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ABSTRACT

A major obstacle to the wide use of lock-free data structures,
despite their many performance and reliability advantages,
is the absence of a practical lock-free method for reclaiming
the memory of dynamic nodes removed from dynamic lock-
free objects for arbitrary reuse.

The only prior lock-free memory reclamation method de-
pends on the DCAS atomic primitive, which is not sup-
ported on any current processor architecture. Other mem-
ory management methods are blocking, require special op-
erating system support, or do not allow arbitrary memory
reuse.

This paper presents the first lock-free memory manage-
ment method for dynamic lock-free objects that allows arbi-
trary memory reuse, and does not require special operating
system or hardware support. It guarantees an upper bound
on the number of removed nodes not yet freed at any time,
regardless of thread failures and delays. Furthermore, it is
wait-free, it is only logarithmically contention-sensitive, and
it uses only atomic reads and writes for its operations. In
addition, it can be used to prevent the ABA problem for
pointers to dynamic nodes in most algorithms, without re-
quiring extra space per pointer or per node.

1. INTRODUCTION

A shared object is lock-free (also called non-blocking) if
it guarantees that in a system with multiple threads at-
tempting to perform operations on the object, some thread
will complete an operation successfully in a finite number of
system steps even with the possibility of arbitrary thread
delays, provided that not all threads are delayed indefi-
nitely [10]. By definition, lock-free objects are immune to
deadlock even with thread failures and provide robust per-
formance even when faced with inopportune thread delays.
Dynamic lock-free objects have the added advantage of ar-
bitrary size. Many such objects have been developed [1, 5,
7,8, 10, 12, 15, 16, 17, 20, 22, 24].
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However, a major problem associated with dynamic ob-
jects is the safe reclamation of memory occupied by removed
nodes. In a lock-based dynamic object, when a thread re-
moves a node from the object, it can be guaranteed that
no other thread will subsequently access the contents of the
removed node while still assuming its retention of type and
content semantics. Consequently, it is safe for the removing
thread to free the memory occupied by the removed node
into the general memory pool for arbitrary future reuse.

This is not the case for a lock-free object. When a thread
removes a node, it is possible that one or more contending
threads, in the course of their lock-free operations, have ear-
lier read a pointer to the subsequently removed node, and
are about to access its contents. A contending thread might
corrupt the shared object or another object, if the thread
performing the removal were to free the removed node for
arbitrary reuse. Furthermore, on some systems, even read
access to freed memory may result in fatal access errors.

Lock-free objects generally use universal atomic primi-
tives such as CAS and LL/SC [9]. CAS (compare-and-swap)
takes three arguments: the address of a memory location,
an expected value and a new value. If the memory loca-
tion holds the expected value, it is assigned the new value
atomically. A Boolean return value indicates whether the
replacement occurred. SC (store-conditional) takes two ar-
guments: the address of a memory location and a new value.
If no other thread has written the memory location since the
current thread last read it using LL (load-linked), it is as-
signed the new value atomically. A Boolean return value in-
dicates whether the replacement occurred. All architectures
that support LL/SC restrict memory accesses between LL
and SC. Associated with most uses of CAS (and restricted
LL/SC) is the ABA problem [12]. If a thread reads a value
A from a shared location, computes a new value, and then
attempts a CAS operation, the CAS may succeed when it
should not, if between the read and the CAS other threads
change the value of the shared location from A to B and
back to A again.

The simplest and most efficient solution to the ABA prob-
lem is to include a tag with the target memory location such
that both are manipulated atomically and the tag is incre-
mented with updates of the target location [12]. CAS suc-
ceeds only if the tag has not changed since the thread last
read the location. However, applying this solution or more
elaborate tag techniques [18] to pointers contained in dy-
namic nodes, without means of detecting when threads no
longer need the tag values, dictates that the tag fields retain
their values indefinitely, thus preventing the arbitrary reuse



of deleted dynamic nodes. Once allocated and inserted in
a dynamic lock-free object, a dynamic node may be reused
but only if it retains its size and the semantics of its tag
fields.

Prior memory management methods for lock-free dynamic
objects suffer from one or more serious drawbacks: not al-
lowing arbitrary memory reuse, blocking, requiring special
operating system support, or using DCAS.

In this paper we present a new method for safe memory
reclamation (SMR) that is wait-free', is operating system in-
dependent, is only logarithmically contention-sensitive, re-
quires no extra space per node but only a small constant
space per participating thread, and requires only atomic
reads and writes. It can be used to prevent the ABA prob-
lem for dynamic pointers without the need for extra space
per pointer or per node. SMR applies to the vast major-
ity of known lock-free dynamic algorithms, and in each of
the few cases of incompatible algorithms [5, 8], other similar
or better algorithms for the same objects were found to be
compatible with it [15, 16].

The core idea of SMR is to associate a small constant
number K (typically no more than three) of shared point-
ers, called hazard pointers, with each participating thread.
Hazard pointers, either have null values or point to nodes
that may potentially be accessed by the thread without fur-
ther verification of the validity of the local references used
in their access. Each hazard pointer can be written only by
its associated thread, but can be read by all threads.

SMR requires target lock-free algorithms to guarantee that
no thread can access a dynamic node at a time when it is
possibly deleted, unless its associated hazard pointers have
been pointing to the node continuously, from a time when
it was not deleted.

For example, Figure 1 shows an SMR-compatible version
of a lock-free stack based on the IBM freelist [12] that guar-
antees that no dynamic node is accessed while free and pre-
vents the ABA problem. The pointer hp is a static private
pointer to the hazard pointer associated with the executing
thread, and the procedure DeleteNode is part of the SMR
algorithm (Section 3). The Push routine need not change,
as no dynamic node that is possibly free is accessed, and the
CAS is not ABA-prone as observed by Treiber [22]. In the
Pop routine the pointer t is used to access a dynamic node
t” and holds the expected value of an ABA-prone CAS. By
setting the hazard pointer to t (line 2) and then checking
that t” is not deleted (line 3), we guarantee that the hazard
pointer is continuously pointing to t* from a point when it
was not deleted (line 3) until the end of hazards, i.e., access-
ing t* (line 4) and using t to hold the expected value of an
ABA-prone CAS (line 5).

SMR, prevents the freeing of a node continuously pointed
to by one or more hazard pointers of one or more threads
from a point prior to its deletion. When a thread deletes
a node by calling DeleteNode, it stores it in a private list.
After accumulating a certain number R of deleted nodes,
the thread scans the hazard pointers for matches for the
addresses of the accumulated nodes. If a deleted node is not
matched by any of the hazard pointers, then the thread frees
that node making its memory available for arbitrary reuse.
Otherwise, the thread keeps the node until its next scan of

LAn operation is wait-free if it is guaranteed to complete
successfully in a finite number of its own steps regardless of
other threads’ actions [9].

// j is the thread id for SMR purposes

// HP is the shared array of hazard pointers
// static private pointer hp = &HP[j]

// initially Top = null

// calling Push
// if node «— AllocateNode() # null
// { node".Data < data; Push(node);}
Push(node:*NodeType) {
while true {

t < Top;

node " Next < t;

if CAS(&Top,t,node) return;

}
}

// calling Pop
// if node «— Pop() # null
// { data < node".Data; DeleteNode(node);}
Pop() : *NodeType {
while true {
if t« Top = null break;
*hp < t;
if t # Top continue;
next < t " Next;
if CAS(&Top,t,next) break;
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*hp < null; return t;

}

Figure 1: SMR-compatible lock-free stack based on
the IBM freelist algorithm [12] (SMR-related code
is in a different font).

the hazard pointers which it performs after the number of
accumulated deleted nodes reaches R again.

By setting R to a number such that R— N = Q(N) (e.g.,
R = 2N), where N = KP and P is the number of par-
ticipating threads, and sorting a private list of snapshots of
non-null hazard pointers, SMR is guaranteed in every scan of
the N hazard pointers to free ©(R) nodes in O(Rlog p) time,
when p threads have non-null hazard pointers. Thus, the
amortized time complexity of processing each deleted node
until it is freed is only logarithmically contention-sensitive,
i.e., constant in the absence of contention and O(logp) when
p threads are operating on the object during the scan of
their associated hazard pointers. SMR also guarantees that
no more than PR deleted nodes are not yet freed at any
time regardless of thread failures and delays.

In Section 2 we review prior approaches to memory man-
agement for dynamic lock-free objects. In Section 3 we
present the SMR method. In Section 4 we discuss its cor-
rectness and performance. In Section 5 we apply SMR to
known dynamic lock-free algorithms and we conclude with
Section 6.

2. RELATED WORK
L ock-free OS-Independent M ethods

The earliest and simplest lock-free memory management
method is the use of a freelist implemented as a stack of
nodes available for restricted reuse [12, 22]. When a thread



deletes a node, it pushes it in a singly linked list stack, where
the same or a different thread can later reuse the node by
popping it from the stack. The operations are similar to
those in Figure 1 excluding data and hazard pointer manip-
ulation and node allocation and deallocation. Nodes must
retain their size and the semantics of some fields indefinitely
(i.e., until application termination). Once allocated and in-
serted in a lock-free object, a node cannot be freed for ar-
bitrary reuse. Freelists require applying ABA prevention
mechanisms such as tags to the anchor of the freelist as well
as pointers contained in nodes for almost all lock-free objects
except stacks.

Valois [25] presented a lock-free garbage collection method
that requires the inclusion of a reference counter in each dy-
namic node, reflecting the maximum number of references
to that node in the object and the registers (and local vari-
ables) of threads operating on the object. Every time a new
reference to a dynamic node is created/destroyed, the refer-
ence counter is incremented/decremented, using fetch-and-
add and CAS instructions. Only after its reference counter
goes to zero, can a node be pushed in a freelist, where it can
be subsequently allocated. However, due to the use of single-
address CAS to manipulate pointers and independently lo-
cated reference counters non-atomically, the resulting timing
windows dictate the permanent retention of nodes of their
type and field semantics, thus prohibiting memory reclama-
tion as is the case with freelists.

Detlefs et. al. [6] presented lock-free reference counting
(LFRC), a lock-free garbage collection method that uses
DCAS? to operate on pointers and reference counters atomi-
cally to guarantee that a reference counter is never less than
the actual number of references. When the reference counter
of a node reaches zero, it becomes safe to reclaim for ar-
bitrary reuse. Both reference counting methods avoid the
ABA problems without using a tag per pointer (they use
a counter per node instead). LFRC also allows memory
reclamation, which is a significant advantage. However, the
dependence on DCAS makes the method impractical. For
both methods the performance cost of reference counting is
prohibitive.

The reference counting methods transform statements in-
volving pointers to dynamic nodes (even reads and register
to register assignments) into unbounded loops containing
CAS and DCAS operations. This increases the total work
time complexity of the target algorithms by a multiplicative
factor of O(p) where p is contention.

DCAS was supported on some generations of the Motorola
68000 processor family (as CAS2) in the 1980s. These imple-
mentations were extremely inefficient, often requiring lock-
ing system buses while one CAS2 is in progress. Since then
no processor architecture supports DCAS.

As discussed later in Section 5, while examining known
lock-free dynamic algorithms, we found only two [5, 8] to be
incompatible with SMR, and freelists, but compatible with
the reference counting methods. However, in each case, we
found other similar or better algorithms that are compatible
with SMR and freelists for the same objects [15, 16].

2DCAS (double-compare-and-swap) takes six arguments:
the addresses of two independent memory locations, two ex-
pected values and two new values. If both memory locations
hold the corresponding expected values, they are assigned
the corresponding new values atomically. A Boolean return
value indicates whether the replacements occurred.

Blocking and OS-Dependent M ethods

Herlihy and Moss [11] presented a lock-free garbage collec-
tion method that requires a clean sweep from each partic-
ipating thread, as a precondition for memory reclamation.
The failure of a thread can indefinitely prevent the freeing
of unbounded memory (i.e., bounded only by the size of
memory). The method also suffers from substantial copying
overhead.

McKenney and Slingwine [14] presented read-copy up-
date, a framework where only when each thread is certain to
have reached a quiescence point after a node is deleted, can
the memory of that node be freed. The definition of quies-
cence points, if any, varies depending on the environment,
but mostly depends on timestamps or collective reference
counters. Not all environments are suitable for the concept
of quiescence points, and the method is blocking as the delay
of even one thread prevents freeing an unbounded number
of nodes.

Greenwald [7] presented sketches of Type Stable Memory
(TSM) implementations in the OS kernel and in user-level.
TSM requires deleted nodes to retain their type while refer-
ences to them are potentially active. The kernel-based TSM
implementation relies on the kernel’s knowledge of the sta-
tus of processes and its access to their private memory and
stack space. The drawbacks of kernel-dependence are that
it limits the portability of dependent algorithms to systems
lacking the special kernel support, and precludes their use
by most user-level threads.

The user level TSM implementation requires threads to
increment and decrement a per-type reference counter upon
the activation and end of scope, respectively, of local point-
ers to the node type. A variant of the method uses two ref-
erence counters per type: an old counter and a new counter.
A thread always increments the new counter and decrements
the counter it incremented earlier. The counters switch roles
whenever the old counter reaches zero. At such time, deleted
nodes are released to the general pool. The method is block-
ing as the failure of a thread to decrement a per-type refer-
ence counter, due to the thread’s failure or delay, may cause
the indefinite prevention of an unbounded number of deleted
nodes from being freed.

Harris [8] presented a brief outline of a deferred freeing
method that requires each thread to record a timestamp of
the latest time it held no references to dynamic nodes, and it
maintains two to-be-freed lists of deleted nodes: an old list
and a new list. Deleted nodes are placed on the new list and
when the time of the latest insertion in the old list precedes
the earliest per-thread timestamp, the nodes of the old list
are freed and the old and new lists exchange labels. The
method is blocking, as the failure of a thread to update its
timestamp causes the indefinite prevention of an unbounded
number of deleted nodes from being freed.

One crucial difference between SMR and these methods [7,
8, 14] is that SMR does not use reference counters or times-
tamps at all. The use of collective reference counters for
unbounded numbers of nodes and/or the reliance on per
thread timestamps make a memory management method
vulnerable to the failure or delay of even one thread.

Tracing garbage collectors do not provide OS-independent
non-blocking solutions for the memory reclamation problem.
They mostly require mutual exclusion with mutator threads,
use stop-the-world techniques, or require special OS support
to access private stack space and registers [11]. Furthermore,



the failure or indefinite delay of the garbage collector can
prevent the reclamation of unbounded number of deleted
nodes indefinitely [6].

3. THEMETHOD

The core idea of the SMR method is associating K shared
pointers, called hazard pointers, with each of the P threads
operating on the target object. The value of K depends on
the target algorithm and is typically no more than three.
Hazard pointers are implemented as a shared array HP of
size N, where N = KP.

The SMR algorithm communicates with the target algo-
rithms only through a DeleteNode procedure that is part of
the SMR algorithm, and the hazard pointer array HP. Each
hazard pointer can be written only by its associated thread
in the target algorithm. The SMR algorithm itself does not
perform any shared writes.

3.1 TheAlgorithm

Figure 2 shows the structures and operations of the SMR
algorithm. We assume a sequentially consistent memory
model. Otherwise, memory barriers may be needed in be-
tween instructions with critical relative order.

When a thread j deletes a node n” by calling DeleteN-
ode(n), it inserts n” into a static private list dlist of deleted
nodes, and increments a static private counter dcount that
holds the number of deleted nodes accumulated by j that are
not freed yet. When dcount reaches the value R, j starts a
scan by calling Scan(). R is chosen such that R— N = Q(N)
(e.g., R = 2N), in order to achieve amortized execution time
that is logarithmic in contention per freed node.

A scan includes four stages. The first stage involves scan-
ning the array HP for non-null values. Whenever a non-null
value is encountered, it is inserted in a local pointer list plist.
The counter p holds the size of plist, which is proportion-
ally bounded by contention. Only stage 1 accesses shared
variables. The following stages operate only on private vari-
ables.

The second stage of a scan involves sorting plist to allow
binary search in the third stage.

The third stage of a scan involves checking each node in
dlist against the pointers in plist. If the binary search yields
no match, the node is freed. Otherwise, it is inserted into a
local list new_dlist.

The forth stage involves copying the local list new_dlist of
the nodes that could not be freed during the current scan
to the private static list dlist, where they remain until the
next scan, which occurs after R—new_dcount more nodes
are deleted by j.

We assume the use of a comparison-based sorting algo-
rithm that takes ©(plogp) time, such as heap sort, to sort
plist in the second stage. Binary search in the third stage
takes O(logp) time. We omit the code for these algorithms,
as they are widely known sequential algorithms [4].

Optimizations

The static space requirements per thread can be reduced
to a constant, if the node structures used by the target al-
gorithm contain a word size field that is guaranteed not to
be accessed by the target algorithm after a node is deleted.
The vast majority of algorithms use nodes that contain such

fields (e.g., data fields). Also, nodes often contain extra
space for alignment or for cache line padding to avoid false

// Constants

// P : number of participating threads

// K : number of hazard pointers per thread
// N : total number of hazard pointers = KP
// R : batch size, R-N=Q(N)

// shared variables
HP[N] = null : *NodeType;

// static private variables per thread
dcount=0:0..R;
dlist[R] : *NodeType;

DeleteNode(node:*NodeType) {
dlist[dcount++] < node;
if dcount= R Scan();

}

Scan() {
i:0..R;
p=0,new_dcount=0 : 0..N;
hptr,plist/N],new_dlist[N] : *NodeType;

// Stage 1
for i+ 0 to N-1

if hptr«— HP[i] # null
plist[p++] < hptr;
// Stage 2
sort(p,plist);

// Stage 3
for i< 0 to R-1

if binary_search(dlist[i],p,plist)
new_dlist[new_dcount++] < dlist[i];
else
FreeNode(dlist[i]);
// Stage 4
for i+ 0 to new_dcount-1 { dlist[i] «— new_dlist[i];}
dcount «+— new_dcount;

Figure 2: The SMR algorithm.

sharing. If so, the chosen field is also defined as a pointer
smrp to NodeType and is used to link deleted nodes into a
linked list instead of using an array of size R per thread to
accumulate deleted nodes.

Removing duplicates from plist after sorting it can reduce
search time when duplicates are frequent, which is very com-
mon for constant time algorithms such as those for stacks
and queues. Figure 3 shows a version of the SMR algorithm
incorporating these optimizations.

In order to reduce the overhead of calling the standard al-
location and deallocation procedures (e.g., malloc and free)
for every node allocation and deallocation, SMR can allow
each thread to maintain a limited size private list of free
nodes. When a thread runs out of private free nodes it
allocates new nodes when needed, and when a thread accu-
mulates too many private free nodes it deallocates the excess
nodes.

In order to avoid the adverse performance effect of false
sharing on multiprocessor systems, elements of the HP array
can be padded such that no two hazard pointers belonging
to different threads share the same cache line.



// Constants and shared vars are unchanged

// static private variables per thread
dcount=0: 0.. R;
dlist = null : *NodeType;

DeleteNode(node:*NodeType) {
node .smrp « dlist; dlist «+— node; dcount-+;
if dcount=R Scan();

}

Scan() {
i,p=0,new_dcount=20: 0.. N;
hptr,plist[N],new_dlist = null,node : *NodeType;

// Stage 1
for i< 0 to N-1

if hptr«— HP[i] # null
plist[p++] < hptr;
// Stage 2
sort(p,plist);
remove_duplicates(&p,plist);
// Stage 3
while dlist # null {
node < dlist; dlist <+ node ".smrp;
if binary_search(node,p,plist)
{ node’.smrp < new_dlist;
new_dlist < node; new_dcount++;}
else
FreeNode(node);

}

// Stage 4

dlist «— new_dlist;
dcount «— new_dcount;

}

Figure 3: The SMR algorithm with optimizations.

In many applications, threads are created and destroyed
frequently. In such cases, a static-size (of size P) lock-free
freelist based on the IBM freelist [12] can be used for main-
taining available thread ids. A thread acquires an SMR
thread id by popping it from the freelist, and retires its id
by pushing it in the freelist. The freelist elements can in-
clude fields for use by retiring threads to pass their list of
deleted but not yet freed nodes to their next namesake.

3.2 Compatibility Conditions

For a correct target algorithm to benefit from SMR’s guar-
antees of safe memory reclamation, it must satisfy a set of
conditions. First, we define some notation.

Delete(t, j,n): Thread j deletes node n” at time ¢: at ¢, j
calls DeleteNode(n).

Allocate(t, j,n): Thread j allocates node n” at time ¢: at
t, j’s call to AllocateNode() returns n.

IsDeleted(t,n): Node n” is deleted at time ¢ : It1 <t,j1 =
Delete(t1,ji,mn) N Ata €[t1,t], j2 :: Allocate(tz, j2,n).
PossiblyDeleted(t,7,n): A node n” is possibly deleted
from the point of view of thread j at time ¢ : at ¢, it is im-
possible solely by examining j’s registers (private variables
included) and the semantics of the algorithm to establish
that —~IsDeleted(t,n).

CreateRef(f,j,n,7): Thread j creates the reference

(f,4,n,7) tonode n" in register # at time £ : 3 shared pointer
p:: at £, j reads the value n from p into 7.
AssignRef(, j,n,#,t,7): Thread j assigns the reference
(t,4,n,7) to register © at time t : (t =1 A r =7 A
CreateRef(t,5,n,r)) V (3 register r1, time t1 € [t,¢] =
AssignRef(L, j,n,7,t1,71) A at t, j assigns the value of 7
tor A Ata€(t1,t] :: at ta,r1 is the target of an assignment).
HoldRef({, j,n,#.t,r): Register r of thread j holds refer-
ence (£, j,n, ) at time ¢t : 3t; <t :: AssignRef(L,j,n, 7, t1,7)
A Atz €(t1,t] == at t2,r is the target of an assignment.
HoldHazRef(i, j, n, #,t,7): Register r of thread j holds the
hazardous reference <f, J,n, 7 at time t:
HoldRef(t,4,n,7,t,r) A 3 a code path ¢, statement s ::
at t, it is possible for j to follow ¢ A s is the last statement
of ¢ A 3 register ro :: s uses r2 to access n” when it is
PossiblyDeleted A ((3 t2 > t :: j follows ¢ A j executes s
at t2) = ((r = r2 A A statement in ¢ that uses r as the
target of an assignment) V (3ri, ¢ € [t,t2] :: at ¢ j assigns
the value of r to 11 A HoldHazRef(t,j,n, 7 t1,71)))).
Informally, A hazardous reference is an address that with-
out further validation can be used to access a node after it
has been deleted.

The Conditions

For a lock-free dynamic algorithm to be SMR-compatible,
it must satisfy the following main condition:

v t7n3j7r7£’1¢.7
PossiblyDeleted(t, j,n) A HoldHazRef(t,j,n,#t,r) —
att,30<i< K: HPKj+i=n (C1)

Informally, whenever a thread accesses a dynamic node, it
must guarantee that if the node was possibly deleted (by
another thread) after the creation of the reference to it, then
continuously from a time equal to or earlier than the time
of its possible deletion, one or more of the thread’s hazard
pointers is pointing to the node.

When K > 1, it is acceptable for a thread to overwrite the
address of a node n” in one of its associated hazard pointers,
when n” is possibly deleted and one of its registers holds
a hazardous reference to n”, as long as another associated
hazard pointer was already assigned the value n.

However, since the SMR algorithm scans the array HP
non-atomically (one hazard pointer at a time) in a certain or-
der, passing the responsibility for hazardous references from
one hazard pointer to another must strictly follow the same
order as scanning HP. This leads to the second condition:

Vi, m,t < t2,0 <iy < K,0 <1y < K,i1 # ia,
(3, 7,7 =2Vt € [t1,t2], at ¢,
PossiblyDeleted(t, j,n) A
HoldHazRef(%,4,n,7,t,1)) A
(at t1, HP[Kj +i1) = n A HP[Kj +i2] #n) A
(at to, HP[Kj +i1] #n A HP[Kj + i3] = n)
) — i1 <o (€2)

The last condition is optional. It is needed only to guar-
antee that the number of non-null hazard pointers (p at the
beginning of stage 3 of Scan) is proportionally bounded by
contention:

Vit,5,0<i<K,
at t, thread j is not operating on the object —-
at t, HP[Kj + i = null (C3)



4. CORRECTNESSAND PERFORMANCE

For brevity, we provide only informal proof sketches. For-
mal proofs are to be included in the extended version of this
paper.

Safety

LEMMA 1. Vj,t,n,
<K, tg< <ty <t:VO0<i<k,at t:, HP[Kj+i#n A
IsDeleted(t,n) A 3r,#,t:: HoldHazRef(t,j,n,# t,r)
= Jk<m<K :: att, HP[Kj+m]=n.

If a scan in ascending order of low indexed hazard pointers
of a thread finds no match for a deleted node for which the
thread holds a hazardous reference, then there must be at
least one higher indexed hazard pointer of that thread that
points to that node. This follows from (C1) and (C2) and the
fact that IsDeleted(t,n) = Vj, PossiblyDeleted(t,j,n).

LEMMA 2. Vj,t,n,
Fitg<---<tg_1<t=V OSZSK, at tz,HP[K]j-Z] #n A
IsDeleted(t,n) = Ar,7,t:: HoldHazRef(t,j,n,7,t,r).

If a scan in ascending index order of the hazard pointers of
a thread finds no match for a deleted node, then it must be
the case that the thread holds no hazardous reference for
the node. This follows from Lemma 1.

LEMMA 3. Vi, n, node n” is freed at t in stage 3 of Scan
:>Vj, dtg<---<tg_1<t:: VO§1<K, atti,HP[Kj—H'];én.

A node is freed in stage 3 of Scan only if a scan of the
hazard pointers in ascending index order finds no match.
This follows from the fact that stage 1 scans HP in ascending
index order and the fact that the list plist does not lose
distinct pointer values throughout stages 1, 2, and 3. That
is, if a pointer value is not in plist in stage 3 then it couldn’t
have been there any time during stage 1.

THEOREM 1. Vt,n, noden " is freed att in stage 3 of Scan
= A j,r, 7 t:: HoldHazRef(t,j,n, 7 t,r).

If SMR frees a node then it must be the case that no thread
holds a hazardous reference to it. This follows transitively
from Lemmas 2 and 3 and the fact that only deleted nodes
are processed in Scan.

From the definition of HoldHazRef, we get the following
corollary.

COROLLARY. SMR guarantees that no thread accesses the
contents of a node while the node is free.

Time Complexity

LEMMA 4. At the beginning of Scan, the list dlist contains
exactly R distinct deleted nodes.

LEMMA 5. Throughout Scan, p< N.

LEMMA 6. At most N of the searches of the list plist in
stage 3 of Scan find matching pointers.

LEMMA 7. Every call to Scan results in freeing at least
R— N (i.e., ©(R)) nodes.

LEMMA 8. The ezecution time of DeleteNode is constant.

LEMMA 9. The execution time of Scan (excluding calls to
FreeNode) is O(Rlogp).

Stage 1 takes ©(N) time. Stage 2 takes O(plogp) time.
Stage 3 takes O(Rlogp) time (excluding calls to FreeNode).

Stage 4 takes O(p) time (constant time if dlist is imple-
mented as a linked list). p = O(N). N = O(R).

THEOREM 2. The amortized time complezity of process-
ing a deleted node until freeing it is O(logp).

Wait-Freedom
THEOREM 3. The SMR algorithm is wait-free.

A thread executing the SMR algorithm (at most R calls to
DeleteNode and one call to Scan) is guaranteed to complete
successfully (i.e., free ©(R) nodes) in a finite number of its
own steps (i.e., O(Rlogp)).

Bound on Number of Deleted Nodes not Freed

LEmMmA 10. V ¢, 7,
[{n:3t1 < t:: Delete(ti,j,n) N Bta € [t1,t] :: at t2, j frees
n "} is finite (at most R).

Each thread holds a finite number of deleted but not yet
freed nodes.

THEOREM 4. At any time, the total number of deleted
nodes not freed is finite (at most PR).

There is a tradeoff between the bound on deleted nodes
not freed and the amortized time of processing each freed
node. In an earlier version of the Scan algorithm that used
single-word CAS, the upper bound on the number of deleted
nodes not freed was only O(P) (constant R), but the amor-
tized time complexity per freed node was ©(P).

Space Requirements

The space requirements of SMR are N (i.e., ©(P)) shared
words for hazard pointers and O(R) static private words
per thread (only a constant when using a linked list to store
deleted nodes instead of an array as in Figure 3). The tem-

porary space needed per thread when performing a scan is
o(P).

5. APPLYING SMR

In this section, we apply the SMR method to the best
known dynamic lock-free algorithms. We examined dozens
of dynamic lock-free algorithms, many of which are not men-
tioned here for brevity. Only two correct algorithms [5, §]
were found to be inherently incompatible with SMR as well
as freelists. In each case a similar or better SMR-compatible
algorithm is found for the same object.

ABA Prevention

In all of the cases of applying SMR to dynamic algorithms
discussed in this section, it not only solved the memory
reclamation problem, but was also used to prevent the ABA
problem for all or some pointers without using any extra
space per pointer or per node. This was done by expanding
the definition of hazardous references (defined in Section 3)
to include references to dynamic nodes that may be used
as expected values of ABA-prone instructions. However, we



do not claim SMR to be a general solution for the ABA
problem for pointers to dynamic nodes, as we can construct
hypothetical cases where a reference to a dynamic node can
be the expected value of an ABA-prone instruction even
when that node is never removed and reallocated. Also, in
some SMR-compatible algorithms (e.g., [15]), a pointer may
point to nodes that are already deleted and still be the tar-
get of ABA-prone instructions. In such cases, it may be
preferable to use ABA-prevention tags than to reconstruct
the algorithm to prevent the deletion of nodes pointed to
by pointers that are possible targets of ABA-prone instruc-
tions. Of course, in such cases, the SMR algorithm will still
be able to detect when the dynamic node containing such a
pointer can be freed safely.

We present and discuss SMR-compatible versions of the
best known dynamic lock-free algorithms for FIFO queues,
stacks, double-ended queues, list-based sets, priority queue
skew heaps, and universal methodologies. We also discuss
the cases of algorithms that are inherently incompatible with
SMR.

FIFO Queues

We were able to create SMR-compatible versions of all three
dynamic lock-free FIFO queue algorithms [20, 24, 17] that
are correct, completely defined, fully functional, CAS-based,
and have constant time operations in the absence of con-
tention.

Figure 4 shows an SMR-compatible version of Michael
and Scott’s [17] algorithm. In the enqueue routine, we no-
tice that register t holds hazardous references. It is used to
access dynamic nodes (lines 4 and 7). It holds the expected
value of ABA-prone CAS operations (lines 6 and 8). It holds
the expected value of an ABA-prone validation condition
(line 5). Therefore we dedicate a hazard pointer (*hp0) for
pointing to t* whenever t holds a hazardous reference.

The pattern of lines 1-3 is ubiquitous in SMR~compatible
algorithms. We observe that after executing line 1 and be-
fore executing line 3, it is possible that t” is removed and
then reinserted in the object. But this window poses no
problem. During that period the reference held in t is not
hazardous, as line 3 verifies the reachability of t*, and hence
precludes the possibility of it being deleted at that point.
The reference only becomes hazardous immediately after
passing the condition in line 3. If t" is removed before line
2 and not reinserted before line 3, the condition in line 3
forces the thread to retry. If t* is reinserted before line 3
and the condition in line 3 allows the thread to proceed then
at that point it is guaranteed that *hp0 points to t~ from a
point when it was not deleted and continues to do so until
the reference is no longer hazardous, thus complying with
condition (C1).

We employed the technique of lines 1-3 in creating SMR-
compatible transformations of most known algorithms. We
present additional and alternative techniques when discussing
list-based sets and universal methodologies.

The dequeue routine employs a similar technique for deal-
ing with register h. For the register next, no equality check
(if next # t " Next continue;) is needed as the validation con-
dition in line 15 (from the original algorithm) guarantees
that *hpl points to next” from a point when it was not
deleted (next” cannot be removed unless h” is removed first)
and continues to do so until the reference in next is no longer

// j is thread id for SMR purposes
7/ hp0 = &HP[2%]
// hpl = &HP[2%j+1]

// initially both Head and Tail point to a dummy node

Enq(data:DataType) : boolean {
if node «— AllocateNode() = null return false;
node".Data <« data; node”.Next < null;
while true {
t < Tail;
*hpO0 «—t;
if t # Tail continue;
next < t " Next;
if t # Tail continue;
if next # null { CAS(&Tail,t,next); continue;}
if CAS(&t".Next,null,node) break;

NS Gk o=

}
8 CAS(&Tail,t,node);

*hpO0 < null; return true;
}

Deq() : DataType {
while true {

9 h«— Head;
10  *hpO+« h;
11  if h# Head continue;
12t Tail;
13 next «— h " Next;
14  *hpl < next;
15  if h# Head continue;
16  if next=null{ *hpO0 < null; return EMPTY;}
17 if h=t { CAS(&Tail t,next); continue;}
18  data< next . Data;
19  if CAS(&Head,h,next) break;

*hp0 < null; *hp1l <+ null;
DeleteNode(h); return data;

Figure 4: SMR-compatible version of Michael and
Scott’s [17] lock-free queue algorithm.

hazardous (i.e. after line 18). Only when register t is equal
to h, is it used in CAS. So it is always covered by *hp0. No
other registers in the algorithm can hold hazardous refer-
ence, and so the algorithm satisfies condition (C1).

It is easy to show that the algorithm satisfies condition
(C2) since no hazard pointer inherits its value from another
hazard pointer. As for condition (C3), the algorithm guar-
antees that whenever a thread exits Enq or Deq each of its
hazard pointers is equal to null.

Stacks

In Figure 1, we presented an SMR-compatible lock-free stack
based on the IBM freelist [12]. The techniques employed in
transforming it are covered by those employed in lines 1-3
of Figure 4.

Double-Ended Queues (Deques)

Agesen et. al. [1] presented a DCAS-based dynamic lock-
free deque algorithm. We were successful in making that



algorithm SMR-compatible. Detlefs et. al. [5] presented a
simpler algorithm that also uses DCAS. However, the al-
gorithms assumes automatic garbage collection, since after
popping a node, it is not always possible for a thread, solely
based on its registers, to determine if it had removed nodes
from the deque’s doubly-linked list or not. The algorithm
is inherently incompatible with SMR and freelists. It is im-
possible to determine when to call DeleteNode, which is an
integral part of explicit memory management methods.

Recently, we developed the first CAS-based lock-free deque
algorithm [15]. The algorithm is compatible with SMR and
freelists (as well as all other memory management methods).
As part of presenting that algorithms, we demonstrate its
compatibility with SMR. The techniques employed in gener-
ating its SMR-compatible version are covered by those em-
ployed in Figure 4.

List-Based Sets

Valois [25] presented CAS-based lock-free algorithms for link-
based sets that use shared cursors, such that whenever a
thread operates on the object it first moves the cursor (us-
ing CAS) to the desired location and then attempts its in-
tended operation, such as inserting, deleting, and searching
for a key. Actually, the algorithms are not even livelock-free,
as two threads may indefinitely alternate moving the cursor
to their respective desired locations, while neither succeeds
in performing its intended operation on the object.

Harris [8] presented a lock-free list-based set algorithm
using CAS. The algorithm cannot use freelists for memory
management. Harris implemented the algorithm using Val-
ois’ [25] memory management method, and in order to avoid
the high overhead of reference counting he also introduced
his own memory management method that is actually block-
ing, as discussed in Section 2. Harris’ set algorithm is not
compatible with SMR as a thread may traverse a sequence
of nodes after they have already been removed from the ob-
ject, and hence possibly deleted. Thus, it is impossible for
the algorithm to comply with SMR’s condition (C1).

Recently, we developed a simple CAS-based lock-free list-
based set algorithm (as part of a lock-free hash table algo-
rithm [16]) that is compatible with all memory management
methods. It yields better performance than Harris’ algo-
rithm, as it is compatible with simpler and better perform-
ing memory management methods. As part of presenting
that algorithm we demonstrate its compatibility with SMR.

The algorithm involves the traversal of the linked list using
three registers, we use three hazard pointers per thread to
track the registers. As the registers move down the list,
the third register assumes the value of the second, then the
second assumes the value of the first, and then the first
moves to the next node. The hazard pointers mirror the
same movement. The first hazard pointer uses a technique
similar to that used in lines 1-3 of Figure 4. The third and
second hazard pointers inherit their values from the second
and the first hazard pointers, respectively. So, in order to
comply with SMR’s condition (C2), the indices in the array
HP of the first, second and third hazard pointers associated
with each thread must be in ascending order, respectively.

Univer sal M ethodologies

Herlihy [10] presented a universal methodology for trans-
forming sequential dynamic object into lock-free ones. The
methodology uses a single anchor for the target object. The

value of the anchor must change with every modification of
the object. A thread operating on the object starts by read-
ing the anchor then as it traverses the linked object it makes
a private copy of each node it needs to access and uses the
copy instead. At the end of the operation the thread uses
CAS (or SC) to change the anchor to a new value. If suc-
cessful the private nodes (if any) become part of the object,
and the thread puts the removed nodes in a private pool of
nodes. If the CAS is not successful, the thread takes the allo-
cated private nodes back into its private pool and starts over
by reading the anchor again. Herlihy provides a recoverable
set algorithm for maintaining the pool of private nodes. In
order to establish the validity of copied nodes, Herlihy uses
two check bits written and read in reverse order.

We demonstrate an SMR-~compatible version of Herlihy’s
methodology, using a priority queue skew heap as an ex-
ample in Figure 5. We also provide memory management
routines compatible with SMR and similar in functionality
to Herlihy’s implementation of private node pools. The se-
quential operations skew_deq and skew_meld need no funda-
mental modification. Only two parts involve hazard point-
ers: the outer routines End and Deq, and the copy function.
Only two hazard pointers are needed. The first continuously
points to the anchor node. The setting of the first hazard
pointer uses the same technique as that of lines 1-3 of Fig-
ure 4.

In the copy routine, a thread sets its second hazard point-
ers to the address of the source node (of the copy opera-
tion) then it verifies that the anchor has not been removed.
Since no node that was reachable from an anchor node is
removed without the anchor node being removed. Since the
anchor node is already covered by the first hazard pointer
and the source node is already pointed to by the second
hazard pointer, the thread can proceed to perform the copy
safely. When the copy is done the second hazard pointer
can be safely nullified and reused in subsequent calls to the
copy function. SMR eliminates the need for the two check
bits for verifying the consistency of a copied node.

Turek, Shasha, and Prakash [23] and Barnes [3] presented
universal methodologies for transforming lock-based imple-
mentation (including those using mutiple locks) into lock-
free ones. The methodologies translate each atomic state-
ments (one instruction involving shared locations and any
number of instructions involving only registers and private
variables) and lock operation of of the original algorithm
into a continuation. When a thread operates on the object
it tries to establish its sequence of continuations as the cur-
rent operation. If it finds another operation in progress, it
tries to help it complete by reading the current step and at-
tempting to execute it. These methodologies apply to both
static and dynamic objects. To be SMR-compatible, the
programmer must indicate in each continuation if a certain
argument is a dynamic node. In such a case, a technique
similar to that in the copy routine of Figure 5 can be used
but instead of verifying the value of the anchor Q, the ad-
dress of the continuation is verified.

Other universal methodologies provide multi-word or multi-
address CAS or LL/SC implementations from single address
CAS (or LL/SC) [2, 7, 13, 19, 21]. When applicable to
dynamic objects, these techniques are orthogonal to SMR-
compatibility, as we have seen that CAS and DCAS can be
used to develop algorithms that are compatible with SMR
as well as those that are not.



// static private variables for methodology

r : result_type; old_q : *skew_type;

// static private variables for memory management
alloc_ptr,avail_ptr = 0,removed_ptrc : 0.. MAX_SIZE;
alloc[MAX_SIZE],removed[MAX_SIZE] : *skew_type;

Enq(v:valueType) {
node «— allocate_node(); node".value « v;
node".Child[0] < null; node”.Child[1] «— null;
while true {
removed_ptr < 0; alloc_ptr« 0;
old_q+— Q;
*hpO «— old_q;
if old_q # Q continue;
if Iskew_meld(node,old_q,&r.version) continue;
if CAS(&Q,o0ld_q,r.version) break;

*hpO0 < null; reset_memory_management();

}
Deq() {

while true {
removed_ptr < 0; alloc_ptr« 0;
old_q+— Q;
*hpO < old_q;
if old_q # Q continue;
if Iskew_deq(old_q) continue;
if r.value= SKEW_EMPTY break;
if CAS(&Q,old_q,r.version) break;

*hpO0 < null; reset_memory_management();

}

copy(q,p:*NodeType) : boolean {
*hpl « q;
if old_q # Q return false;
memcpy(p,q,sizeof(NodeType));
*hpl < null;
if removed_ptr= MAX_SIZE

{error(”exceeded size”); exit;}

removed|removed_ptr++]«— q;
return true;

skew_deq(q:*skew_type) : boolean {

}

*left, *new_left, *right,buffer : skew_type;

if q=null{r.value— SKEW_EMPTY; return true;}
if lcopy(q,&buffer) return false;

r.value < buffer.value;

left — buffer.Child[0]; right < buffer.Child[1];

if left = null{r.version « right; return true;}
new_left < allocate_node();

if lcopy (left,new_left) return false;

return skew_meld(new_left,right,&r.version);

skew_meld(q,qq, *res: *skew_type) : boolean {

}

if q= null{*res «— qq; return true;}
if qq= null{ *res «— q; return true;}
p < allocate_node();
if lcopy(qq,p) return false;
if q"Value < p".Value
{pl+q; p2+ p;} else { pl < p; p2+q;}
toggle «— pl .toggle;
pl toggle «— ltoggle;
*res «— pl;
return skew_meld(p2,p1°.Child[toggle],&p1".Child[toggle]);

allocate_node() : *skew_type {

}

if alloc_ptr<avail_ptr return alloc[alloc_ptr++];
if alloc_ptr= MAX_SIZE
{error(”exceeded size”); exit;}
if alloc[avail_ptr++] « AllocateNode() = null
{error(”out of memory”); exit;}
return alloc[alloc_ptr+];

reset_memory_-management() {

// free unused allocated nodes

for i+ alloc_ptr to avail_ptr-1 FreeNode(alloc[i]);
avail_ptr«— 0;

// delete removed nodes

for i 0 to removed_ptr-1 DeleteNode(removed]i]);

Figure 5: SMR-compatible version of Herlihy’s methodology’s [10] implementation of a lock-free skew heap.

6. CONCLUSIONS

The problem of arbitrary memory reuse for dynamic lock-
free object has long obstructed the wide adoption of lock-
free synchronization in multiprocessor applications, despite
their clear inherent advantages of resilience when faced with
thread failures and robust performance when faced with
thread delays in comparison to lock-based synchronization.

Prior memory management methods for dynamic lock-free
objects fall into four categories. First, those that restrict
the reuse of deleted nodes to the same type and require the
retention of the semantics and values of some fields indef-
initely [12, 25]. Second, those that use the DCAS atomic
operation which is not supported on any current system,
and use reference counting that results in significant perfor-
mance overhead [6]. Third, those that require special op-

erating system support for inspecting thread registers and
private stack space [7]. Fourth, blocking methods that de-
pend on actions by each thread, such as decrementing an
aggregate counter or setting a timestamp, for allowing the
reuse of potentially unbounded numbers of deleted nodes.
thus allowing the failure or delay of one thread to cause an
unbounded number of nodes to be not freed indefinitely [7,
8, 14].

In this paper we presented SMR, a practical and efficient
solution for safe memory reclamation for dynamic lock-free
objects. It allows arbitrary memory reuse, does not require
special hardware as it uses only atomic reads and writes,
does not require special operating system support, guaran-
tees an upper bound on the number of deleted nodes not yet
freed at all times, and is wait-free. Furthermore, it is only



logarithmically contention-sensitive. It guarantees constant
amortized time for processing each deleted node until it is
freed in the absence of contention, and only O(logp) time
in the case of contention by p threads. Recent performance
results [16] indicate that, in practice, the time overhead of
using SMR is negligible. Also, it does not require any extra
space per pointer or per node.

We demonstrated the ease of complying with the SMR
compatibility conditions as we examined most known dy-
namic lock-free algorithms and methodologies and presented
examples for the best known algorithms in each category.
We found only two correct algorithms [5, 8] to be incom-
patible with SMR and freelists, and in each case we found
similar or better algorithms for the same object that are
compatible with all memory management methods [15, 16].
The performance and qualitative advantages of SMR and
freelists make compatibility with them a crucial factor in
evaluating currently known and future lock-free algorithms.

Even in cases where memory reclamation is not crucial,
SMR still offers a lock-free solution for the ABA problem for
pointers to dynamic nodes without the need for any extra
space per pointer or per node, applicable to most dynamic
lock-free algorithms. It is the only lock-free method that
allows these algorithm to avoid the use of extra-width CAS
and high-overhead reference counting.

Finally, this paper demonstrates that DCAS is not needed
for lock-free memory reclamation.
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