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Abstract. Al and simulation workloads consume and generate large
amounts of data that need to be searched, transformed and merged with
other data. With the goal of treating data as a first-class citizen inside a
traditionally compute-centric HPC environment, we explore how the use
of accelerators and high-speed interconnects can speed up tasks which
otherwise constitute bottlenecks in computational discovery workflows.
BlazingSQL is SQL engine that runs natively on NVIDIA GPUs and
supports internode communication for fast analytics on terabyte-scale
tabular data sets. We show how a fast interconnect improves query
performance if leveraged through the Unified Communication X (UCX)
middleware. We envision that future computing platforms will integrate
accelerated database query capabilities for immediate and interactive
analysis of large simulation data.

1 Introduction

Data-analytics driven scientific discovery is rapidly transforming the landscape
of computational and experimental sciences. With the emergence of pre-exascale
and exascale computing platforms, harnessing their capabilities for data analytics
tasks is essential to address the need for the analysis of ever larger data sets
[15]. These datasets, usually represented as numeric data arrays or tabular data,
serve as an input to many operations (e.g. filtering, feature extraction, anomaly
detection) that produce new arrays or tables. The database community has
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provided automatic query processing along with CPU and IO parallelism and
more recently, robust GPU support. These capabilities have been shown to be
effective for the analysis of a large-scale molecular docking campaign, to identify
potential drug candidates [12]. To explore chemical space, libraries containing
billions of SMILES strings [29] and associated text and numerical data of small
organic molecules are screened in a high-throughput manner, generating terabytes
of data that need to be searched, sorted and merged with other data. Another,
in-situ application of large-scale data analytics in plasma physics uses OpenPMD
[24] to stream simulation data into dask distributed data frames [16], which can
then further be analyzed with Python-based tools such as RAPIDS [19] and
BlazingSQL, which we discuss below. Both examples demonstrate the need for
fast manipulation of large-scale structured and semi-structured data close to
where it is being produced, without the need for costly conversion, transformation
or indexing of data, both in terms of time to solution as well as memory or
compute footprint.

However, for distributed applications, data movement across the HPC inter-
connect is expensive and therefore the communication portion of an algorithm is
often the bottleneck, particularly when the compute portion is already highly
optimized and runs on GPUs. In distributed, GPU-accelerated data analytics
tools, a high-performance communication layer is extremely important to leverage
low-latency, high-bandwidth and overall scalability when transporting data across
nodes and across GPUs [15]. Our contribution in this respect is the implementa-
tion of a high performance communication layer on top of the UCX library [25]
to enhance BlazingSQL, a GPU accelerated database query engine.

Seminal work for scaling and optimizing database management systems dates
back to the early 1990s [9], when foundations for efficient query algorithms, e.g.
hash joins, were laid. In the early '2000s, the computer graphics community
experimented with general-purpose computing on graphics processing units
(GPGPU) as a way to accelerate computational workloads beyond graphics
applications, and in particular, to speed up selections, aggregations, and semi-
linear queries on GPUs [2, 10, 13, 14] and co-processors [20]. Heterogeneous
approaches to database query processing combine GPUs with multi-core CPUs
or FPGAs [4, 7, 26] to make optimal use of the available hardware. Specific
optimizations include the use of compression techniques [11], off-loading to the
level of the storage engine [30], learning techniques for query optimization [5]
and design of GPU-CPU heterogeneous query plans [17].

Several popular open-source frameworks for GPU-accelerated database query
processing are under active development with contributions from the community:
BlazingSQL [3], PG-Strom [23], and OmniSciDB [21]. In particular, we focus on
BlazingSQL and the implementation of a new communication layer utilizing the
UCX library [25].
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2 RAPIDS and the BlazingSQL software architecture

RAPIDS is a suite of software libraries that provide data analytics and machine
learning functionality on GPUs. From an end-user viewpoint, they generalize
existing software offerings in the Python data ecosystem such as Pandas [27]
and scikit-learn [22], maintaining the familiar Python-based API but offering
accelerated primitives implemented in C++ and CUDA. On a lower level, RAPIDS’
data processing routines are built on the Apache Arrow library, which is an
industry standard that implements an efficient in-memory storage format for
columnar data.

BlazingSQL builds on RAPIDS as a C++ library with a Python interface.
The library provides a fast, ad-hoc query capability for terabyte-scale tabular
data using GPUs, without the need for precomputed data structures such as
hash tables. It implements out-of-core computation by optionally using unified
memory and/or caching to disk (e.g., NVME), and allows distributing the query
processing on 10s-100s of GPUs for data that doesn’t fit in single GPU memory.
BlazingSQL is built on top of the RAPIDS ecosystem [19], and in particular, the
RAPIDS cudf C++ library. It is thus different from dask-sql [1], which is a purely
Python-based implementation of SQL with (currently) experimental support for
RAPIDS. The library allows users to execute SQL queries against a variety of
file formats, including text files with comma-separated values, Apache parquet
and Apache ORC files, and in-memory data representations. Figure 1 depicts the
architecture of the BlazingSQL software stack.

Python
Communication J\PY‘P E C yﬂlon

Calcltes Relational Algebra Engine (RAL)
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CUDA libraries

CUDA

Fig. 1. Overview of the BlazingSQL software stack

The main user interface for BlazingSQL is its Python library blazingsql.
Through this API, users register tables residing on one of the supported types
of filesystems (such as, local or cloud bucket storage) as data sources, execute
queries and obtain their results. BlazingSQL returns query results as single-GPU
cudf DataFrames or distributed, multi-GPU dask-cudf DataFrames. When the
engine processes an SQL query, it is converted into relational algebra using the
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Apache Calcite Java component. The BlazingSQL core relational algebra engine
(RAL) then creates a query graph for optimized execution.

The result of the RAL is a directed acyclic graph (DAG), in which the nodes
are kernels that take data as input, operate on it, and produce output. The
edges are caches that connect producers and consumers of the data. The DAG is
uniform across all parallel workers. Every kernel is connected to any other kernel
only through a cache. The purpose of the caches is to take the output of a kernel
and allow the engine to either leave that information in GPU memory, cache
it in CPU, on disk, or on centralized storage. In this way the algorithm allows
selective caching of indvidual query nodes and the processing of queries even
when the intermediate tables do not simultaneously fit in memory (Fig. 2).

SELECT DISTINCT ss_item_sk, ss_ticket_number
FROM store_sales s, item i
WHERE s.ss_item_sk = i.i_item_sk
AND i.i_category_id IN (1, 2, 3)
AND s.ss_store_sk IN (10, 20, 33, 40, 50)
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W
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Fig. 2. The first sub-query of the GPU Big Data benchmark (top), and corresponding
execution graph (DAG, bottom).

All kernels implement the Kernel interface or one of its derived classes. A
kernel’s purpose is to organize the flow and orchestration of performing complex
distributed operations, but it does not perform any of the execution itself. Instead,
it creates tasks which are sent to the TaskExecutor, which stores a queue
of tasks to be completed and is responsible for managing hardware resources
and rescheduling tasks that failed due to resource exhaustion. Kernels push
information forward into caches and subsequent kernels pull those cached data
representations to get inputs. They are decached only right before computation
is about to take place.

The data decomposition uses the same coarse-grained partitioning as the
distributed dask-cuda DataFrame, and the partitions can reside in GPU or CPU
memory, on local file systems or on distributed file systems like HDF'S. Individual
kernels may decompose these partitions further using heuristics.
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3 Implementation of communications via UCX in
BlazingSQL

An important aspect of performing relational algebra operations on distributed
datasets is the need to send around messages of varying sizes between peers
working on a problem with minimal latency and high bandwidth. BlazingSQL
has supported communication via TCP sockets since its earliest releases. For
high-speed communications, UCX is an open-source, production-grade communi-
cation framework for data-centric and high-performance applications. It therefore
appears as a natural fit to leverage the native performance of the high-speed
Infiniband interconnect. UCX additionally supports accelerated transports such
as GPUDirect RDMA and NVLINK. Here we describe an implementation of UCX
in a user application that is only based on zero-copy host memory. UCX support
is currently available in the dask.distributed data analytics framework via
ucx-py. Our implementation, on the other hand, leverages a highly performant,
native implementation of UCX on the C/C++ level.

3.1 False starts for implementing the UCX API in an application
code

BlazingSQL uses Python as a user interface and dask to initialize the context
on every compute node, which acts as an entry point to query execution. We
first attempted to take advantage of ucx-py and dask’s UCX communiacation
layer to perform the actual sending and receiving of messages. We defined the
context, the workers, and performed all sending and receiving within Python.
This first strategy exposed many problems. The GIL (Global Interpreter Lock)
in Python prevented messages from being sent using several threads in parallel
and the sending and receiving of messages quickly became the bottleneck and
performed an order of magnitude worse than our original TCP implementation.

To optimize for latency in sending and receiving messages over UCX, we then
kept ucx-py for the creation of the context and the workers, and implemented
our own Python-based progress routine that needs to be executed to make sure
that UCX is moving messages through its queues. Unfortunately this solution
remained unstable when used with UCX in multi-threaded mode, and slow in
both multi-threaded and single-threaded mode.

Leveraging UCX from C++ instead of Python therefore suggested itself as the
most versatile solution. We moved all code related to UCP workers, endpoints,
and message transmission to leverage UCX’s C APIs directly. Following the
example found in the UCX documentation [28], our first C++ implementation
relied on C-only callbacks that could not receive additional scope variables. The
code called ucp_worker_progress® on every message sent and received, from
multiple threads. This approach turned out to be a performance anti-pattern
with UCX.

e r.html
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3.2 Final implementation of UCX communications

We created a hierarchy of abstractions that would allow us to alternatively
leverage TCP and UCX, and open up the possibility for additional interfaces in
the future. We provided for this scenario by separating the sending and receiving
of buffers from the actual serialization and deserialization of messages.

All data is placed into page-locked CPU memory before transmission. Even
though the very fast GPU to GPU interconnects offer further opportunities for
optimization through offloading the communication buffers to GPU memory,
it does not make sense to persist data in GPU memory entirely because that
memory could rather be used for more performance sensitive applications. We
opted to exclusively use GPU memory for the compute portions of the kernels.
The greatly reduced GPU memory pressure resulted in satisfactory performance
as more memory became available for processing. We implemented the following
new C++ classes and abstractions.

OutputCache This class is a cache that converts all incoming data sources to a
structure that is ready for transmission. When data is cached onto CPU, we do so
using fixed size chunks that are allocated by an arena allocator, see Fig. 3. If the
data is already cached on CPU, adding to the cache does not incur extra costs.
The cache chunks are page locked to ensure rapid movement between CPU and
GPU. All messages exchanged are therefore of the same size, which is configurable.
The default chunk size is IMB. In preliminary tests, we determined this to be
close to the optimum value for Infiniband communication, balancing increased
latency for too many small messages with wasted communication bandwidth for
too large chunks. Data will stay in the OutputCache until there are threads in
the sending thread pool.

Communication buffers
(host memory)

Table (GPU memory)

C empty

Fig. 3. Serialization of GPU-resident tables in host pinned memory buffers of constant
size for communication. The arena allocator provides pinned memory buffers which
hold chunks (columns) of the GPU table that is being sent via UCX or TCP.
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MessageSender The purpose of message sender is to poll the output cache for
messages that need to be sent and then to create the appropriate BufferTransport
class. The message sender is responsible for invoking the functions on the buffer
transport.

transport->send_begin_transmission() ;

transport->wait_for_begin_transmission() ;

for(size_t i = 0; i < raw_buffers.size(); i++) {
transport->send(raw_buffers[i], buffer_sizes[i]);

¥

transport->wait_until_complete();

The class waits using a condition variable to allow us to limit the number of
messages that are in transmission at any given point in time.

BufferTransport All buffer transports implement the BufferTransport in-
terface. The buffer transport is responsible for performing the work of sending
buffers and metadata over a specific protocol. In the case of UCX it is the
UCXBufferTransport that is responsible for calling ucp_tag_send_nbr* and
dispatching buffers that belong to a message. It is not responsible for ensuring
that the transmission is complete. We use the tag sending API and we split the
tag into six bytes for the message id and two bytes which are used to indicate
which part of the DataFrame is being transmitted.

MessageListener The message listener is polling using the ucp_tag_recv_nbr
API and when it receives a new request it is responsible for instantiating the
MessageReceiver and then polling for any messages that are related to those
incoming requests and adding them to the MessageReceiver.

MessageReceiver The receiver accepts buffers from the MessageListener.
The first buffer is the metadata and includes information about the number of
buffers that will be received, the routing information of the message, the output
location in the DAG, and information that allows us to convert the buffers back
into GPU DataFrames when they are needed for further processing.

After all frames have been received, the receiver adds the data to the cache for
the next kernel. There are also cases of intra-kernel messaging that usually include
only very small payload, where messages might be placed into a more general
input cache which is used to send messages that have unique and deterministic
identifiers that allow kernels to retrieve them when they expect them. Figure 4
shows a complete example of a kernel sequence with communication.

html
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Fig. 4. A kernel is sending a message to the next kernel on another node during a hash
join.

4 Performance results

4.1 Performance of UCX wvs. IPolIB

We use the NVIDIA GPU Big Data benchmark (gpu-bdb®), an unofficial deriva-
tive of the TPC-BB benchmark® ported to RAPIDS and BlazingSQL. The
gpu-bdb benchmark is a RAPIDS library based benchmark for enterprises that
includes 30 queries representing real-world extract-transform-load (ETL) and
Machine Learning (ML) workflows in the context of retailers with physical and
online store presence. Each query is in fact a model workflow that can include
SQL, user-defined functions, careful sub-setting and aggregation, and machine
learning. Figure 5 shows a natural language description of one of the queries of
the benchmark. The benchmark can be run at various scale factors: scale factor
1000 is 1 TB of data, scale factor 10000 is 10TB. In this contribution we run
only 27 of the 30 queries, because three of the queries (Q22, 27 and 28) did
not complete or had unmet dependencies for external libraries on the POWER9
architecture.

For a given product get a top 30 list sorted by number of views

in descending order of the last 5 products that are mostly viewed
before the product was purchased online. For the viewed products,
consider only products in certain item categories and viewed within
10 days before the purchase date.

Fig. 5. Example of a query (no. 2) from the GPU Big Data benchmark for retailers
with a physical and an online store presence.

5 https://github.com/rapidsai/gpu-bdb
6 http://tpc.org/tpex-bb/default5.asp
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The standard nodes of Summit have six NVIDIA V100 GPUs with 16GB
of DDR5 memory, sharing 512 GB of DDR4 main memory. The high-memory
nodes have six NVIDIA V100 GPUs with 32GB of DDR5 memory, and 2TB of
DDR4 main memory. We performed all testing on the high-memory partition.

60 -

BIazingSQL + RAPIDS 21.10 (SF1k; 4 nodes)
50 - [ IPolB Geom. mean = 13.82s

M H 1 UCX Geom. mean = 12.06s
40 i

Time [s]

201

i WW@Mmmmmmmm ML

2345 92

7 8 9101112131415161718192021 2324252627282930

Query Number

Fig. 6. GPU Big data benchmark at scale factor 1000 (1TB dataset). Shown is the
performance for the TCP code path (left/red bars) and the UCX code path (right/green
bars). The benchmark was executed on four nodes of Summit (using six 32GB V100
GPUs per node).

We compare the performance of the UCX ws. the TCP code path for scale
factor 1000 in Fig. 6, both using the Infiniband interconnect as the low-level
transport, using the median runtime of three repeated queries for each gpu-bdb
query. As can be seen, the geometric average of the time per query is 13.82s for
IPoIB, and 12.06 s for UCX, which amounts to a 15% speed-up resulting from
using UCX. However, the improvement is more clearly visible for the longest
running queries, which leads us to speculate that the short-running queries involve
less communication, and that a larger amount of input data would better expose
the benefits of improved communication.

To investigate the query performance for larger data sets and its dependence
on the communication protocol, we perform the same comparision for a ten
times larger data set (scale factor 10000). The results are shown in Fig. 7. Of
note, the previously slowest query is still an outlier at this scale factor, however
now by more than one order of magnitude compared to the geometric mean
of all queries. Interestingly, the UCX code path clearly outperforms the TCP
code path and delivers an average speed-up of 75%. Communication via UCX is
therefore consistently superior to IPoIB for all queries. This result demonstrates
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Fig. 7. GPU Big data benchmark at scale factor 10000 (10TB dataset). Shown is the
performance for the TCP code path (left/dark shaded bars) and the UCX code path
(right/light shaded bars). The benchmark was executed on 20 nodes of Summit (using
six 32GB V100 GPUs per node).

that our optimizations were successful, and that communication indeed becomes
the limiting factor for the performance of distributed queries on large data sets.

4.2 Multi-node performance

To investigate the balance between compute- and communication-intensive parts
of a query, we perform a strong scaling test at scale factor 10000. Figure 8
shows the geometric mean for 27 queries as a function of the number of nodes.
The performance is already optimal for the smallest node count that allows for
successful benchmark completion, i.e., 18 high-memory nodes of Summit. Adding
more nodes degrades performance. The absence of strong scaling at this data set
size indicates that the queries are strongly memory-bound, and that the available
computational work likely fails to saturate the GPU. We believe this to be a
general characteristic of GPU-based data analytics. We did not analyze weak
scaling efficiency.

5 Implications for future and emerging HPC platforms

With the availability of high-speed interconnects and accelerated transports sup-
porting heterogeneous hardware such as GPUs comes the mandate of leveraging
their superior performance in applications. However, the traditional API for
fast communication on HPC platforms is the message passing interface (MPI),
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Fig. 8. Geometric mean of the query time of the GPU Big data benchmark at scale
factor 10000 (10TB dataset) on different numbers N = 18, 20, 27, 30 of nodes (1 node
= 6x32GB V100) on the Summit supercomputer at Oak Ridge National Laboratory,
using UCX. The leftmost data point (N = 18) corresponds to the smallest number of
nodes for which the benchmark completes successfully.

which is particularly suited for synchronous and regular problems involving only
numerical data. The MPI stack on the Summit supercomputer uses the Parallel
Active Messaging Interface (PAMI) for underlying accelerated transports, but
also supports an experimental UCX option. Conversely, many data analytics
methods have been developed outside the realm of traditional high-performance
computing, and the focus has been on massively parallel compute with little or
no communication [8, 18]. Therefore, reconciling the world of HPC and data ana-
lytics requires communication middleware that combines aspects of commercial
big data processing, such as fault-tolerance, with the reproducible performance
of compute- and communication intensive HPC workloads. In our case, we found
that UCX combines the best of both worlds: it is considerably more lightweight
than a full MPI implementation, yet it includes hardware and system-specific
backends for most (if not all) industry-standard interconnects. Nevertheless, the
performance benefit and portability is offset by the higher implementation effort
needed to program UCX compared to MPI or OpenSHMEM [6], due to the
lower-level API.

With AT and deep learning entering the forefront of computational sciences,
and with high-throughput workflows being executed on HPC platforms, we see
an ever-increasing need for multi-node, multi-GPU database query processing.
Data-centric workflows serve to organize, manipulate, search and combine massive
datasets, which may have been produced by simulation or experiment, e.g., for
preparing training data or processing results from large-scale inference. Moreover,
workflows that can be expressed in high-productivity languages such as Python
are composable, and the BlazingSQL library fills in a gap for high-performance
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database query processing. As database query processing becomes more com-
monplace in HPC, we also see a trend towards interactive use of HPC resources
through Jupyter notebooks.

High-performance file systems at HPC facilities are a necessary prerequisite.
However, since BlazingSQL supports both bucket storage and traditional POSIX
file systems, it is compatible with future developments in HPC data center
technology. We believe that gradual convergence between cloud computing and
traditional HPC through the deployment of more service-oriented architectures
at supercomputing facilities further enables processing of big data alongside
traditional compute workloads.

6 Conclusion

We discussed the implementation of a new UCX-based communication layer
in the open-source, GPU-accelerated database query engine BlazingSQL. The
promise of fast communication over Infiniband lies in accelerating distributed
queries that execute in seconds on tens or hundreds of GPUs on a supercomputer
to interactively query terabyte-scale datasets. We have shown that a performance-
optimal implementation should make use of the low-level, C++ interface to the
UCX library. We benchmarked BlazingSQL performance with UCX against the
baseline implementation with TPoIB (TCP) on multiple nodes, and demonstrated
superior performance of the UCX code path. In summary, we have shown how to
incorporate UCX communication middleware into a library with a high-level user
API. The improved communication layer brings about significance performance
improvements for distributed database query processing, particularly of large
data sets. In addition to performance improvements on the POWERS9 platform,
the library is portable and runs equally well on x86 architecture. The speed-ups
should therefore also manifest themselves on NVIDIA DGX systems, and on
workstations with multiple NVIDIA GPUs.
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