120, 281, 282
virtual address aliasing, 288
virtual memory, 209

W
walking the call chain, 303
watchdog reset, 56, 91, 93, 94, 97, 109, 110, 111
watchdog timer, 109
watchdog_reset, 91
watchdog_reset (WDR), 108
WIM register (SPARC-V8), 245
window

clean, 217
window fill exception, 58, 60
window fill trap, 101
window fill trap handler, 20
window overflow, 33, 86, 316
window spill trap, 101
window spill trap handler, 20
window state (WSTATE) register, 58, 60, 87, 169, 211, 218, 242, 316, 317
window underflow, 33, 86
window_fill exception, 59, 82, 216, 305
window_overflow exception, 301
window_spill exception, 58, 60
windows

register, 303
windows, seeregister windows
word, 14, 17, 69, 121
word data format, 23
WRASI instruction, 244
WRASR instruction, 18, 61, 244, 256, 299, 321
WRCCR instruction, 41, 42, 244
WRFPRS instruction, 243, 244
WRIER instruction (SPARC-V8), 245
write privileged register instruction, 242
write protection, 282
write state register instructions, 244
write-after-read memory hazard, 124
write-after-write memory hazard, 124
WRPR instruction, 51, 52, 58, 85, 91, 242
WRPSR instruction (SPARC-V8), 245
WRTBR instruction (SPARC-V8), 245
WRWIM instruction (SPARC-V8), 245
WRY instruction, 36, 244, 299
WTYPE subfield field of trap type field, 104

X
xcc field of CCR register, 41, 137, 149, 155, 156, 184, 196, 200, 203, 233, 237
XIR, seeexternally_initiated_reset (XIR)
XNOR instruction, 184, 299
XNORcc instruction, 184
XOR instruction, 184, 299
XORcc instruction, 184

Y
Y register, 35, 36, 154, 200, 202, 245

Z
Z condition code bit, seezero (Z) bit of condition fields of CCR
zero (Z) bit of condition fields of CCR, 41

	The SPARC Architecture Manual
	Contents
	Table 1— Double- and Quadwords in Memory & Registers
	Table 2— Signed Integer, Unsigned Integer, and Tagged Format Ranges
	Table 3— Floating-Point Single-Precision Format Definition
	Table 4— Floating-Point Double-Precision Format Definition
	Table 5— Floating-Point Quad-Precision Format Definition
	Table 6— Window Addressing
	Table 7— Floating-Point Register Number Encoding
	Table 8— Floating-Point Condition Codes (fccn) Fields of FSR
	Table 9— Rounding Direction (RD) Field of FSR
	Table 10— Floating-Point Trap Type (ftt) Field of FSR
	Table 11— Allowed Accesses to ASIs
	Table 12— Address Space Identifiers (ASIs)
	Table 13— Control Transfer Characteristics
	Table 14— Exception and Interrupt Requests, Sorted by TT Value
	Table 15— Exception and Interrupt Requests, Sorted by Priority (0 = Highest; 31 = Lowest)
	Table 16— Trap Received While in execute_state
	Table 17— Trap Received While in RED_state
	Table 18— Reset Received While in error_state
	Table 19— Ordering Relationships Selected by Mask
	Table 20— Sequencing Barrier Selected by Mask
	Table 21— Opcode Superscripts
	Table 22— Instruction Set �
	Table 23— UDIV / UDIVcc Overflow Detection and Value Returned
	Table 24— SDIV / SDIVcc Overflow Detection and Value Returned
	Table 25— MEMBAR mmask Encodings
	Table 26— MEMBAR cmask Encodings
	Table 27— Untrapped Floating-Point Results
	Table 28— Untrapped Floating-Point Underflow
	Table 29— Implementation Dependencies �
	Table 30— op[1:0]
	Table 31— op2[2:0]�(op�=�0)
	Table 32— op3[5:0]�(op�=�2)
	Table 33— op3[5:0]�(op�=�3)
	Table 34— opf[8:0]�(op�=�2,�op3�=�3416�=�FPop1)
	Table 35— Context Used for Data Access
	Table 36— Context Used for Instruction Access
	Table 37— Mapping Synthetic to SPARC-V9 Instructions �
	Table 38— Register Allocation within a Window
	Table 39— Prefetch Cost Tradeoffs
	Table 40— Cache Break-Even Points

