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Abstract

Concurrent programming is important due to increasing core counts, but scalable con-
currency control is difficult and error-prone to implement. Hardware Transactional
Memory (HTM) addresses this problem by providing hardware support for concur-
rently executing arbitrary read-modify-write memory transactions [9]. Intel released
Transactional Synchronization eXtensions (TSX), a HTM implementation, in select
processors to support scalable concurrency control [11].

This thesis contributes a case study in applying TSX to the Linux virtual memory
system, which currently serializes address-space operations with a lock. TSX should
provide scalability by supporting concurrent address-space operations. Achieving
scalability with TSX, however, turned out to be difficult due to transactional aborts.
This thesis details how to identify and resolve abort problems, and it describes the
necessary modifications to make address-space operations scale in Linux.

This thesis also describes a new TLB shootdown algorithm, TxShootDown, which
removes TLB shootdown from a transactional critical section while avoiding races
due to concurrent address-space operations.

Thesis Supervisor: M. Frans Kaashoek
Title: Professor of Computer Science

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor of Computer Science
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Chapter 1

Introduction

Concurrent programming is important due to increasing core counts in commodity

computer hardware, but scalable concurrency control is difficult to achieve.

Coarse-grained locks provide isolation for multiple threads operating on shared

resources, but they serialize operations, which limits scalability. Fine-grained locking

and lock-free techniques provide isolation while improving scalability, but they are

difficult to implement correctly [8].

Hardware Transactional Memory (HTM) was introduced to simplify concurrent

programming by supporting customized, atomic read-modify-write transactions on

arbitrary memory locations [9]. Hardware transactions define critical sections at

coarse-granularity, like coarse-grained locks, but multiple transactions can execute

the same critical section concurrently to provide scalability as long as they use differ-

ent addresses. Transactions that use overlapping address in a conflicting way (read-

/write or write/write) are aborted and serialized to preserve isolation; aborts can

limit scalability if transactions frequently conflict.

Despite the potential benefits, a mainstream implementation of HTM did not exist

until recently when Intel included Transactional Synchronization eXtensions (TSX)

in select Haswell processors. TSX has the potential to benefit systems that depend

on coarse-grained locking by replacing those locking critical sections with hardware

transactions.
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The Linux virtual memory system is one area where we expected TSX to be ben-

eficial. Consider the case where multiple threads within a single process perform

operations on different areas of a shared address space. The operations are commuta-

tive, thus unlikely to conflict, but a coarse-grained reader-writer lock serializes their

execution. TSX can exploit the fact that accesses are disjoint to execute concurrent

address-space operations in parallel.

This thesis contributes a case study of applying TSX to scale address-space opera-

tions in Linux. We first modified the Linux kernel to execute address-space operations

transactionally with TSX before falling back to the reader-writer lock if the trans-

action aborts. The operations should have executed concurrently because the opera-

tions changed different parts of a shared address space, but virtually all transactions

aborted and fell back to locking. The TSX hardware aborted and serialized disjoint

address-space operations because the implementation of those operations violated

isolation: either by conflicting with one another, overflowing transactional buffers in

hardware, or executing instructions that are invalid within a transaction.

Identifying and resolving transactional aborts is a major challenge in using TSX.

Performance monitoring tools and hardware do not provide information about the

cause of asynchronous conflict aborts. The hardware records an asynchronous conflict

abort at the location where it detects a conflict, but this is not necessarily the location

that caused the abort. Intel does not reveal details about their abort algorithm, so

conflict aborts are typically found through trial and error.

This thesis details the necessary changes to scale address-space operations in Linux

using TSX.

One challenge with TSX is dealing with operations that must execute instructions

that are invalid within a transaction (e.g. writing to a control register, flushing the

TLB, performing I/O). These instructions always cause the transaction to abort. One

solution to this problem is to delay these operations until after the transaction ends,

but this can introduce race conditions when the operation must be executed in the

critical section. This thesis proposes a new TLB shootdown algorithm, called Tx-
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ShootDown, that provides consistency despite delaying TLB operations to outside of

a transaction.

The changes described in this thesis are the result of iteratively identifying and

resolving abort issues in the Linux virtual memory system. The major changes in-

volved pre-allocating memory and removing non-scalable caches and counters from

transactions.

The contributions of this thesis are: (1) a case study of scaling address-space op-

erations in Linux using TSX and (2) a new TLB shootdown algorithm which provides

consistency despite non-transactionally executing TLB flush operations.

The rest of this thesis is organized as follows: Chapter 2 describes related work.

Chapter 3 describes the hardware interface provided by TSX and how to use it.

Chapter 4 presents our methodology for identifying aborts. Chapter 5, Chapter 6,

and Chapter 7 describe TxShootDown and the design changes required to achieve

scalability in Linux. Finally, Chapter 8 summarizes our experience using TSX and

concludes.
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Chapter 2

Related Work

This thesis is the first detailed exploration of transactional abort problems in applying

TSX to scale a real operating system service.

Recent work has explored scaling existing software using TSX and stressed the

importance of addressing abort problems [14]. Odaira et al. investigated using TSX

to eliminate the global interpreter lock in Ruby [16], which involved resolving several

abort issues similar to ones we address in this thesis. This thesis builds on previous

work by providing concrete examples of how to identify and resolve aborts in a real

system.

Andreas Kleen at Intel has been working on a complete conversion of locking in

the Linux kernel to use TSX to elide locks [12]. In the latest version of that kernel,

TSX is disabled for several operations (such as munmap) due to abort issues that we

address in this thesis. This thesis includes experiments run on the latest version

of that kernel to provide a direct comparison between our implementation and the

current state of the art.

Previous work observed that transactional aborts are a major source of overhead

using TSX in several applications; including data structure implementation [15, 21],

memory reclamation [1], and in-memory databases [20]. Previous work on other

transactional memory systems also considered aborts a major concern [6, 2]. This

thesis utilizes a debugging methodology based on perf to identify and resolve aborts

in Linux’s virtual memory system.
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The virtual memory system in Linux tracks allocations using red-black trees, which

prior work implemented using software transactional memory [22, 7]. Other prior work

recommends using a scheme that delays re-balancing operations in red-black trees to

reduce conflicts [2], but we find that these designs are not necessary to achieve good

performance under TSX. In fact, we find that using TSX with red-black trees achieves

high performance and scalability when the tree is large and writes are distant.

The TxLinux operating system explored using transactional memory with an ar-

chitectural model called MetaTM [19, 18]. TxLinux uses “cooperative transactional

spinlocks,” which manage contention between transactional and non-transactional

lock acquisitions. MetaTM also provides instructions to suspend transactions to per-

form I/O operations. TSX does not support either of these features, so different

solutions are required for Intel TSX. This thesis proposes TxShootDown, which solves

a problem performing TLB shootdowns under transactions without support for sus-

pending transactions.

18



Chapter 3

Intel TSX

Intel’s TSX is the first mainstream implementation of hardware transactional memory.

This section describes the features provided by TSX, a new interface to use TSX in the

Linux kernel, and the parameters and performance of a TSX-enabled Xeon processor.

3.1 Features

TSX follows a similar design to the original HTM proposal [9]. The processor tracks

the set of read and written memory locations during transactional execution. A

conflict exists if the write set of a transaction overlaps with the read or write set

of another transaction. Read and write sets are tracked at cache-line granularity in

the data cache in the current TSX implementation. Conflicts are detected by the

cache-coherence protocol, and the core that detects the conflict must abort [11]. TSX

provides strong isolation, which means that non-transactional operations that conflict

with a transaction will cause that transaction to abort. The transactions provided

by TSX are best-effort, which means that no transaction is guaranteed to complete

(this may be due to micro-architectural issues). There are two feature sets provided

by TSX: Restricted Transactional Memory and Hardware Lock Elision.

Restricted Transactional Memory The TSX interface to transactional memory

is called Restricted Transactional Memory (RTM), and it consists of 4 new instruc-
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tions: XBEGIN, XABORT, XTEST, and XEND. XBEGIN begins transactional ex-

ecution by storing the current CPU register state and a relative address in shadow

registers. The relative address given to XBEGIN is the address of the fallback handler.

If the transaction aborts, the hardware will restore the original register state, jump to

the fallback handler, and store an abort code in EAX. The XABORT instruction trig-

gers a transaction abort. XABORT takes an immediate operand that the hardware

includes in the abort code to support custom adaptive locking strategies. XTEST

sets the zero flag to indicate if the processor is currently in a transaction. The XEND

instruction commits the transaction by atomically removing all cache lines from the

read and write sets and exiting transactional execution. RTM transactions require

a non-transactional fallback path, because transactions are best-effort and may never

succeed despite repeated retries. The non-transactional fallback path we implement

acquires the lock, but related work proposes using Software Transactional Memory

to implement the fallback path [5, 13]. We do not consider Software Transactional

Memory in this thesis.

RTM Abort Codes The EAX register contains an abort code after an RTM trans-

action aborts. This code provides information about the abort so that the program-

mer can decide when to retry or when to use the non-transactional path. The abort

codes for RTM are summarized in Table 3.1. The most important codes are RETRY,

CONFLICT, and CAPACITY. RETRY and CONFLICT are frequently set together,

which means that the transaction aborted due to a conflict with another memory

operation, and the operation may commit if retried. It is recommended to restart

a transaction when the RETRY flag is set. The CAPACITY flag indicates that the

transaction did not fit in the cache because one of its cache lines was evicted. This

can happen due to capacity or associativity issues. Transactions may also abort due

to processor interrupts or exceptions, in which case no flags are set.

Hardware Lock Elision TSX has another transactional interface called Hardware

Lock Elision (HLE), which is an implementation of speculative lock elision [17]. XAC-
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EAX Bits Name Meaning
0 ABORT Explicit abort with XABORT
1 RETRY TX may succeed on a retry
2 CONFLICT TX data conflict
3 CAPACITY TX cache eviction
4 DEBUG Debug breakpoint
5 NESTED TX aborted while nested
23:6 Reserved Reserved
31:24 XABORT CODE Immediate from XABORT

Table 3.1: TSX abort codes in EAX

QUIRE and XRELEASE are instruction prefixes that modify instructions performing

locking. An XACQUIRE prefixed lock acquisition on a TSX-enabled processor will

begin transactional execution like an XBEGIN under RTM, and an XRELEASE pre-

fixed unlock will behave like XEND. If the transaction aborts, execution falls back

to lock acquisition, but the XACQUIRE prefix is ignored. Processors without TSX

always ignore the XACQUIRE and XRELEASE prefixes, so locks are used normally.

HLE provides a backwards-compatible interface to use transactions instead of locks

on supporting hardware. This thesis proposes an RTM interface rather than HLE to

experiment with various retry and backoff strategies.

3.2 Programmer Interface

In this section we propose a custom C interface to RTM for reader-writer semaphores

(rw_semaphore) in the Linux kernel. mmap_sem is the reader-writer semaphore that

serializes address-space modifications in Linux, so applying TSX to mmap_sem allows

multiple threads to concurrently attempt address-space operations.

The custom C interface to RTM is based loosely on a design from Intel1, but

it has support for backoff and different retry strategies. It is based on low-level

C implementations of the RTM instructions [12]. The function xbegin() returns

the value of EAX on the abort path and a special value _XBEGIN_STARTED if the

1http://software.intel.com/en-us/blogs/2012/11/06/exploring-intel-transactional-
synchronization-extensions-with-intel-software
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transaction is started. The xabort(char) macro takes a char to paste into the

XABORT instruction’s immediate value. xtest() returns 1 if in a transaction, 0

otherwise, and xend() simply issues XEND.

The following C code shows the function that acquires a Linux kernel reader-writer

semaphore in write mode. The code is nearly identical for locking in read mode.

1 void tx_wlock(struct rw_semaphore *lock)

2 {

3 int ret;

4 int failures = 0;

5 retry:

6 /* Use linear backoff on failure up to ALLOWED_FAILURES = 5 */

7 if(failures && failures <= ALLOWED_FAILURES)

8 backoff(failures);

9 else if(failures > ALLOWED_FAILURES)

10 {

11 /* Actually lock semaphore if failure limit reached */

12 down_write(lock);

13 return;

14 }

15

16 /* wait_free_lock spins until the lock is free or 10K cycles have

elapsed. It returns 0 if the lock is still locked. */

17 if(! wait_free_lock(lock))

18 {

19 /* Actually lock semaphore if the lock is still not free*/

20 down_write(lock);

21 return;

22 }

23

24 ret = xbegin ();

25 if(ret == _XBEGIN_STARTED)

26 {

27 /* Ensure that lock is unlocked. This brings the lock into

the transaction ’s read set. */

28 if(tx_rwsem_is_locked(lock))

22



29 {

30 xabort (0);

31 }

32 return;

33 }

34 /* Retry as long as the transaction did not overflow */

35 else if(!(ret & TXA_CAPACITY))

36 {

37 failures += 1;

38 goto retry;

39 }

40 /* Actually lock semaphore if transaction overflowed */

41 else

42 down_write(lock);

43 }

The tx_wlock function provides isolation for threads that acquire the lock in

write mode, and it prevents threads from acquiring the lock in write mode until all

read-mode threads release the semaphore (similar to a regular reader-writer lock).

tx_wlock differs from a regular reader-writer lock in that it first attempts to provide

isolation using a TSX hardware transaction. Multiple kernel threads can then trans-

actionally execute the critical section in parallel, which provides scalability as long

as concurrent transactions do not conflict and can be stored in the transaction cache.

Transactions that abort due to capacity or frequent conflicts acquire the semaphore

in write mode, which excludes other threads and limits scalability.

tx_wlock provides a non-transactional fallback path for transactions that fail more

than ALLOWED_FAILURES times or which abort due to a CAPACITY abort. tx_wlock

retries transactions regardless of whether or not the RETRY flag is set in the abort

code. This is because interrupts and other transient events cause aborts that do not

set the RETRY flag; our experiments have shown that retrying anyway is beneficial.

tx_wlock does not retry if the CAPACITY flag is set, since we assume that this is not

a transient abort (the same transaction is likely to fail again since the set of memory

locations it attempts to access will not fit in the cache). The exception to this is
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hyper-threading, where a process running on the other hyper-thread causes an L1

eviction that aborts the transaction. When the hyper-thread is not heavily using the

cache (e.g. when a hyper-threaded transaction ends), the original transaction may

commit. The experiments in this thesis run without hyper-threading to avoid this

problem.

The non-transactional fallback path acquires the semaphore in write mode. tx_wlock

provides isolation between the fallback path and transactional path by bringing the

semaphore into the read set of the transaction. The transaction may proceed only if

the lock is unlocked, otherwise the transaction aborts since it could observe partial re-

sults from the thread that locked the semaphore. Non-transactional threads acquiring

the lock will cause transactions to abort because they write to the semaphore.

Threads call wait_free_lock to wait until the semaphore is unlocked before start-

ing a transaction. This de-couples waiting for the semaphore and transaction aborts.

Otherwise when one thread acquires the semaphore it causes later threads to all

abort ALLOWED_FAILURES times, which results in a fallback to locking under heavy

load. wait_free_lock is also important for debugging because it prevents frequent

XABORT aborts from appearing in the debugging results.

tx_wlock calls backoff, which performs linear backoff after aborts. Intel’s opti-

mization manual states it is necessary to use some backoff strategy to prevent frequent

aborts [10], but this thesis does not perform a comparison of backoff strategies.

3.3 Intel TSX Implementation

The experiments in this thesis run on a system with a TSX-enabled 4-core Intel Xeon

E3-1270 v3 CPU running at 3.50GHz. Each core has private 32K 8-way set-associative

L1 data and instruction caches, a 256K unified L2 cache, and the cores share an 8MB

unified L3 cache. The system has 32GB of installed RAM.

Cache Size Wang et al. measured the maximum size of the read and write sets at

4MB and 31KB respectively [20]. Their experiment retried many times and reported
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the transaction success rate to deal with implementation-specific issues. A non-zero

success rate for a certain size transaction means that the transaction cache is at least

that size.

Certain features of TSX make it difficult to measure the maximum size of transac-

tions: First, the TSX implementation seems to dynamically change its abort criteria

based on a learning algorithm. Odaira et al. provide an experiment that shows TSX

eagerly aborts transactions that suffered from repeated capacity aborts [16]. Second,

the read set spills out of the L1 cache into a secondary structure [11], but details

about this structure are unknown.

The L1 cache is shared between both hyper-threads on a core, which reduces the

available transaction cache space when both hyper-threads are using the cache. This

can cause frequent capacity aborts if both cores are executing transactions simultane-

ously. The experiments in this thesis avoid these issues by not using hyper-threading.

Performance Wemeasured the performance of RTM and HLE using a small bench-

mark that measures the number of cycles for TSX operations using the serializing

RDTSCP instruction. We wrapped each operation with RDTSCP to measure start

and end times, and the results are average cycle counts over 2.5 million operations. Re-

sults are presented in Figure 3-1. All results exclude the measured 30 cycle RDTSCP

overhead.

The overhead of simply beginning and ending a transaction (xbegin/xend) is 40

cycles, while the overhead of compare exchange (cmpxchg) and atomic increment

operations are 17 and 16 cycles respectively. TSX should not be used for individual

atomic increments and swaps due to this overhead, but multiple reads and writes may

be performed within a transaction to amortize the upfront cost and provide atomicity

for the entire operation (begin/readX and begin/writeX, where X is the number of

cache lines, and xend is used to commit the transaction). HLE (xacquire/xrelease)

has a slight overhead compared to RTM (52 cycles vs. 40 cycles), which is likely due

to tracking elided locks [11]. An aborted transaction (xbegin/xabort, with the start

time immediately before XBEGIN and the end time at the top of the abort handler)
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Figure 3-1: Microbenchmark of TSX instructions

has an overhead of 163 cycles, which is on top of the wasted work performed in the

aborted transaction. This overhead is likely due to restoring saved register state and

jumping to the abort handler.
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Chapter 4

Case Study

4.1 Overview

This thesis presents a case study in using Intel TSX in the Linux virtual memory

system. The Linux kernel we use is a patched 3.10 kernel with TSX profiling support

in the perf utility [12].1 This section describes the motivation for investigating the

virtual memory system, the benchmark that we use to evaluate scalability, the de-

bugging methodology we follow to identify and address transactional aborts, and a

summary of the modifications we made to Linux.

4.1.1 Investigating Linux Virtual Memory

The Linux virtual memory system relies on a per-address-space reader-writer semaphore

called mmap_sem. The mmap and munmap address-space operations acquire mmap_sem

in write mode, and the page fault handler acquires mmap_sem in read mode so that

page faults can be handled concurrently. mmap_sem is a coarse-grained lock which

serializes address-space operations, so we wrap mmap_sem acquisition with the TSX

interface described in Chapter 3. TSX should then execute operations on disjoint

virtual memory locations in parallel.

1Branch hsw/pmu7
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4.1.2 Benchmark

The case study uses the “local” benchmark from RadixVM [4]: Each thread in the

experiment mmaps a page of virtual memory, touches that page (causing a page fault),

and then munmaps that page in each iteration. Each thread operates on a different

page. These operations touch disjoint pages and should not need to share data, which

means that the operations should work well with TSX.

Conflicts in internal data structures and page tables can cause transactional aborts

even though the operations do not need to share data. The benchmark pads out

internal data structures by including 16MB gaps between thread pages filled with

4MB of non-contiguous single-page mappings. This modified benchmark should be

easy to scale: the operations touch disjoint pages and necessary sharing is minimal.

Operations are serialized for this benchmark only because of the mmap_sem semaphore.

All experiments in this thesis measure average iterations per second over a 5 second

run of the benchmark with 2 seconds of warmup.

This thesis does not include a comparison with an application workload because

its operations may result in actual data sharing. Actual sharing increases the abort

rate and hides abort problems that limit scalability due to implementation details.

4.1.3 Early Results

We started by wrapping the acquisition of mmap_sem using the interface described in

Chapter 3. Results for this experiment appear in Figure 4-1.

The non-transactional kernel (Original) fails to scale to even 2 cores because all

operations acquire mmap_sem in write mode. Performance actually collapses from

around 850,000 to around 250,000 iterations per second, which is consistent with

prior results reported in RadixVM [4]. Figure 4-1 also shows the Lock Elision im-

plementation mentioned in Chapter 2, which wraps lock acquisition and release with

TSX throughout the kernel [12].2 The Lock Elision kernel’s performance is similar

2We used the latest commit to branch hle313/combined on 2014-03-06.
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Figure 4-1: Comparison of simple approaches to using TSX in Linux

to the unmodified kernel. This is because the Lock Elision kernel disables TSX for

virtual memory operations to avoid aborts. We address these aborts in this thesis.

The performance of wrapping mmap_sem with TSX (Lock Wrap), however, is worse

than an unmodified kernel. We expected Lock Wrap to scale because the benchmark

operates on different parts of the virtual memory space. The operations do not

depend on each other or need to share data, so TSX should have executed address-

space operations concurrently.

The perf performance analyzer showed that a large proportion of cycles per iter-

ation are spent in aborted transactions and waiting for mmap_sem to be free, which is

the cause of the performance problems in the Lock Wrap kernel. Table 4.1 shows the

percentage of transactions that abort for the Lock Wrap approach.

Cores Abort Rate
1 85 %
2 90 %
3 99 %
4 99 %

Table 4.1: Abort rates for Lock Wrap kernel
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Very few transactions actually run to completion on one core, and virtually no

transactions complete at higher core counts. Frequent transactional aborts cause

operations to serialize on the lock, limiting scalability.

4.2 Identifying Aborts using perf

We resolved the scalability problems with our initial results by identifying and re-

solving issues that caused transactional aborts. perf provides “record” functionality,

which records a specific event (aborts, in this case).3 perf’s “report” mode displays

a list of functions and abort conditions (capacity, conflict, etc.) sorted by the pro-

portion of all aborts represented by that (function, abort condition) pair. perf

also records the instruction pointer (IP) at the event. perf report can interac-

tively display disassembly and source annotations along with per-instruction abort

information. An example of the output from perf report appears in Figure 4-2.

Run: perf report --sort=symbol,transaction
Samples: 59K of event ’cpu/tx-aborts/pp’,
Event count (approx.): 2391430
37.16% [k] find_vma TX ASYNC RETRY CON
11.67% [k] mmap_region TX ASYNC RETRY CON
9.51% [k] do_munmap TX ASYNC RETRY CON
8.05% [k] vma_compute_s... TX ASYNC RETRY CON
4.25% [k] kmem_cache_al... TX ASYNC RETRY CON
3.75% [k] _raw_spin_lock_irqsave TX SYNC

Figure 4-2: Example perf output at 4 cores

4.2.1 Synchronous Aborts

Operations that cannot be done inside transactions, such as TLB shootdowns, are

easy to identify in the assembly dump output. They appear as a single instruction

with a large amount of aborts and a synchronous abort condition. The synchronous
3The specific command we run is perf record -a -g –transaction -e cpu/tx-aborts/pp

./mapbench CORES local, where CORES is the number of threads created. This records all abort
events on all cores (-a) with stack traces (-g) and abort flags (–transaction).
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flag means that the recorded instruction is the actual cause of the abort, so the reason

for the abort is clear.

Running the benchmark with a single thread makes identifying synchronous aborts

easier because it eliminates asynchronous aborts. For example, the output appearing

in Figure 4-3 was generated with a single core and the output in Figure 4-2 was

generated with 4 cores. Running on a single-core avoids conflict aborts, so only a

function containing a cli instruction (which is not allowed in a transaction) appears in

the list. Figure 4-3 includes the interactive disassembly output showing the abort. We

fixed this problem by simply not suspending or restoring interrupts in transactions.

Run: perf report --sort=symbol,transaction
Samples: 27K of event ’cpu/tx-aborts/pp’,
Event count (approx.): 19953364
100.00% [k] _raw_spin_lock_irqsave TX SYNC

Disassembly:
static inline void native_irq_disable(void)

{
asm volatile("cli"

:::"memory");
100.00 cli

Figure 4-3: Example perf output at 1 core

4.2.2 Asynchronous Abort Identification

Conflict abort events are asynchronous. The IP in the perf output corresponds to

the instruction being executed when a processor happened to detect the conflict, but

this is not necessarily the instruction causing the conflict. This occurs when a core

that previously accessed a cache line detects the conflicting access first. All that we

know in this case is that a conflicting memory access occurred before the recorded

instruction. We call the two conflicting memory operations that caused an abort the

offending instructions. The benchmark runs for many iterations, and the areas near

offending instructions often show up in the top abort results.
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The current TSX implementation aborts the first transaction detecting a conflict

at an arbitrary point, which is not necessarily an offending instruction [10]. The man-

ual does not justify this design, but it is likely due to the performance overhead of

synchronously checking for remote transactions that conflict with each access. Syn-

chronous reporting for conflict aborts would simplify debugging, but the performance

overhead makes it expensive to implement in practice. Intel does not provide any

guarantees about which transaction will detect the conflict first and abort; this infor-

mation is omitted from the specification [11].

The offending instructions causing false conflicts (improper padding or counters

on the same cache line) are particularly difficult to track down due to asynchronous

abort information. The offending instruction on one core may not detect the conflict;

another core, which had already proceeded past its offending instruction, detects the

conflict and triggers an abort. This process repeats with different abort points until

there are many recorded conflict aborts spread throughout the program rather than

concentrated near the offending instruction. Figure 4-4 shows what the perf output

looks like in this case. At first it looks like there is a data conflict in the tree traversal

operation in the disassembly, but the real problem is a conflict on a cache line accessed

earlier in the transaction. The most common abort events appear in locations that

have little to do with the actual problem, which we consider noise in the debugging

output.

Disabling the retry policy helps to reduce noise by reducing the number of repeated

aborts. Threads that keep retrying can repeatedly abort each other, resulting in the

output in Figure 4-4. Figure 4-5 shows the result of setting the number of allowed

retries to 0. Aborts are spread more evenly between the functions, but the second-

highest aborting instruction in mmap_region (the highest aborting function with 5

retries) is an offending memory read of mm->total_vm (the offending write is found

later in the perf output in vm_stat_account).

Preliminary experiments show some promise in artificially extending transactional

execution using a no-op loop to increase the chance of finding conflicting aborts. For

example, Figure 4-7 shows the result of inserting the no-op loop in Figure 4-6 before
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Chapter 5 TLB shootdown: delay and target shootdown
Chapter 5.3 TxShootDown: solve race condition
Chapter 6 Data conflicts: counters, caches, locks, padding
Chapter 7 Memory allocation: per-core pools, delay free

Table 4.2: Summary of Linux modifications

the tree traversal in Figure 4-4. This output uncovers the offending memory write to

mm->total_vm in vm_stat_account. At the time of writing, however, this technique

is not well understood. We leave exploration of this technique to future work.

4.2.3 Result Summary

Using perf, we iteratively identified and removed abort problems from Linux’s virtual

memory system. A summary of our changes appears in Table 4.2. The results for all

changes combined appear in Figure 4-8. The benchmark scales up to 4 cores, which

is the maximum number of cores that avoids L1 cache sharing.

The modifications result in a 14% performance decrease from the Original kernel

at 1 core. This is the cumulative effect of changes that included removing several

performance optimizations and caches.

TxShootDown is an algorithm that uses a three-phase strategy to correct a race

condition in TLB shootdown operations. Figure 4-9 demonstrates that using Tx-

ShootDown to solve the TLB shootdown problem does not negatively impact scala-

bility.

In the next three chapters, we detail the changes that were required to scale

address-space operations in the Linux kernel.
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Run: perf report --sort=symbol,transaction
Samples: 109K of event ’cpu/tx-aborts/pp’,
Event count (approx.): 32187883
13.86% [k] mmap_region TX ASYNC RETRY CON
10.60% [k] zap_pte_range TX ASYNC RETRY CON
6.96% [k] unlink_anon_vmas TX ASYNC RETRY CON
6.17% [k] alloc_vma TX ASYNC RETRY CON
6.03% [k] unmap_single_vma TX ASYNC RETRY CON

Disassembly of mmap_region:
5.42 a8: cmp %r15,-0x20(%r8)
1.05 âĘŞ jb 170

return -ENOMEM;
__rb_link = &__rb_parent->rb_left;

0.02 lea 0x10(%r8),%rbx
2.44 b6: mov %r8,%r13

} else {
rb_prev = __rb_parent;
__rb_link = &__rb_parent->rb_right;

3.31 mov (%rbx),%r8
struct rb_node **__rb_link, *__rb_parent,

*rb_prev;
__rb_link = &mm->mm_rb.rb_node;
rb_prev = __rb_parent = NULL;
while (*__rb_link) {

5.36 bc: test %r8,%r8
0.22 âĘŞ je d0

struct vm_area_struct *vma_tmp;
__rb_parent = *__rb_link;
vma_tmp = rb_entry(__rb_parent,

struct vm_area_struct, vm_rb);
if (vma_tmp->vm_end > addr) {

20.64 cmp -0x18(%r8),%r12
22.02 âĘŚ jb a8

Figure 4-4: Example perf output showing spread out aborts
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Run: perf report --sort=symbol,transaction
Samples: 85K of event ’cpu/tx-aborts/pp’,
Event count (approx.): 3771331
6.91% [k] unlink_anon_vmas TX ASYNC RETRY CON
5.92% [k] zap_pte_range TX ASYNC RETRY CON
5.48% [k] tx_wunlock TX ASYNC RETRY CON
5.41% [k] mmap_region TX ASYNC RETRY CON
5.30% [k] do_munmap TX ASYNC RETRY CON

Disassembly of mmap_region:
cur = mm->total_vm;

lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
if (cur + npages > lim)

mov %rdx,%rsi
11.16 add 0xa8(%r10),%rsi

Figure 4-5: Example perf output after disabling transaction retries

1 #define NOP_TIME 7000
2 noinline void nop_loop(void)
3 {
4 register int i;
5 for(i=0; i<NOP_TIME; i++)
6 asm volatile ("nop":::"memory");
7 }

Figure 4-6: Example no-op loop
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Run: perf report --sort=symbol,transaction
Samples: 93K of event ’cpu/tx-aborts/pp’,
Event count (approx.): 6646981
60.94% [k] nop_loop TX ASYNC RETRY CON
12.75% [k] tx_wunlock TX ASYNC RETRY CON
2.94% [k] tx_wlock TX SYNC :1
2.76% [k] mmap_region TX ASYNC RETRY CON
2.44% [k] tx_wlock TX ASYNC RETRY CON
1.50% [k] do_mmap_pgoff TX ASYNC RETRY CON
0.93% [k] vm_stat_account TX ASYNC RETRY CON

Disassembly of vm_stat_account:
mm->total_vm += pages;

98.47 add %rcx,0xa8(%rdi)
if (file) {

test %rdx,%rdx

Figure 4-7: Example perf output using a no-op loop
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Chapter 5

Delay TLB Shootdown

The translation look-aside buffer (TLB) caches the results of page directory walks in

hardware on the X86. When a thread unmaps a region of virtual memory, the kernel

must ensure that all cores flush any TLB entries related to that region so that future

accesses in that region do not see the old page.

5.1 TLB Shootdown Aborts

Linux implements TLB shootdown using the following process: The core which un-

maps a Virtual Memory Area (VMA) will invalidate its own TLB and queue a TLB

invalidate function to be run on each other core. It then triggers an inter-processor

interrupt (IPI) on those cores while still holding mmap_sem. The interrupt handler on

those cores runs the queued TLB invalidate, and the original core continues (releasing

mmap_sem) once all other cores finish the TLB invalidate.

TSX transactions abort due to TLB invalidations and IPIs, which we discovered

using the output in Figure 5-1. The invlpg instruction flushes the local TLB for a

specific page, but that instruction is invalid within a TSX transaction.
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Run: perf report --sort=symbol,transaction
Samples: 27K of event ’cpu/tx-aborts/pp’,
Event count (approx.): 12789619
99.99% [k] flush_tlb_mm_range TX SYNC

Disassembly:
static inline void
__native_flush_tlb_single(unsigned long addr)

{
asm volatile("invlpg (%0)"::"r" (addr):

"memory");
100.00 180: invlpg (%rax)

Figure 5-1: Output of perf showing TLB invalidation abort

5.2 Race Condition

One possible solution is to delay TLB shootdown operations until after the transaction

is committed, but this solution is not correct in general due to a race condition (as

shown in Figure 5-2). If an in-progress munmap completed unmapping an area and is

beginning its TLB shootdown outside the transaction, a concurrent mmap in the same

area may complete before the TLB shootdown is completed. The core completing

the mmap can notify a third core, which is caching the old mapping, to read the

new mapping. The notified core should see the new mapping, but because the TLB

shootdown is incomplete it will see the cached old mapping instead. This violates the

semantics of mmap and munmap.

5.3 TxShootDown

This section describes TxShootDown, a new TLB shootdown process. TxShootDown

solves the TLB shootdown problem using a three-phase strategy for mmap and munmap

to properly order TLB shootdowns, but it still allows concurrency for operations on

non-overlapping regions.
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notify
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Core 3 reads 
previously written value!

Figure 5-2: Race condition that occurs if TLB shootdown is not completed while
holding mmap_sem
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5.3.1 Algorithm

At a high level, TxShootDown ensures that concurrent operations in a memory region

overlapping a non-transactional TLB shootdown are delayed until after the TLB

shootdown is complete. TxShootDown is a three-phase strategy in which an operation

completing the first phase has exclusive access to an area of the virtual memory space

until after the third phase. TLB shootdown is performed in the second phase, which

does not need to be executed in a transaction.

To enforce exclusive-access, TxShootDown augments each VMA node with a lock

variable and enforces the following rule: Any operation (mmap, munmap, or page fault)

that depends on a locked node must abort and retry.

The algorithm for munmap (which requires a TLB shootdown every time it success-

fully unmaps a region) in TxShootDown appears in Figure 5-3. Phase 1 locks all nodes

in the region, and Phase 3 removes the locked nodes. The TLB shootdown occurs in

Phase 2 while the region is locked. This ensures that any concurrent operation in that

region is ordered after the TLB shootdown is completed. The locked nodes exactly

represent the intersection of previously existing mappings and the region being re-

moved, allowing operations in different regions to proceed while the TLB shootdown

occurs. Node removal and freeing require two temporary lists, since removal of a

value in a red-black tree may unlink a successor node rather than the node storing

that value itself. List t2 contains the list of nodes whose values must be removed,

and t3 contains the list of nodes which were unlinked and need to be freed.

The algorithm for mmap appears in Figure 5-4; it is similar to munmap with some

modifications. Phase 1 in mmap combines the resizing from Phase 1 and the removal

from Phase 3 in munmap. mmap also inserts and locks a node that represents the new

region. Operations on the inserted region are prevented from completing until the

inserted node is unlocked in Phase 3, which occurs after the TLB shootdown for

unmapped overlapping regions in Phase 2. The TLB shootdown operation in mmap

runs only if a region was removed in the first phase, preventing spurious shootdowns.
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munmap(start, len):
Temporary lists t1, t2, t3

Phase 1:

1. Begin TX

2. Collect nodes overlapping [start, start+len) in t1

3. Restart if any node in t1 is locked

4. Modify, split, and lock nodes from t1 such that the final set of locked nodes
exactly represents the intersection of all ranges in t1 with [start, start+len);
store locked nodes in t2.

5. Remove page table entries overlapping region

6. End TX

Phase 2:

1. If t1 is not empty, perform TLB shootdown on union of cores tracked by nodes
in t1

Phase 3:

1. Begin TX

2. Remove all regions in t2, store unlinked nodes in t3.

3. End TX

4. Free all nodes in t3

Figure 5-3: munmap algorithm

43



mmap(start, len):
Temporary lists t1, t2

Phase 1:

1. Begin TX

2. Collect nodes overlapping [start, start+len) in t1

3. Restart if any node in t1 is locked

4. Remove or modify nodes in t1 so that none overlap [start, start+len); store
unlinked nodes in t2

5. Insert new node [start, len), called ins, and lock it

6. Remove page table entries overlapping region

7. End TX

Phase 2 (outside TX):

1. If t1 is not empty, perform TLB shootdown on union of cores tracked by nodes
in t1

Phase 3 (in TX):

1. Begin TX

2. Unlock ins

3. End TX

4. Free nodes in t2

Figure 5-4: mmap algorithm
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The TxShootDown page fault handler simply finds the node containing the location

of the fault, retrying if the node is locked. When the page fault handler finds an

unlocked node it populates the page table using an implementation copied from Linux.

Waiting for unlocked nodes in page faults is necessary to prevent a core with a TLB

entry for the page and a core which faulted during a concurrent mmap from seeing

inconsistent values at the same virtual memory address.

TxShootDown’s three-phase algorithm solves the race condition in Figure 5-2. The

mmap on Core 2 cannot complete until the VMA node representing 0xF000 is unlocked,

but that only happens after the TLB shootdown operation on Core 1 completes. As

a result, Core 2 will notify Core 3 to read 0xF000 only after Core 3’s TLB is cleared

for that address.

5.3.2 Implementation

Integrating TxShootDown into the stock Linux virtual memory system would be a

highly invasive change. We opted to implement TxShootDown as an alternative

address-space within Linux to validate its design.

TxShootDown sits beside the original Linux virtual memory system. We modified

the kernel to dispatch address-space operations based on address. TxShootDown han-

dles operations within a reserved region, and Linux handles the rest. TxShootDown

handles only anonymous memory mappings private to a single process.

TLB shootdowns target only those cores mapping the page using a scheme sug-

gested in RadixVM [4]. Targeted TLB shootdowns are important to achieve high

performance, as demonstrated by RadixVM, so we target TLB shootdowns in both

the Linux virtual memory system and TxShootDown by tracking page faults for each

VMA node. TLBs are hardware-filled on X86, so RadixVM uses per-core page tables

to catch all faulting cores. We omit this implementation because it is unnecessary for

the benchmark considered in this thesis.
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Chapter 6

Removing Data Conflicts

A data conflict occurs when a thread writes to a cache line that is being tracked

by a transaction on another thread. This violates isolation and causes a conflict

abort. The benchmark considered in this thesis should not need to share data, but

the debugging output contains frequent conflict aborts. We investigated the reason

for these conflicts and discovered that they were caused by shared caches, global

counters, locking in transactions, and data structure implementation issues. This

section details the conflict problems and how we resolved them.

6.1 Shared Caches and Counters

The top bottleneck after solving TLB shootdown was a shared mmap_cache, which

the kernel used to speed up repeated find_vma operations; writes to this variable

frequently appeared in debugging output. find_vma is used to look up a VMA corre-

sponding to a given virtual memory address, returning the relevant vm_area_struct

and caching the result in mmap_cache. The mmap_cache causes frequent transactional

aborts, since every operation on the address space reads and likely modifies the vari-

able. We simply removed the cache to prevent a conflict. The result of this was

a small reduction in single-core performance for our benchmark, but it reduced the

abort rate with more than one core.
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Shared counters were also a problem for scalability, since they are read and written

by multiple cores. We simply removed shared counters that caused frequent aborts in

the benchmark. The main offenders were: (1) The map_count counter, which keeps

track of the number of VMAs in the address space, (2) The RSS counters, which keep

track of how many pages are used in the address space, and (3) /proc file-system

counters used for reporting virtual memory information. We removed map_count

and the sanity checks that depended on it. The RSS counters were lazily synced from

per-core counters already, so we decreased the frequency of synchronization from once

every 64 updates to once every 4096 updates, and we moved synchronization outside

of transactions. These problems were relatively easy to find with perf, because the

memory write instructions appeared in the top abort locations.

The /proc file system reads from per-address-space counters that track virtual

memory usage. mmap reads one of these counters early in a transaction, causing noisy

asynchronous aborts when a remote thread writes to that counter. The output in

Figure 4-5 shows the shared counter read, but the update function vm_stat_account

(further down the perf output) contains the conflicting write. We simply disable writ-

ing to the counters (total_vm, shared_vm, exec_vm, and stack_vm) in vm_stat_account

to prevent this abort.

Each core also keeps least-recently-used (LRU) lists of pages for that core. The

function lru_add_drain is called to drain these pages to a shared LRU list, which

causes transaction conflicts. We made this operation lazy, draining the LRU list only

every 4096 times it originally was supposed to drain, and we moved drain operations

outside of transactions where possible.

Finally, several data structures required alignment and padding to fit exactly

within 64-byte cache lines. Padding reduces false sharing between different structures

packed on the same cache line as recommended in the manual [10]. The structs that

we padded are listed in Table 6.1.
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Name Description
pagevec Represents a vector of pages
vm_area_struct VMA node in VMA tree and lists
per_cpu_pageset Set of pages for page allocator
anon_vma Reverse map pages to VMAs
anon_vma_chain Link anon_vmas and VMAs

Table 6.1: Linux structs that required padding

6.2 Locking

Linux acquires spinlocks while holding mmap_sem, so the transaction started by tx_wlo-

ck attempts to acquire them as well. This requires writing to the lock, so multiple

transactions taking the same lock will attempt to put the lock into their write sets

and abort due to write conflicts. Acquiring a lock in a transaction is unnecessary,

since transactions already provide isolation.

Two locks that are acquired while holding mmap_sem are the global mmlist_lock,

which protects lists of swapped address spaces during fork(), and the per-address-

space page_table_lock, which protects the page tables of a process. Conflicts on

these locks caused a large number of aborts.

We created new functions, spin_lock_tsx and spin_unlock_tsx, which elide

lock acquisition and release under transactions. They behave normally when used out-

side of a transaction. Inside a transaction, spin_lock_tsx checks that the lock is free

before continuing, and the transaction aborts if the lock is not free. spin_lock_tsx

brings the lock into the transaction’s read set to provide isolation between the trans-

action and non-transactional threads taking the lock. spin_unlock_tsx does noth-

ing when executed in a transaction. These functions prevent write conflicts between

transactions that conflict only on the spinlock while providing isolation between trans-

actions and non-transactional threads holding the lock.

In general, converting fine-grained locking code to use TSX requires removing fine-

grained locks and using a single coarse-grained lock. This not only makes it easier to

reason about correctness, but it can also result in better performance by preventing

unnecessary cache invalidations.
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6.3 Data Structure Choice

The central data structure for the virtual memory system, an augmented red-black

tree storing VMAs, does not work well with transactional memory. Each node in the

VMA tree is augmented with its “subtree gap,” the largest free memory gap in bytes

to its left. mmap uses this field to find a suitable location for mmaps of a specific size.

Modifications to the tree propagate updates to this field up the tree. This causes

many conflict aborts since these updates frequently conflict near the root of the tree.

We find, however, that red-black trees in general can achieve high performance

and concurrency. This is surprising because regular red-black trees must maintain

balance properties that also require traversing the tree, but they do not necessarily

need to traverse to the root.

We removed the subtree gap field entirely and changed the tree to a regular red-

black tree. Non-fixed mmap operations that need to find an empty region to map will

need to search more nodes, but this is preferable to aborts.
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Chapter 7

Avoiding Memory Allocation

We observed frequent synchronous capacity aborts in memory allocation and initial-

ization functions, and we observed conflict and capacity aborts in functions that free

memory. Memory allocation, initialization, and freeing are expensive operations with

a large cache footprint, which causes transactional aborts.

Linux’s virtual memory system allocates zeroed 4KB pages of memory for page

tables and anonymous memory mappings. Initializing one of these pages within a

transaction fills up an eighth of the L1 cache on the test hardware, which causes

frequent transaction aborts. We modified the kernel to create per-core pools of zeroed

pages for use in virtual memory operations. Each per-core pool is refilled to capacity

when empty, and we use pools with 216 pages to prevent frequent refilling. Performing

allocation and initialization outside of the transaction avoids aborts due to capacity

issues.

vm_area_struct allocation has a similar issue. Linux allocates a vm_area_struct

when it inserts a new region into the VMA tree in mmap, but this allocation causes

capacity aborts. We modified the kernel to use per-core caches of pre-allocated

vm_area_structs. The capacity of each per-core cache is 2048, chosen to balance

memory footprint and filling frequency. When Linux frees a vm_area_struct it goes

back into the current core’s cache to further reduce the frequency of refills.

Transactions that free memory cause conflict and capacity aborts due to sharing

and the large cache footprint of de-allocating many objects. We modified the kernel
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to record memory frees inside the transaction in per-core buffers. The kernel actually

performs buffered frees after the transaction ends.
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Chapter 8

Conclusion

TSX is a powerful new tool for implementing concurrent systems, but programmers

must design their systems carefully. Writing systems software using transactions

requires special attention to avoid potential abort problems. This thesis provided a

case study of applying TSX to the Linux virtual memory system, which turned out

to be non-trivial because it is difficult to identify and resolve transactional aborts.

Operations that cause aborts, such as TLB shootdowns, must be delayed to outside

of the transaction, but Chapter 5 shows that this may require secondary concurrency

control to avoid race conditions. We implemented TxShootDown, which solves a race

that resulted from moving TLB invalidations outside of a critical section.

Expensive operations within transactions, such as memory allocation, must be

moved outside of the transaction. Per-core caches and pools of pre-allocated objects

are a solution to avoid contention and initialization within transactions.

Unnecessary sharing through shared caches, global counters, fine-grained locking,

and data structure modification caused conflicts that limited scalability in the bench-

mark. We removed sources of unnecessary sharing that prevented the benchmark

from scaling.

Programmers must iteratively identify and resolve transactional aborts to scale

large systems. perf provides access to hardware event counters, but asynchronous

aborts introduce noise into the debugging output, which makes it difficult to identify

the reason for an abort. We disabled retrying transactions to reduce noise in the

53



debugging output, but this is only a partial solution. An interesting area for future

work is designing a reliable mechanism to identify the instruction that is the source

of an asynchronous abort.

Red-black trees, somewhat surprisingly, were easy to scale with TSX. Previous

work proposed complicated schemes to scale red-black trees [8, 3, 2], but we use stan-

dard red-black trees under TSX without any changes beyond cache-aligning nodes in

memory. Simply wrapping red-black tree operations in a transaction seems sufficient

to provide good scalability in large trees. As transactional memory becomes more

common, red-black trees may be useful as a simple concurrent data structure.
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