
Safe Concurrent Programming and Execution

Hari K. Pyla

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Computer Science and Applications

Srinidhi Varadarajan, Chair
Calvin Ribbens, Co-Chair

Vikram Adve
Doug Lea

Naren Ramakrishnan
Eli Tilevich

February 26, 2013
Blacksburg, Virginia

Keywords: Concurrent Programming, Concurrency Bugs, Program Analysis, Runtime Systems,
Deadlock Detection and Recovery, Speculative Parallelism, and Coarse-grain Speculation.

Copyright 2012, Hari K. Pyla

Safe Concurrent Programming and Execution

Hari K. Pyla

(ABSTRACT)

The increasing prevalence of multi and many core processors has brought the issues of concurrency

and parallelism to the forefront of everyday computing. Even for applications amenable to tradi-

tional parallelization techniques, the subtleties of concurrent programming are known to introduce

concurrency bugs. Due to the potential of concurrency bugs, programmers find it hard to write

correct concurrent code. To take full advantage of parallel shared memory platforms, applica-

tion programmers need safe and efficient mechanisms that can support a wide range of parallel

applications.

In addition, a large body of applications are inherently hard-to-parallelize; their data and control

dependencies impose execution order constraints that preclude the use of traditional parallelization

techniques. Sensitive to their input data, a substantial number of applications fail to scale well,

leaving cores idle. To improve the performance of such applications, application programmers need

effective mechanisms that can fully leverage multi and many core architectures.

These challenges stand in the way of realizing the true potential of emerging many core platforms.

The techniques described in this dissertation address these challenges. Specifically, this dissertation

contributes techniques to transparently detect and eliminate several concurrency bugs, including

deadlocks, asymmetric write-write data races, priority inversion, live-locks, order violations, and

bugs that stem from the presence of asynchronous signaling and locks. A second major contribution

of this dissertation is a programming framework that exploits coarse-grain speculative parallelism

to improve the performance of otherwise hard-to-parallelize applications.

Acknowledgments

My graduate school experience has been an exciting journey and it has provided me with a won-

derful opportunity to learn. This experience has made me realize that life could be viewed as a

non-deterministic finite state machine and that every state transition presents an opportunity for

improvement. During this journey, I’ve had the pleasure and privilege of meeting with several

individuals who have in ways, both big and small, have enriched my graduate school experience

and they have positively contributed to the success of my Ph.D.

I would like thank my family for their love, support, and encouragement. I probably would not be

writing this dissertation if it weren’t for my parents who have provided me with the foundations

for a good education. My family has instilled in me that success can be achieved with honesty,

hard work, and perseverance. This dissertation is a testament of their trust and many sacrifices.

I am extremely fortunate to have a wonderful brother. I would like to thank my brother for

everything. He has led me by example — he graduated with a B.S, M.S, M.S, Ph.D., and Post-doc.

His constant encouragement and guidance at all stages of my graduate education has helped me

successfully complete my Ph.D.

I would like to express my deep gratitude to my advisor Srinidhi Varadarajan, co-advisor Calvin

Ribbens, and the members of my Ph.D. committee — Eli Tilevich, Naren Ramakrishnan, Doug

Lea, and Vikram Adve.

I would like to thank my advisor, Srinidhi Varadarajan for everything. This dissertation would not

have been successfully completed without his support, guidance, and encouragement. I would also

like to thank him for his trust and respect. He provided me with a wonderful learning environment

iii

and the freedom to explore areas that were of interest to me. I believe very few advisors provide such

a degree of freedom to their graduate students. Srindhi’s technical insights, analytical abilities, and

uncanny eye for details is inspiring and amazing. His ability to context switch and yet restore focus

to the core of the problem is hard to fathom and sometimes intimidating. I feel fortunate to have

such a wonderful advisor who has taught me many things and enriched my graduate experience. I

would like to thank him for his patience and all the wonderful and intellectual discussions he has

had with me over the years.

I would also like to thank my co-advisor, Calvin Ribbens for his support and guidance during my

graduate studies. I wouldn’t have successfully completed this dissertation without his guidance.

I deeply appreciate his feedback during our brainstorming sessions and technical discussions. I

admire his patience and I am particularly grateful for his prompt feedback that helped me improve

my ability to write technical documents. I feel fortunate to have such an amazing co-advisor and

it has been my pleasure working with him during my graduate studies.

I would like to thank Eli Tilevich for his support and encouragement. Eli has been instrumental in

my success in grad school. His unique sense of humor has restored a sense of sanity to my graduate

studies and made the time spent in grad school fun. I am thankful to Eli for teaching me how

to survive in graduate school. He taught me how to communicate ideas efficiently and effectively.

I would like to thank him for his insightful comments and invaluable feedback that helped me

improve my ability to write technical documents. I am extremely fortunate to have an amazing

mentor like him and I would like to thank Eli for enriching my Ph.D. experience.

I would like to thank Naren Ramakrishnan for his support and encouragement. Despite his busy

schedule he always managed to provide quick and prompt responses to my emails. His ability to

manage time and his work ethic are particularly inspiring. I am thankful to him for his feedback

on my dissertation document.

I feel extremely fortunate to have had the opportunity to interact with Doug Lea and Vikram

Adve. It has been a wonderful learning experience. I am deeply honored and fortunate to have

Doug Lea as my external program committee member. I’ve had the pleasure of meeting with him

iv

at the OOPSLA/SPLASH conference in 2011. I deeply appreciate his insightful comments during

the prelim and the final exam. I am particularly thankful to him that he took time from his busy

schedule to not only read my dissertation draft but also provide me with invaluable feedback.

I am also deeply honored and fortunate to have Vikram Adve as my external program committee

member. I would like to thank him for taking time from his busy schedule to provide me with

invaluable feedback during my prelim and final defense.

During my graduate years I’ve had the pleasure of meeting with several wonderful people. I would

like to thank my friend Rajesh Sudarsan for his encouragement and patience during our technical

discussions and providing me with positive feedback.

I would like to thank Vedavyas Duggirala (Vyas) for providing me with his insightful feedback

during our white board brainstorming sessions and technical discussions. I appreciate his feedback

on my research papers. I would also like to thank Vyas and Shankha Banerjee for helping me get

me up to speed with LLVM. I would also like to thank Scott Schneider for his feedback during our

technical discussions and his comments on my research papers.

I would like to thank Rajesh Sudarsan, Vedavyas Duggirala, Scott Schneider, Bharat Ramesh,

Shankha Banerjee, and Balaji Subramaniam for their company and all the wonderful discussions

we’ve had during our tea breaks in the lab.

I would like to thank my friends Rajaram Bhagavathula and Gayatri Ankem for their support and

encouragement. They made my graduate school experience a memorable one. I feel fortunate to

have such wonderful friends and colleagues who had a positive impact during my Ph.D. studies.

I would like to thank Aleksandr Khasymski (Alex) for providing me with access to the multicore

machines during the initial stages of my dissertation. I would like to thank Ryan Chase and Rob

Hunter for helping me with several of the IT issues. I deeply appreciate their help.

v

Contents

1 Introduction 1

1.1 Safe Concurrent Execution . 2

1.1.1 Pure Runtime Approach . 4

1.1.2 Research Contributions . 7

1.1.3 Program Analysis and Runtime Approach . 8

1.1.4 Research Contributions . 9

1.2 Safe Concurrent Programming . 10

1.2.1 Coarse-Grain Speculative Parallelism . 11

1.2.2 Research Contributions . 13

1.3 Dissertation Organization . 13

2 A Pure Runtime Approach 14

2.1 Design and Architecture . 15

2.1.1 Privatization and Containment . 15

2.1.2 Semantics for Propagating Updates . 17

2.1.3 Deadlock Detection . 18

2.1.4 Deadlock Recovery . 21

2.2 Implementation . 23

2.2.1 Shared Address Space . 23

2.2.2 Detecting Memory Updates Within Critical Sections 26

2.2.3 Isolating Memory Updates . 27

2.2.4 Preserving Synchronization Semantics . 28

vi

2.2.5 Committing Memory Updates . 30

2.2.6 Condition Variables and Semaphores . 31

2.2.7 Detecting Write-Write Races . 32

2.3 Experimental Evaluation . 33

2.3.1 Experimental Setup . 34

2.3.2 Performance Analysis . 34

2.3.3 Deadlock Detection and Recovery . 47

2.3.4 Summary of Results . 47

2.4 Limitations of Pure Runtime Approach . 48

2.4.1 Thread-Local Storage (TLS) . 48

2.4.2 Deadlock Recovery . 48

2.4.3 Ad-hoc Synchronization . 49

2.4.4 Address Space Protection Overhead . 49

2.5 Related Work . 49

2.5.1 Deadlock Detection and Recovery . 49

2.5.2 Transactional Memory (TM) . 53

2.6 Summary . 53

3 A Program Analysis and Runtime Approach 55

3.1 Runtime System . 56

3.1.1 Isolating Memory Updates . 56

3.1.2 Propagating Memory Updates . 61

3.1.3 Committing Memory Updates . 65

3.1.4 Deadlock Detection . 66

3.1.5 Deadlock Recovery . 67

3.1.6 Detecting Programming Errors . 68

3.2 Compile Time Extensions . 72

3.2.1 Lock Scope Idiom . 72

3.2.2 Lock Scope Analysis . 73

3.2.3 Implementation . 74

vii

3.3 Experimental Evaluation . 78

3.3.1 Experimental Setup . 78

3.3.2 Performance and Scalability . 80

3.3.3 Deadlock Detection and Recovery . 83

3.3.4 Memory Overhead . 83

3.3.5 Efficiency of Lock Scope Analysis . 84

3.4 Limitations . 85

3.4.1 Recompilation . 85

3.4.2 Unsupported Applications . 85

3.4.3 Programmer Input . 86

3.4.4 Deadlock Recovery . 86

3.5 Related Work . 86

3.5.1 Deadlock Detection and Recovery . 86

3.6 Explicit Locking vs Transactions . 88

3.7 Future Work . 89

3.8 Summary . 89

4 Coarse-Grain Speculative Parallelism 91

4.1 Motivating Problems . 92

4.1.1 Graph Coloring Problem . 92

4.1.2 Partial Differential Equations (PDEs) . 93

4.1.3 Combinatorial Problems . 94

4.2 Speculation Programming Model . 94

4.2.1 Program Correctness . 97

4.2.2 Syntax and Semantics . 100

4.2.3 Overhead . 103

4.3 Implementation . 104

4.3.1 Shared Address Space . 104

4.3.2 Speculative Composition . 106

4.3.3 Nested Speculative Compositions . 107

viii

4.3.4 Containment . 108

4.3.5 Inclusion . 108

4.3.6 Example . 110

4.3.7 Support for OpenMP . 113

4.4 Experimental Evaluation . 113

4.4.1 PDE Solver . 114

4.4.2 Graph Coloring Problem . 117

4.4.3 Sorting Algorithms . 119

4.4.4 Memory Overhead . 120

4.4.5 Energy Overhead . 120

4.4.6 Summary of Results . 123

4.5 Related Work . 123

4.6 Future Work . 127

4.7 Summary . 127

5 Conclusion 128

ix

List of Figures

2.1 Visibility rules for memory updates within a lock context. 17

2.2 In this example, if the acquisition of L3 results in a deadlock and the victim was L2,
Sammati’s deadlock recovery rolls back to the earliest acquisition of L2. 22

2.3 (left) Illustrates the virtual memory address (VMA) layout of each process (cord).
Sammati provides memory isolation by transforming threads to processes and uses
shared memory objects and memory mapped files to share global variables and the
process heap among cords. (right) Illustrates how the VMA is manipulated by
Sammati with a simple example explained in text. 25

2.4 Subtle issues with privatization. 28

2.5 Performance of applications from Set-1 (extremely high lock acquisition rate, typi-
cally 50K/sec - 700K/sec) with Sammati on a 16 core system. 36

2.6 Performance of applications from Set-2 (moderate lock acquisition rate, typically 10
- 50K/sec) with Sammati on a 16 core system. 38

2.7 Performance of applications from Set-3 (low lock acquisition rate, typically 0.5 -
10/sec) with Sammati on a 16 core system. 42

2.8 Performance of applications from Set-4 (extremely low lock acquisition rate, typically
0 - 0.5/sec) with Sammati on a 16 core system. 45

2.9 (a) Illustrates a simple deadlock between two threads due to cyclic lock acquisition.
(b) Depicts a more complex example of deadlock involving more than two threads. . 46

3.1 Challenges in isolating memory updates. 56

3.2 Isolating Store . 58

3.3 Isolating Load. 61

3.4 Side-effects of privatization and propagation semantics could result in a deadlock. . . 62

3.5 Simple transformations makes the example described in Figures 3.4 (a) and (b)
circumvent the subtleties of Serenity’s propagation semantics and also makes the
code safe. 63

x

3.6 Committing memory updates . 64

3.7 Challenges in deriving scope of critical sections. 74

3.8 Operand Equivalence Algorithm. 75

3.9 Performance of SPLASH benchmarks, Phoenix PCA, Pbzip2, and Tgrep. 79

3.10 Performance of PARSEC benchmarks. 82

4.1 A typical use case scenario for composing coarse-grain speculations. Anumita sup-
ports both sequential and multi-threaded applications. 95

4.2 Pseudo code for composing speculations using the programming constructs exposed
by Anumita. In the absence of an evaluation function, the fastest surrogate (by time
to solution) wins. 98

4.3 Pseudo code for evaluating speculations in Anumita. 99

4.4 Composing speculations in OpenMP using the OpenMP extensions built on top of the
programming constructs exposed by Anumita. Anumita’s source-source translator
expands the speculate pragma to begin-commit constructs. 102

4.5 (left) Illustrates the virtual memory address (VMA) layout of each process. The
runtime provides memory isolation by using shared memory objects and memory
mapped files to share global state among processes. (right) Illustrates how the VMA
is manipulated by the runtime with a simple example. 109

4.6 Time to solution for individual PDE solvers and speculation based version using
Anumita. Cases that fail to converge in 1000 iterations are not shown. The results
show that Anumita has relatively small overhead, allowing the speculation based
program to consistently achieve performance comparable to the fastest individual
method for each problem. 115

4.7 The performance of Graphcol benchmark using two DIMACS data sets LE 450 15c
(subfigures (a) through (c)) and LE 450 15d (subfigure (d)). 117

4.8 Performance of Anumita over a suite of sorting algorithms. 119

4.9 Energy consumption of PDE solver using surrogates in Anumita. The results show
that Anumita has relatively low energy overhead. 121

4.10 Energy consumption of the graph coloring benchmark for the LE 450 15c data set
with a seed of 12. 122

xi

List of Tables

2.1 SPLASH Benchmarks. 32

2.2 Phoenix Benchmarks. 33

2.3 Classification of SPLASH and PHOENIX benchmark suites based on lock acquisition
rate. 34

2.4 Characteristics of applications in Set-1. 36

2.5 Profile of applications in Set-1 with Sammati (Variant-1). 37

2.6 Profile of applications in Set-1 with Sammati (Variant-2). 37

2.7 Characteristics of applications in Set-2. 39

2.8 Profile of applications in Set-2 with Sammati (Variant-1). 40

2.9 Profile of applications in Set-2 with Sammati (Variant-2). 40

2.10 Profile of POSIX condition variables (signals/waits) in Radix. 40

2.11 Characteristics of applications in Set-3. 42

2.12 Profile of applications in Set-3 with Sammati (Variant-1). 43

2.13 Profile of applications in Set-3 with Sammati (Variant-2). 43

3.1 Characteristics of SPLASH applications. 80

3.2 Characteristics of PARSEC, Phoenix, and desktop applications. 81

3.3 Effectiveness of lock scope analysis across all the applications used in this study. . . 84

4.1 Programming constructs exposed by Anumita for leveraging speculation. For brevity,
C++ and Fortran interfaces are omitted. 101

4.2 Number of failing cases (out of 125) for each PDE solver, and speedup of speculative
approach relative to each method. 116

xii

Chapter 1

Introduction

Over the last decade, processor design has undergone a paradigm shift. Rather than increasing

the clock frequency, processors feature an increasing number of simpler cores with reduced clock

frequency and shorter pipelines. No longer able to rely on increasing clock frequencies to boost

performance, application programmers have focused their attention on concurrent programming, es-

pecially multi-threading. The increasing prevalence of multi and many core processors has brought

the issues related to concurrency and parallelism to the forefront of everyday computing.

On one hand, we have applications that are amenable to traditional parallelization techniques

but are susceptible to the subtleties of concurrent programming — concurrency bugs. In practice,

programmers find it hard to write correct concurrent code due to the potential of concurrency bugs.

The non-determinism of thread execution only exacerbates the complexity of detecting and isolating

concurrency bugs. The challenge here is to provide safe and efficient mechanisms to enable a large

number of programmers, representing a wide array of applications, to use these parallel shared

memory platforms effectively.

On the other hand, we have a large body of applications that are inherently hard-to-parallelize due

to execution order constraints imposed by data and control dependencies. Moreover, a significant

number of applications are sensitive to their input data and do not scale well, leaving several cores

idle. The challenge here is to enable such applications to leverage multi and many core architectures

efficiently in order to improve their performance.

1

2

Unless we address these challenges, the true potential of these emerging many-core platforms will

probably go unrealized. This dissertation presents techniques that address these challenges. We

first explore these issues in detail and then outline our solutions and key contributions.

1.1 Safe Concurrent Execution

Large software systems are developed by hundreds or even thousands of programmers, often span-

ning multiple teams, making it hard to maintain the strict coding discipline required to avoid

concurrency bugs. The software industry has been spending billions of dollars each year to en-

sure software quality and perform testing. Unfortunately, despite these efforts, it is not feasible to

exercise all possible code paths and thread interleavings to declare a code bug free [45, 39].

Detecting a concurrency bug does not imply that it can be easily fixed. Concurrency bugs often

require careful reasoning to identify the root cause of the problem and not merely where the effect

of the bug was manifested in the program code. Additionally, such bugs are hard to reproduce, and

the bug fix may require a major redesign. For example, when addressing a deadlock in Mozilla, the

programmer introduced another deadlock which took several months to a year to fix [103]. In a

different Mozilla bug, the programmers intentionally introduced a data-race to address the actual

deadlock [103]. Recent studies have shown that the patches developed to fix a bug are themselves

error-prone (70% of the time in their first release) and they introduce new bugs [39]. On average,

a concurrency bug fix takes about three fixes (patches) before it is actually fixed [54, 39].

In practice, recurrent concurrency bugs are data races and deadlocks. While data races can be

ameliorated with appropriate synchronization (a challenging problem in itself!), avoiding deadlocks

requires convoluted avoidance techniques, which may fail if the order of lock acquisitions is not

known a priori [75]. Fine-grain locking significantly exacerbates deadlock avoidance issues, to the

point that it is generally eschewed in favor of simpler less competent locking models that are

deadlock free. Furthermore, due to the potential for deadlocks, programmers cannot arbitrarily

compose locks without knowing the internal locking structure, thus limiting the composition of

3

lock based code.

The non-composability of lock based code has lead to significant research interest in the transac-

tional memory (TM) programming model (e.g., [36, 91]). However, the vast majority of existing

large-scale code bases use the relatively well-understood (warts and all!) lock based model [59]. The

dominant shared memory programming model continues to be the thread model, and the most com-

mon system supporting thread-based parallel programming is POSIX threads (Pthreads). Whether

Pthreads is ultimately replaced by other models, a large body of concurrent codes remain based on

Pthreads, and it is likely that any future higher-level abstractions will rely on lower-level runtime

systems, whose semantics is similar to that of Pthreads. So writing, porting, extending, compos-

ing, and debugging Pthreads codes is a critical piece of the puzzle when it comes to exploiting

concurrency on modern many-core machines.

Our observation here is that by starting with a lock based model and by transparently eliminating

data races and deadlocks, thereby ensuring composability of arbitrary lock based codes, one can

provide safe concurrent execution. An added advantage to this line of thought is that programmers

are already familiar with lock based programming and fixing issues in lock based programming can

benefit the large base of lock based applications in use today.

To that end, this dissertation presents several techniques to detect and eliminate concurrency bugs

including deadlocks, asymmetric write-write data races, priority inversion, live-locks, order viola-

tions, and bugs that stem from the presence of asynchronous signaling and locks. We first present

a pure runtime system (Sammati [75, 73]) that is capable of transparently and deterministically

detecting and eliminating deadlocks in POSIX multi-threaded applications written in type-unsafe

languages, including C and C++. Leveraging the lessons learned, we then extend this work to a

comprehensive program analysis and runtime based approach (Serenity [76]) that eliminates dead-

locks and related concurrency bugs.

4

1.1.1 Pure Runtime Approach

Sammati [75] (agreement in Sanskrit) guarantees the acquisition of a mutual exclusion lock to be

a deadlock free operation. It transparently and deterministically eliminates deadlocks, without

requiring any modifications to the source code, compiler, or the operating system. Sammati is

implemented as a pre-loadable library that overloads the standard POSIX threads (Pthreads) in-

terface. It operates on native binaries compiled to the standard Executable and Linkable Format

(ELF). Sammati works by associating memory accesses with locks and privatizing memory updates

within a critical section. Memory updates within a critical section are made visible outside the crit-

ical section on the release of the parent lock(s), viz. the containment property. On the acquisition

of every lock, Sammati runs a single cycle deadlock detection algorithm. If a deadlock is detected,

the Sammati deadlock elimination algorithm breaks the cycle by selecting a victim, rolling the

program state back to the acquisition of the offending lock, and discarding any memory updates. A

special containment mechanism ensures that memory updates from a critical section are not visible

outside the critical section until a successful release, thus enabling Sammati to simply restart the

critical section to recover from the deadlock.

Note that this containment property is in principle similar to transactional memory systems but

with the following critical difference. Sammati preserves the mutual exclusion semantics (and more

importantly limitations) of existing lock based codes and does not provide any mechanisms to

optimistically execute critical sections concurrently as in transactional memory systems.

While conceptually simple, this approach requires an efficient and transparent mechanisms to (a)

identify updates within a critical section, (b) isolate (contain) the memory updates, (c) preserve

existing lock semantics, while still permitting containment based deadlock detection and recovery

in the presence of nested locks, (d) perform inclusion of memory updates from the contained critical

section into the shared program address space, and (e) perform deadlock detection and recovery

that deterministically eliminates deadlocks without either deadlocking itself or requiring an outside

(external) agent. In this research, we propose and implement techniques that address the above

design objectives.

5

Unlike managed languages such as Java, in the case of weakly typed languages such as C or

C++, which allow arbitrary memory accesses, program analysis cannot always determine the exact

write set. Hence based on our key observation that privatization can be implemented efficiently

and transparently in a runtime environment if each thread has its own virtual address space, we

implement containment for threaded codes by creating multiple processes that share their global

data regions through a common shared memory mapping. In essence, this creates a set of processes

(we refer to them as cords) that are semantically equivalent to threads — they share their global

data (globals, heap) and have distinct stacks.

Sammati tracks writes to shared data (global data and heap) through access faults. To achieve

containment for a page, the Sammati runtime system breaks its binding to the shared memory region

and creates a private page mapping at the same virtual address. Any updates to the private page

are thus localized to the thread executing the critical section, thereby implementing containment.

Intuitively, Sammati implements a lazy privatization scheme that defers privatization to the instant

when the first memory update occurs. This is a sufficient [75] condition for standard lock semantics

of mutual exclusion locks. On a related note, Sammati includes a novel technique that leverages

the large virtual memory address (VMA) provided by 64-bit operating systems in order to counter

the side effects of privatization on mutual exclusion and other synchronization primitives.

To ensure containment of memory updates in the presence of nested locks, Sammati makes memory

updates visible on the release of all locks. This is a necessary and sufficient condition for Sammati’s

deadlock elimination and recovery. Furthermore, in order to preserve the semantics of mutual

exclusion, Sammati tracks the release of nested locks in program order and defer performing the

actual release till all locks around a critical section have been released in program order.

When a cord exits a lock context, updates contained in its privatized data must be made visible

and reconciled with other cords. In order to perform this inclusion, we propose a technique that

(a) identifies the exact write set of the lock context and (b) concurrently propagates the updates to

memory pages as a commutative operation. The updates are relatively straightforward for a single

lock around a critical section — updates are visible at the release of the lock. However, inclusion in

6

the presence of nested locks is subtle and we propose a set of visibility rules [75] to accommodate

nested locks.

Since threads have been transparently converted to cords in Sammati, the key observation here is

that each cord (a single threaded process) may only wait on at most one lock. This significantly

simplifies deadlock detection, since from the perspective of each cord, all deadlocks are single

cycle deadlocks. Furthermore, since all cords share a global address space, the deadlock detection

algorithm has access to the holding and waiting sets of each cord. Deadlock detection can hence

be performed at lock acquisition with the guarantee that the deadlock detection algorithm itself

cannot be deadlocked. The proposed algorithm detects a deadlock and identifies a victim lock for

deadlock recovery.

The deadlock recovery algorithm then finds the oldest acquisition of the victim lock in program

order and uses its associated recovery point for recovery. To recover from the deadlock Sammati (a)

discards all memory updates performed by locks acquired later in program order after the victim

lock, (b) releases all locks acquired after and including the victim lock (in program order), and

(c) restores the stack and processor registers from the recovery point for the victim lock, before

transferring control back to deadlock free lock acquisition. Note that the reasoning behind using

the recovery point from the oldest (in program order) acquisition of the victim lock is subtle and

is explained in Chapter 2.

To study the impact of Sammati on threaded applications, we evaluated its performance using

SPLASH [94], Phoenix [80] and synthetic benchmark suites on a 16 core shared memory machine

(NUMA) running Linux with 64GB of RAM. We measured the number of locks acquired and lock-

acquisition-rate (total locks acquired/total runtime) for all applications used in this study. We also

evaluated Sammati by running synthetic programs that were deadlock prone. We find that the

native pthreads programs deadlock while Sammati successfully detects and avoids the deadlocks,

transparently recovers from them and executes the program to completion.

On the whole, Sammati is promising and performs reasonably well for several applications under

study, however we find that the address space protection and privatization costs primarily contribute

7

to the runtime overhead. Additionally, although a pure runtime approach does not require source

code and operates with native binaries, there are some limitations. We present a detailed discussion

of the design, implementation, and performance evaluation of Sammati in Chapter 2.

1.1.2 Research Contributions

The primary contribution of this work is a pure runtime approach that transparently and

deterministically eliminates deadlocks — enabling a next generation of safe composable

lock based codes. The proposed approach in detecting deadlocks does not encounter any false

positives or false negatives and does not require any modifications to the application source code,

compiler, or the operating system. The following are specific contributions:

(i) An execution model that provides the ability to selectively share and isolate state between

execution contexts — a platform for containment based deadlock recovery.

(ii) Techniques that transparently and efficiently detect, isolate, and privatize memory updates.

(iii) Semantics for propagating memory updates while preserving program correctness and con-

tainment based deadlock recovery.

(iv) Techniques to address potential side-effects of privatization.

(v) An efficient algorithm to detect deadlocks without the presence of an external agent. The

worst case time complexity is O
(
n
)
, where n is the number of threads currently waiting for a

lock.

(vi) Techniques to provide granular deadlock recovery — roll back the program state only to the

offending lock as opposed to rolling back the program state all the way to the start of the

outermost critical section.

8

1.1.3 Program Analysis and Runtime Approach

In our attempt to answer “can we design a system that is competent and practical?” we iteratively

improvised over several of our techniques to bring the runtime overhead from over 300% to (a) a

level that is suitable for practical use with real applications, (b) be able to sustain applications

that acquire over billions of locks with hundreds of millions of locks/sec, and (c) scale well with the

number of threads. We realize this vision as Serenity [76].

Our observation here is that program analysis and instrumentation can guide a runtime to effi-

ciently achieve isolation. Serenity deploys program analysis techniques and employs opportunistic

optimizations that associate a lock acquisition with its corresponding release, thereby deriving the

scope (the code executed between the acquisition of a lock and its corresponding release) of the crit-

ical section in a program. This enables Serenity’s compile time infrastructure to perform efficient

load/store instrumentation of critical sections, which is significantly cheaper than instrumenting

the entire program. We refer to this analysis as lock scope analysis. Our lock scope analysis is

motivated by our observation on how programmers typically structure lock based code. We refer

to this observation as the lock scope idiom.

Serenity performs program analysis using the Low Level Virtual Machine (LLVM) [51] compiler

framework. Serenity transforms program source to LLVM intermediate representation (IR) and

employs lock scope analysis to perform load/store instrumentation. Serenity replaces the load and

store instructions within a critical section in the LLVM’s IR with hooks (inlined) to Serenity’s

runtime system. The hooks pass information to the runtime system about the kind of instruction

(load or a store), the target address (precisely known only at runtime), its length and type informa-

tion, thus allowing Serenity’s runtime to provide efficient isolation. Serenity’s shadowing technique

performs privatization efficiently at runtime while preserving program order, guaranteeing sequen-

tial consistency among loads and stores, and providing nested shadowing (shadow of shadows) at

no additional runtime cost — a key capability required for granular deadlock recovery. Serenity

leverages containment and propagation techniques from Sammati and improves upon Sammati’s

deadlock detection and recovery algorithms. Chapter 3 explores these techniques in detail.

9

We set out to determine how Serenity performs on real applications. To that end, we used a 64

core NUMA machine running Linux with 256GB of RAM. We applied Serenity to 24 real world

lock based applications from the SPLASH [94], Phoenix [80], and PARSEC [12] benchmarks suites

and several commonly used desktop and server applications including Pbzip2 [68], Tgrep [61],

Squid [95] (a webcache and proxy server), and Sendmail [66]. To evaluate the effectiveness of

Serenity we applied it to real applications containing deadlocks including SQLite-3.3.3 [24] and to

a set of synthetic benchmarks with artificially seeded deadlocks. Serenity was able to eliminate all

the deadlocks, while the rest of the execution continued unperturbed. Our results indicate that

Serenity can be used on production systems and it comfortably supports applications that acquire

billions of locks with lock rates of over hundreds of millions of lock/sec. Serenity is efficient and its

performance is comparable to native thread execution for most applications with modest memory

overhead. In Chapter 3 we present a detailed discussion of the experimental evaluation and related

work to place Serenity in the context of existing literature.

1.1.4 Research Contributions

The primary contribution of this work is a practical approach that can be used on pro-

duction systems to eliminate deadlocks, and concurrency bugs affecting lock based

codes. Similar to our pure runtime approach, this work in detecting deadlocks does not encounter

any false-positives or false-negatives and it does not require any modifications to the application

source-code, compiler, or the operating system. The proposed approach scales very well and sup-

ports applications that acquire billions of locks with lock rates of over hundreds of millions of

lock/sec. To the best of our knowledge, there is no other system in the literature that is capable

of delivering this level of performance. The following are specific contributions:

(i) Reachability and flow analysis techniques, and opportunistic optimizations to derive the scope

of critical sections.

(ii) Efficient runtime shadowing technique to provide isolation of memory updates.

10

(iii) Techniques to transparently support rollback aware memory management, and I/O within

critical sections that may be affected by deadlock recovery, priority inversion, and live-locks.

(iv) Techniques to transparently and efficiently detect and eliminate the priority inversion problem.

(v) Techniques to transparently detect other common concurrency bugs and programming er-

rors affecting lock based code such as asymmetric write-write data races, order violations,

asynchronous signaling, and locks and their performance issues.

In addition to the research contributions, we demonstrate via a comprehensive experimental eval-

uation (Chapter 3) that our proposed approach accomplishes its intended design objectives.

1.2 Safe Concurrent Programming

As the number of cores in modern processor architectures keeps increasing, programmers must use

explicit parallelism to improve performance. Alas, a large body of applications are intrinsically un-

suitable for mainstream parallelization techniques, due to the execution order constraints imposed

by their data and control dependencies. Therefore, realizing the potential of many-core hinges on

our ability to parallelize these so called ‘un-parallelizable’ codes.

Multiple application domains posses this dilemma — how to choose the right algorithm when algo-

rithm performance is dependent on input data. Graph coloring is a good example of this problem.

This problem underlies the foundation of diverse domains including job scheduling, bandwidth allo-

cation, pattern matching, and compiler optimization (register allocation). Several state-of-the-art

approaches that solve the graph coloring problem employ probabilistic and meta-heuristic tech-

niques. The performance of these techniques vary widely with the input parameters including

nature of the graph, number of colors, etc. In addition to this sensitivity to the input, algorithms

for the graph coloring problem are hard to parallelize due to inherent data dependencies.

Another example is the numerical solution of partial differential equations (PDEs). PDE solvers

are a dominant component of large scale simulations arising in computational science and engi-

11

neering applications such as fluid dynamics, weather and climate modeling, structural analysis,

and computational geosciences. The large, sparse linear systems of algebraic equations that cor-

respond to discretized PDE problems are usually solved using preconditioned iterative methods.

Unfortunately, the performance of such solvers can vary widely from problem to problem, even for

a sequence of problems that may be related in some way, e.g., problems corresponding to discrete

time steps in a time-dependent simulation. The problem is that the best iterative method is not

known a priori.

Similar examples can be found in widely used combinatorial problems including sorting, searching,

permutations and partitions where theoretical algorithmic bounds are well known, but in practice

the runtime of an algorithm depends on a variety of factors including the amount of input data

(algorithmic bounds assume asymptotic behavior), the sortedness of the input data, and cache

locality of the implementation [5].

Our observation here is that speculative execution at coarse granularities (e.g., code-blocks, meth-

ods, algorithms) offers a promising alternative for exploiting parallelism in many hard-to-parallelize

applications on multicore architectures. This dissertation abstracts the subtleties of concurrency

and provides expressive semantics to exploit coarse-grain speculative parallelism in such hard-to-

parallelize applications via a safe concurrent programming environment.

1.2.1 Coarse-Grain Speculative Parallelism

This dissertation presents Anumita (guess in Sanskrit) [74, 72, 73], a simple speculative program-

ming framework where multiple coarse-grain speculative code blocks execute concurrently, with the

results from a single speculation ultimately modifying the program state. Anumita consists of a

shared library, which implements the framework API for common type-unsafe languages including

C, C++ and Fortran, and a user-level runtime system that transparently (a) creates, instantiates,

and destroys speculative control flows, (b) performs transparent name-space isolation, (c) tracks

data accesses for each speculation, (d) commits the memory updates of successful speculations, and

(e) recovers from memory side-effects of any mis-predictions. In the context of high-performance

12

computing applications, where the OpenMP threading model is prevalent, Anumita also provides a

new OpenMP pragma to naturally extend speculation into an OpenMP context. To the best of our

knowledge, Anumita is the first system to provide support for exploiting coarse-grain speculative

parallelism in OpenMP based applications.

Anumita works by associating the memory accesses made by each speculation flow (e.g., an instance

of a code block or a function) in a speculation composition (loosely, a collection of possible code

blocks that execute concurrently). Anumita localizes these memory updates and provides isolation

among speculation flows through privatization of address space. Ultimately, a single speculation

flow within a composition is allowed to modify the program state. Anumita presents well-defined

semantics that ensure program correctness for propagating the memory updates. Anumita is de-

signed to support a wide range of applications (both sequential and parallel) by providing expressive

evaluation criteria for speculative execution that go beyond time to solution to include arbitrary

quality of solution criteria. Anumita is implemented as a language independent runtime system and

its use requires minimal (around 8-10 lines) modifications to existing application source code. These

modifications are short and often require little to no understanding of the applications themselves.

We evaluated Anumati using several micro benchmarks and three real applications: a multi-

algorithmic PDE solving framework [83], a graph (vertex) coloring problem [57] and a suite of

sorting algorithms [98]. Our experimental results [74] indicate that Anumita is capable of signifi-

cantly improving the performance of hard-to-parallelize and input sensitive applications by lever-

aging speculative parallelism. For instance, in the PDE solver the speedup ranged from 0.84 to

36.19, for the graph coloring problem it ranged from 0.95 to 7.33, and for the sort benchmark it

ranged from 0.84 to 62.95. Using Anumita it is possible to obtain the best solution among mul-

tiple heuristics. We found that in some cases where heuristics failed to arrive at a solution, the

use of speculation guaranteed not only a solution but also one that is nearly as fast as the fastest

alternative. Our experimental results demonstrate that Anumita (a) improves the performance of

these applications, (b) achieves significant speedup over statically chosen alternatives with modest

overhead, and (c) is robust in the presence of performance variations or failure. Anumita’s exper-

13

imental results indicate that it is possible to exploit coarse-grain speculative parallelism without

sacrificing performance, portability, and usability.

1.2.2 Research Contributions

The primary contribution of this work is a simple programming framework to exploit coarse-

grain speculative parallelism in otherwise hard-to-parallelize applications. To the best of

our knowledge, this is the first work to introduce the notion of coarse-grain speculation in OpenMP.

The following are specific contributions:

(i) A powerful programming model with expressive semantics to exploit coarse-grain speculative

parallelism.

(ii) An execution model that provides the ability to selectively share and isolate state between

execution contexts — a platform for composing speculations, and providing transparent name-

space isolation.

(iii) Techniques to transparently and efficiently detect, isolate, and privatize memory updates.

(iv) Expressive evaluation criteria (temporal and qualitative) to evaluate speculations.

1.3 Dissertation Organization

The rest of the dissertation is organized as follows. Chapter 2 presents a pure runtime technique

to eliminate deadlocks. Chapter 3 presents a program analysis and runtime technique to eliminate

deadlocks and other concurrency bugs affecting lock based codes. Chapter 4 presents a framework to

exploit coarse-grain speculative parallelism in hard-to-parallelize applications. Chapter 5 presents

the conclusion of this dissertation. We survey and discuss the related literature for each of these

contributions in the individual chapters.

Chapter 2

A Pure Runtime Approach

We present a language independent runtime system (Sammati[75], agreement in Sanskrit) that

provides automatic deadlock detection and recovery for threaded applications that use the POSIX

threads (Pthreads) interface — the de facto standard for UNIX systems. Sammati supports ap-

plications written using type-unsafe languages such as C, C++, and Fortran and compiled to the

standard Executable and Linkable Format (ELF). Sammati is implemented as a pre-loadable li-

brary and it does not require either the application source code or recompiling/relinking phases,

enabling its use for existing applications with arbitrary multi-threading models.

Sammati operates by associating memory updates with one or more locks guarding the updates and

containing (privatizing) the updates until all locks protecting the updates have been released viz.

the containment property. Intuitively, all memory updates within a critical section protected by

one or more locks are performed atomically at the release of all surrounding locks. In such a system,

deadlock detection can be performed at the acquisition of each lock and recovery merely involves

selecting a victim lock and discarding all privatized memory updates performed subsequent to the

acquisition of the victim. While the idea is conceptually simple, it requires efficient and transparent

mechanisms to (a) identify updates within critical section, (b) isolate (contain) the memory updates,

(c) preserve existing lock semantics, while still permitting containment based deadlock detection and

recovery in the presence of nested locks, (d) perform inclusion of memory updates from the contained

14

15

critical section into the shared program address space, and (e) perform deadlock detection and

recovery that deterministically eliminates deadlocks without either deadlocking itself or requiring

an outside (external) agent.

The rest of the chapter is organized as follows. Section 2.1 describes the design and architectural

aspects of Sammati. Section 2.2 presents a comprehensive description of the implementation details

of the runtime system. Section 2.3 presents a detailed performance evaluation of Sammati’s runtime

system using the SPLASH [94], Phoenix [80], and synthetic benchmark suites. Section 2.4 discusses

the limitations of a pure runtime approach. Section 2.5 discusses related work in the area of deadlock

detection and recovery. Section 2.6 summarizes this chapter.

2.1 Design and Architecture

The core goal of Sammati is to deterministically and transparently detect and recover from deadlocks

at runtime in threaded codes. In this section, we describe the design objectives and challenges

involved in the design of Sammati.

2.1.1 Privatization and Containment

As discussed previously, to restore from a deadlock successfully, Sammati uses containment (through

privatization) to ensure that memory updates (write set) within a critical section are not visible

to any other thread until the successful release of the critical section. To implement containment

within a critical section we need (a) a mechanism to identify memory updates and (b) a mechanism

to privatize the updates. In the case of managed languages such as Java, program analysis can be

used to detect the write set within a critical section, which can then be privatized through rewriting

or source-to-source translation to implement containment. However, in the case of weakly typed

languages such as C and C++, which allow arbitrary pointer access, program analysis cannot always

determine the exact write set and conservatively degenerates to privatizing the entire address space,

which is prohibitively expensive.

16

Alternately, a runtime can use page level protection to determine the write set within a critical

section. In this approach, all data pages are write-protected on lock acquisition. If the subsequent

critical section attempts to modify a page, it results in a segmentation violation signal. The signal

handler then gets the page address, privatizes the page and changes the page permissions to read-

write. While this solution works for processes that operate in distinct virtual address spaces, it

does not work for threaded codes that share a single virtual address space and page protection

bits. Consider the case where a thread acquires a lock L and updates two values in page P. Page

P is write protected on the acquisition of lock L. To allow the update, the runtime would perform

its privatization action and set the page permission for page P to read/write. Assume another

concurrent thread of the same program now acquires lock M and updates a different data unit on

page P. If the two lock acquisitions happen concurrently before the updates, the first thread that

performs the update would change the page permissions of P to read/write. The second thread

performing the update would never see a protection fault (since page P is already in read/write

mode) and hence would not privatize its update, thereby breaking containment.

In the POSIX threads model, each thread has a distinct stack and threads of a process share their

address space. In contrast, distinct processes are fully isolated from each other and execute in

separate virtual address spaces. Neither of these models satisfies the isolation and selective state

sharing requirements imposed by Sammati. Intuitively, what we need is an execution model that

provides the ability to selectively isolate and share state between execution contexts.

Our key observation is that privatization can be implemented efficiently and transparently in a

runtime environment if each thread has its own virtual address space. Modern UNIX operating

systems already implement threads as lightweight processes with no major performance implica-

tions. We exploit this capability by creating multiple processes and share their global data regions

through a common shared memory mapping. In essence, this creates a set of processes that are

semantically equivalent to threads — they share their global data and have distinct stacks. To

achieve containment for a page, we break its binding to the shared memory region and create a

private page mapping (mmap with MAP PRIVATE vs. mmap with MAP SHARED) at the same

17

a = b = 0;

Acquire (L1);
 ...
 Acquire (L2);
 a++;
 Release (L2);
 ...
 Acquire (L3);
 a++;
 b++;
 Release (L3);
 ...
Release (L1);

a = b = 0;

Acquire (L1);
 a++;
 Acquire (L2);
 b++;
Release (L1);
 ...
 Release (L2);

a = 0;

Acquire (L1);
 a++;
Release (L1);

update to 'a'
is globally
visible on
release of L1

updates
within critical
sections are
transactional updates to 'a' and

'b' are made
globally visible on
release of L1

update to 'a' is
not made globally
visible on release
of L2; similarly
updates to 'a' and
'b' are not visible
on release of L3

updates
within critical
sections are
transactional

updates to 'a'
and 'b' are
made globally
visible on
release of L2

(a) (b) (c)

Figure 2.1: Visibility rules for memory updates within a lock context.

virtual address. Any updates to the private page are thus localized to the thread executing the

critical section, thereby implementing containment. In the rest of this dissertation, we refer to these

control flow constructs as cords to distinguish their properties from regular threads that operate

within a single virtual address space.

2.1.2 Semantics for Propagating Updates

Propagating the privatized memory updates made within critical section(s) while ensuring program

correctness presents several challenges. Consider the example shown in Figure 2.1(a). In the

presence of a single lock around a critical section, Sammati propagates the updates on the release

of the lock, e.g., L1 in Figure 2.1(a). However, nested locks are more complex. Consider the

nested lock sequence shown in Figure 2.1(b). If the memory update to variable a within the critical

section protected by lock L2 were made visible immediately after the release of L2 and subsequently

a deadlock occurred on the acquisition of lock L3, where the victim was lock L1, there would be no

way to unroll the side-effects of making the update to a visible. A secondary issue exists here in

associating data with locks. When a unit of data is modified within a critical section protected by

more than one lock, it is not possible to transparently determine the parent lock that is uniquely

responsible for ensuring mutual exclusion on that data. For instance in Figure 2.1(c), it is not

possible to transparently determine what data should be made visible. The variable a is protected

18

by lock L1; however, the variable b may be protected by L2 or L1.

To ensure containment of memory updates in the presence of nested locks, we employ transactional

semantics. We employ the following two visibility rules for propagating memory updates.

1. Memory updates are made visible on the release of all locks.

2. Track the release of nested locks in program order and defer performing the actual release till

all locks around a critical section have been released in program order.

Rule (1) is a necessary and sufficient condition for Sammati’s deadlock elimination and recovery

and rule (2) preserves the semantics of mutual exclusion. We illustrate the rationale behind these

two rules using the example shown in Figure 2.1(b). If lock L2 is released at its original location,

but its update to a is privatized (since there is another lock L1 around the same critical section),

another thread may acquire lock L2, update a and release L2, creating a data race (write-write

conflict) in otherwise correct code. Internally, Sammati tracks deferred releases within a nested lock

sequence and elides the actual lock acquisition if a cord attempts to reacquire a deferred release

lock in the same nested lock sequence. Our proposed semantics for propagating memory updates

presents certain side-effects and could result in deadlocks [22, 23, 60]. We present a comprehensive

solution to this problem in Chapter 3.

2.1.3 Deadlock Detection

A concurrent multi-threaded program can hold a set of locks and simultaneously be waiting on

one or more locks. In such a context, deadlocks may arise due to multiple circular dependencies

resulting in a multi-cycle deadlock. Eliminating multi-cycle deadlocks requires potentially multiple

victims and the deadlock detection algorithm has to execute in a context that is guaranteed to

not be a part of the deadlock itself. Additionally, multi-cycle deadlock detection algorithms are

typically implemented as an external process that implements distributed deadlock detection and

recovery. However, to transparently detect deadlocks we need an efficient mechanism that is capable

19

Algorithm 1 Deadlock Free Lock (lock L)
1: Inputs: lock L
2:

3: /* Global data structures */
4: holding hash table (lock ←key, pid←value)
5: waiting hash table (pid←key, lock ←value)
6: lock list := list of locks ordered by program order acquisition of locks.
7:

8: /* Local data structures */
9: lock S /* globally shared lock across cords */

10: lock W /* local lock identifier */
11:

12: R := Restore point containing the contents of stack frame and processor registers.
13: Set restore point R for lock (L) on rollback.
14: if (returning from a restore point flag is true) then
15: Restore the stack.
16: Free the old stack context and reset returning from restore point flag.
17: end if
18: id⇐my pid
19: Acquire lock (S) /* enter runtime’s critical section */
20: Try acquiring lock (L)
21: if (lock (L) is acquired successfully) then
22: Insert in holding hash table (lock (L), id)
23: Insert (lock (L), restore point (R)) at tail of lock list
24: Release lock (S) /* exit runtime’s critical section */
25: else
26: Insert id in waiting hash table (id, lock (L))
27: W ⇐L
28: Traverse:
29: candidate⇐find lock (W) in holding hash table
30: if (candidate == id) then
31: recover from deadlock (W) /* we have a deadlock !!! */
32: return to restore point (W)
33: else
34: W ⇐lock that candidate is waiting on
35: if (lock (W) is valid) then
36: goto Traverse /* continue traversing the waits for graph */
37: else
38: Release lock (S) /* exit runtime’s critical section */
39: Acquire lock (L)
40: Acquire lock (S) /* enter runtime’s critical section */
41: Delete ids entries from waiting hash table
42: if (lock(L) is acquired successfully) then
43: Insert lock (L) in holding hash table (lock (L), id)
44: Insert (lock (L), restore point (R)) at tail of lock list
45: Release lock (S) /* exit runtime’s critical section */
46: else
47: Release lock (S) /* error in acquiring the Lock (L) */
48: Throw error and terminate program
49: end if
50: end if
51: end if
52: end if
53: Update internal data structures and return

20

of deterministically eliminating deadlocks without either (a) deadlocking itself or (b) requiring an

outside agent.

Since threads are transparently converted to cords in Sammati, the key observation here is that

each cord (a single threaded process) may only wait (block) on a single resource (lock). Hence, a

waits-for graph is sufficient to detect deadlocks. Such a property of lock based codes, significantly

simplifies deadlock detection, since from the perspective of each cord, all deadlocks are single

cycled deadlocks. Since all cords share a global address space, each thread can access the locking

information pertaining to the remaining threads including the set of locks currently owned/held

by a thread (holding set) and lock on which a thread is currently waiting (waiting set). Deadlock

detection can hence be performed at lock acquisition a) without requiring an external agent and

b) without having to worry about eliminating multi-cycle deadlocks that require multiple victims

for deadlock resolution. Detection is also guaranteed not be a part of the deadlock itself.

Algorithm 1 shows the deadlock detection algorithm that executes at the acquisition of every lock.

The detection algorithm uses three data structures — a holding hash table that associates locks

being held with its owning cord, a waiting hash table that associates a cord with a single lock it is

waiting on, and a per cord list of locks ordered (queue) by the program order of acquisition. The

list of locks tracks nested locks and is freed at the release of all locks in a nested lock sequence. The

deadlock detection algorithm implements a deadlock free lock acquisition and starts off by saving

a restore point for deadlock recovery. The restore point contains the contents of the stack and all

processor registers and is associated with the lock entry in the per cord list of locks. The algorithm

then tries (non-blocking trylock) to acquire the requested lock L. If the acquisition succeeds, it

inserts L into the holding hash table and the per cord lock list and returns. If the lock acquisition

of L fails, the algorithm finds the cord C that owns L and checks if C is waiting on another lock

M. If C is not waiting on any lock, there is no cycle and the deadlock detection algorithm inserts

L into the waiting hash table and attempts to acquire L through a blocking lock acquisition. If

C is waiting on another lock M, we find the cord that owns M and check to see if it is waiting

on another lock and so on. Essentially, this algorithm implements a traversal of a waits-for-graph

21

Algorithm 2 Deadlock Recovery
1: Input: lock W
2: /* Global data structures */
3: holding hash table (lock ←key, pid←value)
4: waiting hash table (pid←key, lock ←value)
5: lock list := list of locks ordered by program order acquisition of locks.
6:

7: for all entries starting from head of the lock list find the first occurrence of lock (W) and do
8: Discard all the modifications made within the locks from lock (W) to tail of lock list
9: Release all locks including lock (W)

10: Clear relevant entries from holding hash table including entries for lock (W)
11: Release lock(S) /* exit runtime’s critical section */
12: end for
13: return

to detect a cycle. A deadlock is detected if the traversal encounters an entry in the holding hash

table with the cord id of the cord running the deadlock detection algorithm. The corresponding

lock identifier in the holding hash table is chosen as the victim. Since each thread can wait on at

most one lock, the depth of traversal of the deadlock detection algorithm is equal to the number

of nodes in the waits-for graph. By representing the graph (holding and waiting sets) using hash

tables, our deadlock detection algorithm has a time complexity upper bound of O(n), where n is

the number of cords.

Note that in Line 39 of Algorithm 1 the blocking lock acquisition of the lock L is not protected by a

secondary lock (doing so would result in serialization of all locks in the program) in this algorithm

and hence the initial non blocking trylock may fail, and yet the holding hash table may not have an

entry for the owning cord. This condition (an intentional benign race) cannot result in a deadlock.

The intuition behind this reasoning is that while there may be multiple cords waiting on the same

lock, the cord that acquires the lock successfully is no longer waiting on any lock and hence cannot

be part of a cycle.

2.1.4 Deadlock Recovery

The deadlock detection algorithm presented above detects a deadlock and identifies a lock W as

the victim for deadlock recovery. Recall that Sammati’s runtime system saves a thread’s execution

context (setjmp) and its current stack frame prior to the thread’s lock acquisition and maintains a

22

a = 0;

Acquire (L1);
 ...
 Acquire (L2);
 a++;
 Release (L2);
 ...
 Acquire (L2);
 Acquire (L3);

Figure 2.2: In this example, if the acquisition of L3 results in a deadlock and the victim was L2,
Sammati’s deadlock recovery rolls back to the earliest acquisition of L2.

list of locks acquired by a thread in program order. The deadlock recovery algorithm scans the list

of locks to find the oldest acquisition of W, in program order and uses its associated recovery point

(execution context and stack frame) from the lock list for recovery. To recover from the deadlock

we (a) discard all memory updates performed within locks in the lock list including and after W

(i.e. locks acquired later in program order after W), (b) release all locks in the lock list acquired

after W and including W, (c) remove the locks released in step (b) from the holding hash table and

finally restoring the stack and processor registers from the recovery point for W, which transfers

control (longjmp) back to deadlock free lock acquisition of the victim lock W.

Note that deadlock recovery uses the recovery point from the oldest (in program order) acquisition

of lock W. The reasoning behind this is subtle. Consider the example shown in Figure 2.2. A

cord C acquires a lock L1, followed by lock L2 and updates a variable a. It then releases lock L2,

reacquires L2 and acquires another lock L3. The acquisition of L3 results in a deadlock and the

deadlock recovery algorithm selects L2 as the victim for rollback. However, if we rolled back to the

most recent acquisition of L2 and released L2, thereby breaking the deadlock, the earlier update to

variable a within L2 would still be privatized and not visible externally. A cord M waiting on L2

can now acquire L2 and change the value of variable a, creating an illegal write-write conflict with

the privatized copy within cord C.

23

Deadlock Aware Memory Management

Recovery involves unrolling memory allocations, Sammati is capable of performing garbage col-

lection while recovering from deadlocks. Memory management operations can be classified into

allocation and deallocation operations. To handle allocation operations, we maintain a list of al-

location operations that occur within a nested lock scope. This list is used to garbage collect the

allocations if a lock in the nested lock scope is chosen as the victim for deadlock recovery. Deal-

location operations will be buffered (delayed deallocation) until the release of all locks in a nested

lock scope. To preserve transparency Sammati overloads the standard POSIX memory manage-

ment primitives including malloc, calloc, realloc, valloc, and free and the POSIX thread (Pthread)

library. Sammati performs deadlock aware memory management while recovering from a deadlock.

It tracks all memory allocations made within a critical section. On recovery, Sammati internally

frees all such allocations to prevent memory leaks.

2.2 Implementation

We implemented Sammati’s runtime as a shared library that is pre-loaded by the dynamic linker

(ld)’s LD PRELOAD environment variable before executing the binary. Sammati implements most

of the POSIX threads interface, including thread creation, destruction, mutual exclusion locks,

barriers, and condition variables. In this section we describe the key elements and implementation

details of Sammati’s runtime system.

2.2.1 Shared Address Space

A multi-threaded process has a shared address space, with a distinct stack and a distinct thread-

local storage (TLS) region for each thread. To provide efficient address space isolation and con-

tainment of memory updates (described in Section 2.1.1) Sammati creates an illusion of a shared

address space among processes. Sammati overloads the POSIX thread create (pthread create) call

24

to create a cord.

Global Data

The constructor in Sammati’s runtime system traverses the link map of the application ELF binary

at runtime and identifies the zero initialized and un-initialized data in the .bss section and the

non-zero initialized data in the .data section. Sammati then unmaps these sections from the loaded

binary, maps them from a SYSV memory mapped shared memory file, and reinitializes the sections

to the original values. This mapping to a shared memory file is done by the main process before

its execution begins at main. Since cords are implemented as processes that are forked at thread

creation (we actually use the clone() system call in Linux to ensure that file mappings are shared

as well), a copy of the address space of the parent is created for each cord and consequently the

cords inherit the shared global data mapping. Any modifications made by any cord to global data

is immediately visible to all cords.

Heap

In a multithread process the heap is also shared among all threads of a process. To implement

this abstraction, we modified Doug Lea’s dlmalloc [27] allocator to operate over shared memory

mappings. This memory allocator internally allocates 16 MB chunks (the allocator’s internal gran-

ularity), which are then used to satisfy individual memory requests. Each 16MB chunk is backed

by a shared memory file mapping and is visible to all cords. Sammati provides global heap al-

location by sharing memory management metadata among cords using the same shared memory

backing mechanism used for .data and .bss sections. Similar to the semantics of memory allocation

for threads, any cord can allocate memory that is visible and usable by any other cord. When a

cord first allocates memory, the memory addresses are allocated in its virtual address space and

backed by a shared memory file. If any other cord accesses this memory, it results in a segmen-

tation violation (a map error) since the address does not exist in its address space. Sammati’s

runtime handles this segmentation violation by consulting the memory management metadata to

25

text

stack

kernel

low-address

high-address
(45th bit set)

0x200000000000

shared memory
objects

+
memory mapped

files

heap

global data

heap

global data

heap

global data

main
memory

W (1)
W (2)

Acquire (L1)
W (2)

Release (L1)

end thread
execution

start thread
execution

W (1)
W (2)

Acq (L1)

W (2)

Rel(L1) XOR 2

XOR
2

2

2

1 2 3 4

3 4

1 2 3 4

3 41

2

1 2 3 4

1 2

2
2

shared and
(read-write)

shared and
write-protected

private
(read/read-write)

thread-local

W(x): Write to page xprivate and
(copy-on-write)

Figure 2.3: (left) Illustrates the virtual memory address (VMA) layout of each process (cord).
Sammati provides memory isolation by transforming threads to processes and uses shared memory
objects and memory mapped files to share global variables and the process heap among cords.
(right) Illustrates how the VMA is manipulated by Sammati with a simple example explained in
text.

check if the reference is to a valid memory address allocated by a different cord. If so, it maps the

shared memory file associated with the memory thereby making it available. Note that such an

access fault only occurs on the first access to a memory region allocated by a different cord, and is

conceptually similar to lazy memory allocation within an operating system. To further minimize

such faults, we map the entire 16MB chunk that surrounds the faulting memory address. Sam-

mati exposes dynamic memory management through the standard POSIX memory management

primitives including malloc, calloc, realloc, valloc and free.

26

Stack

Since stacks are local to each thread, Sammati does not share stacks among cords. Each cord has

a default stack of 8MB similar to threads. The stack is created at cord creation and it is freed

automatically when a cord terminates.

Shared View of Runtime System

In UNIX process semantics, each process has its own copy of the data segment of the shared libraries.

Consequently, Sammati’s runtime is not shared among cords by default. To circumvent this issue

and to maintain a shared view of the runtime, each newly created cord automatically executes an

initialization routine that maps the shared state of Sammati’s runtime prior to executing its thread

start function. Figure 2.3 illustrates the virtual address space layout of a cord.

2.2.2 Detecting Memory Updates Within Critical Sections

To successfully rollback on deadlock, the runtime system must precisely identify memory updates

performed within critical sections. We define two contexts of execution for a cord; a cord is said to

be in a lock context if it acquires a lock and it remains in the lock context until it releases the lock.

In case of nested locks, a thread remains in a lock context until all the locks it acquired previously

are released.

Address Space Protection

Sammati’s runtime employs address space protection to write-protect (PROT READ) a cord’s

virtual memory address (VMA) pages of the shared address space (global data and heap). If a

cord attempts to modify (write to) the shared data, the runtime system handles the access fault

(SEGV ACCERR) and makes a note of the page and the current context of execution i.e., the

current critical section. The runtime maintains a unique list of pages that were modified within

27

each critical section. Read accesses to the shared data do not produce access faults and execute as

they would otherwise. The permissions of the page are then set to read-write so that the cord can

continue its execution. Sammati includes two variants of address space protection.

1. Variant-1: On entry of a critical section, the runtime system write protects all the pages of

the shared address space (global data and heap). By leveraging the address space protection

semantics described above, the runtime system precisely identifies the updates within a lock

context. On exit of a critical section, the runtime system restores the permissions of all the

pages of shared address space by unprotecting them.

2. Variant-2: The runtime system at the start of the program execution, write-protects the

entire shared VMA. Hence, any updates to memory outside of the critical section are tracked

through access faults. On a lock acquisition, only the set of pages that were modified prior to

acquiring a lock are write-protected, instead of protecting the entire shared VMA. In essence,

this approach tracks the write-set of a cord between lock release and lock acquisition (ordinary

memory accesses) and only write-protects this write-set.

The efficacy of each variant depends on (a) total size of the memory footprint, (b) the total number

of locks acquired, and (c) the number of updates performed within a critical section. The choice

between the variants is dependent on these characteristics of the applications.

2.2.3 Isolating Memory Updates

In Variant-1 since all pages in the shared VMA are write protected, when a cord modifies a shared

VMA page from within a lock context, it is detected by the occurrence of a segmentation vio-

lation (access error). Sammati’s runtime handles the access violation and isolates the updates

by remapping the faulting page from the shared memory (MAP SHARED) backing to private

(MAP PRIVATE) mode. In the private mode, updates to the page from the cord in the lock con-

text are no longer visible to other cords, effectively privatizing the page. Sammati’s runtime then

creates a copy of the page (called a twin page), changes the page permission to read/write and

28

Virtual Memory Address

page (P)

0x1000 0x1FFF
2 ...

&a

a L2'

&L2

low address (write protected), privatized on demand (read-write)

high address, shared (read-write)

1

...
Acquire (L1);
 a++;
 Acquire (L2);
 ...
 Release (L2);
Release(L1);

Cord C

int a=1;
pthread_mutex_t L1, L2;

page P is privatized,
on update to 'a',
thus privatizing 'L2',
thus breaking the
mutual exclusion
semantics on L2

Assume 'a', 'L1',
'L2' are on page P

runtime system
transforms L1⇒L1',
L2⇒L2' to
circumvent
privatization issues

3
2

0x200000001000
1 ...

&a'

a' L2'

&L2'

0x200000001FFF

...

Figure 2.4: Subtle issues with privatization.

returns from the segmentation violation handler, allowing the cord to continue its execution. The

twin page is used to detect the actual memory updates on the page, which are then committed

when the cord exits a lock context. We note that the space overhead of this approach is O
(
W

)
,

where W is the write set (in pages) within a lock context.

Lazy Privatization

Intuitively, Sammati implements lazy privatization of memory updates that defers privatization to

the first instant the memory update occurs. Conservatively privatizing the entire address space at

the acquisition of the first lock in a nested lock sequence (this was in fact our original solution),

resulted in a far too high runtime cost for applications with fine-grain locks. Since standard lock

semantics of mutual exclusion locks do not require such semantics, we chose to implement the more

efficient, lazy privatization approach.

2.2.4 Preserving Synchronization Semantics

Sammati’s runtime preserves the synchronization semantics of multi-threaded codes among cords

(recall, implemented as processes) by transforming all mutex exclusion locks (pthread mutex t),

barriers (pthread barrier t), and condition variables (pthread cond t) within the program to process-

29

shared (PTHREAD PROCESS SHARED) locks, which enables their use among cords.

Recall that in the case of nested locks, a cord remains in lock context until all the locks it acquired

previously are released. On unlock, Sammati marks a lock for release but defers the actual release

of the lock until all locks in the nested lock sequence have been released in program order (discussed

in Section 2.1.2).

A subtle side effect of memory isolation through privatization (discussed in Section 2.2.3) occurs be-

cause synchronization primitives such as locks, barriers and condition variables in a multi-threaded

program are generally global, i.e., they reside in the shared VMA irrespective of how they are

initialized (statically declared globals or dynamically allocated on the heap). For instance, consider

the example illustrated in Figure 2.4 involving a mutex lock. If a cord C acquires a lock and sub-

sequently modifies a page P, P is privatized. If P contains any definitions of lock variables (which

may happen if P contains parts of the .data section), they end up being privatized as well. If such

a privatized lock is subsequently used in a nested lock sequence by cord C, it no longer provides

mutual exclusion outside cord C since any updates to the lock (such as acquisition/release) are

privatized and not visible outside C. A simple solution to this problem would have been to modify

the application source code to allocate memory for all mutual exclusion locks from a distinct shared

memory zone that is not subject to privatization. However, this requires source code modifications

and conflicts with our goal of being a transparent runtime solution to deadlock recovery.

To address this side effect of address space privatization, we present a novel approach that leverages

the large virtual memory address (VMA) provided by 64-bit operating systems. Linux allows 48

bits of addressable virtual memory on x86-64 architectures and we exploit this aspect of large

addressable VMA available to a process. Recall that our runtime system maps globals and the

heap (described in Section 2.2.1) using shared memory objects and memory mapped files. Using

the same shared memory objects and memory mapped file, Sammati creates an identical secondary

mapping of the global data sections and heap at a high address (45th bit set) in the VMA of each

cord. The application is unaware of this mapping, and performs its accesses (reads/writes) at the

original low address space. In effect, the high address mapping creates a shadow address space for

30

all shared program data, and modifications (unless privatized) are visible in both address spaces

(shown in Figure 2.3). The high address space shadow is always shared among cords and it is never

privatized.

To perform synchronization operations (e.g., mutual exclusion such as in Figure 2.4), Sammati

at runtime transforms the address of a mutual exclusion lock by setting the high address bit and

performs the lock operation in the shadow address space. Since the shadow address space is

not subject to privatization, lock acquisitions and releases are visible across all cords, correctly

implementing mutual exclusion.

2.2.5 Committing Memory Updates

When a cord exits a lock context, any of its updates contained in its privatized data must be made

visible and reconciled with other cords. In order to perform this inclusion, we need to identify

the exact write set of the lock context. Hence, for every page modified within a lock context, we

compute an XOR difference (byte wise XOR) between the privatized version of the page and its

copy (twin) that was saved before any modifications were made within the lock context. The XOR

difference identifies the exact bytes that were changed. Distributed shared memory (DSM) systems

([4, 17, 46]) employ the twin/diff technique for identifying false sharing. Inspired by such systems

we leverage this technique to efficiently track the updates.

To perform inclusion, we apply the XOR difference to the high address shadow region of the VMA

(shown in Figure 2.3) by computing the XOR of the difference and the high memory page, which

makes the updates visible to all cords. Sammati then reverts the privatization by discarding the

privatized pages and remapping their shared versions.

We note that since the semantics of mutual exclusion locks prevent two cords from modifying the

same data under different locks, updates from concurrent lock releases would be to different regions

within a memory page. Hence, the operation of applying XOR differences to the shadow address

space is a commutative operation and is thus implemented as a concurrent operation. If the original

31

program contains data races, Sammati preserves the race. We explain how Sammati is capable of

detecting write-write races in Section 2.2.7.

We present a simple example to illustrate how Sammati manipulates the VMA of each cord while

providing isolation, privatization and inclusion. Consider the scenario as shown in Figure 2.3 where

a thread has four shared pages when it starts its execution. Initially, all the shared pages (1, 2,

3, 4) are write-protected. When a thread attempts to write to pages outside a lock context, the

pages (1, 2) are then given write access. On entering a lock context, only pages that were modified

previously are write-protected (pages 1, 2). If a thread attempts to write to a page (2) within a lock

context, the page is privatized (lazy privatization) and a copy of it is created (twin). Before exiting

a lock context, the runtime system evaluates the modifications by computing an XOR difference

of the private page against its twin. It then checks for any write-write races before applying the

difference to the page in the shared high-address space.

2.2.6 Condition Variables and Semaphores

POSIX condition variables provide a synchronization primitive that enables a thread to atomically

release a lock and wait on a condition to be signaled. More than one thread is permitted to wait on

the same condition signal. On receiving a condition signal, one of the waiting threads atomically

reacquires the lock and resumes execution.

To implement POSIX condition signaling primitives (wait, signal, and broadcast) and semaphores,

Sammati treats them as a commit point, thus making all updates within the critical section vis-

ible prior to invoking the underlying POSIX signaling primitive. On resuming execution from a

condition wait, Sammati treats the resumption as a new lock acquisition. It marks the lock as

non-recoverable since an irrevocable action has been performed within a critical section, and does

not attempt to privatize the updates anymore. Sammati offers limited support for recovery in

the presence of condition wait/signal primitives protected by more than one lock. Recall to pre-

serve the semantics of condition variables, Sammati propagates the updates (in program order)

performed prior to the wait/signal operation. Such semantics conflict with the privatization mech-

32

Table 2.1: SPLASH Benchmarks.
Application Description

Barnes Barnes-Hut algorithm to simulate interaction of a system of bodies (N-body problem)
FMM Fast Multipole Method to simulate interaction of a system of bodies (N-body problem)
Ocean-CP Simulates large-scale ocean movements based on eddy and boundary currents
Water-nsquared Simulates forces and potential energy of water molecules in the liquid state
FFT Computes one-dimensional Fast Fourier Transformations
LU-NCP Factors (2D array) a dense matrix into the product of a lower and upper triangular matrices
LU-CP Factors (array of blocks) a dense matrix into the product of a lower and upper triangular

matrices
Radix Performs integer radix sort

anism (discussed in Section 2.1.1) required to facilitate recovery. Consequently while Sammati is

capable of detecting deadlocks in the presence of condition variables in nested locks, it is incapable

of recovering from deadlocks if they involve rolling back asynchronous events.

2.2.7 Detecting Write-Write Races

Sammati can detect and report write-write races that occur between (a) guarded and concurrent

unguarded updates to a shared value and (b) improperly guarded updates, where a single data value

is guarded by two or more different locks. Sammati identifies these data races while committing

the updates to memory (Section 2.2.5) by checking every word in the diff page. If the word is

non-zero, then it indicates that the cord has modified data within a lock context. Sammati then

compares the word corresponding to the non-zero value in its twin with its equivalent in the shadow

address space that is shared across all cords. In essence this comparison checks to see if some other

cord executing concurrently has modified a word that should have been uniquely protected by the

current lock context. If the two values are not equal then this indicates that the same word was

modified within the current lock context as well as by one or more cords.

We note Sammati does not detect data races that might potentially happen; instead it precisely

identifies data races that did happen during the execution. Additionally, since Sammati detects

the race at inclusion, it does not have enough information to identify all the cords involved and/or

who caused the conflict.

33

Table 2.2: Phoenix Benchmarks.
Application Description

Histogram Generates a histogram of frequencies of pixels values (R,G,B) in an image
Kmeans Iteratively performs data clustering of N-dimensional data points
Linear Regression Performs linear approximation of 2D points
Matrix Multiply Computes the product of two matrices
PCA Performs principal component analysis on a matrix

2.3 Experimental Evaluation

We evaluated Sammati’s runtime performance using two POSIX threaded benchmark

suites (SPLASH [94], Phoenix [80]), and several synthetic benchmark suites. The SPLASH suite

(described in Table 2.1) contains applications from several domains including high-performance

computing, signal processing, and graphics. We chose to report the results from benchmarks that

have (a) a runtime of at least a few seconds to avoid statistical noise from the scheduler and (b)

applications that compile and run on a 64-bit machine. The Phoenix suite (described in Table 2.2)

contains applications from enterprise computing, artificial intelligence, image processing, and scien-

tific computing domains. The synthetic benchmarks contain programs written to create deadlocks

both deterministically and randomly, and finally, examples of deadlocks in the literature [9, 43, 75].

We chose the SPLASH and PHOENIX benchmarks for several reasons. First, their performance has

been well studied in the literature. Second, SPLASH was originally intended as a shared memory

system benchmark suite akin to SPEC and includes a variety of applications with different memory

models and locking regimes. Third and most importantly, we note that the lock acquisition rates of

some of the applications is extremely high, e.g., Barnes (640K locks/sec), FMM (265K locks/sec),

and Water (70K locks/sec). We define the lock acquisition rate as the ratio of total locks acquired

by a program to its runtime (runtime of vanilla application). Such extremely high lock rates stress

test Sammati to the extreme since the lock rate is one of the primary determinants of its overhead.

In contrast, enterprise applications such as databases are largely bound by disk IOP rates of a few

hundred to a few thousand per second, which we believe would lead to lower lock acquisition rates.

34

Table 2.3: Classification of SPLASH and PHOENIX benchmark suites based on lock acquisition
rate.

Category Lock Acquisition Rate Benchmarks

Set 1 50K/sec - 700K/sec Barnes, FMM, and Water-nsquared
Set 2 10/sec - 50K/sec Ocean, Radix, and PCA
Set 3 0.5/sec - 10/sec FFT, LU-contiguous partition, and LU-non contiguous partition
Set 4 0/sec - 0.5/sec Histrogram, Kmeans, Linear Regression, and Matrix Multiply

2.3.1 Experimental Setup

We performed all our experiments on a 16 core shared memory machine (NUMA) running Linux

2.6.32 with 64GB of RAM. The test system contains four 2 GHz Quad-Core AMD Opteron proces-

sors. We ran each application under four scenarios. First, we evaluated Sammati’s pure runtime

approaches, i.e., Variant-1 (tracks lock context accesses) and Variant-2 (tracks ordinary accesses),

where we pre-load our runtime system using LD PRELOAD. We also ran the vanilla Pthread ap-

plication. For each scenario, we ran a benchmark 5 times and we present the average of the 5

independent runs. We measured the total runtime (wallclock time) for each application using the

UNIX time command.

2.3.2 Performance Analysis

We classify the 13 benchmarks from SPLASH and PHOENIX into 4 sets based on the lock acqui-

sition rate of each application. We present a summary of this classification in Table 2.3. For each

benchmark we measured several important characteristics including the number of locks, the lock

context write-set, pages write-protected, pages restored (un-write-protected), pages privatized and

shared, etc., to understand the performance implications of using Sammati.

Runtime Overhead

Recall that we presented two approaches (a.k.a variants, described in Section 2.2.2) to detect

memory updates performed within critical sections. In Variant-1, Sammati tracks the lock context

accesses. To accomplish this objective, Sammati write-protects the entire shared address space on

35

a lock acquisition and tracks access faults to determine the pages modified within a lock context.

Sammati then creates a copy of the page, thereby privatizing the page to ensure containment of

memory updates. On the release of a lock, Sammati computes the XOR difference to shadow

memory (high address) to propagate the memory updates, maps the page back to shared state, and

finally un-write-protects the entire shared address space.

OverheadSammati(V ariant−1) ∝ (number of locks× [cost of address space protection+

cost of address space un protection] + write set × [cost of observing a write access +

cost of privatization + cost of creating copy + cost of propagating updates

+ cost of un privatizing])

In Variant-2 Sammati tracks ordinary accesses. Sammati’s runtime begins program execution by

write-protecting the entire shared address space. Any consequent newly allocated memory is also

write-protected enabling Sammati to track the pages modified in ordinary regions through access

faults. On a lock acquisition Sammati write protects the pages modified in an ordinary region.

Similar to Variant-1, Sammati tracks the access faults to determine the pages modified in a lock

context and creates a copy of the page, privatizing the page to ensure containment of memory

updates. On the release of a lock, Sammati computes the XOR difference to shadow memory

(high address) to propagate the memory updates and restores the page back to being shared and

write-protected.

OverheadSammati(V ariant−2) ∝ (cost of observing ordinary write accesses + number of locks×

[cost of protecting ordinary accesses] + write set × [cost of observing a write access +

cost of privatization + cost of creating copy + cost of propagating updates

+ cost of un privatizing])

Set #1

Figure 2.3.2 illustrates the performance of Sammati and Pthreads for applications in Set-1. As

shown in Table 2.4, applications such as Barnes, FMM and Water acquire a reasonably large

36

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Barnes

Vanilla

Variant-1

Variant-2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Water

Vanilla

Variant-2

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

FMM

Vanilla

Variant-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Barnes

Vanilla

Variant-1

Variant-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Water

Vanilla

Variant-2

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

FMM

Vanilla

Variant-2

Figure 2.5: Performance of applications from Set-1 (extremely high lock acquisition rate, typically
50K/sec - 700K/sec) with Sammati on a 16 core system.

Table 2.4: Characteristics of applications in Set-1.
Benchmark Threads Total Locks Lock Rate Pages Modified in Lock Context

(locks/sec) Total Min Max Avg

Barnes

1 275216 38182.02 843703 1 20 3
2 275222 87095.57 843520 0 39 6
4 275256 195494.32 843822 0 77 12
8 275356 380325.97 843751 0 155 24

16 275494 640683.72 843778 0 308 48

FMM

1 4517437 25156.13 4728864 0 3 1
2 4521269 50409.96 4736848 0 6 2
4 4544061 98004.163 4782361 0 12 4
8 4560144 171382.44 4814982 0 25 8

16 4588580 265297.18 4871931 0 49 16

Water-nsquared

1 266568 588.20 270728 1 2 1
2 533071 2292.68 541391 1 4 2
4 799902 6489.52 812382 1 8 4
8 1333564 21266.80 1354364 1 16 8

16 2400888 70960.81 2438328 1 32 16

37

Table 2.5: Profile of applications in Set-1 with Sammati (Variant-1).
Benchmark Threads Total Pages

Write-protected Access faults Map shared Un-write-protected

Barnes

1 15155044256 843703 843703 15155044256
2 15156475540 843520 843520 15156475540
4 15160549968 843822 843822 15160549968
8 15148985696 843751 843751 15148985696

16 15231512272 843778 843778 15231512272

Table 2.6: Profile of applications in Set-1 with Sammati (Variant-2).
Benchmark Threads Total Pages

Write-protected Access faults Map shared Un-write-protected

Barnes

1 277866 1121296 843703 277593
2 286433 1129787 843625 286162
4 298746 1142375 843898 298477
8 317262 1160509 843512 316997

16 353403 1196857 843711 353146

FMM

1 33352821 38138865 4728864 33410001
2 34315248 39161456 4736848 34424608
4 35040077 40000100 4782361 35217739
8 35742953 40854289 4814982 36039307

16 36848173 42243104 4871931 37371173

Water

1 906035 1176764 270728 906036
2 1721148 2262540 541391 1721149
4 3351374 4163757 812382 3351375
8 6611826 7966191 1354364 6611827

16 13132730 15571059 2438328 13132731

number of locks (≈ 106) and they have extremely high lock acquisition rates. For instance, Barnes

acquires 640K locks/sec, FMM acquires 265K locks/sec, and Water acquires 70K/sec for 16 threads.

Furthermore, all the three applications modify a significant amount of data (pages) within a lock

context. Barnes modifies 8.4 × 105 pages, FMM modifies 4.8 × 106 pages and Water modifies

2.4× 106 pages. Consequently, both the variants of Sammati incur a significant runtime overhead

and result in poor speedup.

Since in Variant-1, Sammati write-protects the entire shared address space on every lock acquisition

to detect memory updates within a critical section, and unprotects the address space on lock release,

Sammati incurs a significant runtime overhead due to the address space protection. Barnes write-

protects over 3× 1010 pages. The high costs of address space protection prevent FMM and Water

from making any meaningful progress, resulting in poor CPU utilization. We set a cutoff limit on

the runtime of 20 min, hence we omit the results of Variant-1 for FMM and Water in Table 2.5.

38

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Ocean

Vanilla

Variant-1

Variant-2

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Radix

Vanilla

Variant-1

Variant-2

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

PCA

Vanilla

Variant-1

Variant-2

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Ocean

Vanilla

Variant-1

Variant-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Radix

Vanilla

Variant-1

Variant-2

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

PCA

Vanilla

Variant-1

Variant-2

Figure 2.6: Performance of applications from Set-2 (moderate lock acquisition rate, typically 10 -
50K/sec) with Sammati on a 16 core system.

Sammati write-protects and un-write-protects an order of magnitude (104) fewer pages under

Variant-2. Hence, Variant-2 (shown in Figure 2.3.2) incurs significantly lesser overhead compared to

Variant-1. Recall that in Variant-2 all shared data is maintained in read-only form. When updates

to shared data occur outside a lock context, we store the page address in a write-set list and change

the page permissions to read/write. At the acquisition of the next lock, we only change the page

permissions of pages in the write-set list to read only, thereby avoiding the cost of write protecting

the entire data space. Variant-2 is biased towards fine-grain locking where the lock context writes

are small (shown in Table 2.6), which is true for Barnes, FMM and Water.

The write-set in a lock context is invariant in both the variants of Sammati since the number

of pages modified within a lock context is identical for a given problem. The total number of

pages modified in a lock context (shown in Table 2.4) is identical to the number of pages map

shared (shown in Tables 2.5 and 2.6). This indicates that the overhead due to the write-set in

39

Table 2.7: Characteristics of applications in Set-2.
Benchmark Threads Total Locks Lock Rate Pages Modified in Lock Context

(locks/sec) Total Min Max Avg

Ocean

1 173 0.40 173 1 1 1
2 346 1.56 268 0 2 0.78
4 692 6.29 422 0 4 0.61
8 1384 22.47 331 0 8 0.24

16 2768 66.47 496 0 16 0.18

Radix

1 4 0.03 4 0 1 1
2 17 0.25 15 0 2 1
4 43 1.22 28 0 4 0.65
8 95 5.27 66 0 8 0.7

16 199 20.47 133 0 16 0.67

PCA

1 10001 5.89 10001 1 1 1
2 10002 11.63 10002 1 2 2
4 10004 22.47 10004 1 4 4
8 10008 29.58 10008 1 8 8

16 10016 28.40 10016 1 16 16

both Sammati variants is identical. The choice between variants is determined by the number of

ordinary accesses and lock context accesses. When the write-set between lock contexts is large, the

cost of handling the access error and changing the page permissions outside lock contexts, as in

Variant-2, incurs more overhead compared to Variant-1. The results from Set-1 show that Sammati

is capable of performing deadlock detection and recovery even when subject to extreme conditions.

Set #2

Figure 2.3.2 illustrates the performance of Sammati and Pthreads for applications in Set-2. Ocean

acquires approximately 2.7K locks, and Radix acquires 200 locks and performs 159 condition sig-

nals (shown in Table 2.10), and PCA acquires 10K locks. The lock acquisition rate (shown in

Table 2.7) is significantly lower compared to applications in Set-1. Consequently, Sammati’s per-

forms relatively well with modest overhead for most applications in Set-2 compared to applications

in Set-1

Ocean has a reasonably large memory footprint (≈ 14GB) compared to the remaining benchmarks

in Set-2, consequently, even though it acquires fewer locks and modifies very little data (≈ 500

pages for 16 threads) under lock context, it incurs a noticeable reduction in speedup due to the

cost of address space protection and un-protection. Ocean accesses a significant amount of data

40

Table 2.8: Profile of applications in Set-2 with Sammati (Variant-1).
Benchmark Threads Total Pages

Write-protected Access faults Map shared Un-write-protected

Ocean

1 628473535 173 173 628473535
2 1257285458 268 268 1257285458
4 2515604764 422 422 2515604764
8 5034055032 331 331 5034055032

16 10076928912 496 496 10076928912

Radix

1 4210964 4 4 7369187
2 17896597 15 15 29476748
4 45267863 28 28 83166539
8 100010395 66 66 177913229

16 209495459 133 133 376881278

PCA

1 1966286609 10001 10001 1966286609
2 1966483218 10002 10002 1966483218
4 1966876436 10004 10004 1966876436
8 1967662872 10008 10008 1967662872

16 1969235744 10016 10016 1969235744

Table 2.9: Profile of applications in Set-2 with Sammati (Variant-2).
Benchmark Threads Total Pages

Write-protected Access faults Map shared Un-write-protected

Ocean

1 34004498 35053769 173 35053596
2 34012951 35062312 255 35062057
4 34611493 35661236 365 35660871
8 34629415 35679417 592 35678825

16 35326938 36377572 648 36376924

Radix

1 1572987 2097221 4 2097217
2 1575085 2099823 13 2099810
4 1577260 2102520 31 2102489
8 1581628 2107920 59 2107861

16 1590355 2118721 122 2118599

PCA

1 50053311 50063312 10001 50053311
2 50053311 50063313 10002 50053311
4 50053311 50063315 10004 50053311
8 50053311 50063319 10004 50053311

16 50053311 50063327 10016 50053311

Table 2.10: Profile of POSIX condition variables (signals/waits) in Radix.
Threads Condition Variables

1 3
2 11
4 36
8 74

16 159

41

(≈ 3.7 × 107 pages) outside the lock context and only a few hundred pages within a lock context.

Since Variant-2 tracks (page granularity) ordinary accesses, it incurs more overhead compared to

Variant-1.

Sammati’s Variant-1 on average write-protects and un-write-protects approximately twice the num-

ber of pages with increasing threads in Ocean, for example, 1 × 1010 with 8 threads and 2 × 1010

pages for 16 threads. Hence, we find Variant-1 incurs a performance overhead compared to native

pthread execution as we increase the number of threads. This runtime cost of address space protec-

tion precludes Variant-1 from scaling with increasing number of threads and consequently results

in a reduction in speedup.

Radix uses condition signals (shown in Table 2.10). Recall that Sammati propagates the lock

context memory updates prior (in program order) to performing the actual condition signal/wait

operation. The runtime performance of Variant-1 for Radix is comparable to native pthread exe-

cution. Radix performs several (≈ 104) orders of magnitude more ordinary accesses (writes) over

lock context writes, consecutively, Variant-2 incurs more overhead than Variant-1.

The performance of Variant-1 for PCA is identical to native pthread execution and the performance

of Variant-2 is comparable to native thread execution and Variant-1. Similar to Radix, PCA has a

relatively low write-set (10016 pages) and acquires fewer locks with low lock acquisition rate. The

number of ordinary accesses (≈ 5 × 107), lock context access (10016 pages), and the number of

pages write-protected (≈ 1.9 × 109 pages) remain constant with increasing number of threads as

shown in Tables 2.8 and 2.9. Consequently, both variants of Sammati scale well.

Set #3

The performance of applications in Set-3 as shown in Figure 2.3.2 is comparable to native pthread

execution. LU-CP and LU-NCP have relatively few of ordinary accesses and lock context accesses

(shown in Tables 2.12 and 2.13), thus, significantly reducing the overall cost of address space

protection. Additionally, these applications also acquire few locks and have a significantly lower

42

 20

 25

 30

 35

 40

 45

 50

 55

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

FFT

Vanilla

Variant-1

Variant-2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

LU-CP

Vanilla

Variant-1

Variant-2

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

LU-NCP

Vanilla

Variant-1

Variant-2

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

FFT

Vanilla

Variant-1

Variant-2

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

LU-CP

Vanilla

Variant-1

Variant-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

LU-NCP

Vanilla

Variant-1

Variant-2

Figure 2.7: Performance of applications from Set-3 (low lock acquisition rate, typically 0.5 - 10/sec)
with Sammati on a 16 core system.

Table 2.11: Characteristics of applications in Set-3.
Benchmark Threads Total Locks Lock Rate Pages Modified in Lock Context

(locks/sec) Total Min Max Avg

FFT

1 1 0.02 1 1 1 1
2 2 0.06 2 1 2 2
4 4 0.16 4 1 4 4
8 8 0.37 8 1 8 8

16 16 0.78 16 1 16 16

LU-CP

1 1 0.01 1 1 1 1
2 2 0.05 2 1 2 2
4 4 0.19 4 1 4 4
8 8 0.68 8 1 8 8

16 16 2.01 16 1 16 16

LU-NCP

1 1 0.01 1 1 1 1
2 2 0.03 2 1 2 2
4 4 0.12 4 1 4 4
8 8 0.44 8 1 8 8

16 16 1.50 16 1 16 16

43

Table 2.12: Profile of applications in Set-3 with Sammati (Variant-1).
Benchmark Threads Total Pages

Write-protected Access faults Map shared Un-write-protected

FFT

1 790634 1 1 790634
2 1581268 2 2 1581268
4 3162536 4 4 3162536
8 6325072 8 8 6325072

16 12650144 16 16 12650144

LU-CP

1 36867 1 1 36867
2 73738 2 2 73738
4 147492 4 4 147492
8 295048 8 8 295048

16 557552 16 16 557552

LU-NCP

1 36865 1 1 36865
2 73730 2 2 73730
4 147460 4 4 147460
8 294920 8 8 294920

16 589840 16 16 589840

Table 2.13: Profile of applications in Set-3 with Sammati (Variant-2).
Benchmark Threads Total Pages

Write-protected Access faults Map shared Un-write-protected

FFT

1 524397 1048785 1 1048784
2 524397 1048821 2 1048819
4 524397 1048888 4 1048884
8 524397 1049024 8 1049016

16 524397 1049296 16 1049280

LU-CP

1 32918 65695 1 65694
2 32920 82149 2 82147
4 32924 91174 4 91170
8 32932 97200 8 97192

16 32947 103154 16 103138

LU-NCP

1 32787 65555 1 65554
2 32787 98317 2 98315
4 32787 163841 4 163837
8 32787 294889 8 294881

16 32787 556985 16 556969

44

lock acquisition rate (shown in Table 2.11) compared to applications from Set1 and Set2, thus

resulting in negligable runtime overhead. The number of pages write-protected and un-write-

protected in Variant-1 and Variant-2 are identical for LU and LU-NCP, hence, they have similar

performance characteristics compared to native thread execution.

FFT has a slightly higher runtime overhead compared to LU-CP and LU-NCP and its overall

performance is comparable to native thread execution. The overhead stems from the additional cost

of address space protection. In FFT Sammati write-protects and un-write-protects approximately 2

orders of magnitude more pages than LU-CP and 3 orders of magnitude more pages than LU-NCP.

Set #4

Figure 2.3.2 illustrates the performance of Sammati and Pthreads for applications in set-4. The

applications in set-4 do no acquire any locks. We nevertheless use these benchmarks in our ex-

perimental analysis to measure the overhead of our cords infrastructure (described in Section 2.2).

The results show that Sammati’s cords mechanism incurs no performance overhead and Sammati’s

performance is comparable to native thread execution.

Memory Overhead

Sammati’s memory overhead stems from Sammati’s metadata and the transient memory overhead

due to privatization of memory updates.

Memory OverheadSammati = Sammati′s metadata +

write set× cost of privatization (creating copy)

Sammati’s metadata is relatively small at approximately 1 − 2 MB independent of the number of

cords. The privatization memory overhead is incurred when the application is in a critical section,

as discussed in Section 2.2.3. This overhead stems from maintaining twin copies of a page, which

are then used to compute XOR differences during inclusion. Note that the twin pages are freed at

the end of the critical section, i.e., this memory overhead is transient. The memory footprint of the

45

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Kmeans

Vanilla

Sammati

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Matrix Multiply

Vanilla

Sammati

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 2.2

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Linear Regression

Vanilla

Sammati

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Kmeans

Vanilla

Sammati

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Matrix Multiply

Vanilla

Sammati

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Linear Regression

Vanilla

Sammati

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16

T
i
m
e

(
s
e
c
)

Number of Threads

Histogram

Vanilla

Sammati

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 2 4 6 8 10 12 14 16

S
p
e
e
d
u
p

(
T
s
/
T
p
)

Number of Threads

Histogram

Vanilla

Sammati

Figure 2.8: Performance of applications from Set-4 (extremely low lock acquisition rate, typically
0 - 0.5/sec) with Sammati on a 16 core system.

46

Thread-1

Acquire (L1);
 ...
 sleep (2);
 Acquire (L2);

Acquisition of L2
by Thread-1
causes Threads 1
& 2 to Deadlock

(a)

Thread-2

sleep (1);
Acquire (L2);
 ...
 Acquire (L1);

L1 is chosen as
the candidate
for rollback

Thread-1

Acquire (L1);
 sleep(1);
 Acquire (L2);

(b)

Thread-2

Acquire (L2);
 sleep (2);
 Acquire (L3);

Thread-3

Acquire (L3);
 sleep(3);
 Acquire (L1); Acquisition of

L1 by Thread-3
causes Threads
1 & 3 to
Deadlock

L3 is chosen as
the candidate
for rollback

Thread-1 is
blocked
waiting for L2 Thread-2 is

blocked
waiting for L3

Figure 2.9: (a) Illustrates a simple deadlock between two threads due to cyclic lock acquisition. (b)
Depicts a more complex example of deadlock involving more than two threads.

twin pages is proportional to the write-set in pages within a critical section. In principle, this is

similar to the memory overhead of software transactional memory systems, except that Sammati

operate at page granularity. To quantify this overhead, we measured the minimum, maximum and

average number of twin pages within any critical section, which yields the upper bound on the

transient memory overhead of Sammati. We present this information in Tables 2.4, 2.7 and 2.11.

A majority of the applications, including Ocean, Radix, PCA, FFT, LU-CP, and LU-NCP, modified

only a few pages within any given critical section. The sum of the maximum number of twin pages

for all cords was ≈ 16 pages. Barnes, FMM, and Water from Set-1 modified 308, 49, and 32 pages,

respectively, for 16 cords. Consequently, Barnes incurred the highest memory overhead of 1.203

MB (308 × 4K) of memory, FMM incurred a memory overhead of 196 K (49 × 4K), and Water

incurred an overhead of 128 K (32× 4K).

47

2.3.3 Deadlock Detection and Recovery

We created a synthetic benchmark suite that contains programs prone to deadlocks. We designed

these programs to deterministically and randomly deadlock during the course of their execution.

Additionally, we subjected Sammati to synthetic programs containing examples of deadlocks, taken

from existing literature including [75, 9, 43, 42, 108]. In Figure 2.9 we present examples from our

synthetic benchmark suite. In the first example, two threads (shown in Figure 2.9(a)) acquire locks

(L1 and L2) in different orders that could potentially result in a cyclic dependency among threads

depending on the ordering of the threads. In order to induce a deadlock, we added a sleep statement

to thread 1 after the acquisition of lock L1. This results in a deterministic deadlock among the two

threads. In Figure 2.9(b) we illustrate a more complex example involving a cyclic dependency of

lock acquisition among multiple threads. The native Pthreads program hangs on such deadlocks.

Sammati detects such deadlocks, recovers from them transparently and executes the program to

completion.

2.3.4 Summary of Results

The experimental results indicate that Sammati is capable of handling applications that employ

extreme fine-grain locking (e.g., 640K/sec for Barnes, 265K/sec for FMM, 70K/sec for Water).

Sammati incurs a transient memory overhead of 2x over the total write set of a critical section.

The memory overhead ranged between 64K to 1.203MB across all the applications used in this

study. On the whole, while Sammati performs reasonably well across the spectrum of applications

from the SPLASH and Phoenix suites, we find that address space protection and privatization

costs primarily contribute to Sammati’s runtime overhead. The performance of Sammati’s cords

mechanism is almost identical to the performance of native pthreads applications and incurs no

overhead for applications with relatively low lock rates. We show that is possible to efficiently

design and implement a runtime system that is capable of transparently detecting and recovering

from deadlocks.

48

2.4 Limitations of Pure Runtime Approach

Although Sammati’s pure runtime approach can deterministically and transparently detect and

recover from deadlocks without requiring any modifications to the application, complier, or the

operating system, there are some limitations.

2.4.1 Thread-Local Storage (TLS)

Sammati does not recover program state involving Thread-Local Storage (TLS) data in the event of

a deadlock. We briefly discuss the semantics of TLS data (denoted by thread in type information

of a variable) and discuss the problem. In programs that employ TLS data, the dynamic linker, ld,

allocates the zero initialized and un-initialized data in the .tbss section and the non-zero initialized

data in the .tdata sections of the object file (.o). The linker creates an initial image of the TLS

data (.tdata and .tbss) prior to the program execution starting at main and passes a copy of this

image to each thread. In the presence of shared libraries (.so), the image is created when the shared

library is loaded by the loader (lazy binding). Each thread receives a copy of the saved TLS state

and any updates to the TLS are local to each thread.

To successfully recover from a deadlock, the entire program state of the thread should be recovered,

including the global data, heap, stack, and TLS data. Unfortunately, recovering the TLS data is

challenging. Since the TLS data in shared libraries and other program dependancies are not known

a priori, it is practically not feasible to determine the TLS region transparently, thus precluding

Sammati from employing address space protection to track updates to TLS. Chapter 3 presents a

comprehensive solution to address this issue.

2.4.2 Deadlock Recovery

Sammati can detect all deadlocks. However, it cannot recover from certain deadlocks if recovery

involves unrolling non-idompotent actions such as I/O, condition signals, semaphores, etc. This is

49

an open research problem.

2.4.3 Ad-hoc Synchronization

Sammati’s privatization semantics conflict with applications that employ ad-hoc synchronization

within critical sections. Consequently, Sammati cannot support such applications. We explore this

topic in more detail in Chapter 3.

2.4.4 Address Space Protection Overhead

The high cost of address space protection and un-protection may preclude certain applications that

have relatively large memory footprint and lock rate to benefit from Sammati.

2.5 Related Work

Sammati is primarily designed to address deadlocks and provide a platform for an effective com-

position of lock-based codes. Additionally, Sammati is capable of detecting certain kinds of data

races (discussed in Section 2.2.7). In this section we briefly discuss literature related to deadlock

detection and recovery, and data races.

2.5.1 Deadlock Detection and Recovery

Static Analysis

Several systems [15, 29, 30, 97, 64, 88, 90, 107, 71, 102, 32] based on program analysis were proposed

to determine deadlocks. While program analysis can identify certain deadlocks based on information

obtained at compile time, unfortunately, it cannot identify all deadlocks in weakly typed languages

such as C or C++. Furthermore, such an approach may generate false positives in identifying

deadlocks resulting in spurious recovery actions. In contrast, Sammati is implemented as a pure

50

runtime system with optional compile time extensions. Sammati’s runtime employs a deterministic

algorithm to detect and eliminate deadlocks with no false positives or negatives. Furthermore,

Sammati does not require any modifications to the source code and it is completely transparent to

the application.

Dynamic Analysis

Dynamic analysis tools [52, 3, 8, 34, 35, 43, 45, 77, 105] detect deadlocks at runtime. We discuss

several in detail.

Li et al. [52] proposed Pulse, an operating system technique to dynamically detect deadlocks. Pulse

scans for processes that are blocked for prolonged periods of time. To identify deadlocks Pulse

speculatively executes the blocked processes to identify dependencies. Pulse builds a resource

graph and traverses it to detect cycles (deadlocks). Pulse can also detect deadlocks that occur

due to semaphores and pipes in addition to locks. To ensure safety and program correctness,

Pulse cannot perform I/O while speculatively executing processes, which can lead the program to

traverse potentially incorrect code-paths, resulting in false positives. Additionally, Pulse suffers

from several false negatives and cannot detect all deadlocks that occur at runtime. For instance, if

the granularity of monitoring for deadlocks is large, or if the speculative process executes code paths

that are different from the future events that the blocked process would perform when awakened. In

contrast Sammati, does not require any modifications to the operating system and does not involve

any false positives or negatives. Additionally, Sammati is capable of recovering from deadlocks,

unlike Pulse.

Harrow [34] proposed Visual Threads, a framework to check concurrency bugs at runtime. Visual

Threads instruments the binary of the program and collects traces of events (lock acquisitions,

releases, etc.). It then uses the events to model the execution of the application using a state

machine and employs runtime checks to detect bugs including deadlocks. Bensalem et al. [8, 7]

proposed a runtime verification algorithm to detect potential deadlocks in applications written

in Java. In their approach they instrument the bytecode to collect a program execution trace

51

composed of a sequence of events. Their algorithm applies a set of rules on the stream of events

at runtime to detect potential deadlocks. The authors claim that their approach reduces the

number of false positives. Agarwal and Stoller [3] proposed a runtime technique to detect potential

deadlocks that arise due to semaphores, condition variables, and locks. In their approach they

collect execution traces for the program and generate feasible permutations of the program traces

to detect potential deadlocks. In contrast to such systems, Sammati does not collect any traces;

instead it deterministically detects deadlocks at runtime resulting in no false positives.

Joshi et al. [43] proposed a technique called Deadlockfuzzer to detect deadlocks. Their approach

employs an imprecise randomized scheduler to create deadlocks with a certain probability. They

propose an extension of the Goodlock [35] algorithm to detect potential deadlocks in multi-threaded

applications. In contrast, Sammati employs a deterministic alogrithm to detect deadlocks and is

capable of recovering from deadlocks, unlike Deadlockfuzzer.

Jula et al. [45] proposed Dimmunix to enable applications to develop immunity to deadlocks.

Dimmunix captures the signatures of deadlocks as they occur during execution and it aims to

avoid entering into the same pattern that resulted in a deadlock. Dimmunix’s runtime maintains

a history of deadlocks and intercepts all lock acquisition and release operations. For every lock

acquisition, Dimmunix sends a request message to its deadlock avoidance thread to determine if

it is safe to acquire a lock. The deadlock avoidance thread employs a resource allocation graph

to represent a program’s synchronization state, and control flows to identify code paths that led

to a deadlock. Dimmunix avoids deadlocks by maintaining the state information of each deadlock

pattern that occurs at runtime and aims to prevent such future occurrences through deadlock

prediction. Dimmunix is capable of handling a wide-range of applications including those written

in Java, C, and C++. Unfortunately, it is susceptible to false positives.

Qin et al. [77] proposed Rx, a technique to recover programs from software bugs. In their study,

they checkpoint the application periodically and upon a software failure, rollback the program to

the most recent (in program order) checkpoint, and re-execute the program under a new environ-

ment (perturbed original environment by artificially introducing noise, e.g., delay freeing of buffers,

52

asynchronous signaling, etc.). Rx requires modifications to the kernel and the application. Rx is

capable of detecting a wide range of software bugs. In contrast, Sammati detects only deadlocks

and certain kinds of data races, but does not require any modifications to the operating system. Ad-

ditionally, Sammati performs efficient deadlock recovery without requiring a complete application

checkpoint and the associated overhead.

In another study, Wang et al. [105, 106] proposed Gadara, a technique to avoid deadlocks. Gadara

employs program analysis to develop a model of the program. It then employs discrete control

theory to process the control flow that avoids deadlocks in the model. Gadara then instruments

the program source with hooks to the runtime. These hooks control the execution flow of the

program avoiding potential deadlocks.

Recently, Gerakios et al. [31] proposed a deadlock avoidance technique. In their approach, they

employ program analysis to collect the order of lock acquisitions and releases. They propose that a

deadlock can be efficiently avoided if information is available on the lock currently being requested,

and the set of locks acquired between the lock acquisition and its subsequent release, referred to

as future set of the lock. To avoid deadlocks, in their approach, they grant a lock only when both

the requested lock and its future lockset are available. Their approach suffers from the several

limitations of program analysis. In contrast, Sammati employs a pure runtime approach that uses

a deterministic algorithm to detect and eliminate deadlocks. Sammati does not rely on source

analysis or require any modifications to the source code.

Berger et al. [9] proposed Grace, a runtime system that eliminates concurrency bugs including

deadlocks. Grace employs sequential composition of threads with speculative execution to achieve

speedup. Grace supports applications written to leverage fork-join parallelism. Grace treats locks

as no-ops and consequently eliminates deadlocks. In contrast Sammati is capable of supporting a

broad range of applications, not necessarily those limited to fork-join parallelism.

Joshi et al. [42] proposed CheckMate to detect a broad range of deadlocks resulting from locks,

condition variables, and other forms of synchronization primitives. CheckMate collects a program

trace during a deadlock free run and records operations such as lock acquisitions, releases etc.,

53

relevant to finding deadlocks. It then employs a model checker to explore possible thread interleav-

ings from the information collected in the program trace. The model checker checks for potential

deadlocks. CheckMate is a predictive dynamic analysis tool, so it is prone is false positives and

false negatives.

Several techniques [62, 63, 89, 16, 28] based on increasing thread interleaving through scheduler

noise were proposed to increase the chances of detecting bugs while testing concurrent programs.

In contrast to such systems, Sammati employs a deterministic algorithm to detect and eliminate

deadlocks that occur during a particular execution of a program. Sammati does predict potential

deadlocks that might arise during other interleavings of program execution.

2.5.2 Transactional Memory (TM)

Transactional memory [36, 91] introduces a programming model where synchronization is achieved

via short critical sections called transactions that appear to execute atomically. The core goal

of transactional memory is to achieve composability of arbitrary transactions, while presenting

a simple memory model. Similar to lock based codes, transactions provide mutual exclusion.

However, unlike lock based codes, transactions can be optimistically executed concurrently, leading

to efficient implementations. Sammati may be viewed as a pessimistic STM without optimistic

concurrency. Other studies [84, 103] have focused on the usefulness of TM and applying the utility

of transactions to meet synchronization requirements. Recently, Volos et al. [103] studied the

effectiveness of TM in fixing concurrency bugs. In their study they developed custom bug fixes

with transactional semantics to fix concurrency bugs. In contrast, Serenity is a debugging tool.

2.6 Summary

In this chapter we presented Sammati, a runtime system for transparent deadlock detection and

recovery in POSIX threaded applications written in type-unsafe languages such as C and C++.

We implemented the runtime system as a pre-loadable library and its use does not require either

54

the application source code or recompiling/relinking phases, thereby enabling its use for existing

applications with arbitrary multi-threading models. We discussed the design, architecture, and

limitations of Sammati. We presented the results of a performance evaluation of Sammati using

SPLASH, Phoenix and synthetic benchmark suites. Our results indicate that Sammati performs

reasonably well even in the presence of fine-grain locking.

Chapter 3

A Program Analysis and Runtime

Approach

In Chapter 2 we presented a pure runtime approach for detecting and eliminating deadlocks. Sam-

mati operates on native binaries; it neither requires access nor any modifications to source code.

While this works for certain applications, the high costs of address space protection and privati-

zation may preclude certain applications that have reasonably large memory footprint and lock

rate to benefit from Sammati. Furthermore, Sammati comes with other limitations (discussed in

Section 2.4).

In this chapter we present techniques to address prior limitations and realize our vision as Seren-

ity [76]. Serenity leverages containment and propagation techniques from Sammati and improves

upon Sammati’s deadlock detection and recovery algorithms. Our observation here is that pro-

gram analysis and compile time instrumentation can guide a runtime to efficiently achieve memory

isolation. By enforcing the following two design constraints — availability of program source and

recompilation/relinking of program source which are otherwise relaxed in our pure runtime ap-

proach, we can build a practical system that can eliminate deadlocks in real-world applications and

achieve wide spread acceptance.

55

56

1: lock (L1)
2: ...
3: lock (L2)
4: load %reg1 ← [a]
5: add %reg1← %reg1, 1
6: store [a] ← %reg1
7: unlock (L2);

8: load %reg2 ← [a]
9: store [c] ← %reg2

10: lock (L3);
11: load %reg3 ← [b]
12: add %reg3 ← %reg3, 1
13: store [b] ← %reg3
14: store [a] ← %reg3
15: unlock (L3);
16: ...
17: unlock (L1);

should load contents
from actual address of a

Implicit Lock (L1):
should load contents
from shadow address a'

Implicit Lock (L1):
should perform store at
shadow address c'

should load contents
from a' to a" and then
perform store at shadow
address a''

should perform store at
shadow address a'

Thread T:

Figure 3.1: Challenges in isolating memory updates.

The rest of the chapter is organized as follows. Section 3.1 presents the runtime system of Seren-

ity. Section 3.2 presents the compile time extensions employed by Serenity. Section 3.3 presents

a comprehensive performance evaluation of Serenity. Section 3.4 discusses the limitations of our

approach. Section 3.5 reviews existing systems for deadlock detection and recovery, noting differ-

ences with our approach. Section 3.6 compares this work with the transactional memory systems.

Section 3.7 describes future directions and Section 3.8 summarizes this chapter.

3.1 Runtime System

Serenity’s runtime system is responsible for containment and propagation of memory updates,

deadlock detection and recovery, and detection and recovery from several other programming errors.

3.1.1 Isolating Memory Updates

To achieve efficient isolation and be able to support granular deadlock recovery and resolve priority

inversion, we need mechanisms to a) associate memory updates with specific locks (for instance,

57

in a nested lock sequence, updates within each lock should be distinctly identified and associated

with the corresponding lock), and b) isolate these memory updates from being visible until all locks

protecting a critical section are released.

In languages that permit direct memory accesses through pointers, associating memory updates

with distinct locks cannot be done precisely at compile time. Providing efficient isolation and

containment of memory updates within critical sections presents additional challenges. Consider

the example shown in Figure 3.1. If the variable a is written under lock L2 by a thread T, then

the system should prevent the update from being visible to other concurrently executing threads.

Second, the isolation mechanism must also guarantee program order in that any successive reads to

variable a by thread T should return the value most recently written to a by T. Third, to enable

granular deadlock recovery the isolation mechanism must distinguish and isolate data modified

under distinct locks, e.g., the variable a in Figure 3.1 is modified under two locks, L2 and L3.

To implement an efficient isolation mechanism, Serenity defines two contexts of execution for a

thread, lock context if it is executing a critical section protected by one or more locks, and ordinary

context if it does not hold any locks. To perform isolation, in a lock context Serenity’s runtime

replaces stores to the actual target address with stores to a different virtual address called the

shadow address. Hence any memory updates are localized to the thread executing the critical

section, thereby implementing containment. To distinguish memory updates under distinct nested

locks (Figure 3.1), each nested lock creates a new mapping between target addresses and shadow

addresses, in effect shadowing the shadow address. Reads (loads) are serviced from the most

recently (in program order) shadowed address if one exists; otherwise they are read from the actual

virtual address, thus ensuring program order.

In the discussion above, we overlooked the memory alignment used by the shadowing mechanism.

Modern ISAs such as x86 permit arbitrary byte alignment of memory addresses and arbitrary length

stores (up to the ISA’s word length). The use of bitfields in languages such as C further complicates

the problem. Our observation here is that the LLVM IR provides an idealized 64 bit ISA. Aligning

all target addresses (and shadow mappings) to 64 bits and then tracking bit level updates within the

58

yes

associate
store with a
mutex (L)

no

i) create a new 64 bit
aligned shadow address

ii) save the original value
at aligned target address
in twin

iii) copy the current
contents of aligned 64 bit
address to aligned shadow
address

iv) save aligned address,
twin and shadow address
in L's write-set list

v) insert node of write-set
list as data and the
aligned target address as
key in program order hash
table

vi) insert aligned target
address as key and
aligned shadow address as
data in L's hash table

vii) perform store at the
new shadow address

i) create new 64 bit
aligned shadow address

ii) copy the content at the
current shadow address in
program order hash table
to the newly created
shadow address

iii) update the write-set
list in program order hash
table with the new shadow
address

iv) update the shadow
address for aligned target
address in L's hash table

v) perform store at the
newly created shadow
address

in lock context

no

perform store at shadow
address

64 bit aligned
address in L's
hash table

64 bit aligned
address in
program order
 hash table

yes

Figure 3.2: Isolating Store

59

64 bit boundary enables us to implement shadowing at arbitrary address and length granularity.

Bit level updates are efficiently tracked using a word length version of the twin/diff technique

used in distributed shared memory (DSM) systems (TreadMarks [4]) for identifying false sharing.

In this technique (DSM systems used this technique at 4K page granularity, we use it at 64 bit

granularity), before a store is performed, we copy the original contents (64 bits) to a memory

location called the twin. After the store is performed, the exact set of bits modified by the store

can be determined by computing the XOR of the updated contents with the twin. Since the

maximum length of an update in the LLVM 64 bit IR cannot exceed the register length of 64 bits,

this technique efficiently captures arbitrary updates at bit level granularity, without requiring byte-

level shadowing or interval trees that can handle partially overlapped load and store operations.

This shadowing technique represents the optimized culmination of several failed attempts and is

nearly an order of magnitude faster than the best known shadowing methods [81].

In the rest of this discussion, we use the term critical section to refer to the entire scope of the

outermost lock in a nested lock sequence, e.g., scope of lock L1 in Figure 3.1.

Shadowing Stores

Figure 3.2 illustrates how Serenity implements shadowing of stores within a critical section. Given

a target address on the heap, its length and type, the runtime system identifies the latest lock

acquisition (L) in program order and associates the store with L. The runtime then computes a 64

bit aligned version of the target address (i.e., target address & 0xfffffffffffffff8). The system checks

if the aligned address is associated with any other lock previously acquired within the same critical

section. In order to accomplish this, we employ a program order hash table common to all locks

acquired by the thread within a single critical section. As the name implies, the program order

hash table tracks the mapping between a target address and a shadow address in program order.

If an entry exists in the program order hash table, this implies that a store was performed previously

on the aligned address within the same critical section either under lock L or in the context of a

different lock. In order to efficiently perform this lookup, we use a hash table associated with each

60

instance of a lock (including implicit locks), with the aligned address as key and its corresponding

64 bit shadow address as data. If an entry exists in L’s hash table, the runtime performs a store on

the previously assigned shadow address. Else, to distinguish between updates to the same address

under different locks, the runtime (a) creates a new shadow address and copies the contents from

the previous shadow address per the program order hash table, (b) performs the store at the newly

created shadow address, and (c) updates the program order hash table and L’s hash table with the

new shadow address mapping.

The absence of an entry in the program order hash table indicates that this is the first store to the

address within the critical section. In this case, the runtime creates a new shadow address mapping

and copies the contents at the 64 bit aligned target address to the newly created 64 bit shadow

address. It then (a) saves the original contents at the aligned target address in a twin, (b) performs

the store at the shadow address, and (c) updates L’s hash table and the program order hash table

with the new shadow address mapping for the aligned target address.

Since a large critical section may have a significant number of memory updates, we need to minimize

the cost of creating and destroying the tables. The cost of creating hash tables is reduced by

maintaining a free list of hash tables. To reduce the overhead of deleting all the entries from the

hash tables on successful completion of a critical section, we use a novel aging technique. Each

hash table and each hash entry has a monotonically increasing epoch variable. When the runtime

obtains a hash table from the free list it increments the epoch of the hash table, and every time an

entry is inserted in the hash table, the runtime sets the hash entry’s epoch to the epoch of the hash

table. If an entry already exists in the hash table for a given key and if the entry’s epoch is less

than the hash table’s epoch, the runtime simply reuses the shadow address. In effect, the epoch

variable implements a Lamport clock that defines the age of the hash entry. At the completion of

a critical section, the hash table is simply returned to the free list without clearing its entries. This

technique allows us to reap older hash entries (defined as hash entry’s epoch < hash table epoch)

optimistically and avoids the significant cost of clearing hash table entries on inclusion. This data

structure, which has O
(
1
)

construction and destruction time, more than halved the overhead of

61

perform load
from original
address

yes perform load
from shadow
address

in lock context

64 bit aligned
address in
program order
 hash table

no

Figure 3.3: Isolating Load.

load/store instrumentation in Serenity.

Shadowing Loads

Figure 3.3 illustrates how Serenity’s runtime handles memory load operations. Given the target

address, its length and the type of the value being returned, the runtime computes the 64 bit

aligned address of the target address and checks the program order hash table to see if a prior store

has occurred on the aligned address. Recall that the program order hash table always points to

the most recently created shadow address for the aligned address. If an entry exists in the program

order hash table then the runtime returns the value from the shadow address reflecting the most

recent (in program order) store to that address. In the absence of an entry in the program order

hash table, the load operation directly reads the target address.

3.1.2 Propagating Memory Updates

Propagating updates in the presence of nested locks presents several challenges. Turning again

to the example in Figure 3.1, if the update to variable a protected by lock L2 were made visible

immediately after the release of L2, and subsequently a deadlock occurred on the acquisition of lock

L3, where the victim was thread T (holding L1), there would be no way to unroll the side-effects

of making the update to variable a visible. This would prevent Serenity from performing granular

deadlock recovery. Furthermore, in the presence of lock inversion it is not possible to transparently

determine the actual lock (or deduce the programmer’s intent) that is uniquely responsible for

62

(a)

Thread-1

lock (L1);
 ...
 while(!a) { }
 b = 1;
 ...
unlock (L1);

Thread-2

lock (L2);
 ...
 a = 1;
 while(!b) { }
 ...
unlock (L2);

update to 'a' by
Thread-2 is not
visible until the
release of L1 to
Thread-1 and
similarly update to
'b' by Thread-1 is
not visible to
Thread-2 until the
release of L2

int a = 0, b = 0;
Thread-1

 ...
 ...
 while(!a) { }
 b = 1;
 ...

Thread-2

lock (L1);
 ...
 a = 1;
 while(!b) { }
 ...
unlock (L1);

int a = 0, b = 0;

(b)

update to 'a' by
Thread-2 is not
visible to Thread-1

Figure 3.4: Side-effects of privatization and propagation semantics could result in a deadlock.

ensuring mutual exclusion on data.

To circumvent these issues, Serenity leverages the propagation semantics of Sammati discussed in

Section 2.1.2. We recap them for the sake of completeness. Serenity makes the modified state visible

to other concurrently executing threads only when all locks within a nested lock sequence have been

released. Additionally, to preserve the semantics of mutual exclusion, Serenity tracks the release

of locks in program order in a nested lock sequence and defers performing the intermediate lock

releases till all locks around a critical section have been released in program order. In the presence

of deferred releases, the runtime system elides a subsequent lock acquisition if a thread attempts to

reacquire a deferred release lock in the same nested lock sequence. Serenity first performs inclusion

of all memory updates (discussed in Section 3.1.3) prior to releasing the locks.

Recall that Sammati’s propagation semantics are prone to certain side-effects. Transforming lock

semantics to transactional semantics is shown to result in deadlocks [22, 23, 60] in the presence of

ad-hoc synchronization in critical sections.

Side-effects of Propagation Semantics

In Figure 3.4 we present a few examples based on Blundell’s et al.’s work [22, 23] on the subtleties

of transactional memory and atomicity semantics. Consider the example shown in Figure 3.4

(a). Threads 1 and 2 run to completion in the absence of Serenity’s privatization. Recall that

63

Thread-1

Acquire (L1);
 ...
 Barrier (B1);
 ...
Release (L1);

Thread-2

Acquire (L2);
 ...
 Barrier (B1);
 ...
Release (L2);

transforming unsafe ad-hoc
synchronization with POSIX
synchronization primitives
makes code robust

(b)

int a = 0, b = 0;

 while(!a) { }
 b = 1;

 a = 0;
 while(!b) { }

Thread-1

lock (L1);
 ...
 my_lock1(a,b);
 my_unlock1(a,b);
 ...
unlock (L1);

(a)

int a = 0, b = 0;
my_lock1(a, b)
{
 while(!a) { }
 b = 1;
}
my_unlock1(a, b)
{
 assert(a, b);
}

Thread-2

lock (L1);
 ...
 my_lock2(a,b);
 my_unlock2(a,b);
 ...
unlock (L1);

Figure 3.5: Simple transformations makes the example described in Figures 3.4 (a) and (b) circum-
vent the subtleties of Serenity’s propagation semantics and also makes the code safe.

privatization is used for containment of memory updates to facilitate recovery in the event of a

deadlock. However, in the presence of privatization, since the update to variable ‘b’ by Thread-1

is not made visible until the release of the lock L1, Thread-2 is unaware of the update and finds

the value of ‘b’ to be always 0. Similarly, the update to ‘a’ by Thread-2 is also not made visible to

Thread-1, resulting in a deadlock between threads 1 and 2. In Figure 3.4 (b) we present a similar

example as Figure 3.4 (a) except that the ad-hoc synchronization by Thread-1 is not protected by

a critical section.

In practice, codes that employ ad-hoc synchronization either in the presence of critical sections or

otherwise are not safe and such a programming practice is shown to result in several concurrency

bugs [108]. Furthermore, such codes assume and rely on certain memory consistency guarantees to

propagate the updates. For instance, the update to variable ‘a’ by Thread-2 may not be propagated

to other concurrently executing threads (e.g., Thread-1) potentially running on other cores unless

the program includes instructions to flush the memory updates immediately after the update.

Hence, it is possible that the examples shown in Figures 3.4 (a) and (b) may fail to run and result

in a deadlock on architectures that do not provide such guarantees, even in the absence of Serenity.

Providing support for mixed locking regimes (i.e., employing ad-hoc synchronization within critical

sections) conflicts with any runtime system that supports transparent (containment through pri-

vatization without modifying source code) deadlock recovery. Consequently, Serenity is incapable

64

...
lock(L1);
 a++;
unlock(L1);
...

Thread-1

...
lock(L2);
 b++;
unlock(L2);
...

Thread-2

int a=1, b=2;

shadow address (local to a thread)

virtual address space (shared among threads)

twin (local to a thread)

^

apply XOR at
target address

^

Virtual Memory Address

0x1000
21

&a

a b
0x1007

&b

0x1000
21
0x1007 0x1000

21
0x1007

^0x2042
2

0x2049
2

^0x4004
1

0x4011
3

[0x1000-0x1007]
21

[0x1000-0x1007]
21

0x1000
32
0x1007

Figure 3.6: Committing memory updates

of running such codes while providing the guarantee of a transparent deadlock recovery. Rather

than using ad-hoc synchronization schemes such as these, we recommend the use of traditional

POSIX spin-locks, condition variables and signaling, and barriers for synchronization. As shown in

Figure 3.5 (b), Serenity can then guarantee forward progress and transparent deadlock recovery.

Alternatively, in the event that the ad-hoc synchronization is an absolute necessity, the programmer

can provide Serenity with a wrapper around the ad-hoc synchronization in the form of a user-defined

lock as shown in Figure 3.5 (a).

65

3.1.3 Committing Memory Updates

To commit the updates to the program shared address space, Serenity must first determine the

exact set of bytes modified within a critical section. To accomplish this, for every address in

the critical section’s program order hash table, Serenity computes a bitwise exclusive-or (XOR)

difference between the contents at the shadow address and the twin. Recall that the twin is the

copy of the contents at the target address that was saved prior to performing a store at the shadow

address. This resulting difference precisely identifies the modified bits pointed to by the 64 bit

aligned address. Serenity then updates the contents of the target address with the exclusive-or

between the bytes it modified and the contents at the target address, thus making its updates

visible to other threads. Serenity then frees the shadow addresses and twins. Since the operation

of computing and applying the XOR differences to the target address space is a commutative

operation, Serenity does not require any explicit serialization.

In Figure 3.6 we present a simple example to illustrate concurrent commit of updates by two

different threads. The variables ‘a’ and ‘b’ are global and access to ‘a’ by thread T1 is protected

by a lock (L1); access to ‘b’ by another thread T2 is protected by a lock L2. Further, assume that

both ‘a’ and ‘b’ are integers, each occupying 4 bytes in length and that variable ‘a’ is stored starting

at a virtual address of 0x1000 and ‘b’ is stored at an address of 0x1004. When T1 performs a store

on variable ‘a’, under a critical section (L1), it first computes the 64 bit aligned address from the

virtual address, i.e, 0x1000. It then creates a shadow of the 8 bytes starting at 0x1000 at a shadow

address, say 0x2042, and saves a copy of the 8 bytes at the aligned virtual address 0x1000 in a

twin. Finally it performs a store starting at the byte-offset within the shadow address (also 64 bit

aligned) as shown in Figure 3.6. Similarly, T2 may concurrently create a shadow starting, at say

0x4004, and a twin while performing its store on variable ‘b’. On release of L1, T1 computes its

modified bytes and then applies them to the virtual address 0x1000, which is shared by all threads,

thereby propagating its updates to the remaining threads. Concurrently, T2 may release L2, and

commit its updates similar to T1 without impacting the correctness of the updates from T1.

66

3.1.4 Deadlock Detection

Serenity implements an efficient version of a waits-for graph described in Chapter 2.1.3. We briefly

discuss it for the sake of completeness. Serenity employs a waits-for graph G (T,→), where an edge

(→) from Thread Ti to Thread Tj in G implies that Ti is waiting for Tj to release a lock that Ti needs.

Cycles can occur between two (e.g., Ti → Tj ‖ Tj → Ti) or more (e.g., Ti → Tj ‖ Tj → Tk ‖ Tk → Ti)

threads. Serenity employs two key data structures to efficiently traverse G: the set of locks currently

owned (held) by a thread, and the lock on which a thread is currently waiting. These are represented

by the two hash tables holding set (key: lock, value: thread id T) and waiting set (key: thread id

T, value: lock), respectively. Since threads share a global address space, each thread can access

the lock ownership of all other threads.

The idea is that a thread Ti can detect a deadlock at lock acquisition by first performing a (non-

blocking) trylock to acquire the requested lock L. If the acquisition succeeds, Ti inserts L into its

holding set. If the acquisition fails (i.e., Ti → Tj), we use the holding set to find the thread Tj that

owns the lock L and check if Tj is waiting on another lock S held by some thread Tk, i.e., Tj → Tk.

If Tj is not waiting on any lock, then there is no cycle (hence no deadlock, but contention) and the

algorithm inserts L into the waiting set and Ti safely attempts to acquire L through a blocking lock

acquisition. If Tj is waiting on a lock S held by Tk, the algorithm checks to see if Tk is waiting on

another lock and so on. Intuitively, Serenity traverses the waits-for-graph to detect a cycle, which

indicates a deadlock. If a deadlock is detected, the corresponding lock held by thread Ti in the

holding set is ordinarily chosen as the victim (unless thread Ti performed any disk-I/O within the

critical section). We explain how serenity handles disk-I/O in Section 3.1.5.

Sammati serializes accesses to waiting and holding sets to preserve correctness of the waits-for

graph. Such serialization imposed at every lock acquisition by a thread has a significant impact on

the runtime performance of an application. Hence, Serenity implements a more relaxed approach

while guaranteeing the same determinism in detecting and recovering from a deadlock. A necessary

pre-condition for a deadlock is that a thread has to hold one or more locks and be waiting on at

least one lock. Our observation here is that a deadlock cannot occur when a thread attempts to

67

acquire the first lock protecting a critical section, since in this case, the thread does not hold any

prior locks. We use this observation to avoid running the deadlock detection and recovery algorithm

on the acquisition of the first lock.

3.1.5 Deadlock Recovery

Serenity leverages the deadlock recovery algorithm discussed in Section 2.1.4. For the sake of

completeness, we recap the recovery mechanism here. Once the deadlock detection algorithm

identifies a lock L for rollback, the algorithm then selects the oldest acquisition of L in the lock list

and uses its recovery point (execution context and stack) to recover from the deadlock.

Thread State and Heap

To recover from the deadlock, Serenity first discards all the memory updates1 performed in program

order associated with locks in the lock list including and after L. Note that here the memory updates

include the TLS regions, unlike Sammati. Serenity at compile time instruments all memory accesses

performed within a critical section including thread-local variables. Consequently, Serenity can

recover updates to TLS data. Second, it releases L and all the locks acquired after L in program

order of acquisition. Third, it removes all locks released from the holding set and restores the

execution context (longjmp) to the recovery point of L, which transfers control back to deadlock

free lock acquisition of the victim lock L. Serenity performs deadlock aware memory management

while recovering from a deadlock. Serenity exposes dynamic memory management through the

standard POSIX memory management primitives including malloc, calloc, realloc, valloc, free, and

the mmap family of calls. Serenity tracks all memory allocations and deallocations made within

a lock context. During recovery Serenity internally frees the allocations to prevent memory leaks.

Serenity buffers (delays) deallocations until all the locks protecting a critical section are released.

1includes updates to globals (.data, .bss), heap, stack, and thread local storage (TLS) regions of the virtual
memory.

68

Disk I/O

Serenity serializes disk I/O operations performed within critical sections. If a deadlock arises

between two threads that both performed I/O then it would be impossible to recover either of

them. Serenity defines a thread to be in an I/O context if it performs an I/O operation within

a lock context. A thread remains in an I/O context until it releases all the locks protecting its

critical section, essentially preventing multiple threads from entering into an I/O context. Serenity

does not serialize ordinary (non-lock context) I/O operations and I/O operations that happen

between a lock context and an ordinary region since they cannot result in deadlocks. In the

event of a deadlock, Serenity forces a non-I/O context thread to rollback, thus biasing the deadlock

recovery algorithm to selecting a victim that has not issued an I/O operation. Additionally, Serenity

treats thread/process creation and termination operations performed within a critical section as

performing a disk I/O operation and precludes such threads from having to rollback by employing

a bias against their selection during recovery. Serenity’s runtime tracks all disk I/O primitives such

as read, write, fread, fwrite, etc., and all thread creation/termination primitives such as fork, clone,

etc., to ascertain if such operations are performed within a lock context.

3.1.6 Detecting Programming Errors

Serenity is capable of detecting certain concurrency bugs that commonly occur in practice in lock

based codes. We briefly discuss these capabilities of Serenity.

Detecting Asymmetric Write-Write Data Races

Serenity can detect and identify all write-write data races that occur during an execution due

to a) protected and concurrent unprotected updates to shared data and, b) improperly protected

updates where the same shared data is modified concurrently under two or more distinct locks. The

update performed in a critical section can be obtained by the exclusive-or difference between the

twin and its corresponding content at the shadow address (discussed in 3.1.3). A non-zero value

69

at byte granularity indicates that the critical section has modified the corresponding byte. While

committing the updates, by comparing the modified bytes in the twin with its equivalent byte in

the target address space, Serenity determines if a particular byte has been modified both within

the critical section performing inclusion and outside it.

Priority Inversion

Priority inversion is a well-known problem in real-time lock based programming. It occurs when

a low priority thread acquires a lock L and is then preempted by a high-priority thread, which

then blocks on the acquisition of L. The common solution to this problem is a heuristic called

priority elevation, where the high priority thread elevates the priority of the low priority thread

and relinquishes processor control in an attempt to get the low priority thread to complete its

critical section and relinquish L. Priority elevation only works if the deadline for the high priority

thread is sufficiently far in the future for it to relinquish control and not miss the deadline. Since

Serenity contains all memory side-effects within a lock context, if a high priority thread is waiting

on a low priority thread, the runtime can simply signal the low priority thread to abort the lock.

Here aborting a lock in the low priority thread involves the same actions as deadlock recovery—

discard memory updates, release the lock, restore program stack and restore control to just before

lock acquisition in the low priority thread. We can delay the acquisition of the lock by the low

priority thread until the high priority thread acquires the lock. The high priority thread can then

acquire the necessary lock and make progress towards its deadline.

Asynchronous Signaling

In the presence of POSIX asynchronous signaling, programmers often erroneously assume a partic-

ular execution order among the threads. For instance, a thread may send a signal to another thread

prior (in program order) to the recipient thread performing a wait (cond wait) operation. Seren-

ity tracks the POSIX condition signaling primitives. By observing the program ordering among

condition variables (waits and their corresponding signals), Serenity can monitor lost signals or

70

broadcasts. We note that this form of order violation may not always be malicious; Serenity can be

configured to ignore such an occurrence, throw a warning message, or raise an error in the presence

of bugs.

Locks and Performance

Serenity can also detect programming errors involving locks, e.g., a thread attempting to release

a lock without its corresponding acquisition. Furthermore, recent studies [38, 108] have shown

that concurrency bugs can cause significant performance issues in addition to incorrect program

behavior. Serenity can also provide useful performance statistics such as the number of memory

accesses (loads/stores) performed within critical sections, and information on lock contention. Such

information can significantly improve the overall quality of lock based code.

Order Violations

We note that Serenity in its current implementation does not detect order violations. In this

discussion we explore how Serenity can be extended to assist the programmer in developing robust

code that is free of order violations. In practice it is hard to detect order violations transparently

since the notion of order is specific to a particular program context. Detecting order violations

requires careful reasoning, understanding, and analysis of the program, often at best known only

to the programmer. We propose to implement a programming API to extend Serenity’s runtime to

identify order violations, and to preserve program ordering. Presently with existing synchronization

mechanisms (e.g., semaphores and condition signaling) even after the programmer has identified

parts of the program that require ordering, translating those semantics in practice to code is

tedious and often error prone. We propose to abstract the subtleties of such low-level programming

by implementing an API. The idea is to allow the programmer to express the temporal notion of

happens-before in a program. At runtime, Serenity can then check if a happens-before ordering is

violated. Conceptually, the proposed API may be perceived as assert statements that check for

program ordering.

71

Live-Locks

We note that Serenity in its current implementation does not detect live-locks. In this discussion

we explore techniques to resolve common forms of live-locks that occur in practice. Live-locks are

similar to deadlocks except that instead of being in a blocked state, the execution state of threads

involved in a live-lock changes constantly with respect to each other. However, the end result

of both deadlocks and live-locks is identical — they both prevent the program from making any

meaningful progress.

Serenity can be extended to detect and recover from live locks that happen a) while recovering from

deadlocks, and b) when threads repeatedly yield to each other in an attempt to acquire a sequence

of locks. First, in the presence of deadlocks, during recovery, if Serenity’s runtime detects that a

deadlock is repeated, then it will select a different victim lock to avoid recurrent live-locks. Second,

to address live-locks of type (b) we propose the following technique. The idea is to track the lock

acquisitions (trylock and blocking), releases, and any voluntary yields (sched yield, sleep, etc.) and

construct a signature of the live-lock. To detect live-locks we propose to evaluate these signatures

at runtime, obtained from all concurrently executing threads. To resolve the live-lock, we can

employ Serenity’s semantics of deadlock recovery, and employ techniques including privatization,

and visibility rules. We can equip Serenity’s runtime to unroll the updates performed within locks,

causing the threads involved in live-lock to roll back to the first lock (in program order) in their

respective live-lock signature. We then attempt to identify a schedule that avoids live-locks and

guarantees progress in program execution. We propose to implement a user-level thread scheduler

to schedule the threads based on the observed lock signatures of individual threads. In the absence

of such a schedule, we propose to serialize the thread execution based on the observed set of

signatures, thus guaranteeing program execution by recovering from live-locks.

72

3.2 Compile Time Extensions

Serenity’s compile time instrumentation forms the basis of providing isolation of memory updates

(discussed in Section 3.1.1). Serenity instruments the memory accesses in the LLVM’s IR with

hooks to Serenity’s runtime. These hooks pass information about the kind of instruction (load or

a store), the target address (precisely known only at runtime), its length and type information,

thereby allowing Serenity’s runtime to provide efficient isolation of critical sections.

A conservative approach to identify the memory updates performed by a program and associate

them with critical sections is to instrument all memory accesses and privatize only the memory

updates that happen within a lock context at runtime. While such an approach is sound and

complete, it could potentially result in a non-trivial runtime overhead and may not be suitable for

all applications. The key challenge here is to minimize the cost of instrumentation by instrumenting

only the critical sections and avoiding ordinary regions.

Unfortunately, it is impossible to provide a sound and complete solution to this problem due to

pointer aliasing. Consequently, to reduce the cost of instrumentation, Serenity employs opportunis-

tic optimization via its lock scope analysis, that attempts to derive the scope (the code executed

between the acquisition of a lock and its corresponding release) of locks in a program’s control flow

graph. This analysis, if successful, yields the set of basic blocks in the control flow graph that can

be instrumented to capture all memory updates performed within a critical section, as opposed to

instrumenting the entire program.

3.2.1 Lock Scope Idiom

Serenity’s opportunistic optimization is motivated by the following observation. We carefully ana-

lyzed close to 50 widely used open-source real world applications to understand how programmers

typically use locks and structure their code in writing lock based code. Some of these applications

include SQLite, Firefox 5.0, MySQL, Thunderbird, Apache, OpenLDAP, OpenOffice, Squid, Send-

mail, PBzip2, and several other desktop and server applications, and all the applications in the

73

Phoenix, PARSEC, and SPLASH benchmark suites. We found an interesting property exhibited

by all of them —lock acquisition and the corresponding release happen within the same procedure in

the program and critical sections were scoped similar to transactions in that there was no aliasing of

lock variables between a lock acquisition and its corresponding release. This lock scope idiom sig-

nificantly reduces the complexity of lock scope analysis to mostly intra-procedural (most common

case) rather than inter-procedural analysis.

3.2.2 Lock Scope Analysis

Intuitively, Serenity treats the scope of a critical section as an atomic transaction and instruments

all loads and stores within a scope. Serenity’s lock scope analysis is implemented using LLVM. The

analysis starts with constructing a control flow graph (CFG) for every procedure in the program

that acquires/releases lock(s), with the basic blocks in the procedure as the vertices and edges

representing the program control flow. The CFG (V, E, Entry, Exit(s)), where each vertex V is a

basic block (bbi) and there exists an edge E such that Vbbi → Vbbj if bbj may immediately follow bbi

for some execution sequence. If Vbbi → ∅ then bbi is a leaf node in the CFG and it is treated as an

exit point of a procedure.

Serenity defines a lock to be procedurally-scoped if and only if (a) the acquisition of a lock precedes

its release, (b) every path from a basic block containing the lock acquisition to the exit(s) of the

procedure contains the corresponding lock release, and (c) every path from a basic block containing

the lock acquisition to the exit(s) of the procedure contains no store to any location x such that x

∈ AliasSet (lock).

If every lock use in a procedure is procedurally-scoped then a procedure is well-scoped. By extension

a program is well-scoped if every procedure is well-scoped, or equivalently if every lock use in the

program is procedurally-scoped.

We note that while Serenity’s lock scope analysis may be imprecise, it is ultimately conservative

and guarantees safety. In situations where it cannot conclusively establish the well-scopedness of

74

bb6bb5

bb3

bb2bb1 unlock (l[i]);

lock (l[i]);

unlock (l[i]);
bb4

entry

lock (L2);

unlock (L2);

should be the
same mutex
variable

Figure 3.7: Challenges in deriving scope of critical sections.

a program, Serenity gives up on its opportunistic optimization and falls back to conservatively

instrumenting the entire program, thus sacrificing performance but not correctness.

If a program is well-scoped, then Serenity instruments all loads and stores in the path from lock

acquisition to release traversed in the CFG including across any procedure calls that lie within its

scope. In the presence of function pointers, Serenity performs signature analysis to identify the set

of all possible matches based on the signature (return type, number of arguments and their type

information) of a procedure thereby instrumenting them and their call chain. Note that in the pres-

ence of function pointers, this approach is conservative and may instrument procedures that may

not actually be called within a critical section. We note that any such imprecise instrumentation

does not affect program correctness or the determinism of deadlock detection and recovery.

3.2.3 Implementation

In practice, identifying the scope of critical sections poses several challenges. First, we must be

able to establish equivalence between lock and unlock objects, i.e., detect that the acquisition and

release happen on the same mutual exclusion variable (e.g., lock and unlock on l[i] in Figure 3.7)

to accurately derive the scope of a critical section. Second, in the presence of branches (Ventry →

Vbb1 or Ventry → Vbb2) as shown in Figure 3.7, the acquisition of lock L2 depends on how the

branch is evaluated, which may not be known precisely at compile time. Consequently, we need to

efficiently evaluate all possible control flows since acquisition of a lock. Third, if a critical section

75

Program source:

pthread_mutex_lock(&(Global->CountLock));
 ProcessId = Global->current_id++;
pthread_mutex_unlock(&(Global->CountLock));

LLVM's Intermediate Representation (IR) of program source:

%0 = load %struct.GlobalMemory** @Global, align 8
%1 = getelementptr inbounds %struct.GlobalMemory* %0, i64 0, i32 15
%2 = tail call i32 @pthread_mutex_lock(%union.pthread_mutex_t* %1) nounwind

 %3 = load %struct.GlobalMemory** @Global, align 8
 %4 = getelementptr inbounds %struct.GlobalMemory* %3, i64 0, i32 35
 %5 = load i64* %4, align 8
 %6 = add nsw i64 %5, 1
 store i64 %6, i64* %4, align 8

%7 = load %struct.GlobalMemory** @Global, align 8
%8 = getelementptr inbounds %struct.GlobalMemory* %7, i64 0, i32 15
%9 = tail call i32 @pthread_mutex_unlock(%union.pthread_mutex_t* %8) nounwind

Figure 3.8: Operand Equivalence Algorithm.

is protected by nested locks, then each lock in the sequence of nested locks has its own scope and

we should be able to determine the scope of locks even in the presence of nested locks and/or

lock inversion. Finally, to determine if a given lock is procedurally-scoped, we need a traversal

algorithm. Unfortunately, traversing all possible paths from a given vertex to every exit point (leaf

vertex) in a CFG has exponential time complexity.

Operand Equivalence Algorithm

Identifying the equivalence of a mutual exclusion variable in acquisition and release in the presence

of pointers, arrays (e.g., l[i] in Figure 3.7), derived data types such as structures (e.g., L2 in

Figure 3.7 could be a member variable), and unions is non-trivial. We note that neither LLVM [51]

nor any other publicly available compiler infrastructure provides such a capability.

To establish equivalence, Serenity first obtains the operand of the lock acquisition and the operand

of the lock release in the LLVM IR. For each of the operands (shown as %1 and %8 in the LLVM

IR in Figure 3.8), Serenity recursively back tracks and creates a list of all the instructions in the IR

generating the operand, e.g., loads, stores, GEP instructions [51] (used to resolve member variables

76

of structures, unions, etc.). For example, the lock operand (%1) depends on %1 and %0 in the

IR. Likewise, the unlock operand (%8) depends on %8 and %7. Serenity then performs a pair-

wise comparison of instructions obtained from acquisition and release. The comparison checks for

the instruction type, the nature of the instruction’s operation, and the type of the instruction’s

operands. To ensure safety in establishing equivalence, Serenity performs a conservative and strict

comparison, even though some of the comparisons may be relaxed. Additionally, Serenity checks if

operands (%1 and %8) are not modified anywhere else in the procedure. If the instruction streams

are identical, then Serenity can safely establish the equivalence between the lock acquisition and

its corresponding release. If the comparison of instruction streams producing the lock and unlock

differ, it is highly likely that the lock and unlock do not refer to the same object. Serenity detects

this mismatch and conservatively instruments the entire program. The execution of the program

is still correct and deadlock free — Serenity is ultimately conservative. Based on our discussions

with the LLVM developers, to our knowledge, Serenity’s operand equivalence algorithm is the only

approach available for LLVM. We tested our algorithm on several applications, including those

described in Section 3.3 and we found no cases of value aliasing of lock objects. This is probably

due to the fact that unlike typical program variables, lock objects/variables cannot be copied, since

they contain state associated with the operating system kernel and system libraries.

Reachability Analysis and CFG Traversal Algorithm

Given the association of a lock acquisition with its release we now present an efficient vertex

traversal transformation that only visits each vertex once on a possible path from the basic block

containing the lock acquisition to a leaf vertex.

Serenity starts with a CFG (defined in Section 3.2.2). Serenity initially marks all basic blocks that

contain callsite(s) to lock acquisition as candidates and iterates over all candidates in the CFG.

For each lock L in a candidate basic block Vbbi, Serenity checks if the candidate basic block itself

contains a corresponding release of L. If so, the lock is well scoped since both the lock acquisition

and release on L are in the same basic block and the lock acquisition precedes its release in Vbbi. In

77

the absence of a release of L within the same basic block Vbbi, Serenity checks if Vbbi is a leaf vertex.

If so, we have an exit point of the procedure with a lock L and without a corresponding release of

L. Serenity marks the lock as not procedurally-scoped and thereby the program as not well-scoped

(Recall that all locks in the program should be well-scoped) and conservatively instruments the

entire program.

The traversal employs a FIFO queue Q (Q is initialized to ∅) and starts at a lock acquisition callsite

Vbbi that is not an exit point (leaf vertex). The algorithm appends each adjacent vertex (Vbbj) of

Vbbi in the CFG to Q iff i) Vbbj is not in Q, ii) Vbbj is not visited, and (iii) Vbbj is not Vbbi. The

algorithm marks Vbbi as visited and dequeues the next entry from the queue, returned in say Vbbk.

The traversal algorithm then checks if the dequeued entry (Vbbk) contains a release of lock L. If

it contains a release of L then the algorithm marks Vbbk as visited and does not add any of the

adjacent vertices of Vbbk to Q. If Vbbk does not contain a release of L and if it is not a leaf vertex

then the algorithm proceeds by enqueueing the adjacent vertices of Vbbk to Q as discussed above.

If Vbbk does not contain a release of L and if it is a leaf vertex then this implies that we could not

find a release of L within the same procedure, so lock L is not procedurally-scoped. This traversal

continues through the FIFO queue until it is empty. If the queue is empty after the traversal, then

all paths from the entry point to all exit points of a procedure have been explored and the lock is

procedurally-scoped.

Intuitively, this algorithm traverses all reachable vertices from a lock acquisition callsite to ensure

that corresponding releases precede function exit. It can be trivially shown that the time complexity

of this algorithm to check if a given lock L is well scoped is O(|E|). We reset the visited information

of basic blocks in the CFG and repeat this algorithm for all locks in a program, thus effectively

determining if a program is well-scoped. Figure 3.7 illustrates the traversal for locks l[i] and L2.

The algorithm traverses the paths Ventry → Vbb2, Ventry → Vbb1 → Vbb4, Ventry → Vbb1 → Vbb4 to

identify if lock l[i] is procedurally scoped. If we remove the unlock call in bb2, the traversal will find

the path Ventry → Vbb2 to be not procedurally scoped, since we reached Vbb2 (leaf node) without

having encountered a call to unlock.

78

3.3 Experimental Evaluation

In our evaluation we set out to determine how Serenity performs on real applications. To that

end, we applied Serenity to 24 real world lock based applications. Then we compared the overall

execution time of the original and instrumented versions of the applications. To evaluate the

effectiveness of Serenity we applied it to applications containing deadlocks, and to a set of synthetic

benchmarks with artificially seeded deadlocks. Serenity was able to eliminate all the deadlocks,

while the rest of the execution continued unperturbed.

3.3.1 Experimental Setup

We performed an experimental evaluation of Serenity on a 2.3 GHz 64 core shared memory (NUMA)

machine with 256 GB of RAM and a x86 64 Linux 2.6.32 kernel. We compiled all the evaluation

benchmarks using the LLVM-2.9 compiler infrastructure with -03 optimizations. For each bench-

mark, we compared the unmodified (vanilla) case with performance with Serenity. We verified the

output produced by the benchmark under both vanilla and Serenity. We report the average of five

runs under each configuration.

To evaluate the performance and scalability of Serenity, we employed the widely used SPLASH [94],

Phoenix [80], and PARSEC [12] benchmarks suites. Additionally, we used several commonly used

desktop and server applications including Pbzip2 [68], Tgrep [61], Squid [95] (a webcache and proxy

server), and Sendmail [66], a general purpose email routing software. The benchmark suites are

well studied in the literature and include applications from a wide range of domains with various

threading models, locking regimes and lock rates (ratio of total locks acquired to the total runtime

of the native application). The lock acquisition rates of some of the applications in this suite of

benchmarks are extremely high, e.g., Fluidanimate (120M locks/sec), Barnes (1M locks/sec), FMM

(522K locks/sec), Water (217K locks/sec), Facesim (246K locks/sec), and Tgrep (97K locks/sec).

We note that such extremely high lock rates stress test Serenity to the extreme. Finally, to evaluate

Serenity’s ability to recover from deadlocks we applied Serenity to SQLite, HawkNL, and synthetic

79

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Barnes

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

FMM

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0 5 10 15 20 25 30 35
 0

 2

 4

 6

 8

 10

 12

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Ocean (Contiguous Partitions)

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 5 10 15 20 25 30 35
 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

FFT

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30 35
 0

 2

 4

 6

 8

 10

 12

 14

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

LU (Contiguous Partitions)

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0 5 10 15 20 25 30 35
 0

 2

 4

 6

 8

 10

 12

 14

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

LU (Non Contiguous Partitions)

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25 30 35
 0

 5

 10

 15

 20

 25

 30

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Radix

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 5 10 15 20 25 30 35
 1

 1.2

 1.4

 1.6

 1.8

 2

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Volrend

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Water-nsquared

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

PCA

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 10 20 30 40 50 60 70
 0

 5

 10

 15

 20

 25

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Pbzip2

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70
 1

 1.5

 2

 2.5

 3

 3.5

 4

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Tgrep

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

Figure 3.9: Performance of SPLASH benchmarks, Phoenix PCA, Pbzip2, and Tgrep.

80

Table 3.1: Characteristics of SPLASH applications.
Benchmark #Locks #Stores #Loads #Lock rate

FFT 3.20E+01 3.20E+01 9.60E+01 2.83E+00
Barnes 5.50E+05 7.28E+06 1.03E+07 1.07E+06
Ocean 5.54E+03 8.77E+02 1.66E+04 2.07E+02
FMM 4.62E+06 1.09E+08 2.54E+08 5.22E+05

LU-CP 3.20E+01 3.20E+01 9.60E+01 6.40E+00
Water 4.54E+06 4.07E+07 2.62E+08 2.18E+05

LU-NCP 3.20E+01 3.20E+01 9.60E+01 4.67E+00
Radix 4.07E+02 2.64E+02 6.60E+02 1.47E+02

Volrend 7.68E+04 7.65E+04 2.32E+05 8.48E+04

programs containing examples of deadlocks taken from existing literature including [75, 9, 44, 108].

For the SPLASH suite we report results from benchmarks that have (a) a runtime of at least a

few seconds to avoid statistical noise from scheduler overhead, and (b) applications that compiled

on a 64 bit machine. For the Phoenix suite, we present the results of the PCA benchmark, since

it is the only benchmark that contains locks. In the absence of locks, there is no difference in

performance between Serenity and native thread execution. In the PARSEC benchmark suite, we

omit bodytrack and ferret since they use read-write locks. Serenity’s program analysis is agnostic

to the type of the lock; however, Serenity’s runtime needs minor additions (mostly an engineering

exercise) to support such locks. We omitted freqmine since it does not use Pthreads. The native

versions of raytrace and vips in the PARSEC suite did not compile. We ran SPLASH benchmarks

with a maximum of 32 threads, since they do not support more than 32 threads; for the rest of the

benchmarks we were able to run with 64 threads.

3.3.2 Performance and Scalability

Figure 3.3.1 compares the overhead and scalability of Serenity with native thread (Pthread) execu-

tion for the SPLASH benchmarks. For each benchmark we measured the application characteristics

including the total number of locks acquired, loads and stores performed in lock context, lock rate

and the total runtime. Table 3.1 summarizes these characteristics for the SPLASH suite. The

performance of Serenity is comparable to Pthreads for most applications, with the exception of

Barnes, FMM and Water. The overhead of Serenity depends on 1) the number of critical sections

81

Table 3.2: Characteristics of PARSEC, Phoenix, and desktop applications.
Benchmark #Locks #Stores #Loads #Lock rate

Canneal 6.40E+01 8.01E+04 8.01E+04 7.30E-01
Dedup 1.04E+06 4.60E+08 1.34E+09 2.68E+04

Streamcluster 1.08E+04 1.68E+02 1.06E+04 4.22E+01
Facesim 2.35E+07 1.53E+08 3.59E+08 2.46E+05

Fluidanimate 3.75E+09 7.40E+09 1.50E+10 1.20E+08
x264 2.03E+05 0.00E+00 0.00E+00 2.01E+04
PCA 1.01E+04 1.01E+04 1.01E+04 6.49E+01

Pbzip2 1.07E+03 2.03E+03 4.22E+03 4.62E+01
Tgrep 2.24E+05 5.59E+05 8.94E+05 9.80E+04

and 2) the data accessed/modified within a critical section, which influences the runtime cost of

instrumentation and shadowing.

Barnes, FMM, and Water acquire a large number of locks and access non-trivial amounts of data

in critical sections. For instance, Barnes acquires over 550K locks and performs a total of 10.3M

loads and 7.2M stores. FMM acquires over 4.6M locks and performs a total of 254M loads and

108M stores. Water acquires approximately 4.5M locks, and performs 254M loads and 40M stores.

Even under such lock and data access rates, we note that Serenity’s performance overhead is

comparatively modest. Serenity’s scalability with the number of threads is almost identical to

the vanilla scalability, which is a significant improvement over the scalability of comparable STM

systems [18]. As an aside, we note that such high lock rates are more common in HPC applications,

which are memory and compute bound. Enterprise applications are largely I/O bound, which

reduces their lock rates significantly.

In Figure 3.3.2 we present the results of the PARSEC benchmark suite and summarize the appli-

cation characteristics in Table 3.2. Dedup and Fluidanimate incur significant overhead. Dedup

acquires approximately 1M locks and performs 1.3B loads and 460M stores. Fluidanimate acquires

3.7B locks and performs 14.9B loads and 7.3B stores. In Figure 3.3.1 we present the results of

the Phoenix PCA benchmark along with Pbzip2 and Tgrep. Serenity achieves performance almost

identical to native thread execution on these benchmarks due to their relatively low lock rates and

low memory updates performed within critical sections.

For Squid [95] and Sendmail [66] we are unaware of any publicly available test suite. We set up

82

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50 60 70
 1

 2

 3

 4

 5

 6

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Canneal

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 50

 100

 150

 200

 0 10 20 30 40 50 60 70
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5
 5.5

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Dedup

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0 10 20 30 40 50 60 70
 1

 2

 3

 4

 5

 6

 7

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Streamcluster

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70

 2

 4

 6

 8

 10

 12

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Facesim

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70

 5

 10

 15

 20

 25

 30

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Fluidanimate

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70
 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Swaptions

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

 2
 4
 6
 8
 10
 12
 14
 16
 18

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

x264

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70

 5

 10

 15

 20

T
i
m
e

(
s
e
c
)

S
p
e
e
d
u
p

Number of Threads

Blackscholes

Vanilla (Time)
Serenity (Time)

Vanilla (Speedup)
Serenity (Speedup)

Figure 3.10: Performance of PARSEC benchmarks.

83

the Squid proxy server to run on the 64 core NUMA machine with the default Squid configuration

(cache size, directories, etc.), used the firefox browser and wget to generate internet traffic, and

verified the log files to validate the generated traffic. The performance of Serenity is identical to

the original program; the log files produced in each experiment were also identical to each other.

Sendmail includes a library called Milter (sendmail Mail Filter API) to enable development of

custom email filters. We used the test email filter programs that come with Sendmail’s distribution

(libmiter) and found performance of Serenity to be identical to native execution.

3.3.3 Deadlock Detection and Recovery

Finally, we evaluated Serenity using applications with known deadlocks. We used a test harnesses

from Dimmunix [45] to reproduce the deadlock in SQLite-3.3.3 [24] and HawkNL. Additionally,

we used a synthetic benchmark suite (discussed in Section 2.3.3) that implements deadlock cycles

of varying diameter, involving a configurable number of threads. While the native Pthreads pro-

grams deadlocks on each of these benchmarks, Serenity successfully detects and recovers from the

deadlocks, executing the program to completion.

3.3.4 Memory Overhead

Serenity’s memory overhead stems from two components — metadata and shadowing. Serenity’s

metadata is relatively small at approximately (1-2 MB) per thread. Shadowing overhead is incurred

when the application is in a critical section. This overhead is proportional (2x) to the amount of

data modified within a critical section. First, Serenity maintains a twin of size 8 bytes to the 64

bit aligned address, which is used to compute the exclusive-or difference of the bytes modified by

a thread (Section 3.1.3). Second, Serenity creates a shadow of length 8 bytes of the 64 bit aligned

address to provide isolation of updates within a critical section. We note that both these allocations

are freed at the end of a critical section and this overhead is transient.

Sammati employs privatization at the granularity of a page (4K) while Serenity employs shadowing

84

Table 3.3: Effectiveness of lock scope analysis across all the applications used in this study.
Effectiveness of Instrumentation

Instruction Type Min Max Median

Load 2.01× 10−07 1.00× 1002 2.48× 10−04

Store 1.39× 10−07 1.00× 1002 4.25× 10−03

at 8 byte granularity. Consequently, Sammati incurs significantly more memory overhead than

Serenity.

3.3.5 Efficiency of Lock Scope Analysis

To measure the effectiveness of our lock scope analysis (discussed in Section 3.2.2) we computed

the percentage of loads performed within a critical section relative to the total number of loads

performed by the application. This indicates the percentage of the total load instructions that

were actually instrumented — the effectiveness of lock scope analysis. The lower the percentage,

the higher the effectiveness of serenity’s lock scope analysis. We also measured these statistics

for the store instructions. Table 3.3 summarizes these characteristics. Pbzip2 and Tgrep were not

well-scoped and consequently Serenity instrumented them completely. Hence we find the maximum

to be 100% in Table 3.3. For over 80% of the applications, Serenity instrumented less than 0.54%

of the loads and less than 2.2% of the stores. The mean percentage for loads and stores for well

scoped programs is 0.34% and 1.73%, respectively. These results indicate that Serenity’s lock scope

analysis is effective and efficient.

85

3.4 Limitations

Serenity comes with several limitations and we discuss them in detail in this section.

3.4.1 Recompilation

To successfully recover from a deadlock Serenity requires all critical sections in the program to

be instrumented, including any external application dependencies such as shared libraries. Conse-

quently, it may require recompilation of all libraries that a program depends upon. Most shared

libraries can be directly instrumented and we are working on splitting libc into user-level only

functions (such as memcpy, memcmp, string and math functions) and functions that invoke system

calls that require more comprehensive isolation.

3.4.2 Unsupported Applications

Serenity supports the POSIX interface by default. However, it does not support applications that

employ ad-hoc synchronization without minor modifications to the source code. In practice, codes

that employ ad-hoc synchronization either in the presence of critical sections or otherwise are not

safe and such a programming practice could result in several concurrency bugs [108]. Further-

more, such codes assume and rely on certain memory consistency guarantees from the underlying

architecture to propagate the updates, In practice, these assumptions may not hold, resulting in

incorrect program behavior. It is important to understand that providing support for mixed locking

regimes (i.e., employing ad-hoc synchronization within critical sections) conflicts with any runtime

system that supports transparent (containment through privatization without modifying source

code) deadlock recovery. Consequently, Serenity is incapable of providing guaranteed transpar-

ent deadlock recovery for such codes. Rather than using ad-hoc synchronization schemes such as

these, we recommend the use of standard POSIX primitives for synchronization. Alternatively, in

the event that the ad-hoc synchronization is an absolute necessity, the programmer can provide

Serenity with a wrapper around the ad-hoc synchronization in the form of a user-defined lock.

86

3.4.3 Programmer Input

Serenity does not require the programmer to modify any source code and Serenity by default

supports POSIX mutual exclusion locks. However, if the lock/unlock operations are encapsulated

in functions/classes, the programmer must explicitly provide this information (as a part of a config

file) to Serenity’s compile time analysis. This does not require any understanding of the application

and we found that using cscope we were able to perform this step within a couple of minutes.

3.4.4 Deadlock Recovery

Although Serenity can deterministically detect all deadlocks, it cannot recover from certain dead-

locks if they involve unrolling non-idempotent irrevocable actions performed within critical sections.

Handling arbitrary non-idempotent I/O within the context of a restartable critical section is an

open problem.

3.5 Related Work

We briefly discuss related work on deadlock detection and recovery to place Serenity in the context

of existing literature.

3.5.1 Deadlock Detection and Recovery

Pure static analysis techniques (e.g., RacerX [29], Lock Lint [97]) can identify certain types of

deadlocks at compile time. Unfortunately, they cannot identify all deadlocks in type-unsafe lan-

guages, rendering them susceptible to false positives. Predictive dynamic analysis tools such as

Visual Threads [34], DeadlockFuzzer [44], CheckMate [42], and others [7, 3] collect program traces

and rely on techniques such as model checkers, state machines, and feasible permutation genera-

tion to explore possible thread interleavings. Deadlock detection in such systems is probabilistic,

potentially resulting in false positives and false negatives.

87

Deadlock avoidance techniques [105, 31] employ program analysis to collect the order of lock ac-

quisitions and releases in a program and attempt to avoid deadlocks by delaying lock acquisitions.

Gadara [105] relies on discrete control theory to identify potential deadlocks at runtime; it requires

program annotations by the programmer, and is susceptible to false positives. The approach of

Gerakios et al. [31] grants a lock only when both the requested lock and its future lockset are

available.

Tools such as Dimmunix [45] attempt to build resistance to deadlocks in multithreaded programs.

Dimmunix maintains the state information of each deadlock pattern that occurs at runtime and

aims to prevent future occurrences through deadlock prediction. Pulse [52] employs speculative

execution to detect deadlocks; it requires modifications to the operating system and runs as a

system daemon. Pulse speculatively executes processes and attempts to construct a resource graph

to detect deadlocks. Dimmunix and Pulse do not provide any support for recovery in the event

of a deadlock. Grace [9] eliminates a wide range of concurrency bugs. Grace employs lock elision,

sequential composition, and speculative execution of threads. Unfortunately, Grace only supports

applications that employ fork-join parallelism.

Tools such as Sammati [75] and Rx [77] are capable of detecting and recovering from deadlocks.

Sammati employs a pure runtime approach to detect and recover from deadlocks. Sammati incurs

significant runtime overhead and does not scale well with applications that have a high lock ac-

quisition rate (> 800K locks/sec). Additionally, Sammati cannot recover thread-local data (TLS),

disk I/O, and other memory side-effects in the event of a deadlock. Rx [77] can detect and recover

from a wide range of bugs through checkpointing. Upon a software failure, it rolls back the pro-

gram to the most recent (in program order) checkpoint and re-executes the program under a new

environment, i.e., the original environment perturbed by artificially introducing noise. Rx requires

modifications to both the kernel and the application.

In contrast to such systems, Serenity does not collect program traces, and it deterministically detects

and eliminates deadlocks at runtime without any false positives. Serenity’s use does not require

any modifications to the operating system, compiler, or the program source code. Additionally, it

88

is capable of supporting a wide range of applications and not necessarily those limited to fork-join

parallelism. Serenity does not rely on address space protection or page level privatization, and it is

capable of supporting applications that acquire billions of locks at rates of hundreds of millions of

locks/sec. Serenity performs efficient deadlock recovery without requiring a complete application

checkpoint and its associated overhead. Finally, Serenity provides a more comprehensive and

broadly applicable deadlock elimination scheme than systems such as Sammati [75], Rx [77], and

Grace [9].

Serenity may be viewed as transactional memory (TM) without optimistic concurrency. The rela-

tionship to TM systems is discussed in Section 2.5.2.

3.6 Explicit Locking vs Transactions

The non-composability of lock based code has been the primary motivation for transactional mem-

ory systems [36, 91]. Transactional memory model delineates un-named regions via transactions

and employs compile time analysis and runtime techniques to infer serialization. Similar to lock

based codes, transactions provide mutual exclusion but unlike lock based codes, transactions can be

optimistically executed concurrently, supposedly leading to improved performance. TM starts with

an approach based on concurrency, while a lock based model fundamentally defines serialization.

There are several merits to explicit locking and transactions but so far transactions are yet to prove

their worth. The interactions between transactions and non-transactional code is still ill-defined.

Blundell et al., [23] introduced the notion of weak and strong atomicity to define the memory

semantics of interactions between transactions and non transactional code and show that such

interaction can lead to data races, program errors or even deadlocks. Defining the semantics of the

memory model and the interaction between transactional and non transactional code is an on going

area of research [37, 92, 93]. Most TM systems require language support with special programming

language constructs [33, 65, 109] or API [87] to provide TM semantics. Alternatively, some TMs rely

on special memory allocation primitives [37] and wrappers [65] to support transactional memory

89

semantics.

In contrast, the vast majority of existing large-scale code bases use the relatively well-understood

(warts and all!) lock based model [59]. Hence addressing issues with the dominant shared memory

programming model i.e., the POSIX threads (Pthreads) model has a broader impact. It is important

to note even though there are several parallels between explicitly transactional software TM systems

and systems such as Sammati and Serenity. Unlike TM systems, both Sammati (discussed in

chapter 2) and Serenity (discussed in chapter 3) support applications written using lock based

model. Furthermore, neither Sammati nor Serenity require any modifications to application source

code, compiler, and the operating system.

3.7 Future Work

Serenity’s compile time analysis can be extended to include inter-procedural context sensitive con-

trol flow analysis, and value aliasing of lock variables. Serenity’s runtime can be improved by

providing a comprehensive roll back support for non-idempotent operations performed within crit-

ical sections. Serenity can be extended to include support for POSIX read-write locks. Finally,

Serenity can be extended to include API to detect order violations.

3.8 Summary

We presented Serenity, a software system that transparently eliminates deadlocks in applications

written in type-unsafe languages such as C and C++. Our experimental results indicate that Seren-

ity achieves its core goal of deadlock elimination at a performance level that enables widespread

adoption. Serenity incurs a transient memory overhead proportional (2x) to the amount of data

modified within a critical section. We believe that by providing usable and efficient deadlock

detection and recovery for threaded codes, we provide a critical tool to programmers designing, im-

plementing, and debugging complex applications for emerging many-core platforms. More broadly,

90

this research will assist in improving the productivity of application developers.

Chapter 4

Coarse-Grain Speculative Parallelism

In this chapter we present Anumita (guess in Sanskrit) [74, 72, 73] a framework for exploiting

coarse-grain speculative parallelism in hard-to-parallelize applications whose performance is highly

dependent on input data. Anumita provides programming constructs for C, C++, Fortran, and

OpenMP and a supporting runtime system that abstracts the subtleties of concurrent programming

and relieves the programmer from the complexity of creating, managing and retiring speculations.

Additionally, Anumita provides transparent name-space isolation. Speculations in Anumita may

be composed by specifying surrogate code blocks at any arbitrary granularity, which are then

executed concurrently, with a single winner ultimately modifying program state. Anumita provides

expressive semantics for winner selection that go beyond time to solution to include user-defined

notions of quality of solution. Performance results from several applications show the efficacy of

using coarse-grain speculation to achieve (a) robustness when surrogates fail and (b) significant

speedup over static algorithm choices.

The rest of the chapter is organized as follows. Section 4.1 outlines the motivation for this work.

Section 4.2 presents the programming model and constructs used to express coarse-grain specula-

tive execution. Section 4.3 presents how these constructs can be implemented efficiently without

sacrificing performance, portability and usability. Section 4.4 presents our experimental evalua-

tion. Section 4.5 surveys the related work. Section 4.6 describes future directions and Section 4.7

91

92

presents our conclusions.

4.1 Motivating Problems

Coarse-grain speculative parallelism is most useful for applications with two common characteris-

tics: (1) there exist multiple possible surrogates (e.g., code blocks, methods, algorithms, algorithmic

variations) for a particular computation, and (2) the performance (or even success) of these surro-

gates is problem dependent, i.e., relative performance can vary widely from problem to problem,

and is not known a priori. Whether or not there exist efficient parallel implementations of each

surrogate is an orthogonal issue to the use of coarse-grain speculation. If only sequential implemen-

tations exist, speculation provides a degree of useful parallelism that is not otherwise available. If

parallel surrogate implementations do exist, speculation still provides resilience to hard-to-predict

performance problems or failures, while also providing an additional level of parallelism to take

advantage of growing core counts, e.g., by assigning a subset of cores to each surrogate rather than

trying to scale a single surrogate across all cores.

We discuss two motivating examples in detail. (Performance results for these problems are given

in Section 4.4).

4.1.1 Graph Coloring Problem

In graph theory, vertex coloring is the problem of finding the smallest set of colors needed to color

a graph G = (V,E) such that no two vertices vi, vj ∈ V with the same color share an edge e. Graph

coloring problems arise in several domains including job scheduling, bandwidth allocation, pattern

matching and compiler optimization (register allocation). Several state-of-the-art approaches that

solve this problem employ probabilistic and meta-heuristic techniques, e.g., simulated annealing,

tabu search and variable neighborhood search. Typically, such algorithms initialize the graph with

a random set of colors and then employ a heuristic algorithm to attempt to color the graph using

the specified number of colors. Depending on the input graph, the performance of these techniques

93

varies widely. Obviously, there will be cases where no coloring can be found (when the specified

number of colors is too small) by some or all methods. In addition to this sensitivity to the input,

algorithms for the graph coloring problem are hard to parallelize due to inherent data dependancies.

Parallel implementations that exist employ a divide and conquer strategy by dividing the graph

into subgraphs and applying coloring techniques on the subgraphs in parallel. During reduction,

conflicting subgraphs are recolored. Despite such efforts, the challenge still persists to develop

efficient parallel algorithms for vertex coloring.

4.1.2 Partial Differential Equations (PDEs)

As a second example, consider the numerical solution of partial differential equations (PDEs).

This is one of the most common computations in high performance computing and is a dominant

component of large scale simulations arising in computational science and engineering applications

such as fluid dynamics, weather and climate modeling, structural analysis, and computational

geosciences.

The large, sparse linear systems of algebraic equations that result from PDE discretizations are

usually solved using preconditioned iterative methods such as Krylov solvers [86]. Choosing the

right combination of Krylov solver and preconditioner, and setting the parameter values that define

the details of those preconditioned solvers, is a challenge. The theoretical convergence behavior

of preconditioned Krylov solvers on model problems is well understood. However, for general

problems the choice of Krylov solver, preconditioner, and parameter settings is often made in an ad

hoc manner. Consequently, iterative solver performance can vary widely from problem to problem,

even for a sequence of problems that may be related in some way, e.g., problems corresponding to

discrete time steps in a time-dependent simulation. In the worst case, a particular iterative solver

may fail to converge, in which case another method must be tried. The most conservative choice is

to abandon iterative methods completely and simply use a direct factorization, i.e., some variant

of Gaussian Elimination (GE). Suitably implemented, GE is essentially guaranteed to work, but in

most cases it takes considerably longer than the best preconditioned iterative method. The problem

94

is that the best iterative method is not known a priori.

4.1.3 Combinatorial Problems

One could list many other examples that are good candidates for coarse-grain speculation. Similar

analysis can be extended to other widely used combinatorial problems including sorting, searching,

permutations and partitions. Even for a simple problem such as sorting, where theoretical algo-

rithmic bounds are well known, in practice the runtime of an algorithm depends on a variety of

factors including the amount of input data (algorithmic bounds assume asymptotic behavior), the

sortedness of the input data, and cache locality of the implementation [5].

4.2 Speculation Programming Model

For a coarse-grain speculation model to be successful, it should satisfy several usability and deploy-

ability constraints. First, the model should be easy to use, with primarily sequential semantics,

i.e., the programmer should not have to worry about the complexities and subtleties of concurrent

programming. Speculation is not supported by widely used languages or runtime systems today.

Hence, in order to express speculation, the programmer is burdened with creating and managing

speculation flows using low-level thread primitives [70]. Second, the speculation model should en-

able existing applications (both sequential and parallel) to be easily extended to exploit speculation.

This includes support for existing imperative languages, including popular type-unsafe languages

such as C and C++. Third, the model should be expressive enough to capture a wide variety of

speculation scenarios. Finally, to ensure portability across platforms, the speculation model should

not require changes to the operating system. Furthermore, we need to accomplish these objectives

without negatively impacting the performance of applications that exploit speculation.

A general use case for Anumita is illustrated in Figure 4.1. The example shows an application

with three threads, two of which enter a speculative region. (The simplest case would involve

a single-threaded code that enters a single speculative region.) Each sequential thread begins

95

multi-threaded
application thread-1

program execution

thread-2

begin
speculation

estimation

monte-carlo

0

1

commit
speculation

thread-2
resumes

from commit
cancel

speculation

thread-2 enters
evaluation context

multi-threaded
code block

non speculative
region

non speculative
region

evaluation
function

adaptive

conservative

extrapolation

0

1

2

begin
speculation

thread-0 enters
evaluation context

evaluate
speculation

area!=42
abort

speculationthread-0

commit
speculation

cancel
speculation

speculative flow

abort speculative flow
non-speculative flow

surrogate
winning speculation

speculative region

speculative region

thread-0
resumes

from commit

non speculative
region

non speculative
region

evaluation
function

evaluate
speculation

Figure 4.1: A typical use case scenario for composing coarse-grain speculations. Anumita supports
both sequential and multi-threaded applications.

96

execution non-speculatively until a speculative region is encountered, at which time n speculative

control flows are instantiated, where n is programmer-specified. Each flow executes a different

surrogate code block. We refer to this construct as a “concurrent continuation,” where one control

flow enters a speculative region through an API call and n speculative control flows emerge from

the call. Anumita achieves parallelism by executing the n speculative flows concurrently. In

Figure 4.1, the concurrent continuation out of thread 0 is a composition of three surrogates, while

the continuation out of thread 2 has two surrogates. Note that individual surrogates may themselves

be multithreaded, e.g., surrogate estimation in the continuation flowing out of thread 2. Although

not shown in the figure, Anumita also supports nested speculation, where a speculative flow in turn

creates a speculative composition.

To mitigate the impact of introducing speculation into the already complex world of concurrent

programming, no additional explicit locking is introduced by the speculation model. In other words,

a programmer using the Anumita API to add speculation to a single-threaded application does not

have to worry about locking or synchronization of any kind. Of course, if the original application

was already multithreaded, then locking mechanisms may already be in place, e.g., to synchronize

among the three threads in Figure 4.1 in non-speculative regions.

Each speculative flow operates in a context that is isolated from all other speculations, thereby

ensuring the safety of concurrent write operations. Anumita presents a shared memory model,

where each speculative flow is exactly identical to its parent flow in that it shares the same view

(albeit write-isolated) of memory, i.e., global variables, heap and more importantly, the stack.

The Anumita programming model provides a flexible mechanism for identifying the winner and

committing the results of a speculation. The first flow to successfully commit its results is referred to

as the winning speculation. However, the decision to commit can be made in a variety of ways. The

model easily supports the simplest case, where the first flow to achieve some programmer-defined

goal cancels the remaining speculative flows and committs its updates to the parent flow, which

resumes execution at the point of commit. Surrogate estimation illustrates this case in Figure 4.1.

Alternately, speculative flows may choose to abort themselves if they internally detect a failure

97

mode of some kind, e.g., surrogate adaptive in the figure, when area != 42. More generally, each

surrogate may define success in terms of an arbitrary user-defined evaluation function, passed to an

evaluation interface supplied by the parent flow (labeled “evaluation context” in Figure 4.1). The

evaluation context safely maintains state that it can use to steer the composition, deciding which

surrogates should continue and which should terminate. In our example, surrogates conservative

and extrapolation use the evaluation interface to communicate with their parent flow.

4.2.1 Program Correctness

Any concurrent programming model needs well-defined semantics for propagation of memory up-

dates. Anumita supports concurrency at three levels: (1) between surrogates in a speculative

composition, (2) between threads in a single multithreaded surrogate, and (3) between threads in

non-speculative regions of an existing multithreaded application. We consider each in turn.

Unlike the traditional threads model, where any conflicting accesses to shared memory must be

properly synchronized, Anumita avoids synchronization and its associated complexity by providing

isolation among speculative flows through privatization of the shared address space (global data and

heap). Furthermore, a copy of the stack frame of the parent flow is passed to each speculative flow.

Since updates are isolated, “conflicting” accesses do not require synchronization. Anumita’s commit

construct implements a relatively straightforward propagation rule: for a given composition, only

the updates of a single winning speculative flow are made visible to its parent flow at the completion

of a composition. Furthermore, compositions within a single control flow are serialized, in that

a control flow cannot start a speculative composition without completing prior compositions in

program order. Cumulatively, these two properties are sufficient to ensure program correctness

in sequential applications (a single control flow) even in the presence of nested speculations. We

do not present a formal proof of correctness here; however, the rationale behind the proof is that

since the updates of exactly one of the valid outcomes is committed and since each speculation was

isolated while arriving at this result, relaxing the requirements of explicit synchronization does not

affect program correctness.

98

speculation_t *spec_context;
int num_specs = 2, rank, value = 0;

/* initialize speculation context */
spec_context = init_speculation();

/* begin speculative context */
begin_speculation (spec_context, num_specs, 0);

/* get rank for a speculation */
rank = get_rank (spec_context);

switch (rank)
{
 case 0:
 estimation(...);
 break;

 case 1:
 monte-carlo(...);
 break;

 default:
 printf ("invalid rank\n");
 break;
}

/* commit the speculative composition */
commit_speculation (spec_context);

Figure 4.2: Pseudo code for composing speculations using the programming constructs exposed by
Anumita. In the absence of an evaluation function, the fastest surrogate (by time to solution) wins.

99

/* custom evaluation function */
boolean goodness_of_fit (speculation_t *spec_context, void *ptr)
{
 double error = 0.0, *fit = (double *) ptr;

 error = actual - *fit;
 if (error > 0.0005)
 {
 return ABORT;
 }

 return CONTINUE;
}

....
switch (rank)
{
 case 0:
 area = adaptive_quadrature (...);

 ptr = get_ir_memory (spec_context);
 memcpy (ptr, area, sizeof(double));

 retval = evaluate_speculation (spec_context, goodness_of_fit, ptr);
 if (retval == ABORT)
 abort_speculation (spec_context);
 break;

 case 1:
 area = conservative_method();
 if (area != 42)
 cancel_speculation (spec_context, 0);
 break;

 case 2:
 for (t=0; t<100; t++)
 {
 area = extrapolation_method();

 ptr = get_ir_memory (spec_context);
 memcpy (ptr, area, sizeof(double));

 retval = evaluate_speculation (spec_context, goodness_of_fit, ptr);
 if (retval == ABORT)
 abort_speculation (spec_context);
 }
 break;
}
....

Figure 4.3: Pseudo code for evaluating speculations in Anumita.

100

Surrogates in Anumita may themselves be multithreaded, requiring lock based concurrency control

between threads, e.g., surrogate estimation in Figure 4.1. Since surrogates are replacements for each

other, we would not expect a surrogate to have synchronization dependencies with one of its sibling

surrogate, e.g., estimation with monte-carlo in the figure. Hence the correctness of multithreaded

surrogates reduces to the standard case of threaded shared-memory concurrent programming.

While the above properties ensure program correctness for concurrent continuations flowing out of a

single control flow, we also need to define how speculative flows can be composed in a multithreaded

environment. Anumita allows multiple speculative and non-speculative regions to execute concur-

rently, e.g., the regions associated with threads 0 and 2, along with thread 1 in Figure 4.1. However,

the model does not support synchronization between speculative flows from different speculative

regions, or between speculative flows and other non-speculative application threads. (We note that

this restriction is also true for value speculation systems such as [70].) Hence, correctness of such

codes stems from the correctness of the original multithreaded code, since each speculative region

exhibits transaction-like semantics with respect to other threads, i.e., no memory updates from a

given speculative region are visible to other threads until the commit process finishes, at which

point all the updates are complete, and control resumes in a non-speculative region.

Externally visible I/O actions are not handled by Anumita in its current form. We are working on

extending Anumita to support disk I/O. However, Anumita performs speculation aware memory

management and garbage collection from failed speculations. This mechanism correctly hides the

side-effects of system calls such as sbrk, etc.

4.2.2 Syntax and Semantics

Figures 4.2 and 4.3 show pseudocode corresponding to the scenario illustrated in Figure 4.1 for com-

posing speculations using Anumita. Table 4.1 defines the Anumita API. A speculative composition

is initialized by a call to init speculation, which returns a speculation context. A composition

is instantiated by a call to begin speculation, which implements a concurrent continuation of the

parent flow. Each speculative flow in the concurrent continuation is exactly identical to its parent

101

Table 4.1: Programming constructs exposed by Anumita for leveraging speculation. For brevity,
C++ and Fortran interfaces are omitted.

Programming Constructs Description
speculation t* init speculation(void) Initialize a speculative composition.
int begin speculation(speculation t *spec context, int
num spec, size t mem)

Begins a speculative composition. Arguments are
composition context, number of speculations and size
of memory to allocate for storing intermediate results
used in evaluating speculations.

int get rank(speculation t *spec context) Gets the rank of the calling speculative flow.
int get size(speculation t *spec context) Gets the number of speculative flows in a composition.
int commit speculation(speculation t *spec context) Attempts to commit the state of the calling specula-

tive flow.
int abort speculation(speculation t *spec context) Aborts the calling speculative flow.
int cancel speculation(speculation t *spec context,
int rank)

Cancels (terminates) the speculation flow with a rank
of ‘rank’.

int evaluate speculation(speculation t *spec context,
evaluate t *evaluation fn, void *ptr)

Used to invoke an evaluation of the intermediate re-
sults of the calling speculative flow. Intermediate re-
sults are passed through ‘ptr’.

void * get ir memory(speculation t *spec context) Returns a pointer to the calling speculative flow’s
memory region used to store intermediate results for
evaluation.

int (*evaluation fn)(speculation t *spec context, void
*ptr)

Signature of the user defined evaluation function.

flow in that it shares the same view of memory, but is isolated from other concurrent speculative

flows. In order to distinguish speculative flows from each other, we associate each speculative flow

with a unique rank. This notion of rank is identical to ranks in MPI and thread number in OpenMP.

A speculation may query its rank (0 to n-1) in order to map a particular unit of work to itself. The

parent flow then enters an evaluation context, where it waits (de-scheduled) for evaluation requests

from its speculative flows.

To implement an interface for evaluation, the call to begin speculation takes an argument that

specifies the size of a memory region that is used for communication between speculative flows

and the parent evaluation context. Each speculative flow receives a distinct memory region of the

specified size; this region is shared between a speculative flow and the parent evaluation context.

Periodically, a speculative flow can request an evaluation using the evaluate speculation call,

passing the parent intermediate results using the shared memory region. This call synchronously

transfers control to the evaluation context (i.e., the idled parent flow), which executes the evaluation

function and returns a status indicating whether the speculation calling the evaluation should

102

int num_specs = 3, rank;

/* begin a speculation composition */
pragma speculate (spec_context, num_specs, 0)
{

 /* get rank for a speculation */
 rank = omp_get_thread_num();

 switch (rank)
 {
 case 0:
 /* code for speculation */
 vns (colors, graph);
 break;

 case 1:
 /* code for speculation */
 sa (colors, graph);
 break;

 case 2:
 /* code for speculation */
 tabu (colors, graph);
 break;

 default:
 /* invalid rank */
 }

 /* implicit commit of speculation composition */
}

Figure 4.4: Composing speculations in OpenMP using the OpenMP extensions built on top of
the programming constructs exposed by Anumita. Anumita’s source-source translator expands the
speculate pragma to begin-commit constructs.

continue or abort execution. The evaluation context may also use the intermediate results to

cancel other speculations based on the results of the current evaluation, for instance, when the

progress of one surrogate is significantly better than another within the same composition. In

essence, the evaluation mechanism enables pruning of surrogates based on a user-defined notion of

result quality.

On completing execution, a surrogate terminates the speculative region by calling commit speculation.

The first call to commit speculation succeeds, canceling all other speculations in the composition

and propagating its execution context to the parent flow, which then resumes execution at the

103

point of commit. Selecting by time to solution (fastest surrogate wins) is trivially implemented

by not specifying an evaluation function, as shown in Figure 4.2. In this case the first surrogate

to commit would succeed and cancel its siblings. For completeness, the API also supports an

abort speculation call that can be used by a surrogate to terminate itself if it detects that it is

not making progress or has reached some failure mode. We also provide a cancel speculation

call that can be used by any surrogate to terminate any other surrogate. This can be useful, for

example, in a case where a subset of surrogates can be pruned from the composition when one

member of that subset meets some condition.

Many scientific applications use OpenMP directives for shared memory programming rather than

the underlying POSIX threads interface. To support such applications, we provide extensions to

OpenMP in the form of a new OpenMP pragma that provides a natural interface to specula-

tion. Figure 4.4 illustrates the OpenMP syntax for creating a composition. The speculate pragma

is scoped between an open and close brace ({ and }), with an implicit commit speculation at

the end of the speculate pragma. In traditional OpenMP programming, name space isolation is

achieved through explicit variable scoping (e.g., private, shared, etc.). To simplify programming,

the Anumita runtime automatically isolates speculative flows without requiring explicit private

scoping.

4.2.3 Overhead

Anumita achieves low runtime overhead since speculative flows are isolated and mispredictions cause

the memory updates of the failed speculation to be discarded as opposed to rollback recovery. The

memory overhead is proportional to the write-set of all the speculative flows, which is typically

much smaller than the read set. Given N speculative flows with the write-set of each flow being W

pages, the memory overhead is O
(
NW

)
.

104

4.3 Implementation

The Anumita implementation consists of a shared library that exposes our API and a runtime

system. The OpenMP interfaces are implemented using source-to-source translation. To ensure

ease of deployment, Anumita is implemented completely in user-space with no modifications to the

operating system. The rest of this section describes the Anumita runtime in detail.

4.3.1 Shared Address Space

In the POSIX threads model, each thread has a distinct stack and threads of a process share their

address space. In contrast, distinct processes are fully isolated from each other and execute in

separate virtual address spaces. Neither of these models satisfies the isolation and selective state

sharing requirements imposed by Anumita. Intuitively, we need an execution model that provides

the ability to selectively share state between execution contexts.

To create the notion of a shared address space among processes, we implemented the cords ab-

straction first proposed in Sammati [75] (The cords abstraction was introduced in Chapter 2, but is

included again here for completeness). The constructor in our runtime (a shared library) traverses

through the link map of the application (ELF binary) at runtime and identifies the global data (.bss

and .data) sections, i.e., the zero initialized and uninitialized data and non-zero initialized data,

respectively. The runtime then unmaps these sections from the loaded binary image in memory,

maps them from a SYSV memory mapped shared memory file and reinitializes these sections to

the original values.

This mapping to a shared memory file is done by the main process before its execution begins at

main. Speculative flows are then instantiated as processes (we use the clone() system call in Linux

to ensure that file mappings are shared as well) and a copy of the address space of the parent is

created for each instantiation of a speculation. Consequently, the speculations inherit the shared

global data mapping. Hence any modifications made by a process to global data are immediately

visible to all processes. Such a technique guarantees that all the processes have the same view of

105

global data, similar to a threads model. In essence, this technique creates a set of processes that

are semantically identical to threads, but operate in distinct virtual address spaces. By controlling

the binding to the shared memory mapping, data can be selectively isolated or shared based on the

requirements of the speculation model.

To implement a shared heap, we modified Doug Lea’s dlmalloc [27] allocator to operate over shared

memory mappings so that the allocated memory is visible to all processes. Our runtime system

provides global heap allocation by sharing memory management metadata among processes using

the same shared memory backing mechanism used for .data and .bss sections. Hence any process

can allocate memory that is visible and usable by other processes. If a process accesses memory

that is not mapped in its address space, it results in a segmentation violation (a map error). Our

runtime system handles this segmentation violation by consulting memory management metadata

to check if the reference is to a valid memory address allocated by a different process. If so, it maps

the shared memory file associated with the memory, thereby making it available. Note that such

an access fault only occurs on the first access to a memory region allocated by a different process,

and is conceptually similar to lazy memory allocation within an operating system.

To ensure program correctness, speculative flows within the same composition should appear as

a concurrent continuation of the parent execution context. To achieve this, our runtime system

ensures that the base address of the stack in a speculative flow is identical to that of the parent

speculation. The default size of a stack is 8MB. When composing a speculation, the runtime saves

only the stack frame of the parent speculation (not the entire 8MB) and each speculation within a

composition uses a copy of this stack frame for execution. Each speculative flow is now identical

to its parent flow, thereby creating a concurrent continuation.

Since each speculative flow is implemented as a process, it is important to note that in UNIX process

semantics, each process is created with its own copy of the data segment of the shared libraries.

Consequently, by default the runtime is not shared among speculation flows. To circumvent this

problem and to maintain a shared and consistent view of the runtime, each newly created process

automatically executes an initialization routine that maps the shared state of the Anumita runtime.

106

4.3.2 Speculative Composition

To mitigate the costs of creating and terminating speculative flows, the runtime instantiates a

configurable pool of speculative flows in the Anumita library constructor before the main process

begins its execution. Additional speculative flows are created as necessary. This pool of speculative

flows is initially idle (blocked), waiting for work from the main process. On the termination of a

speculative flow, it is returned back to the pool. In principle this is similar to a worker thread pool

used to mitigate the performance impact of thread creation.

To instantiate a speculation, the parent flow first saves its current stack frame and execution

context (setjmp) before waking the specified set of speculative flows from the pool. Upon waking,

each speculation adjusts its execution context (longjmp), restores its stack to that of the parent flow

and isolates its shared virtual memory address (VMA) before starting execution. The speculations

begin their execution as a concurrent continuation of the begin speculation construct. The parent

flow then enters an evaluation context and waits for messages from the members of the speculative

composition. The parent flow may be woken up under three scenarios.

First, if a speculative flow completes its assigned task it executes a commit speculation. A call to

commit speculation is mutually exclusive to prevent race conditions on commits from multiple

speculations. The first speculation to invoke commit is designated the winner. The winning spec-

ulation saves its current execution context and its stack frame so as to allow its parent to continue

from the commit point. Additionally, the winning speculation attaches (ptrace) itself to the remain-

ing sibling speculations and alters their instruction pointer to point to a cleanup routine. In the

cleanup routine, it performs an inclusion (propagation of privatized updates) of the shared virtual

memory address (VMA) and frees any dynamically allocated memory it allocated before returning

to the pool. The winning speculation then commits its changes, wakes up its parent with a “win-

ning speculation” message and joins the worker pool. Upon waking up, the parent flow adjusts its

execution context and stack and returns from commit speculation to continue its execution.

Second, if a speculative flow requests an evaluation, the parent flow executes the user defined eval-

107

uation function and returns a boolean value to indicate either a success or a cancellation. The

speculative flow then either continues or aborts its execution based on the boolean value. Addi-

tionally, the parent flow can steer the computations of speculative flows. Anumita also implements

a flexible approach to allow the parent flow to store the intermediate results of speculative flows for

evaluation. In order to accomplish this, a speculative flow may access memory using get ir memory.

This region of memory is shared between the parent flow and the speculative flow and it is unique

to each speculative flow. This obviates the need for any synchronization among speculative flows

to update their intermediate results.

Finally, in the event that all the speculations in a composition abort, the last speculation to abort

(in program order within a composition) signals the parent flow to terminate the program, since

no surrogate satisfied the expected quality criterion.

4.3.3 Nested Speculative Compositions

Implementing support for nested speculations presents additional challenges. Recall that in order to

contain updates within a speculative flow, the pages modified in a speculative flow are privatized.

Hence, if a speculative flow in turn creates a new composition, then it should propagate all its

“privatized updates” to the speculative flows in the new composition. This has to be achieved

without committing the updates, since the parent of the nested speculation may not be the winner

in its composition. Conversely, the updates by the speculations in a nested composition should be

propagated only to its parent flow to ensure program correctness.

To resolve this, in the case of nested speculations, the runtime creates new speculative flows during

the call to begin speculation instead of using a worker pool entry. This creates a current copy

of the parent flow and includes privatized updates. Since the parent is blocked upon composing a

speculation, the lazy copy-on-write semantics provided by the operating system efficiently creates

isolated private address spaces for the nested speculations.

108

4.3.4 Containment

In order to determine the write-set and and contain (privatize) the updates of a speculation, An-

umita employs page level protection and privatization of the shared VMA. Each speculative flow

initially write-protects (PROT READ) its shared VMA. Read accesses to shared data do not pro-

duce any faults and execute normally. However, if a speculation attempts to write to a shared page

(global data, heap), the runtime handles the access fault (SEGV ACCERR) by remapping the

faulting page from the shared memory in private (MAP PRIVATE) mode. The runtime maintains

a list of pages that were modified by each speculation within a composition. The permissions of

the page are then reset to read-write so that the speculation can continue its execution.

This privatization provides containment of updates by a speculation. Such a lazy privatization

scheme that defers privatization until the instant memory update happens is sufficient to ensure

program correctness in our speculation model. We do not present a formal proof of correctness,

however, the intuition behind the proof is that once a winning speculation commits, none of the

remaining speculations will be allowed to commit, thus precluding Write-after-Read or Write-after-

Write hazards. Hence, we chose the lazy privatization approach over a conservative approach, which

privatizes the entire VMA.

The runtime does not track accesses of local variables on the stack. Since a copy of the parent

stack frame is passed to each speculation, the stacks do not need to be write-protected. Instead

the parent’s stack frame is updated with contents of the stack frame from the winning speculation.

Such a strategy works for programs that contain pointers to stack-allocated data.

4.3.5 Inclusion

When a speculation composition culminates with a winning surrogate, the updates of the winning

speculation (contained in the privatized data) must be propagated and made visible to the parent

flow and any other non speculative flows in the program.

In order to perform this inclusion of updates, we implement the shadow addressing technique similar

109

shared and
(read-write)

shared and
write-protected

private
(read/read-write)

W(x): Write to page x

begin
speculation

if(id == 0)
{
 W (1)
 W (2)
 ...
 W*(5)
 evaluate
 speculation
}

if(id == 1)
{
 W (2)
 W (3)
 ...
 W*(6)
 evaluate
 speculation
}

if(id == 2)
{
 W (2)
 W (4)
}

commit
speculation

shared and
(read-write)

text

stack

kernel

low-address

high-address
(45th bit set)

0x200000000000

shared memory
objects

+
memory mapped

les

heap

global data

heap

global data

heap

global data

memory allocated
for evaluating
speculations

0x100000000000

1 2 3 4 5

1 2 3 4

6

6

7

7

1 2 3 4 5

2 3 4 5

6 7

71

5

6

1 2 3 4 5

2 4 5

6 7

71 63

1 2 3 4 5 6 7

space allocated
for evaluation

space freed
at the end of
composition

2 2

4 4

1 2 3 4

main
memory

Figure 4.5: (left) Illustrates the virtual memory address (VMA) layout of each process. The
runtime provides memory isolation by using shared memory objects and memory mapped files to
share global state among processes. (right) Illustrates how the VMA is manipulated by the runtime
with a simple example.

110

to [75] that leverages the large virtual memory address (VMA) provided by 64-bit operating systems.

Recall that the runtime system maps globals and the heap (described in Section 4.3.1) using shared

memory objects and memory mapped files. Using the same shared memory objects and memory

mapped file, the runtime creates an identical secondary shadow mapping of the global data sections

and heap at a high address (45th bit set) in the VMA of each speculation flow. The program is

unaware of this mapping, and performs its accesses (reads/writes) at the original low address space.

The high address space shadow is always shared among speculative flows and is never privatized.

Hence, any updates to it are propagated across all flows. In effect, the high address mapping

creates a shadow address space for all shared program data and modifications (unless privatized)

are visible in both address spaces (shown in Figure 4.5).

To perform this inclusion the runtime employs two distinct strategies depending on the depth of the

speculations (nested or otherwise). In a single level speculation, where a flow creates a composition,

updates from the winning speculation must be made visible to the parent flow. To achieve this,

the runtime copies all the pages in the write set of the winning speculation to the high address

shadow region of the VMA (shown in Figure 4.5), which automatically propagates the updates

to the parent flow, due to the shared memory bindings. The runtime then reverts all privatized

mappings within the speculative flows (cleanup) and returns them to the pool.

In a nested speculation, the runtime creates a new shared memory mapping equal to the write

set of the winning speculation and it copies the write set of the winning speculation to the newly

created mapping. The parent flow then copies the write-set from this new mapping into its address

space to perform inclusion.

4.3.6 Example

We present a simple example to illustrate how the runtime manipulates the VMA of each speculation

flow while providing isolation, privatization and inclusion. Consider the scenario as shown in

Figure 4.5 where a control flow creates a composition involving three speculations. Initially, all

the shared pages (1, 2, 3, 4) of the speculative flows are write-protected. When the flow with rank

111

0 attempts to write to pages (1, 2), the pages are privatized (lazy privatization). Similarly, the

runtime system privatizes the updates of speculations with ranks 1 and 2, which write to pages

(2, 3) and (2, 4) respectively. If the speculation with rank 2 wins the composition, the runtime

commits the write-set to the shared high-address space to propagate the updates.

Additionally, in Figure 4.5 we illustrate how the speculative flows may request evaluation of their

progress. At the beginning of a speculative composition, a program may choose to request space for

storing partial results. In the above example, pages (5, 6, 7) are allocated by the runtime system to

store the partial results. Each speculation may use the get ir memory() to obtain the address of

the region used to store its partial results. The speculative flow at rank 0 writes its partial results

to page 5, before requesting evaluation. Following the same procedure, speculative flow 1 writes to

page 6 before requesting evaluation from its parent flow. The parent flow can access these memory

locations and execute the evaluation function to determine the relative quality and/or progress of

the speculative flows.

Recall, that while Anumita supports multi-threaded applications, caution should be exercised in

leveraging speculative parallelism in a multi-threaded environment. As discussed in Section 4.2.1, if

a surrogate requires concurrency with other non-speculative threads or other concurrently executing

speculative threads then it is not a candidate for speculation, since such a surrogate is based on

concurrency rather than speculation. Hence, in the presence of data dependencies we expect explicit

serialization in composing speculations in order to ensure program correctness.

A complication arises when two distinct threads of a process independently instantiate speculative

compositions that execute concurrently. This is depicted in Figure 4.1, where threads 0 and 2 enter

distinct compositions. While the compositions may be distinct, the granularity of our protection

mechanism is at the level of an operating system page, which can cause false-sharing if updates to

distinct bytes from distinct compositions reside on the same operating system page. The artifact of

this problem is that in the case of concurrent speculations, the contents on a page subject to false

sharing will reflect the updates from the last speculation in program order to successfully commit

without reflecting any of the updates from concurrent commits. For example in Figure 4.1, if the

112

monte-carlo method updated page 1, which was also updated (albeit at different locations) by the

adaptive method, the final contents of page 1 will reflect the updates from adaptive and none of

the updates from monte-carlo. In effect, updates to pages subject to false sharing are mutually

exclusive, which is clearly incorrect.

To solve this problem, we need an efficient mechanism to propagate updates from a winning spec-

ulative flow to all concurrent speculations. This is achieved by computing and propagating XOR

differences. To see how this works, consider the example shown in Figure 4.1. When monte-carlo

wins the speculative composition in thread 2, prior to performing inclusion the runtime determines

if there are concurrent speculative compositions in other threads. If so, for each page in the write-

set of the first winning flow (monte-carlo), the runtime computes an XOR of the privatized page

with its counterpart in the high address space. Recall that prior to inclusion, the page in the

write-set of monte-carlo is privatized and includes updates from the flow, whereas its counterpart

in the shadow address space contains the original contents of the page. The XOR difference thus

yields the exact set of bits that were updated by monte-carlo method.

The runtime then pushes this XOR difference to all concurrently executing flows (adaptive, conser-

vative, extrapolation) and performs inclusion of updates from monte-carlo as before. The concurrent

flows apply the differences by computing the XOR of the difference they received with their priva-

tized copy of the page (if one exists due to false sharing). Intuitively this mechanism updates the

privatized contents of a concurrent speculation with the latest updates from a winning speculation

in another composition. In the example above, when adaptive finally wins its composition, its write

set already contains the updates from monte-carlo and hence the final resulting update of a falsely

shared page from adaptive correctly contains the cumulative updates from winning speculations.

To minimize time and space overhead, the XOR difference is only computed on the pages in the

write set that are subject to false sharing (typically small), which is determined by computing the

intersection of the write sets of the winning flow (monte-carlo) and all other concurrently executing

flows (adaptive, conservative, extrapolation) .

113

4.3.7 Support for OpenMP

To support OpenMP, we provide a simple source to source translator that expands the #pragma

speculate (...){....} directive to begin and commit constructs. Our translator parses only the spec-

ulate pragma leaving the rest of the OpenMP code intact. This approach does not require any

modifications to existing OpenMP compilers and/or OpenMP runtime libraries.

Our runtime system overrides mutual exclusion locks, barriers and condition variables of the POSIX

thread interface and a few OpenMP library routines in order to provide a clean interface to OpenMP.

We overload the omp get thread num call in OpenMP to return the speculation rank from get rank.

The Anumita runtime automatically detects if an OpenMP program is in a speculative context

and selectively overloads OpenMP calls, which fall back to their original OpenMP runtime when

execution is outside a speculative composition. Finally, our OpenMP subsystem implements a

simple static analyzer to perform lexical scoping of a speculative composition. This can be used to

check for logical errors such as a call to commit before beginning a speculation.

4.4 Experimental Evaluation

We evaluated the performance of the Anumati runtime over three applications: a multi-algorithmic

PDE solving framework [83], a graph (vertex) coloring problem [57] and a suite of sorting algo-

rithms [98].

We ran each benchmark under two scenarios. The first scenario uses Anumita to speculatively

execute multiple algorithms concurrently. This was done by modifying approximately 8-10 lines of

source code in the above benchmarks. Since Anumita guarantees isolation, these modifications were

short and required little to no understanding of the algorithms themselves. In the other scenario we

ran the vanilla benchmark executing each algorithm individually. All experiments were performed

on a 16 core shared memory machine (NUMA) running Linux 2.6.31-14 with 64GB of RAM. The

system contains four 2 GHz Quad-core AMD Opteron processors.

114

4.4.1 PDE Solver

One approach for dealing with the unpredictable input-dependent performance of PDE solvers is a

‘poly-algorithmic’ strategy, where multiple algorithms are tried in parallel, with the one finishing

first declared the winner, e.g., [6, 10]. This approach is robust, essentially guaranteeing a solution,

and is easily implemented using our framework.

We consider the scalar linear elliptic equation [78]

−∇2u+
α

(β + x+ y)2
ux +

α

(β + x+ y)2
uy = f(x, y),

with Dirichlet boundary conditions on the unit square, where β > 0. Discretized with centered

finite differences, the resulting linear system of algebraic equations is increasingly ill-conditioned for

large α and small β. Krylov linear solvers have difficulty as this problem approaches the singular

case, i.e., as α/β2 grows. What is not so clear is how quickly the performance degrades, and how

much preconditioning can help. To simplify the case study, we fix β at 0.01 and vary α.

Discretizing the problem using a uniform grid with spacing h = 1/300 results in a linear system

of dimension 89401. We consider three iterative methods and one direct method for solving this

system of equations:

1. GMRES(kdim=20) with ILUTP(droptol=.001)

2. GMRES(kdim=50) with ILUTP(droptol=.0001)

3. GMRES(kdim=100) with ILUTP(droptol=.00001)

4. Band Gaussian Elimination

Here kdim is the GMRES restart parameter, ILUTP is the “incomplete LU with threshold pivoting”

preconditioner [86, Chap. 10], and droptol controls the number of nonzeros kept in the ILU pre-

conditioner. Increasing kdim or decreasing droptol increases the computational cost per iteration

of the iterative method, but should also increase the residual reduction per iteration. Hence, one

115

1000 1500 2000 2500 3000 3500
0

20

40

60

80

100

120

140

160

alpha

Ti
m

e
(s

ec
)

GMRES(kdim=20,droptol=.001)
GMRES(kdim=50,droptol=.0001)
GMRES(kdim=100,droptol=.00001)
Band GE
Speculation

Figure 4.6: Time to solution for individual PDE solvers and speculation based version using Anu-
mita. Cases that fail to converge in 1000 iterations are not shown. The results show that Anumita
has relatively small overhead, allowing the speculation based program to consistently achieve per-
formance comparable to the fastest individual method for each problem.

can think of methods one to four as being ordered form “fast but brittle” to “slow but sure.” Our

PDE-solving framework for these experiments is ELLPACK [83], with the GMRES implementation

from SPARSKIT [85].

Figure 4.6 shows the performance of the four methods and speculation for varying α. For small α

the results are consistent, with Method 1 consistently fastest. As α grows, however, the performance

of the iterative methods vary dramatically, with each method taking turns being the most efficient.

In many cases the GMRES iteration fails to converge (i.e., iterations exceeding 1000 are not shown

in the figure). Eventually, for large enough α, Band GE is the only method that succeeds.

The write set of the PDE solver is 157156 pages (≈ 614MB) of data. The overhead of speculation

shrinks steadily as the problem difficulty grows, with overheads of no more than 5% for large α.

This is to be expected since the time to solve sparse linear systems grows faster as a function of

problem dimension than the data set size, which largely determines the overhead. However, in cases

with small (< 10 sec) runtime, the overhead due to speculation is noticeable (up to 16%). This is

due to initial thread creation and start up costs which are otherwise amortized over the runtime of

116

Table 4.2: Number of failing cases (out of 125) for each PDE solver, and speedup of speculative
approach relative to each method.

Speedup
Method Fail Min Max Median

1 51 0.84 2.47 0.94

2 27 0.94 2.89 1.18

3 23 0.94 3.62 1.52

4 0 0.95 36.19 5.01

a larger run.

The results show that speculative execution provides clear benefits over any single static selection of

PDE solver. Table 4.2 summarizes the performance of the four methods relative to the speculatively

executed case. Statically choosing any one of the GMRES methods (Methods 1-3) causes a serious

robustness problem, as many of the problems fail completely. Even for the cases where GMRES

succeeds, we see that the speculative approach yields noticeable improvements. For the problems

where method 1 succeeds, it is faster than speculation more than half the time (median speedup

= 0.94). Compared to methods 2-4 speculation is significantly faster in the majority of cases. In

essence, speculation dynamically chooses the best algorithm for a given problem, with minimal

overhead.

It must be pointed out that the speculative code uses four computational cores, while the standalone

cases each use only one core. In the case where we only have sequential implementations of a given

surrogate, speculation gives us a convenient way to do useful work on multiple cores, moving more

quickly on average to a solution. However, given parallel implementations of each of the four

methods, an alternative to speculation is to choose one method to run (in parallel) on the four

cores. However, this strategy still suffers from the risk of a method failing, in which case one or

more additional methods would have to be tried. In addition, it is well-known that sparse linear

solvers do not exhibit ideal strong scaling, i.e., parallel performance for a fixed problem does not

scale well to high core counts. By contrast, running each surrogate on a core is embarrassingly

parallel; each core is doing completely independent work. Given hundreds of cores, the optimal

strategy is likely to be to use speculation at the highest level, with each surrogate running in

117

161820222426
0

20

40

60

80

100

120

140

Colors

Ti
m

e
(s

ec
)

tabu
vns
sa
speculation

(a) LE 450 15c, seed=1

161820222426
0

20

40

60

80

100

120

Colors

Ti
m

e
(s

ec
)

tabu
vns
sa
speculation

(b) LE 450 15c, seed=12

161820222426
0

20

40

60

80

100

120

140

160

180

Colors

Ti
m

e
(s

ec
)

tabu
vns
sa
speculation

(c) LE 450 15c, seed=1234

161820222426
0

20

40

60

80

100

120

140

160

180

200

Colors

Ti
m

e
(s

ec
)

tabu
vns
sa
speculation

(d) LE 450 15d, seed=1234

Figure 4.7: The performance of Graphcol benchmark using two DIMACS data sets LE 450 15c
(subfigures (a) through (c)) and LE 450 15d (subfigure (d)).

parallel on some subset of the cores. Choosing the number of cores to assign to each surrogate

should depend on the problem and the scalability of each method on that problem, and is beyond

the scope of this discussion.

4.4.2 Graph Coloring Problem

In graph theory, vertex coloring is the problem of finding the smallest set of colors needed to color

a graph G = (V,E) such that no two vertices vi, vj ∈ V with the same color share an edge e. The

graphcol [57] benchmark implements three surrogate heuristics for coloring the vertices of a graph:

118

simulated annealing, tabu search and variable neighborhood search. The benchmark initializes the

graph by randomly coloring the vertices with a specified set of colors and each heuristic algorithm

iteratively recolors the graph within the coloring constraints. We used the DIMACS [25] data sets

for the graph coloring benchmark, which are widely used in evaluating algorithms and serve as

the testbed for DIMACS implementation challenges. Each data set (graph) has a fixed number of

colors that it can use to color a graph. We experimented with over 80 DIMACS data sets using

different seeds (for initial colors) and show the results from representative runs.

In Figure 4.4.1 we present the results of the graph coloring benchmark using two DIMACS data

sets. The results show several interesting characteristics. First, certain heuristics do not converge

and cannot guarantee a solution. For instance, simulated annealing (sa) cannot color the graph

beyond a certain number of colors. Second, the choice of the input seed, which decides the initial

random coloring, creates significant performance variations among the heuristics (Figures 4.4.1 (a)

through (c)) even when the graph is identical. Third, when the seed is constant, there is performance

variation among the data sets, which represent different graphs as shown in Figures 4.4.1 (c) and

(d). In the presence of such strong input dependence across multiple input parameters, it is difficult

even for a domain expert to predict the best algorithm a priori.

Using Anumita it is possible to obtain the best solution among multiple heuristics. We found that

in some cases where sa failed to arrive at a solution (unable to color the graph using specified

number of colors), the use of speculation guaranteed not only a solution but also one that is nearly

as fast the fastest alternative. Since the write set is relatively small at around 50-100 pages, the

overhead of speculation is negligible. Anumita’s speedup, across all the data sets (in Figure 4.4.1),

ranges from 0.954 (vns with 26 colors in Figure 4.4.1 (b)) in the worst case, when the static selection

is the best surrogate, to 7.326 (vns with 21 colors in Figure 4.4.1 (d)), when the static selection

is the worst surrogate. We omit the results from the sa method in calculating speedup since sa

consistently performs worse than the other algorithms on these data sets.

119

quick merge heap shell insertion bubble speculation
0

0.5

1

1.5

2

2.5

3

3.5

Sort Algorithm

lo
g

 (
T

im
e

 (
s
e

c
))

sorted

random

overhead

baseline

baseline

Figure 4.8: Performance of Anumita over a suite of sorting algorithms.

4.4.3 Sorting Algorithms

Since the overhead of speculation in our runtime is proportional to the write set of an application,

we chose sort as our third benchmark since it can be configured to have an arbitrarily large memory

footprint. Sort is relatively easy to understand, and yet there are a wide variety of sorting algorithms

with varying performance characteristics depending on the size of the data, sortedness and cache

behavior [5]. Our suite of sorting algorithms includes C implementations of quick sort, heap sort,

shell sort, insertion sort, merge sort and bubble sort.

The time to completion of the sorting algorithms is based on several cardinal properties including the

input size, their values (sorted or unsorted) and algorithmic complexity. In this set of experiments

we fixed the input size and used two sets of input data — completely sorted and completely random,

each of size 8 GB. Each sorting algorithm is implemented as a separate routine. The input data

is generated using a random number generator. After sorting the data the benchmark verifies that

the data is properly sorted. We measured the runtime of each sorting algorithm and excluded

the initialization and verification phases. Using Anumita, we speculatively executed all six sorting

algorithms concurrently.

120

In Figure 4.8 we present the results of the sort benchmark. Results for insertion sort and bubble

sort for random data were omitted since their runtime exceeds 24 hours. The results show that

insertion sort is the fastest for sorted data and quick sort performs the best on completely random

data, which is expected. Despite the large write set of 8 GB per speculation, a total of 6x8GB for

the entire speculative composition, Anumita is at least the second fastest of all the alternatives

considered and is nearly as fast as the fastest alternative.

The worst case overhead of speculation on sorted data relative to the best algorithm (insertion

sort) is 15.78% (3.2 sec), which stems from the map faults handled by the runtime system. The

worst case overhead of speculation compared to the fastest algorithm on the random data is 8.72%

(50.34 sec over 616 secs). This overhead stems from privatization, isolation and inclusion of the

large 8 GB data set. Anumita achieves a speedup ranging from 0.84 (quick sort/random data) to

62.95 (heap sort/sorted data).

4.4.4 Memory Overhead

Anumita’s memory overhead depends on the number of speculative flows within a composition and

their corresponding write sets. For each speculative flow, Anumita’s employs privatization at the

granularity of a page, consequently, each speculative flow will incur 1x memory overhead for every

unique page it modified. The total write set of the PDE solver is 614MB, hence the total memory

consumption is 1228MB. For the Graph coloring problem the write set is around 50 to 100 pages.

Hence its memory consumption ranged between 100 and 200 pages. The sorting algorithm had a

total write set of 8GB hence the total memory footprint using Anumita is 16GB.

4.4.5 Energy Overhead

The primary focus of Anumita is to improve run time performance. Reducing energy consumption

runs counter to this goal. However, in this section, we demonstrate that adopting coarse-grain spec-

ulation to exploit parallelism on multi-core systems does not come with a large energy consumption

121

1800 2000 2200 2400 2600 2800 3000 3200 3400
0

1

2

3

4

5

6

7

8

9
x 10

4

alpha

E
n
e
rg

y
 (

J
o
u
le

)

GMRES(kdim=20,droptol=.001)

GMRES(kdim=50,droptol=.0001)

GMRES(kdim=100,droptol=.00001)

Band GE

Speculation

Figure 4.9: Energy consumption of PDE solver using surrogates in Anumita. The results show that
Anumita has relatively low energy overhead.

penalty, and in fact can reduce total energy consumption in many cases.

Energy consumption in modern multi-core processors is not proportional to CPU utilization. An

idle core consumes nearly 50% of the energy of a fully loaded core [67]. There is a significant

body of research in the architectures community on making the energy consumption proportional

to offered load, which is motivated by energy consumption of large data centers that run at an

average utilization of 7− 10%.

To measure the energy overhead of coarse-grain speculative execution using Anumita, we connected

a Wattsup Pro wattmeter to the AC input of the 16 core system running the benchmark. This

device measures the total input power to the entire system. We performed the power measurement

using the SPEC Power daemon (ptd), which samples the input power averaged over 1 sec intervals

for the entire run time of the application. We calculated energy consumption as the product of the

total runtime and the average power. We measured energy consumption under two scenarios: a)

each algorithm run individually and b) speculatively execute multiple algorithms using Anumita.

Figure 4.9 presents the energy consumption of the PDE solver. We report the results for α values

greater than 1700 for the PDE solver, since they have a runtime of at least a few seconds (required

to make any meaningful power measurements). Comparing the most energy efficient algorithm at

122

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 16 17 18 19 20 21 22 23

E
n
e
r
g
y

(
J
o
u
l
e
)

Colors

Tabu
VNS

Speculation

Figure 4.10: Energy consumption of the graph coloring benchmark for the LE 450 15c data set
with a seed of 12.

each α with the corresponding speculative execution, we found that the overall energy overhead of

speculation ranged between 7.72% and 19.21%. It is comforting to see that, even in the presence

of running four surrogates concurrently, Anumita incurred a maximum energy overhead of 19.21%

compared to the most energy efficient algorithm.

More importantly, since the most energy efficient algorithm for a given problem is not known a

priori, we again see a large robustness advantage for speculation — this time with respect to energy

consumption. With a static choice of algorithm there is substantial risk that a method will fail

(necessitating the use of another method) or take much longer than the best method, all of which

consume more energy than the speculatively executed approach.

Figure 4.10 shows the energy consumption for two vertex coloring algorithmic surrogates (tabu,

vns) and speculation using Anumita. In this case, Anumita speculates over three algorithms (sa,

tabu and vns) even though one of them consistently fails to color the graph. Comparing the most

energy efficient algorithm at each color with the corresponding speculation, we found that the

overall energy overhead due to speculation ranged between 6.08% and 16.04%.

The total energy consumed to color the graph is actually lower for speculation when compared

123

to a static choice of either algorithmic surrogate. This is because energy is the product of power

and time, and since neither algorithm is consistently better (strong input dependence), speculation

results in lower time to completion of an entire test case which translates to lower energy con-

sumption. Speculation using Anumita takes 252 seconds for the problem set with a total energy

consumption of 107904 joules. Tabu takes a total of 321 seconds and consumes a total energy of

128531 joules for the problem set. In contrast the best static choice of the surrogate (vns) runs in

314 seconds and consumes 125194 joules. Speculation here is 24.6% faster in time and consumes

16.02% less energy, a result that is positive in both aspects.

4.4.6 Summary of Results

Anumita provides resilience to failure of optimistic algorithmic surrogates. In both graph coloring

and PDE solvers, not all algorithmic surrogates successfully run to completion. In the absence of

a system such as Anumita, the alternative is to run the best known algorithmic surrogate and if

it fails, retry with a fail-safe algorithm that is known to succeed. While this works for the PDE

solving example with Band Gaussian Elimination being the fail-safe, there is no clear equivalent for

graph coloring, with each surrogate failing at different combinations of graph geometry and initial

coloring. With modest energy overhead and sometimes savings, Anumita can significantly improve

the performance of otherwise hard to parallelize applications.

4.5 Related Work

We categorize existing software based speculative execution models [26, 47, 82, 50, 49, 48, 70,

79, 96, 99, 20] into two categories depending on the granularity at which they perform specula-

tion — loops or user defined regions of code. Loop level models [82, 50, 49, 48, 79, 96, 99, 20]

achieve parallelism in sequential programs by employing speculative execution within loops. While

such models transparently parallelize sequential applications without requiring any effort from the

programmer, their scope is limited to loops. In contrast, the second category of speculative exe-

124

cution models [9, 26, 47, 70, 101] allow the programmer to specify regions of code to be evaluated

speculatively. We restrict our discussion to these models throughout the rest of this section.

Berger et al. [9] proposed the Grace framework to speculatively execute fork-join based multi-

threaded applications. Grace uses processes for state separation with virtual memory protection

and employs page-level versioning to detect mis-speculations. Grace focuses on eliminating concur-

rency bugs through sequential composition of threads.

Ding et al. [26] proposed behavior oriented parallelization (BOP). BOP aims to leverage input

dependent course grained parallelism by allowing the programmer to annotate regions of code,

denoted by possibly parallel regions (PPR). BOP uses a lead process to execute the program non-

speculatively and uses processes to execute the possibly parallel regions. When the lead process

reaches a PPR, it forks a speculation and continues the execution until it reaches the end of the

PPR. The forked process then jumps to the end of the PPR region and in turn acts as lead

process and continues to fork speculations. This process is repeated until all the PPRs in the

program are covered. BOP’s PPR execution model is identical to pipelining. The lead process

at the start of the pipeline waits for the speculation it forked to complete and then checks for

conflicts before committing the results of the speculation. This process is recursively performed

by all the speculation processes that assumed the role of the lead process. BOP employes page-

based protection of shared data by allocating each shared variable in a separate page and uses a

value-based checking algorithm to validate speculations.

In another study, Kelsey et al. [47] proposed the Fast Track execution model, which allows unsafe

optimization of sequential code. It executes sequential (normal tracks) and speculative variants

(fast tracks) of the code in parallel and compares the results of both these tracks to validate

speculations. Their model achieves speedup by overlapping the normal tracks and by starting the

next normal track in program order as soon as the previous fast track is completed. Fast Track

performs source transformation to convert all global variables to use dynamic memory allocation

so its runtime can track accesses to global variables. Additionally, Fast Track employes a memory-

safety checking tool to insert memory checks while instrumenting the program. Finally, Fast Track

125

provides the programmer with configurations that tradeoff program correctness against performance

gains. In contrast, Anumita provides transparent name space isolation and it does not require

any annotations to the variables in a program. Additionally, Anumita does not rely on program

instrumentation.

Prabhu et al. [70] proposed a programming language for speculative execution. Their model uses

value speculation to predict the values of data dependancies between coupled interactions based

on a user specified predictor. Their work defines a safety condition called rollback freedom and is

combined with static analysis techniques to determine the safety of speculations. They implemented

their constructs as a C# library. The domains where value speculation is applicable are orthogonal

to our work.

Trachsel and Gross [101, 100] present an approach called competitive parallel execution (CPE)

to leverage multi-core systems for sequential programs. In their approach they execute different

variants of a single threaded program competitively in parallel on a multicore system. The variants

are either hand generated surrogates or automatically generated by selecting different optimization

strategies during compilation. The program’s execution is divided into phases and the variants

compete with each other in a phase. The variant that finishes first (temporal order) determines the

execution time of that phase, thereby reducing the overall execution time. In contrast, Anumita is

capable of supporting both sequential and parallel applications and provides expressive evaluation

criterion (temporal and qualitative) to evaluate speculations.

Praun et al. [104] propose a programming model called implicit parallelism with ordered transac-

tions (IPOT) for exploiting speculative parallelism in sequential or explicitly parallel programming

models. The authors implement an emulator using the PIN instrumentation tool to collect mem-

ory traces and emulate their proposed speculation model. In their work, they propose and define

various attributes to variables to enable privatization at compile time and avoid conflicts among

speculations. In contrast, as mentioned previously, Anumita does not require annotations to vari-

ables or rely on binary instrumentation. Instead, Anumita provides isolation to shared data at

runtime.

126

In another study, Cledat et al. [21] proposed opportunistic computing, a technique to increase

the performance of applications depending on responsiveness constraints. In their model multiple

instances of a single program are generated by varying input parameters to the program, which

then compete with each other. In contrast, Anumita is designed to support speculation at arbitrary

granularity as opposed to the entire program.

Ansel et al. [5] proposed the PetaBricks programming language and compiler infrastructure. PetaBricks

provides language constructs to specify multiple implementations of algorithms in solving a prob-

lem. The PetaBricks compiler automatically tunes the program based on profiling and generates an

optimized hybrid as a part of the compile process. In contrast, our approach performs coarse-grain

speculation at runtime and is hence better suited for scenarios where performance is highly input

data dependent.

Additionally, certain compiler directed approaches [11, 40, 41, 56, 58, 53] provide support for

speculative execution and operate at the granularity of loops. Such approaches rely on program

instrumentation [41], use hardware counters for profiling [41] or binary instrumentation to collect

traces [56, 58] in order to optimize loops. In contrast to such systems, Anumita is implemented

as a language independent runtime system. The main goal of Anumita is to simplify the notion of

speculative execution.

Finally, a nondeterministic programming language (e.g., Prolog, Lisp) allows the programmer to

specify various alternatives for program flow. The choice among the alternatives is not directly

specified by the programmer, however the program at runtime decides to choose between the al-

ternatives [1]. Several techniques such as backtracking and reinforcement learning are commonly

employed in choosing a particular alternative. It is unclear if it is the responsibility of the pro-

grammer to ensure and correct the side-effects of the alternatives. Anumita represents a concurrent

implementation of the non-deterministic choice operator. The contribution here is to introduce this

notion and an efficient implementation to imperative programming.

127

4.6 Future Work

We are continuing to improve Anumita. We are presently working on extending support for disk IO

among speculative surrogates. While Anumita simplifies the subtleties of coarse-grain speculative

parallelism by providing simple sequential semantics, the programmer must identify the scope

for speculation. We plan to automate this aspect of our system. Currently there is an ongoing

effort [13, 14, 2] to extend C++ to include threading models. We propose that speculation should

also be a natural extension of the imperative languages and the speculation model should be a natural

extension to threading models. We plan to investigate extending language support for speculation.

4.7 Summary

In this chapter we presented Anumita, a language independent runtime system to achieve coarse-

grain speculative parallelism in hard to parallelize and/or highly input dependent applications. We

proposed and implemented programming constructs and extensions to the OpenMP programming

model to achieve speedup in such applications without sacrificing performance, portability and

usability. We have shown that speculative execution at coarse granularities (e.g., code-blocks,

methods, algorithms) offers a promising programming model for exploiting parallelism on modern

architectures. Our experimental results from a performance evaluation of Anumita show that it is

(a) robust in the presence of performance variations or failure and (b) achieves significant speedup

over statically chosen alternatives with modest overhead.

Chapter 5

Conclusion

Multi and many core architectures have become ubiquitous. Their wide prevalence has brought

issues related to concurrency and parallelism to the forefront of everyday computing. This disserta-

tion describes contributions in two major areas that seek to address the challenges and opportunities

of multi/many core parallelism.

Safe Concurrent Execution

Many applications are amenable to traditional parallelization techniques and can benefit from

multi/many core architectures but are susceptible to the subtleties of concurrent programming —

concurrency bugs. One of the most difficult challenges facing computer science researchers is how

to provide safe and efficient mechanisms to enable a large number of programmers, representing a

wide range of applications, to use these multi-core architectures effectively. In practice the most

recurrent concurrency bugs are data races and deadlocks. Due to the potential of deadlocks, lock

based codes have been deemed non-composable — a fundamental problem in lock based code.

This dissertation presents practical techniques to transparently and deterministically detect and

eliminate deadlocks, enabling a next generation of safe composable lock based codes.

Transparently eliminating deadlocks and related programming errors is a particularly difficult prob-

128

129

lem when targeting multi-threaded applications written in type-unsafe languages such as C and

C++. The challenges include the following.

• Determining and exploring all possible thread interleavings is often impractical and gets worse

in the presence of function pointers. Additionally, an application may depend on several exter-

nal libraries which should also be verified for deadlock freedom. Detecting deadlocks precisely

at compile time in type-unsafe languages is not feasible. It is important that deadlock detec-

tion does not incur any false positives or false negatives. Often the imprecision of program

analysis deters these tools from being used in production systems. Programmers are often

under pressure to meet product deadlines, expecting them to sift through false positives hop-

ing to find potential concurrency bugs is not practical. Expecting programmers to use heavy

weight runtime techniques which could potentially slowdown the application’s performance

is also unrealistic. Hence, efficiently, transparently, and deterministically detecting deadlocks

is extremely hard.

• In practice uncovering a concurrency bug does not necessarily mean that it can be fixed easily.

To properly fix the concurrency bug, the programmer must identify the root cause of the

problem rather than simply observing how the bug manifests itself in the program execution.

Concurrency bugs are often hard to reproduce due to the non-deterministic nature of thread

execution and properly fixing a concurrency bug may require a major software redesign.

Hence transparently eliminating concurrency bugs (particularly deadlocks) without requiring

programmer assistance or modifications to application source code is a daunting task.

• To recover from a deadlock transparently, we need efficient techniques that (a) associate the

memory updates with locks, (b) isolate and contain the memory updates from being visible

to other concurrently executing threads, while (c) preserving the synchronization semantics,

(d) propagating the memory updates on the release of a critical section, and (e) recovering

I/O within critical sections and offering rollback aware memory management. Type-unsafe

languages allow arbitrary pointer accesses and dynamic memory allocation, consequently,

providing isolation during compilation is not a practical option. We need powerful runtime

130

support and all the compile time analysis that we can leverage to successfully accomplish

these objectives.

• To simplify lock based programming and achieve safe and efficient concurrent execution we

need to detect and eliminate other programming errors affecting lock based codes such as

asymmetric data-races, priority inversion, order violations, live-locks, asynchronous signaling,

and locks and related performance issues in addition to deadlocks.

• To make a meaningful impact, in the context of emerging multi-threaded applications with

increasing size (code base), and complexity, we need scalable, competent, and practical tech-

niques for concurrency bug detection and/or recovery.

This dissertation is devoted to addressing these challenges. In this dissertation, we carefully studied

and analyzed these issues in detail. We have systematically broken down these problems into smaller

pieces and presented techniques to address them.

We presented an execution model that provides the ability to selectively share and isolate state

between execution contexts — a platform for containment based deadlock recovery. We presented

techniques that transparently and efficiently detect, isolate, and privatize memory updates. We

presented semantics for propagating memory updates, and preserving program correctness while

still permitting a containment based deadlock recovery. We addressed the challenges of privatization

and presented techniques to address potential side-effects. We presented an efficient algorithm to

detect deadlocks without the presence of an external agent. We presented techniques to provide

granular deadlock recovery — rolling back the program state to only the offending lock as opposed

to rolling the program state all the way to the start of the outermost critical section.

The culmination of these techniques and algorithms is a pure runtime approach (discussed

in Chapter 2) for transparent deadlock detection and recovery in POSIX threaded applications

written in type-unsafe languages such as C and C++. The techniques we have implemented enable

such applications to run unmodified and these techniques do not require any modifications to

the compiler or the operating system. We discussed the design, architecture, and limitations of

131

our approach. We performed a comprehensive performance analysis of our proposed approach.

Our results indicate that our approach performs reasonably well even in the presence of fine-grain

locking.

Leveraging some of the lessons learnt from this work (Chapter 2), we presented techniques to address

its limitations, and broaden our impact. We presented reachability and flow analysis techniques,

and opportunistic optimizations to derive the scope of critical sections. We presented an efficient

runtime shadowing technique to provide isolation of memory updates. We presented transparent

recovery techniques for deadlocks, priority inversion, and live-locks that perform rollback aware

memory management, and I/O within critical sections. We discussed techniques for detecting

asymmetric write-write data-races, priority inversion, order violations, live-locks, and asynchronous

signaling.

Collectively, these techniques present a program analysis and runtime approach (discussed

in Chapter 3) that can be used on production systems to eliminate deadlocks, and concurrency

bugs affecting lock based codes. Neither of our approaches (Chapters 2 and 3) encounter any false

positives or false negatives in detecting deadlocks. The program analysis and runtime approach

also does not require any modifications to the application source-code, compiler, or the operating

system. We presented the design, implementation, experimental evaluation, and limitations. Our

experimental results indicate that our approach achieves its core goal of deadlock elimination at a

performance level that enables widespread adoption. Our approach scales very well and supports

applications that acquire billions of locks with lock rates of over hundreds of millions of locks/sec.

We believe that by providing usable and efficient approaches for safe concurrent execution of

threaded codes, we provide a critical tool to programmers designing, implementing, and debugging

complex applications for emerging many-core platforms. More broadly, this research work will

impact and assist in improving the productivity of application developers.

132

Safe Concurrent Programming

While some applications are amenable to traditional parallelization techniques, we also have a large

body of applications that are intrinsically unsuitable for mainstream parallelization techniques

due to execution order dependencies (control and data) and sensitivity to input data. These

applications do not scale well, leaving several cores idle. Therefore, an important dilemma facing

computer science researchers is how to realize the potential of many core architectures and improve

the performance of such hard-to-parallelize applications. A second main thrust of this dissertation

addresses these challenges. Our observation here is that speculative execution at coarse granularities

(e.g., code-blocks, methods, algorithms) offers a promising alternative for exploiting parallelism

in many hard-to-parallelize applications on multicore architectures. This dissertation presents a

simple programming framework to leverage coarse-grain speculative parallelism (discussed in

Chapter 4) in otherwise hard-to-parallelize applications.

Realizing a safe concurrent programming environment relying on speculative parallelism while de-

livering all the desired elements (portability, scalability, usability, and efficiency) required to achieve

wide-spread adoption is a difficult task, to say the least. The challenges include the following.

• Writing correct concurrent programs is extremely challenging for reasons described above.

Hence, we do not want to burden the programmers with the subtleties of concurrent pro-

gramming and the low level details of threading primitives to create speculative control flows,

manage rollbacks, and perform recovery actions in the event of mis-speculations. Addition-

ally, we do want to burden the programmer with explicitly having to manage name-space

isolation among speculations. We want the programmer to focus on the problem at hand —

achieving performance by leveraging course grain speculative execution. Hence, we need an

efficient runtime system to handle these aspects transparently on behalf of the programmer,

and robust programming semantics that preclude concurrency bugs.

• To support a wide variety of problem-solving or algorithmic strategies, we need expressive

evaluation criterion for speculative execution that go beyond time to solution to include

133

arbitrary quality of solution. Additionally, we do not want to deprive already parallelizable

(the ones capable of leveraging traditional techniques for parallelism) applications also from

benefitting from speculative parallelism. Hence, we need simple (yet powerful) and expressive

semantics to efficiently exploit coarse-grain speculative parallelism.

• To make a broader impact, in the context of high-performance computing applications, where

the OpenMP threading model is widely prevalent, we need to make speculation a first class

parallelization technique. We need well-defined semantics and extensions that naturally ex-

tend speculation into an OpenMP context. We should accomplish this without having to

confine to a particular language, compiler and/or its runtime libraries, i.e., the speculation

framework should be compatible with existing compiler infrastructures.

This dissertation focusses on addressing these challenges. In this dissertation we analyzed these

issues in detail and presented techniques to address them.

We presented an execution model for speculative parallelism that provides the ability to selec-

tively share and isolate state between execution contexts — a platform for composing speculations,

and providing transparent name-space isolation. We presented techniques to transparently and

efficiently (a) create, instantiate, and destroy speculative control flows, (b) perform transparent

name-space isolation, (c) provide isolation, track data accesses for each speculation, (d) commit

the memory updates of successful speculations, and (e) recover from memory side-effects of any mis-

predictions. We presented a powerful programming model with expressive semantics, and expressive

evaluation criteria (temporal and qualitative) to exploit coarse-grain speculative parallelism. We

also presented pragmas for composing speculations in the OpenMP threading model. To the best of

our knowledge, our approach is the first to provide support for exploiting coarse-grain speculative

parallelism in OpenMP based applications. Furthermore, we were able to accomplish this without

sacrificing portability — we require no modifications to the complier.

The culmination of these techniques is a safe concurrent programming framework (discussed

in Chapter 4) to improve performance of hard-to-parallelize and/or highly input dependent ap-

134

plications via coarse-grain speculative parallelism. Our performance evaluation using real world

applications shows that our framework (a) is robust in the presence of performance variations or

failure, and (b) achieves significant speedup over statically chosen alternatives with modest runtime

overhead. Speculative execution at coarse granularities (e.g., code-blocks, methods, algorithms) is

a promising alternative for exploiting parallelism on multi and many core architectures.

Looking Ahead

We have discussed interesting research directions throughout this dissertation and presented the

scope for future work in Sections 3.7 and 4.6. We have mentioned several ways in which the

systems we have designed and built (principally Sammati, Serenity, and Anumita) can be extended

and applied. Although these extensions will broaden the scope and impact of our contributions,

we believe that even more ambitious approaches to exploiting concurrency should be investigated.

Presently, in type-unsafe languages such as C and C++, threads are not a part of the language.

Consequently, concurrency control is also not a part of the language. As a result, the compiler is

unaware that it is generating concurrent code and provides limited assistance to the programmer

in developing robust parallel code [13]. We believe that simple language/compiler extensions can

go a long way in improving the overall process of developing and debugging concurrent code. For

instance, program variables can be either local or global depending on the scope of their declaration.

In such a model, the entire global data is exposed to potential data races since threads share the

virtual address space. The onus is now on the programmer to carefully reason about the necessary

serialization required to prevent concurrent accesses to global data and avoid potential data races.

The fundamental problem here is — declaring data as global and later (during the development

process) making sure that all concurrent accesses to that data are protected is a two-fold process. We

believe that while writing concurrent code there is a disconnect between these two related processes.

If programmers inadvertently forget to protect data (that ought to have been synchronized) at some

program point, then it could result in a data race. Data race detection tools typically assume that

any access to the global data could result in a potential data race. In essence, neither the language

135

nor its tool chain provides a safety net to the programmer. The programmer is left to either sift

through the numerous false positives or run the code in good faith and attempt to debug and fix

the problems as they arise.

Simple program annotations in the form of language extensions or variable attributes can enable the

programmer to write robust concurrent code. These extensions allow the programmer to explicitly

tag data that should be serialized. Unserialized or improperly serialized accesses to such data can

then be caught by the compiler, resulting in a compilation error. Despite these measures bugs

will occur — as Alan Perlis said, “There are two ways to write error-free programs; only the third

one works.” [69]. The rest of the tool chain (e.g., runtime) should detect these errors and could

potentially treat them as runtime exceptions (e.g., conflict exceptions [19] [55]).

Ultimately, programmers must be well equipped with a powerful tool chain that (a) prevents most

concurrency bugs from happening in the first place, and (b) handles the remaining bugs appropri-

ately at runtime. Looking forward, to effectively manage concurrency and enable programmers to

develop robust parallel code we need support from all layers of the systems software stack.

Bibliography

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer Programs.

MIT Press, Cambridge, MA, USA, 2nd edition, 1996.

[2] Sarita V. Adve and Hans-J. Boehm. Memory Models: A Case for Rethinking Parallel Lan-

guages and Hardware. Communications of the ACM, 53:90–101, August 2010.

[3] Rahul Agarwal and Scott D. Stoller. Run-time detection of potential deadlocks for programs

with locks, semaphores, and condition variables. In PADTAD ’06: Proceedings of the 2006

workshop on Parallel and Distributed Systems: Testing and Debugging, pages 51–60. ACM,

2006.

[4] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, Honghui Lu, R. Rajamony, Weimin Yu,

and W. Zwaenepoel. Treadmarks: shared memory computing on networks of workstations.

Computer, 29(2):18 –28, feb 1996.

[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman, and

Saman Amarasinghe. PetaBricks: A Language and Compiler for Algorithmic Choice. In

Proceedings of the 2009 ACM SIGPLAN conference on Programming Language Design and

Implementation, PLDI ’09, pages 38–49, New York, NY, USA, 2009. ACM.

[6] R. Barrett, M. Berry, J. Dongarra, V. Eijkhout, and C. Romine. Algorithmic bombardment

for the iterative solution of linear systems: A poly-iterative approach. Jnl. of Computational

& Appl. Math., 74:91–110, 1996.

136

137

[7] Saddek Bensalem, Jean-Claude Fernandez, Klaus Havelund, and Laurent Mounier. Confirma-

tion of deadlock potentials detected by runtime analysis. In Proceedings of the 2006 workshop

on Parallel and distributed systems: testing and debugging, PADTAD ’06, pages 41–50, New

York, NY, USA, 2006. ACM.

[8] Saddek Bensalem and Klaus Havelund. Scalable deadlock analysis of multi-threaded pro-

grams. In PADTAD ’05: Proceedings of the Parallel and Distributed Systems: Testing and

Debugging, volume 1. Springer-Verlag., 2005.

[9] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: safe multithreaded

programming for C/C++. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN con-

ference on Object Oriented Programming Systems Languages and Applications, pages 81–96.

ACM, 2009.

[10] S. Bhowmick, L. C. McInnes, B. Norris, and P. Raghavan. The role of multi-method linear

solvers in pde-based simulations. In ICCSA (1), pages 828–839, 2003.

[11] Anasua Bhowmik and Manoj Franklin. A general compiler framework for speculative multi-

threading. In SPAA ’02: Proceedings of the fourteenth annual ACM symposium on Parallel

algorithms and architectures, pages 99–108, New York, NY, USA, 2002. ACM.

[12] Christian Bienia and Kai Li. Parsec 2.0: A new benchmark suite for chip-multiprocessors. In

Proceedings of the 5th Annual Workshop on Modeling, Benchmarking and Simulation, June

2009.

[13] Hans-J. Boehm. Threads Cannot be Implemented As a Library. In Proceedings of the 2005

ACM SIGPLAN conference on Programming Language Design and Implementation, PLDI

’05, pages 261–268, New York, NY, USA, 2005. ACM.

[14] Boehm, Hans-J. and Adve, Sarita V. Foundations of the C++ Concurrency Memory Model.

In Proceedings of the 2008 ACM SIGPLAN conference on Programming Language Design

and Implementation, PLDI 2008, pages 68–78, New York, NY, USA, 2008. ACM.

138

[15] Chandrasekhar Boyapati, Robert Lee, and Martin Rinard. Ownership types for safe pro-

gramming: preventing data races and deadlocks. In OOPSLA ’02: Proceedings of the 17th

ACM SIGPLAN conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, pages 211–230. ACM, 2002.

[16] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and Santosh Nagarakatte. A

randomized scheduler with probabilistic guarantees of finding bugs. SIGARCH Computer

Architecture News, 38(1):167–178, 2010.

[17] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementation and performance

of munin. In Proceedings of the thirteenth ACM symposium on Operating systems principles,

SOSP ’91, pages 152–164, New York, NY, USA, 1991. ACM.

[18] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie Chiras,

and Siddhartha Chatterjee. Software Transactional Memory: Why Is It Only a Research

Toy? ACM Queue, 6(5):46–58, 2008.

[19] Luis Ceze, Joseph Devietti, Brandon Lucia, and Shaz Qadeer. A case for system support

for concurrency exceptions. In Proceedings of the First USENIX conference on Hot topics in

parallelism, HotPar’09, pages 6–6, Berkeley, CA, USA, 2009. USENIX Association.

[20] Tian Chen, Min Feng, and Rajiv Gupta. Supporting speculative parallelization in the presence

of dynamic data structures. In PLDI ’10: Proceedings of ACM SIGPLAN 2010 conference

on Programming Language Design and Implementation, volume 45, pages 62–73, New York,

NY, USA, 2010. ACM.

[21] Romain Cledat, Tushar Kumar, Jaswanth Sreeram, and Santosh Pande. Opportunistic Com-

puting: A New Paradigm for Scalable Realism on Many-Cores. In Proceedings of the First

USENIX conference on Hot topics in parallelism, HotPar’09, pages 5–5, Berkeley, CA, USA,

2009. USENIX Association.

139

[22] E Christopher Lewis Colin Blundell and Martin Milo. Deconstructing Transactional Se-

mantics: The Subtleties of Atomicity. In WDDD ’05: Proc. 4th workshop on duplicating,

deconstructing and debunking, pages 48–55, 2005.

[23] E Christopher Lewis Colin Blundell and Martin Milo. Subtleties of transactional memory

atomicity semantics. IEEE Computer Architecture Letters, 5(2):17, 2006.

[24] Deadlock bug with mutex. SQLite-3.3.3. http://www.sqlite.org/src/info/a6c30be214,

Aug 16 2012.

[25] DIMACS. Discrete Mathematics and Theoretical Computer Science, A National Science

Foundation Science and Technology Center. http://dimacs.rutgers.edu/, January 2013.

[26] Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang, and Chengliang Zhang.

Software behavior oriented parallelization. In PLDI ’07: Proceedings of ACM SIGPLAN

2007 conference on Programming Language Design and Implementation, volume 42, pages

223–234, New York, NY, USA, 2007. ACM.

[27] Doug Lea. A memory allocator. http://g.oswego.edu/dl/html/malloc.html, January

2012.

[28] Orit Edelstein, Eitan Farchi, Evgeny Goldin, Yarden Nir, Gil Ratsaby, and Shmuel Ur. Frame-

work for testing multi-threaded java programs. In Concurrency and Computation: Practice

and Experience, volume 15, pages 485–499. USENIX, 2008.

[29] Dawson Engler and Ken Ashcraft. RacerX: effective, static detection of race conditions and

deadlocks. SIGOPS Operating Systems Review, 37(5):237–252, 2003.

[30] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and

Raymie Stata. Extended static checking for java. In PLDI ’02: Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Implementation, pages

234–245. ACM, 2002.

140

[31] Prodromos Gerakios, Nikolaos Papaspyrou, Konstantinos Sagonas, and Panagiotis Vekris.

Dynamic deadlock avoidance in systems code using statically inferred effects. In Proceedings

of the 6th Workshop on Programming Languages and Operating Systems, PLOS ’11, pages

5:1–5:5, New York, NY, USA, 2011. ACM.

[32] Prodromos Gerakios, Nikolaos Papaspyrou, and Kostis Sagonas. A type and effect system

for deadlock avoidance in low-level languages. In Proceedings of the 7th ACM SIGPLAN

workshop on Types in language design and implementation, TLDI ’11, pages 15–28, New

York, NY, USA, 2011. ACM.

[33] Tim Harris and Keir Fraser. Language support for lightweight transactions. In OOPSLA

’03: Proceedings of the 18th ACM SIGPLAN conference on Object-Oriented Programming,

Systems, Languages, and Applications, volume 38, pages 388–402. ACM, 2003.

[34] Jerry J. Harrow. Runtime checking of multithreaded applications with visual threads. In

Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software

Verification, pages 331–342. Springer-Verlag, 2000.

[35] Klaus Havelund. Using runtime analysis to guide model checking of java programs. In

Proceedings of the 7th International SPIN Workshop on SPIN Model Checking and Software

Verification, pages 245–264. Springer-Verlag, 2000.

[36] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: architectural support for

lock-free data structures. SIGARCH Computer Architecture News, 21(2):289–300, 1993.

[37] Richard L. Hudson, Bratin Saha, Ali-Reza Adl-Tabatabai, and Benjamin C. Hertzberg.

McRT-Malloc: a scalable transactional memory allocator. In ISMM ’06: Proceedings of

the 5th International Symposium on Memory Management, pages 74–83. ACM, 2006.

[38] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. Understanding and

detecting real-world performance bugs. In Proceedings of the 33rd ACM SIGPLAN conference

on Programming Language Design and Implementation, PLDI ’12, pages 77–88, New York,

NY, USA, 2012. ACM.

141

[39] Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit. Automated atomicity-

violation fixing. In Proceedings of the 32nd ACM SIGPLAN conference on Programming

language design and implementation, PLDI ’11, pages 389–400, New York, NY, USA, 2011.

ACM.

[40] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Min-cut program decomposition

for thread-level speculation. In PLDI ’04: Proceedings of ACM SIGPLAN 2004 conference

on Programming Language Design and Implementation, volume 39, pages 59–70, New York,

NY, USA, 2004. ACM.

[41] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Speculative thread decomposi-

tion through empirical optimization. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN

symposium on Principles and Practice of Parallel Programming, pages 205–214, New York,

NY, USA, 2007. ACM.

[42] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. An effective dynamic analysis for de-

tecting generalized deadlocks. In Proceedings of the eighteenth ACM SIGSOFT international

symposium on Foundations of software engineering, FSE ’10, pages 327–336, New York, NY,

USA, 2010. ACM.

[43] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized dynamic pro-

gram analysis technique for detecting real deadlocks. In PLDI ’09: Proceedings of the 2009

ACM SIGPLAN conference on Programming Language Design and Implementation, pages

110–120. ACM, 2009.

[44] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized dynamic pro-

gram analysis technique for detecting real deadlocks. In PLDI ’09: Proceedings of the 2009

ACM SIGPLAN conference on Programming Language Design and Implementation, pages

110–120. ACM, 2009.

142

[45] Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea. Deadlock immunity:

Enabling systems to defend against deadlocks. In In Proc. 8th USENIX Symposium on

Operating Systems Design and Implementation (OSDI). USENIX, 2008.

[46] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel. Treadmarks: dis-

tributed shared memory on standard workstations and operating systems. In Proceedings of

the USENIX Winter 1994 Technical Conference on USENIX Winter 1994 Technical Confer-

ence, pages 10–10, Berkeley, CA, USA, 1994. USENIX Association.

[47] Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast Track: A Software

System for Speculative Program Optimization. In CGO ’09: Proceedings of the 7th annual

IEEE/ACM International Symposium on Code Generation and Optimization, pages 157–168,

Washington, DC, USA, 2009. IEEE Computer Society.

[48] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin Casçaval.

How much Parallelism is There in Irregular Applications? In PPoPP ’09: Proceedings of the

14th ACM SIGPLAN symposium on Principles and Practice of Parallel Programming, pages

3–14, New York, NY, USA, 2009. ACM.

[49] Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter, Kavita Bala, and

L. Paul Chew. Optimistic Parallelism Benefits from Data Partitioning. In ASPLOS XIII:

Proceedings of the 13th International conference on Architectural Support for Programming

Languages and Operating Systems, volume 36, pages 233–243, New York, NY, USA, 2008.

ACM.

[50] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and

L. Paul Chew. Optimistic Parallelism Requires Abstractions. In PLDI ’07: Proceedings of

the 2007 ACM SIGPLAN conference on Programming Language Design and Implementation,

pages 211–222, New York, NY, USA, 2007. ACM.

143

[51] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analy-

sis & transformation. In Proceedings of the international symposium on Code generation and

optimization: feedback-directed and runtime optimization, CGO ’04, pages 75–, 2004.

[52] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J. Sorin. Pulse: a dynamic deadlock

detection mechanism using speculative execution. In Proceedings of the annual conference on

USENIX Annual Technical Conference, ATEC ’05, pages 3–3, 2005.

[53] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose Renau, and Josep Torrel-

las. POSH: a TLS compiler that exploits program structure. In PPoPP ’06: Proceedings of

the eleventh ACM SIGPLAN symposium on Principles and Practice of Parallel Programming,

pages 158–167, New York, NY, USA, 2006. ACM.

[54] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: a compre-

hensive study on real world concurrency bug characteristics. In ASPLOS XIII: Proceedings of

the 13th International conference on Architectural Support for Programming Languages and

Operating Systems, pages 329–339. ACM, 2008.

[55] Brandon Lucia, Luis Ceze, Karin Strauss, Shaz Qadeer, and Hans-J. Boehm. Conflict ex-

ceptions: simplifying concurrent language semantics with precise hardware exceptions for

data-races. In Proceedings of the 37th annual international symposium on Computer archi-

tecture, ISCA ’10, pages 210–221, New York, NY, USA, 2010. ACM.

[56] Yangchun Luo, Venkatesan Packirisamy, Wei-Chung Hsu, Antonia Zhai, Nikhil Mungre, and

Ankit Tarkas. Dynamic performance tuning for speculative threads. In ISCA ’09: Proceedings

of the 22nd annual International Symposium on Computer Architecture, volume 37, pages

462–473, New York, NY, USA, 2009. ACM.

[57] Marco Pagliari. Graphcol: Graph Coloring Heuristic Tool. http://www.cs.sunysb.edu/

~algorith/implement/graphcol/implement.shtml, January 2013.

[58] Pedro Marcuello and Antonio González. Thread-Spawning Schemes for Speculative Mul-

tithreading. In HPCA ’02: Proceedings of the 8th International Symposium on High-

144

Performance Computer Architecture, page 55, Washington, DC, USA, 2002. IEEE Computer

Society.

[59] Paul E. McKenney, Maged M. Michael, and Jonathan Walpole. Why the grass may not be

greener on the other side: a comparison of locking vs. transactional memory. In Proceedings of

the 4th workshop on Programming languages and operating systems, PLOS ’07, pages 6:1–6:5,

New York, NY, USA, 2007. ACM.

[60] Vijay Menon, Steven Balensiefer, Tatiana Shpeisman, Ali-Reza Adl-Tabatabai, Richard L.

Hudson, Bratin Saha, and Adam Welc. Practical Weak-Atomicity Semantics for Java STM. In

Proceedings of the twentieth annual symposium on Parallelism in algorithms and architectures,

SPAA ’08, pages 314–325, New York, NY, USA, 2008. ACM.

[61] Multithreaded grep. Sun Microsystems, Multithreaded Programming Guide. http://docs.

oracle.com/cd/E19455-01/806-5257/6je9h034c/index.html, April 13 2011.

[62] Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing of

multithreaded programs. In Proceedings of the 2007 ACM SIGPLAN conference on Program-

ming language design and implementation, PLDI ’07, pages 446–455, New York, NY, USA,

2007. ACM.

[63] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga

Nainar, and Iulian Neamtiu. Finding and reproducing heisenbugs in concurrent programs. In

Proceedings of the 8th USENIX conference on Operating systems design and implementation,

OSDI’08, pages 267–280, Berkeley, CA, USA, 2008. USENIX Association.

[64] Mayur Naik, Chang-Seo Park, Koushik Sen, and David Gay. Effective static deadlock detec-

tion. In ICSE ’09: Proceedings of the 2009 IEEE 31st International Conference on Software

Engineering, pages 386–396. IEEE Computer Society, 2009.

[65] Yang et al. Ni. Design and implementation of transactional constructs for C/C++. In

OOPSLA ’08: Proceedings of the 23rd ACM SIGPLAN conference on Object-Oriented Pro-

gramming Systems Languages and Applications, pages 195–212. ACM, 2008.

145

[66] Open Source Sendmail and Milters. Sendmail Inc. http://www.sendmail.com/sm/open_

source/, April 13 2011.

[67] Patterson, David A. and Hennessy, John L. Computer Organization and Design, Fourth

Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann Series

in Computer Architecture and Design). Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 4th edition, 2008.

[68] PBZIP2. Parallel BZIP2 (PBZIP2), Data Compression Software. http://compression.ca/

pbzip2/, April 13 2011.

[69] Alan J. Perlis. Special feature: Epigrams on programming. SIGPLAN Not., 17(9):7–13,

September 1982.

[70] Prakash Prabhu, Ganesan Ramalingam, and Kapil Vaswani. Safe Programmable Speculative

Parallelism. In PLDI ’10: Proceedings of ACM SIGPLAN 2010 conference on Programming

Language Design and Implementation, volume 45, pages 50–61, New York, NY, USA, 2010.

ACM.

[71] C. Von Praun. Detecting synchronization defects in multi-threaded object-oriented programs.

In PhD Thesis, 2004.

[72] Hari K. Pyla. Coarse-Grain Speculation for Emerging Processors. In Proceedings of the ACM

international conference companion on Object oriented programming systems languages and

applications companion, SPLASH ’11, pages 217–218, New York, NY, USA, 2011. ACM.

[73] Hari K. Pyla. Composing Locks by Decomposing Deadlocks. In Proceedings of the ACM

international conference companion on Object oriented programming systems languages and

applications companion, SPLASH ’11, pages 67–70, New York, NY, USA, 2011. ACM.

[74] Hari K. Pyla, Calvin Ribbens, and Srinidhi Varadarajan. Exploiting Coarse-Grain Speculative

Parallelism. In Proceedings of the 2011 ACM international conference on Object oriented

146

programming systems languages and applications, OOPSLA ’11, pages 555–574, New York,

NY, USA, 2011. ACM.

[75] Hari K. Pyla and Srinidhi Varadarajan. Avoiding Deadlock Avoidance. In Proceedings of the

19th International Conference on Parallel Architectures and Compilation Techniques, PACT

’10, pages 75–86, 2010.

[76] Hari K. Pyla and Srinidhi Varadarajan. Transparent Runtime Deadlock Elimination. In

Proceedings of the 21st international conference on Parallel architectures and compilation

techniques, PACT ’12, pages 477–478, New York, NY, USA, 2012. ACM.

[77] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: treating bugs

as allergies—a safe method to survive software failures. In SOSP ’05: Proceedings of the

twentieth ACM Symposium on Operating Systems Principles, pages 235–248. ACM, 2005.

[78] Naren Ramakrishnan and Calvin J. Ribbens. Mining and visualizing recommendation spaces

for elliptic pdes with continuous attributes. ACM Trans. Math. Softw., 26(2):254–273, June

2000.

[79] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and David I. August.

Speculative parallelization using software multi-threaded transactions. In ASPLOS XV: Pro-

ceedings of the 15th International conference on Architectural Support for Programming Lan-

guages and Operating Systems, volume 38, pages 65–76, New York, NY, USA, 2010. ACM.

[80] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In HPCA ’07:

Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer

Architecture, pages 13–24. IEEE Computer Society, 2007.

[81] Paruj Ratanaworabhan, Martin Burtscher, Darko Kirovski, Benjamin Zorn, Rahul Nagpal,

and Karthik Pattabiraman. Detecting and tolerating asymmetric races. In Proceedings of the

14th ACM SIGPLAN symposium on Principles and practice of parallel programming, PPoPP

’09, pages 173–184, New York, NY, USA, 2009. ACM.

147

[82] Lawrence Rauchwerger and David A. Padua. The LRPD Test: Speculative Run-Time Paral-

lelization of Loops with Privatization and Reduction Parallelization. IEEE Transactions on

Parallel Distributed Systems, 10(2):160–180, 1999.

[83] J. R. Rice and R. F. Boisvert. Solving Elliptic Problems Using ELLPACK. Springer–Verlag,

1985.

[84] Christopher J. Rossbach, Owen S. Hofmann, and Emmett Witchel. Is transactional program-

ming actually easier? In Proceedings of the 15th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’10, pages 47–56, New York, NY, USA, 2010.

ACM.

[85] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical Report

90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center,

Moffet Field, CA, 1990.

[86] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing, Boston, 1996.

[87] Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh, and Benjamin

Hertzberg. McRT-STM: a high performance software transactional memory system for a

multi-core runtime. In PPoPP ’06: Proceedings of the eleventh ACM SIGPLAN symposium

on Principles and Practice of Parallel Programming, pages 187–197. ACM, 2006.

[88] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Anderson.

Eraser: a dynamic data race detector for multithreaded programs. ACM Transactions on

Computer Systems, 15(4):391–411, 1997.

[89] Koushik Sen. Race directed random testing of concurrent programs. In Proceedings of the 2008

ACM SIGPLAN conference on Programming language design and implementation, PLDI ’08,

pages 11–21, New York, NY, USA, 2008. ACM.

[90] Vivek K. Shanbhag. Deadlock-detection in java-library using static-analysis. Asia-Pacific

Software Engineering Conference, 0:361–368, 2008.

148

[91] Nir Shavit and Dan Touitou. Software transactional memory. In PODC ’95: Proceedings

of the fourteenth annual ACM symposium on Principles of Distributed Computing, pages

204–213. ACM, 1995.

[92] Tatiana Shpeisman, Vijay Menon, Ali-Reza Adl-Tabatabai, Steven Balensiefer, Dan Gross-

man, Richard L. Hudson, Katherine F. Moore, and Bratin Saha. Enforcing isolation and

ordering in STM. In PLDI ’07: Proceedings of ACM SIGPLAN 2007 conference on Program-

ming Language Design and Implementation, volume 42, pages 78–88. ACM, 2007.

[93] Michael F. Spear, Virendra J. Marathe, Luke Dalessandro, and Michael L. Scott. Privatization

techniques for software transactional memory. In PODC ’07: Proceedings of the twenty-sixth

annual ACM symposium on Principles of Distributed Computing, pages 338–339. ACM, 2007.

[94] SPLASH-2. SPLASH-2 benchmark suite. http://www.capsl.udel.edu/splash, November

5 2011.

[95] Squid. Squid: Optimizing Web Delivery. http://www.squid-cache.org/, April 13 2011.

[96] J. Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C. Mowry. The STAMPede

approach to thread-level speculation. ACM Transactions on Computer Systems, 23(3):253–

300, 2005.

[97] Sun Microsystems. Lock Lint - Static Data Race and Deadlock Detection Tool for C. http:

//developers.sun.com/solaris/articles/locklint.html, April 13 2011.

[98] Thomas Wang. Sorting Algorithm Examples. http://www.concentric.net/~ttwang/sort/

sort.htm, January 2013.

[99] Chen Tian, Min Feng, Nagarajan Vijay, and Gupta Rajiv. Copy or Discard execution model

for speculative parallelization on multicores. In MICRO 41: Proceedings of the 41st annual

IEEE/ACM International Symposium on Microarchitecture, pages 330–341, Washington, DC,

USA, 2008. IEEE Computer Society.

149

[100] Oliver Trachsel and Thomas R. Gross. Supporting Application-Specific Speculation with

Competitive Parallel Execution. In 3rd ISCA Workshop on Parallel Execution of Sequential

Programs on Multi-core Architectures, PESPMA’10, 2010.

[101] Oliver Trachsel and Thomas R. Gross. Variant-based competitive Parallel Execution of Se-

quential Programs. In Proceedings of the 7th ACM international conference on Computing

frontiers, CF ’10, pages 197–206, New York, NY, USA, 2010. ACM.

[102] Valgrind. Helgrind: a thread error detector. http://valgrind.org/docs/manual/

hg-manual.html, Feb 19 2012.

[103] Haris Volos, Andres Jaan Tack, Michael M. Swift, and Shan Lu. Applying transactional

memory to concurrency bugs. In Proceedings of the seventeenth international conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’12,

pages 211–222, New York, NY, USA, 2012. ACM.

[104] Christoph von Praun, Luis Ceze, and Calin Caşcaval. Implicit Parallelism with Ordered

Transactions. In Proceedings of the 12th ACM SIGPLAN symposium on Principles and

Practice of Parallel Programming, PPoPP 2007, pages 79–89, New York, NY, USA, 2007.

ACM.

[105] Y. Wang, T. Kelly, M. Kudlur, S. Lafortune, and S. Mahlke. Gadara: Dynamic deadlock

avoidance for multithreaded programs. In In Proc. 8th USENIX Symposium on Operating

Systems Design and Implementation (OSDI). USENIX, 2008.

[106] Yin Wang, Stéphane Lafortune, Terence Kelly, Manjunath Kudlur, and Scott Mahlke. The

theory of deadlock avoidance via discrete control. In Proceedings of the 36th annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’09, pages

252–263, New York, NY, USA, 2009. ACM.

[107] Amy Williams, William Thies, and Michael D. Ernst. Static deadlock detection for java

libraries. In ECOOP 2005 - Object-Oriented Programming, pages 602–629, 2005.

150

[108] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and Zhiqiang Ma. Ad hoc syn-

chronization considered harmful. In Proceedings of the 9th USENIX conference on Operating

systems design and implementation, OSDI’10, pages 1–8, 2010.

[109] Richard M. Yoo, Yang Ni, Adam Welc, Bratin Saha, Ali-Reza Adl-Tabatabai, and Hsien-

Hsin S. Lee. Kicking the tires of software transactional memory: why the going gets tough.

In SPAA ’08: Proceedings of the twentieth annual Symposium on Parallelism in Algorithms

and Architectures, pages 265–274. ACM, 2008.

