
Scaling Joins to a Thousand GPUs
Hao Gao
NVIDIA

haog@nvidia.com

Nikolay Sakharnykh
NVIDIA

nsakharnykh@nvidia.com

ABSTRACT
Relational join is a fundamental data processing operation that
is used ubiquitously in relational databases as well as the extract,
transform, load (ETL) stage of machine learning applications. With
its high-throughput memory, GPU is well-suited for efficient join
operation. However, a single GPU has limited memory capacity,
which restricts the scale of applications that can run fully in GPU
memory. In this paper, we evaluate a multi-GPU hash join on large-
scale GPU clusters. We present a scalable distributed join algorithm,
introduce a GPU-friendly compression scheme for decreasing the
communication volume, and introduce a two-level shuffle algorithm
tuned for modern heterogeneous GPU clusters. On 1024 A100 GPUs,
our implementation achieves a total throughput of 667 billion in-
put tuples per second on 16TB random integer dataset without
compression, and up to 1.8 trillion input tuples per second with
compression when joining “lineitem” and “orders” tables from the
TPC-H dataset with scale factor 100k.

1 INTRODUCTION
Nowadays, large amounts of data are collected every day from
social media, ecommerce websites, IoT devices, and medical and
agricultural equipment. To gain insight into the data, relational join
is often featured as a fundamental data processing operation used
in relational databases, as well as the extract, transform, load (ETL)
stage of machine learning applications.

Performing relational joins on GPUs, while showing great per-
formance, is often limited by the capacity of the GPU memory.
One strategy of solving the memory capacity limitation is to spill
the dataset to an often larger CPU memory. The performance of
spilling depends on the interconnect used between the CPU and
GPU memory. If the CPU and GPU memory are connected through
a high-bandwidth interconnect like NVLink, spilling can be imple-
mented efficiently. In that case, the performance of the join pipeline
is limited by the other factors like computation or GPU memory
throughput [10]. However, more often the GPU memory and CPU
memory are connected through PCI-e, and the low bandwidth of
the PCI-e becomes the bottleneck.

In this paper, we consider an alternative strategy by using a dis-
tributed hash-based join algorithm to scale out to a large number of
GPUs, connected through a high-throughput low-latency network.
It has been shown that distributed join can scale out efficiently on a
CPU cluster with such a network [2]. To the best of our knowledge,
there is no study to investigate scaling up to a similar massive scale
on GPU clusters.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License and appears in ADMS 2021, 12th International Workshop on Accelerating
Analytics and Data Management Systems, August 16, 2021, Copenhagen, Denmark.

Our contributions in this paper are as follows:

(1) Discuss optimization strategies when implementing dis-
tributed hash-join on GPUs.

(2) Present a GPU-friendly compression scheme that can be
used to accelerate data transfers.

(3) Evaluate hash-based distributed join with up to 1024 GPUs.

The rest of the paper is organized as follows. Section 2 pro-
vides necessary background information. In Sections 3, 4, and 5, we
present the distributed, repartitioned join algorithm, with optimiza-
tions to make it scalable on modern GPU clusters. Then, we present
our performance results and discuss insights in Section 6. Finally,
we review related work in Section 7 and conclude in Section 8.

2 BACKGROUND
In this section, we provide an overview of distributed join algo-
rithms, hardware technologies, and software stacks to set the stage
for this work.

The critical decision when designing a distributed algorithm is
how to break down the work so that each processor can handle
a subset of the problem. For distributed join, this means we must
partition both tables so that matching elements are assigned to
the same partition. Depending on how this partition is performed,
distributed join algorithms can be classified into the radix hash
join and the sort-merge join. In radix hash join, both input tables
are partitioned based on the hash value of the key on each row.
After the partition is communicated to the corresponding processor,
local join can be implemented through building and probing a hash
table. In sort-merge join, both input tables are sorted by keys and
partitioned based on key ranges. When the partition arrives at the
target processor, local join can be performed by merging the sorted
partitions. Previous distributed join studies on CPU [2] and on
GPU with small-scale [4] indicate that the radix hash join achieves
better raw throughput compared to sort-merge join. The algorithm
discussed in this paper is based on the radix hash join.

This paper uses commodity NVIDIA GPUs to evaluate the perfor-
mance. Each NVIDIA GPU consists of a group of streaming multi-
processors (SMs). Each SM has a group of CUDA cores for execution
and a combined L1 data cache and programmable shared memory.
Because the shared memory is on-chip, it has much higher through-
put and lower latency compared to DRAM. In our distributed hash
join implementation, we frequently use shared memory for data
reuse, converting random access patterns to streaming ones, or
avoiding the costly accesses to the DRAM. We use the CUDA pro-
gramming language to program GPUs. In CUDA, threads are orga-
nized in groups called thread blocks. When executing, each thread
block is assigned to a SM, and all threads in the thread block can
access the shared memory.

A scalable computing infrastructure must not only have a great
number of processors, but also the accompanying computing and



N
ode

0

GPU0 HCA0
GPU1 HCA1
GPU2 HCA2
GPU3 HCA3

GPU4 HCA4

GPU5 HCA5

GPU6 HCA6

GPU7 HCA7

N
VLinks

...

N
ode

139

GPU0 HCA0
GPU1 HCA1
GPU2 HCA2
GPU3 HCA3

GPU4 HCA4

GPU5 HCA5

GPU6 HCA6

GPU7 HCA7

N
VLinks

Spine-level
and leaf-level
switches

IB Switches

IB Switches

IB Switches

IB Switches

IB Switches

IB Switches

IB Switches

IB Switches

Core-levelIB
Sw

itches

To other SuperPODs

Figure 1: DGX SuperPOD compute-plane network topology

storage network to use these processors efficiently. To achieve this
goal, modern GPU clusters are complex, often featuring a heteroge-
neous interconnect. For example, DGX SuperPOD is the NVIDIA
reference architecture for scalable infrastructure. Each DGX Super-
POD has at most 140 nodes. Each node features eight A100 GPUs
fully connected through NVLink and also eight Infiniband HDR
200Gbps host channel adapters (HCAs) for internode compute net-
work. Nodes are connected in a full fat-tree topology through three-
levels of Infiniband switches: the leaf-level switches, the spine-level
switches and the core-level switches. To scale beyond 140 nodes,
multiple SuperPODs can be connected together through the core-
level switches. The topology is rail-optimized that the same HCAs
of all nodes within a SuperPOD are connected through the leaf-
level switches and spine-level switches. The core-level switches are
used only for traffic across HCAs or across different SuperPODs.
Figure 1 illustrates the network topology of a DGX SuperPOD. The
complexity of the computing infrastructure poses a challenge for
the hash join algorithm to adapt to in order to use the computing
resources efficiently.

To communicate device buffers over Infiniband efficiently, we
use GPUDirect RDMA. GPUDirect RDMA allows the HCA devices
to directly access GPU memory, which improves performance by
removing the unnecessary memory transfers to the host memory.
Our implementation uses the open source communication library
UCX to leverage GPUDirect RDMA.

3 REPARTITIONED JOIN ALGORITHM
Overall, the repartitioned join algorithm follows three main steps.
During the first step, we compute the hash value of each row,
and partition both input tables according to the hash values into
partitions, one for each GPU in the system. After this step, matching
rows belong to the same partition. The second step sends each

0 1 2right

0 1 2left

0 1 2right

0 1 2left

0 1 2right

0 1 2left

2

2

1

1

0

0

2

2

1

1

0

0

2

2

1

1

0

0

Hash
Table

Hash
Table

Hash
Table

Insert

Probe

GPU2

GPU1

GPU0

Step 1:
Hash Partition

Step 2: All-to-all
Communication

Step 3:
Local Join

Figure 2: Repartitioned Join Algorithm on 3 GPUs
This figure shows the repartitioned join algorithm on three GPUs. At the
start of the algorithm, we assume that the left and right tables are already
distributed among GPUs so that each GPU has 1/3 of each table. During
the first step, each GPU partitions the table into three partitions using the
algorithm discussed in Section 3.1. The number inside the box represents
the partition number. Then, each GPU sends partition0 to GPU0, partition1
to GPU1, and partition2 to GPU2, forming an all-to-all communication
pattern. Finally, assuming that the left table has fewer rows compared to
the right table, each GPU independently constructs a hash table out of all
rows in the left table, and probes the hash table with all rows in the right

table.

partition to its corresponding remote GPU. Because each GPU
must communicate with all other GPUs, this step forms an all-to-
all communication pattern. Compression can optionally be used
to improve communication performance, which we will discuss
in detail in Section 4. After this step, rows with the same keys
reside in the same GPU so that each GPU can perform local join
independently. In this paper, we call the combination of the hash
partition step and the all-to-all communication step the shuffle
operation. For the last step of the repartitioned join algorithm, each
GPU constructs a hash table from the smaller table in terms of
the number of rows, and probes the hash table for each row in
the bigger table. For both hash partition and local join, we use the
murmur3 hash function [1]. Figure 2 shows an example of this
algorithm in action with three GPUs. We summarize the algorithm
in Algorithm 1.

In the following sections, each of these three steps is discussed
in more detail.

3.1 Hash Partition
During the hash partition step, each table is partitioned according
to the hash value of each row. The output of this step is a new
table of the same size as the input table. In the new table, rows are
reordered such that rows with the same hash values are grouped
together.

2



Algorithm 1 Repartitioned join algorithm
Suppose there are 𝑁 GPUs.

1: Hash partition the left table on the current GPU 𝐿 into 𝑁 parti-
tions, 𝐿0, 𝐿1, ..., 𝐿𝑁−1.

2: for 𝑖 ← 0 to 𝑁 − 1 do
3: Send 𝐿𝑖 to the GPU 𝑖 , with compression if needed.
4: Receive the incoming partition from the GPU 𝑖 , with de-

compression if needed.
5: end for
6: Concatenate all incoming partitions into a single table 𝐿′.
7: Repeat step 1-6 for the right table 𝑅 to form the communicated

table 𝑅′.
8: Local join on 𝐿′ and 𝑅′ and materialize the result.

We use a two-pass algorithm for hash partition on GPUs. For
both passes, rows are assigned to threads in a round-robin fashion.
The purpose of the first pass is to compute the output location of
each partition for each thread block. In this pass, each thread loops
through its assigned rows, computes the hash values, and atomically
adds to a histogram private to each thread block in shared memory.
After all threads in the thread block finish the loop, the histogram
in shared memory is flushed to the global memory. Then, we use
prefix sums to establish the output locations. During the second
pass, each thread loads the same set of rows again, and scatters the
input rows to their corresponding output locations.

As shown in Figure 3a, scatter in global memory requires random
accesses, which perform much worse than sequential accesses. Spa-
tial locality can be improved using a multi-pass scatter, restricted
to a certain region of output in each pass [5]. For the scatter in the
hash partition, the order of rows within each partition is insignifi-
cant. Because we know the output location for each thread block
during the first pass, the region of output can be automatically
restricted by incrementing the pointer of each partition through
atomic add, without resorting to a multi-pass algorithm. Rui and
Tu [13] adopted this approach in the partitioning step of their hash
join algorithm.

Our approach improves this further by first scattering to shared
memory and then copying each partition to global memory, taking
advantage of memory coalescing. The motivation is that random
accesses within shared memory are much faster than the random
accesses to global memory. Figure 3b demonstrates this strategy.
We assume the shared memory can hold six elements in this figure.
First, we load the first six elements and scatter them into shared
memory. Then, we copy these six elements from shared memory to
the desired output location. Within the same partition (represented
by the same number), memory writes are coalesced. In this example,
memory coalescing is limited to two elements. In the real world,
shared memory can hold much more than six elements, and the
write pattern to global memory is mostly sequential if the number
of partitions is moderate. We then process the next six elements
until all input elements are scattered.

3.2 All-to-all communication
Suppose there are 𝑁 GPUs in the system. After the hash partition
step in Section 3.1, each table on each GPU has 𝑁 partitions. During

1 0 2 0 2 1 2 0 1 0 1 2
global
memory

0 0 0 0 1 1 1 1 2 2 2 2
global
memory

(a) Random writes to global memory

1 0 2 0 2 1 2 0 1 0 1 2
global
memory

0 0 1 1 2 2 0 0 1 1 2 2
shared
memory

0 0 0 0 1 1 1 1 2 2 2 2
global
memory

(b) Use shared memory to coalesce global memory writes

Figure 3: Scatter in Hash Partition

the all-to-all communication step, each GPU sends partition 0 to
GPU 0, partition 1 to GPU 1 , partition 2 to GPU 2, and so on. Before
the data can be sent, the remote GPU needs to allocate the receive
buffer to hold the incoming data. So for each column, the first step in
the all-to-all communication is to send the partition size, located on
the host memory, to the host process corresponding to each remote
GPU. After each host process receives the 𝑁 incoming partition
sizes, it allocates the receive device buffer and uses a prefix sum
to calculate the starting location of each incoming partition. Then,
each host process calls the communication library to initiate the de-
vice transfers. To achieve the best performance, we use GPUDirect
RDMA to enable kernel-bypass and transfer the data directly from
the GPU device buffer to the network interface controllers (NICs)
without copying to a bounce buffer in CPU memory.

3.3 Local Join
After the all-to-all communication discussed in Section 3.2 finishes,
rows with the same hash values are stored in the same GPU. There-
fore, during the local join step, no communication across GPUs is
needed.

In our implementation, a join on a single GPU involves the
following steps. First, we build a hash table from each row in the
smaller table. Then, we probe the hash table for each row in the
larger table twice: first to calculate the number of matching pairs
to allocate buffers and then to record the matching pairs. Finally,
we materialize the keys and payloads of all matching pairs into the
output buffer. We choose the smaller table for hash table insertion
and the larger table for probing because random reads have a higher
throughput compared to random atomic operations. For the hash
table, we use open addressing to handle the conflicts.

To support large or multicolumn keys, we do not store the keys
directly inside the hash table. Instead, each entry in the hash table
stores two values: the 4B hash value and the 4B local row ID of the
build table on each GPU. The downside of this approach is we need

3



0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2 0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

compression
decompression
transfer

Figure 4: Use compression to decrease communication vol-
ume during all-to-all communication

an extra random read to the input table to compare the keys during
probing.

We choose 50% occupancy for the hash table, meaning the num-
ber of entries in the hash table is double of the number of rows
in the build table. In general, lower occupancy means less hash
conflicts and better performance, but the hash table consumes more
device memory.

To build the hash table, we assign rows to threads in a round-
robin fashion. For each row, first we compute the hash value of the
row. Then, we try to insert the row into the hash value location
using atomic compare-and-swap (CAS). Atomic CAS is needed in
this case because multiple threads could insert to the same location
at the same time, and only one of these threads should succeed. If
the insertion is successful, we additionally store the local row ID
into the hash table. If the insertion is unsuccessful, the location has
been reserved to another row, and we try the next location until an
empty spot is found.

To probe the hash table, we again assign rows to threads in
a round-robin fashion and compute their hash values to get the
location in the hash table. For each location, we first compare the
hash value. If the hash value is a match, we additionally load the
key from the input table at the local row ID, which is stored in
the hash table. These extra random reads to the input table are
the disadvantages of our approach. If the key matches as well, we
record the matching row IDs. Then, we move on to the next location
and repeat the same process, until we encounter an empty spot.

4 COMPRESSION
When executing the repartitioned join algorithm on systems con-
nected through Infiniband, the bottleneck is the communication
throughput during the all-to-all communication step. In this section,
we propose to use software-based lossless compression to alleviate
this problem by reducing the communication volume.

It has been demonstrated that compression is a viable way to
accelerate data transfers on scientific [12] and deep learning [9]
workloads. For distributed repartitioned join, the high-level idea
is that each GPU compresses the data before sending it over the
network. When the message arrives, the target GPU decompresses
the data to its original values. Figure 4 shows the integration of
compression for the all-to-all communication step of repartitioned
join on one table.

One commonly used compression technique is removing dupli-
cates. For example, run-length encoding (RLE) replaces a sequence
of the same data values by a single value and a count. LZ family
compressors [16] replace repeated occurrences of data by references
to a single copy. Another commonly used technique is entropy en-
coding. For example, Huffman encoding [7] uses fewer bits to rep-
resent more commonly used symbols. In general, the compression
ratio of these techniques is data-dependent and the performance
is hardware-dependent. Standard generic compressors like Deflate
[3] are not GPU-friendly due to the serial nature of decoding and
parsing of the Huffman symbols.

In this paper, we seek a compression scheme that can achieve a
good compression ratio on analytical datasets, while being friendly
to the highly parallel nature of the GPU architecture. With these
goals in mind, we introduce an efficient cascaded compression
scheme that combines RLE, Delta encoding, bitpacking and frame
of reference (FOR) layers. This scheme works well for integers in
analytical datasets, as we could capture data duplications with RLE,
decrease the range of values with Delta and frame of reference, and
have a simple and fast entropy encoder with bitpacking.

Next, we introduce the RLE, Delta, bitpacking, and FOR layers
used in cascaded compression.

• The RLE layer compresses repeated values into (value, run
length) pairs. For example, in Figure 5a, we replace the three
shaded 4s in the input sequence with a 3 in the run array and
a 4 in the value array. Overall in this example, we replace 18
input integers with 10 integers. In general, the compression
ratio of RLE is data-dependent. In the worst case scenario
when the input sequence has no repetition, RLE can double
the number of integers.
• Delta encoding replaces the input sequence with the dif-
ferences between consecutive data elements. For example,
in Figure 5b, we compute the difference between the two
shaded elements in the input sequence, 15004 − 15003, and
store the result −1 to the shaded entry in the compressed
sequence. Delta encoding by itself does not compress the
data, but it creates more consecutive duplicates and reduces
the range such that the output sequence is easier to compress
for the subsequent RLE and bitpacking layers.
• In the frame of reference (FOR) and bitpacking layer, first we
scan the input sequence and record theminimum value as the
reference. Then, we compute the differences between input
elements and the reference. Finally, we use the minimum
number of bits to represent the differences. For example, the
values in the input sequence in Figure 5c are about 15000,
and we need to use at least the 16-bit integer type to store
them. After the FOR and bitpacking layer, all elements are
within 256 and therefore could be fitted in an 8-bit integer
type.

Cascaded compression combines these layers by feeding the
output of a layer as the input of another layer to yield the best
compression ratio. Figure 5d shows the cascaded compression with
two RLE layers, one delta layer, and bitpacking layers. In the figure,
only the shaded boxes are stored in the compressed output. Other
boxes are temporary outputs.

4



The number of each layer has a significant impact on the per-
formance and compression ratio. Naturally, adding extra layers
makes the compression and decompression slower. Furthermore,
using RLE on data with no repetition increases the compressed
size. Because compression ratio is data-dependent, we sample each
column to determine the best compression configuration.

Each GPU must send data to all other GPUs during the all-to-all
communication step in the repartitioned join algorithm. This means
that each GPU needs to compress as many as the number of GPUs
buffers for each column. Launching a separate kernel for each com-
pression layer of each buffer is not ideal for the following reasons.
First, the table size per GPU is often limited by the device memory
size and needs to be kept constant. As we scale the workload to a
large number of GPUs, each buffer sending to a remote GPU gets
smaller, so a single kernel cannot fully utilize the GPU. Second,
after each layer finishes, we must write the result back to the global
memory. Then, the next layer loads the same data back from global
memory. These extra global memory reads and writes degrade the
performance. Additionally, we need extra device memory to host
the temporary output of each layer, which puts more pressure on
the already scarce device memory capacity when running most
analytical workflows.

In our implementation, we fuse compression and decompres-
sion of all layers and all buffers into a single kernel. Each buffer is
assigned to a single thread block, which enables us to use shared
memory for storing temporary output of each internal layer, with-
out the roundtrips to the global memory. When the number of
GPUs is less than 512, we chunk each buffer to make sure that there
are enough thread blocks to efficiently use the GPU.

5 TWO-LEVEL SHUFFLE
Today’s multi-GPU cluster systems are highly complex in their
interconnect topology. No longer do we have a set of uniform CPUs
connected to a single hierarchy of network switches. Often, the
individual nodes are multi-GPU with their own interconnect such
as NVLink, and then a set of Infiniband switches span thousands of
those nodes. Such topologies create challenges for hash join shuffle
implementation.

First, different interconnects have vastly different throughput,
which requires that communication algorithms adapt. For example,
decreasing in communication volume resulting from the compres-
sion scheme discussed in Section 4 can improve Infiniband transfers
greatly. However, it is usually not worth the extra costs of compres-
sion and decompression within the NVLink domain as NVLink has
much better throughput.

Second, latencies between pairs of GPUs across nodes are not
uniform. For example, the DGX SuperPOD fabric is rail-optimized
such that the same HCAs of two nodes within a system are con-
nected through the leaf switch, whereas communicating between
different HCAs needs to go through the core switch.

To improve communication efficiency during the shuffle stage,
especially for small messages, we modify the repartitioned join
algorithm that splits the communication into the following two
stages:

(1) Across DGX nodes where GPUs are connected through In-
finiband

3 9 9 4 4 4 0 0 0 0 0 0 0 0 1 1 1 1

input sequence

1 2 3 8 4
run array

3 9 4 0 1

value array

(a) Run-length encoding

15000 15001 15002 15003 15004 15204 15104 15103 15102 15101

input sequence

15000 1 1 1 1 200 -100 -1 -1 -1

compressed sequence

(b) Delta encoding

15000 15001 15002 15003 15004 15204 15104 15103 15102 15101

input sequence

0 1 2 3 4 204 104 103 102 101 +15000

compressed sequence

(c) Frame of reference and bitpacking

1,1,2,2,3,3

2,2,2RLE

runs

2:0,0,0

bitpacking

1,2,3

vals

1,1,1

Delta 3RLE 3:0

bitpacking

1 1:0

(d) Combine two RLE, one Delta, and bitpacking layers together

Figure 5: Cascaded Compression

(2) Within a single DGX node where GPUs are connected
through NVLink

We summarize themodified repartitioned joinwith two-level shuffle
in Algorithm 2. In this algorithm, compression is only applied to the
Infiniband traffic (Step 2-5). To avoid hash conflicts, we use different
hash keys in the two hash partition steps (Step 1 and 8) and the local
join step (Step 15). In principle, we could combine the two hash
partition stages (Step 1 and Step 8) into one by partitioning the table
into𝑀𝑁 partitions. We choose to keep them separate because hash
partition works the best when the number of partitions is moderate.
Recall from Section 3.1 that we use shared memory to convert
random accesses during the scatter into sequential accesses. The
strategy works well only when the number of partitions is moderate.

5



If the number of partitions is large, there are few elements per
partition, and the write pattern is back to random. By separating
the two hash partition stages, we ensure that the write pattern is
sequential even for a large number of GPUs.

Algorithm 2Modified repartitioned join algorithm with two-level
shuffle

Suppose there are 𝑁 nodes with 𝑀 GPUs per node. We use
(𝑖, 𝑗) to represent the GPU 𝑗 on node 𝑖 . Suppose the current
GPU has index (𝑥,𝑦).

1: Hash partition the left table on the current GPU 𝐿 into 𝑁 parti-
tions, 𝐿0, 𝐿1, ..., 𝐿𝑁−1.

2: for 𝑖 ← 0 to 𝑁 − 1 do
3: Send 𝐿𝑖 to the GPU (𝑖, 𝑦), with compression if needed.
4: Receive the incoming partition from the GPU (𝑖, 𝑦), with

decompression if needed.
5: end for
6: Concatenate all incoming partitions into a single table 𝐿′.
7: Repeat step 1-6 for the right table 𝑅 to form the communicated

table 𝑅′.
8: Hash partition 𝐿′ into𝑀 partitions, 𝐿′0, 𝐿

′
1, ..., 𝐿

′
𝑀−1, with a dif-

ferent hash seed.
9: for 𝑗 ← 0 to𝑀 − 1 do
10: Send 𝐿′

𝑗
to the GPU (𝑥, 𝑗).

11: Receive the incoming partition from the GPU (𝑥, 𝑗).
12: end for
13: Concatenate all incoming partitions into a single table 𝐿′′.
14: Repeat step 8-13 for the right table𝑅′ to form the communicated

table 𝑅′′.
15: Local join on 𝐿′′ and 𝑅′′ and materialize the result.

Compared to one-level shuffle, two-level shuffle has the extra
cost of a hash partition (Step 8) and all-to-all communication (Step
9-13) within the NVLink domain. If each partition is large enough,
the one-level shuffle is already efficient, with throughput close to
the NIC’s limit. In that case, the extra overhead of the two-level
shuffle makes it run slower. On the other hand, two-level shuffle
has fewer messages over the Infiniband and does not have cross-
rail traffic. When the number of GPUs is large and each partition
is small, latency could become a significant factor and two-level
shuffle could be more efficient overall. We evaluate the performance
comparison between one-level and two-level shuffle with different
table sizes in Section 6.3.

After the first shuffle in Infiniband domain finishes, rows with
the same hash values are located on the same node, and no cross-
node communication is needed afterwards. In principle, we can use
any single-node multi-GPU join algorithm in the place of Step 8-15
in Algorithm 2, not limited to repartitioned hash join. For example,
we could directly load and store from a remote GPU to allow a
fine-grained computation and communication overlap. An efficient
single-node multi-GPU join algorithm is beyond the scope of this
paper.

6 EVALUATION
6.1 Experimental Setup
We evaluate the repartitioned join algorithm on Selene, an NVIDIA-
internal cluster based on the DGX SuperPOD architecture. Selene
features 4480 NVIDIA A100 GPUs through 560 DGX A100 systems.
Each DGX A100 has eight NVIDIA A100 GPUs with 640 GB de-
vice memory in total, and eight NVIDIA Mellanox 200 Gbps HDR
Infiniband network cards for interconnect in the compute plane.
The DGXs are connected through 850 Infiniband switches with a
fat-tree topology, organized into three levels, as illustrated in Figure
1. Inside each DGX, GPUs are fully connected through NVLink.

We evaluate the algorithm on two different datasets. The first is
the same as the dataset used in [2] for performance comparison. In
this dataset, each input table has two columns. The first column is
an 8B key column with random integers, and the second column
is an 8B payload column with global row ids. The second dataset
is TPC-H “lineitem” and “orders” tables. We use this dataset for
evaluating the distributed join performance with compression.

In all experiments, we assume that the data is already located in
GPU memory before the join operation begins. All tables, including
the input tables, the output tables and the intermediate results,
are kept in columnar format. We use a memory pool for efficient
memory allocations, and the entire memory pool is preregistered
with Infiniband. We use MPI as a launcher, with one GPU per MPI
rank. MPI is also used to transfer host buffers. We use UCX directly
for transferring device buffers.

Selene is a shared computing resource that has a lot of jobs
executing at the same time. The distributed join execution time
of the same experiment fluctuates depending on the exact set of
nodes assigned to the experiment, as well as the network traffic
at the time of the execution. Looking at the time breakdown by
steps, we notice that the fluctuation mainly comes from the all-to-
all communication step in Infiniband, while the running time for
local operations, like hash partition, compression and local join,
remains nearly constant throughout multiple runs. To mitigate the
fluctuation, we run each experiment several times and report the
minimum time. We choose the minimum time as it captures the
case when the distributed join is least affected by the activities of
other applications.

6.2 Random Integer Key Dataset
This section evaluates the scale-out efficiency of the distributed,
repartitioned join algorithm on random keys. In this experiment,
both the left table and the right table have 500 millions rows per
GPU. Both tables have two columns, an 8B key column and an 8B
payload column. Keys are unique random integers in the left table,
and each row in the right table has 30% possibility to have a match
in the left table.

Figure 6 shows the result of this experiment. We observe that
repartitioned join, with both one-level and two-level shuffle, scales
well to 1024 GPUs. As each table is large in this experiment, we
observe that the join with two-level shuffle is slower compared to
the join with one-level shuffle, due to the extra cost of hash partition
and all-to-all communication when shuffling in the NVLink domain.
The best performance achieved is 10677 GB/s with one-level shuffle

6



32 64 128 256 512 1024

320

640

1280

2560

5120

10240

Number of GPUs

Th
ro
ug

hp
ut

[G
B/
s]

1-level
2-level

32

64

128

256

512

Th
ro
ug

hp
ut

[b
ill
io
n
tu
pl
es
/s
]

Figure 6: Weak-scaling performance for distributed join on
random keys, with one-level or two-level shuffle

1 3 6 12 25 50 100 200

320

640

1280

2560

5120

Table Size [million rows/table/GPU]

Th
ro
ug

hp
ut

[G
B/
s]

1-level
2-level

32

64

128

256

512
Th

ro
ug

hp
ut

[b
ill
io
n
tu
pl
es
/s
]

Figure 7: Distributed join performance vs. table size on 512
GPUs, with one-level or two-level shuffle

on 1024 GPUs with 16384 GB input size, which corresponds to 667
billion input tuples per second.

Because the keys are random integers, we do not evaluate com-
pression in this experiment.

6.3 Performance vs. Table Size
This section evaluates the impact of the table size on the perfor-
mance of the repartitioned join algorithm. The workload is the
same as Section 6.2, but the number of GPUs is kept constant at
512 GPUs, while the table sizes vary between 1 million rows per
table per GPU to 200 million rows per table per GPU.

The result is presented in Figure 7. In general, we observe that
one-level shuffle is suited for large tables and two-level shuffle is
suited for small tables. The cross point in this case is around 25
million rows per table per GPU. For large input sizes like 200 million
rows per table per GPU, both one-level and two-level shuffle use the
Infiniband network efficiently. The extra cost of hash partition and
all-to-all communication within NVLink domain for the two-level

32 64 128 256 512 1024

320

640

1280

2560

5120

10240

20480

Number of GPUs

Th
ro
ug

hp
ut

[G
B/
s]

1-level
2-level

1-level + comp
2-level + comp

30

60

120

240

480

960

1920

Th
ro
ug

hp
ut

[b
ill
io
n
tu
pl
es
/s
]

Figure 8:Weak-scaling performance on TPC-H dataset, with
or without compression, with one-level or two-level shuffle

shuffle makes it perform worse compared to the one-level shuffle.
On the other hand, when the input size is small, like 1 million rows
per table per GPU, the size of each partition is only about 2000
rows. So, latency in addition to the throughput could influence the
performance. A repartitioned join with two-level shuffle performs
better in this case because it only has 64 × 63 = 4032 Infiniband
messages. In comparison, one-level shuffle has 512 × 511 = 261632
messages. In addition, two-level shuffle does not have cross-rail
traffic, so the latency per message could be lower.

6.4 TPC-H Dataset
This section evaluates the performance of the distributed reparti-
tioned join algorithm on the TPC-H dataset, and compares the
performance with and without cascaded compression. We per-
form the inner join of the O_ORDERKEY, O_ORDERPRIORITY
columns from the “orders” table, with the L_ORDERKEY column
from the “lineitem” table. O_ORDERKEY and L_ORDERKEY are
8B key columns, and O_ORDERPRIORITY is a 4B payload column.
Many TPC-H queries include a join of these two columns, for ex-
ample, Query 4. Also, it is the largest and most expensive equality
join to perform for a given scale factor.

We generate the dataset with scale factor (SF) 100k, and divided
each table into 1024 parts of the same sizes. For an experiment with
𝑁 GPUs, the first 𝑁 parts of each table are used, with one part per
GPU. Therefore, the data size per GPU is constant: 146.48 million
rows for the orders table and 585.94 million rows for the “lineitem”
table.

The result of this experiment is shown in Figure 8. We observe
that the repartitioned join algorithm with both one-level and two-
level shuffle scales well. Like in Section 6.2, when the number of
GPUs is small, join with two-level shuffle is slower than join with
one-level shuffle. As the number of GPUs increases, data size per
GPU remains constant, but the message size between a pair of
GPUs decreases proportionally. Compared to Section 6.2, the input
size is smaller, so the decreasing message size makes latency more
important. As a result, when the number of GPUs increases, the
performance gap between the one-level shuffle and the two-level
shuffle is closed, since the two-level shuffle has less Infiniband

7



Column RLE Delta bitpacking
O_ORDERKEY 2 1 true

O_ORDERPRIORITY 0 0 true
L_ORDERKEY 2 1 true

Table 1: Cascaded compression scheme for each column

0 200 400 600 800

w/o comp

w/ comp

w/o comp

w/ comp

w/o comp

w/ comp

Time [ms]

Hash Partition Compression Communication
Decompression Local Join

64
GPUs

256
GPUs

1024
GPUs

Figure 9: Time Breakdown of weak-scaling distributed joins
of TPC-H “lineitem” and “orders” tables, with or without
compression

messages. For this dataset, cascaded compression offers significant
benefits. Without compression, the best performance that we get is
1015 billion tuples/second. With compression, we can achieve 1793
billion tuples/second, which is a 1.77x improvement.

As discussed in Section 4, the number of layers in cascaded com-
pression has a significant impact on the compression performance
and ratio, and we use a selector to sample the input columns to
determine the best configuration. The sampling time is considered
a preprocessing step. It is not counted towards the distributed join
time, as the compression configuration is a property of the column.
If we run the join multiple times, the sampling only needs to be
performed one time. Table 1 shows the cascaded schemes chosen by
the selector. For these three columns, bitpacking layers are always
used. The number of RLE and Delta layers vary depending on the
columns.

To investigate further into how compression helps improve dis-
tributed join performance, Figure 9 shows the time breakdown of
all steps when weak-scaling the distributed join on TPC-H dataset
with 64, 256 and 1024 GPUs. In this plot, the uncompressed version
uses one-level shuffle, and for 1024 GPUs, we observe 78% of the
total join time is spent in the all-to-all communication step. The
compressed implementation uses the one-level shuffle as well, but
uses cascaded compression to decrease the communication volume.

For 1024 GPUs, we observe that the all-to-all communication time
decreases from 648ms to 167ms, which more than makes up for the
extra 46ms cost on compression and 20ms on decompression. We
also observe that the compression and decompression time stay
constant when weak scaling from 64 GPUs to 1024 GPUs, indicat-
ing that our strategy for fusing all layers and batches into a single
kernel during cascaded compression and decompression is scalable.

7 RELATEDWORK
Join algorithms on a single GPU. Single-GPU join implemen-
tations have been extensively studied in the last decade. The first
comprehensive single-GPU join analysis was presented by He et
al. [6] in 2008, with four different join algorithms on the GPU, in-
cluding a partitioned hash join. The paper concludes that GPU was
2-7x faster compared to CPU, including the data transfers between
the CPU and the GPU.

Later, Kaldewey et al. [8] showed similar speedup while using
CUDA Unified Virtual Addressing (UVA) on pinned host memory
for efficient host-device transfers. The benefit of using UVA is that
it removes the requirement that the combined memory usage of the
build table, the probe table and the hash table must fit inside the
scarce device memory. The paper showed that the performance was
limited by random CAS performance for hash table insertion and
by PCI-e transfer throughput for probing. The paper also evaluated
the performance of traditional no-partitioned join compared to the
partitioned join on the GPU.

Several years later in 2017, Rui and Tu [13] revisited He’s work
[6], introduced updated partitioned hash join and sort-merge join
algorithms that took advantages of the new hardware features like
native atomic operations in global memory and shared memory,
and concluded that the GPU was 5-10x faster compared to the
state-of-the-art implementation on the CPU.

Recently, Sioulas et al. [14] implemented a hardware-conscious
partitioned join algorithm and demonstrated that the achieved
throughput was close to the memory bandwidth limit when the
tables are located in devicememory. The paper also presented strate-
gies when at least one relation did not fit inside device memory,
and showed their strategies can saturate the PCI-e bandwidth.

Lutz et al. [10] compared NVLink and PCI-e as interconnect
technologies between the GPU and the CPU, and showcased that
with a high-bandwidth interconnect like NVLink, the bottleneck
shifted from the interconnect to the computation or GPU memory
throughput.

This paper is related to these single-GPU contributions in two
ways. First, we tackle the device memory limit by scaling out to
multiple GPUs with a distributed implementation instead of spilling
to the CPU memory. The distributed implementation allows us
to perform joins on a dataset as large as 16 TB. In comparison,
none of these papers operate on such scale. Second, these single-
GPU implementations complement our work as the local join step.
This paper uses a no-partitioned join within a single GPU, but the
distributed repartitioned join introduced is modular enough that we
can replace the local join with most in-GPU algorithms presented
in the single-GPU join literature.

Multi-GPU Join on single node and clusters. Guo et al. [4]
proposed distributed hash join and sort-merge join for multi-GPU

8



clusters and evaluated the performance with different paths to
remote GPUs. Their design used GPUDirect RDMA similar to our
approach. However, the scale of their evaluation is limited to 8-16
GPUs total and the cluster did not have NVLink-connected GPUs.

Paul et al. [11] proposed a data transfer strategy with multi-hop
transmission and adaptive routing to effectively use the hypercube
topology on a single DGX-1 node. They demonstrated near-perfect
NVLink utilization and outperform [4] solution by 2.5x. The authors
noted that high performance network interconnects such as RDMA
can be an opportunity to further improve the scale of multi-GPU
architectures for huge data sets, which is demonstrated in our work.

Distributed Join on CPU clusters. Performance of distributed
joins on a cluster of CPUs was analyzed in Barthels et al. [2], and it
demonstrated a throughput of 48.7 billion input tuples per second
on 4096 cores using the radix hash join with compression. To our
knowledge, this is the best scale-out result for joins on any archi-
tecture. The hash join algorithm presented in the paper is similar
to our approach. The paper used RDMA with one-sided communi-
cation provided by MPI to achieve best Infiniband performance and
to decrease CPU load. The compression algorithm used in the paper
was simple: the 16-byte tuples were compressed into 8-byte values.
In comparison, our cascaded compressor is more sophisticated and
more general. Using the same dataset, our implementation achieves
547 billion input tuples per second on 1024 GPUs without com-
pression. On the TPC-H dataset with compression, we achieve two
orders of magnitude better performance of 1.8 trillion tuples per
second. This was made possible thanks to much higher GPU mem-
ory and interconnect speeds, as well as our novel communication
optimizations.

Using compression for optimizing communications. Com-
pression was used in many other computational domains to opti-
mize network transfers. Young et al. [15] evaluated various com-
pression techniques on the CPU to improve Graph500 scaling on
Ethernet networks.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we presented the distributed repartitioned join on
GPUs, investigated using compression and two-level shuffle for
optimizing communication traffic, and evaluated the scaling perfor-
mance up to 1024 GPUs. To our knowledge, this is the first in-depth
analysis of distributed join performance at the scale of thousands
of GPUs. We conclude that

• Distributed hash-join can be scaled effectively up to 1024
GPUs connected through Infiniband, and such systems can
be a great fit for large scale analytics or ETL jobs with com-
plex joins.
• Without data compression, execution time is dominated by
the all-to-all communication step. Therefore, using compres-
sion to decrease communication volume is critical for the
best performance. The cascaded compression introduced in
this paper is GPU-friendly, and improves the performance
of distributed join by 1.77x on 1024 GPUs.
• On small tables, latency as well as throughput could impact
performance. The two-level shuffle presented could improve
distributed join performance on latency-bound workload by

reducing the number of messages over Infiniband and taking
advantage of the topology of modern GPU clusters.

Despite the promising results, there are a lot of opportunities to
improve on this work. First, our implementation does not overlap
computation and communication. As a future work, directly load-
ing or storing from remote GPU buffers within the NVLink domain
enables fine-grained computation and communication overlap, and
fits nicely with the two-level shuffle introduced in this paper. Sec-
ond, our cascaded compression technique works well for integer
data, such as the join keys in TPC-H dataset, but does not compress
other types of data efficiently, such as strings. Other compression
techniques should be explored in this case. Third, both the random
key dataset and the TPC-H dataset used in this paper have keys
with uniform distribution. The scalability of the repartitioned join
algorithm on skewed datasets needs to be evaluated further. Finally,
the no-partitioned local join used in this paper does not use cache
effectively. One possible improvement is to switch to a partitioned
join during the local join step, like discussed in Sioulas et al. [14].

REFERENCES
[1] Austin Appleby. 2016. Murmur3 hash function. https://github.com/aappleby/

smhasher/blob/master/src/MurmurHash3.cpp.
[2] Claude Barthels, Ingo Müller, Timo Schneider, Gustavo Alonso, and Torsten

Hoefler. 2017. Distributed Join Algorithms on Thousands of Cores. Proceedings
of the VLDB Endowment 10, 5 (2017), 517–528. https://doi.org/10.14778/3055540.
3055545

[3] Peter Deutsch. 1996. DEFLATE Compressed Data Format Specification version
1.3. https://doi.org/10.17487/RFC1951

[4] Chengxin Guo, Hong Chen, Feng Zhang, and Cuiping Li. 2019. Distributed Join
Algorithms on Multi-GPU Clusters with GPUDirect RDMA. In Proceedings of the
48th International Conference on Parallel Processing (Kyoto, Japan) (ICPP 2019).
Association for Computing Machinery, New York, NY, USA, Article 65, 10 pages.
https://doi.org/10.1145/3337821.3337862

[5] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. 2007. Efficient
Gather and Scatter Operations on Graphics Processors. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing (Reno, Nevada) (SC ’07). Association
for Computing Machinery, New York, NY, USA, Article 46, 12 pages. https:
//doi.org/10.1145/1362622.1362684

[6] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational Joins on Graphics Processors. In Proceedings of the
2008 ACM SIGMOD International Conference on Management of Data (Vancouver,
Canada) (SIGMOD ’08). Association for Computing Machinery, New York, NY,
USA, 511–524. https://doi.org/10.1145/1376616.1376670

[7] David A. Huffman. 1952. A Method for the Construction of Minimum-
Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098–1101. https:
//doi.org/10.1109/JRPROC.1952.273898

[8] Tim Kaldewey, Guy Lohman, Rene Mueller, and Peter Volk. 2012. GPU Join
Processing Revisited. In Proceedings of the Eighth International Workshop on Data
Management on New Hardware (Scottsdale, Arizona) (DaMoN ’12). Association
for Computing Machinery, New York, NY, USA, 55–62. https://doi.org/10.1145/
2236584.2236592

[9] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. 2018. Deep
Gradient Compression: Reducing the Communication Bandwidth for Distributed
Training. In Proceedings of the 6th International Conference on Learning Represen-
tations (Vancouver, BC, Canada).

[10] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2020. Pump Up the Volume: Processing Large Data on GPUs with Fast Inter-
connects. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data (Portland, OR, USA) (SIGMOD ’20). Association for Comput-
ing Machinery, New York, NY, USA, 1633–1649. https://doi.org/10.1145/3318464.
3389705

[11] Johns Paul, Shengliang Lu, Bingsheng He, and Chiew Tong Lau. 2021. MG-Join:
A Scalable Join for Massively Parallel Multi-GPU Architectures. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD/PODS ’21). Association for Computing Machinery, New York, NY, USA,
1413–1425. https://doi.org/10.1145/3448016.3457254

[12] P. Ratanaworabhan, Jian Ke, and M. Burtscher. 2006. Fast lossless compression of
scientific floating-point data. InData Compression Conference (DCC’06) (Snowbird,
UT, USA). Institute of Electrical and Electronics Engineers (IEEE), New York, NY,
USA, 133–142. https://doi.org/10.1109/DCC.2006.35

9

https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://github.com/aappleby/smhasher/blob/master/src/MurmurHash3.cpp
https://doi.org/10.14778/3055540.3055545
https://doi.org/10.14778/3055540.3055545
https://doi.org/10.17487/RFC1951
https://doi.org/10.1145/3337821.3337862
https://doi.org/10.1145/1362622.1362684
https://doi.org/10.1145/1362622.1362684
https://doi.org/10.1145/1376616.1376670
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1109/JRPROC.1952.273898
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3318464.3389705
https://doi.org/10.1145/3448016.3457254
https://doi.org/10.1109/DCC.2006.35


[13] Ran Rui and Yi-Cheng Tu. 2017. Fast Equi-Join Algorithms on GPUs: Design and
Implementation. In Proceedings of the 29th International Conference on Scientific
and Statistical Database Management (Chicago, IL, USA) (SSDBM ’17). Association
for Computing Machinery, New York, NY, USA, Article 17, 12 pages. https:
//doi.org/10.1145/3085504.3085521

[14] Panagiotis Sioulas, Periklis Chrysogelos,Manos Karpathiotakis, Raja Appuswamy,
and Anastasia Ailamaki. 2019. Hardware-Conscious Hash-Joins on GPUs. In 2019
IEEE 35th International Conference on Data Engineering (ICDE) (Macao, China).
Institute of Electrical and Electronics Engineers (IEEE), New York, NY, USA,

698–709. https://doi.org/10.1109/ICDE.2019.00068
[15] Jeffrey Young, Julian Romera, Matthias Hauck, and Holger Fröning. 2016. Op-

timizing communication for a 2D-partitioned scalable BFS. In 2016 IEEE High
Performance Extreme Computing Conference (HPEC) (Waltham, MA, USA). In-
stitute of Electrical and Electronics Engineers (IEEE), New York, NY, USA, 1–7.
https://doi.org/10.1109/HPEC.2016.7761596

[16] Jacob Ziv and Abraham Lempel. 1977. A Universal Algorithm for Sequential
Data Compression. IEEE Transactions on Information Theory 23, 3 (1977), 337–343.
https://doi.org/10.1109/TIT.1977.1055714

10

https://doi.org/10.1145/3085504.3085521
https://doi.org/10.1145/3085504.3085521
https://doi.org/10.1109/ICDE.2019.00068
https://doi.org/10.1109/HPEC.2016.7761596
https://doi.org/10.1109/TIT.1977.1055714

	Abstract
	1 Introduction
	2 Background
	3 Repartitioned Join Algorithm
	3.1 Hash Partition
	3.2 All-to-all communication
	3.3 Local Join

	4 Compression
	5 Two-level Shuffle
	6 Evaluation
	6.1 Experimental Setup
	6.2 Random Integer Key Dataset
	6.3 Performance vs. Table Size
	6.4 TPC-H Dataset

	7 Related Work
	8 Conclusions and Future Work
	References

