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Serial Order: 
A Parallel Distributed Processing Approach 

MICHAEL I. JORDAN 

Even the most cursory examination of human behavior reveals a variety of serially ordered action 
sequences. Our limb movements, our speech, and even our internal train of thought appear to involve 
sequences of events that follow one another in time. We are capable of performing an enormous 
number of sequences, and we can perform the same actions in a variety of different contexts and order­
ings. Furthermore, most of the sequences that we can perform were learned through experience. 

A theory of serial order in behavior should clearly be able to account for these basic data. However, 
no such general theory has emerged, and an important reason for this is the failure of current formal­
isms to deal adequately with the parallel aspects of serially ordered behavior. We can tentatively dis­
tinguish two forms of parallelism. The first is parallelism that arises when actions in a sequence over­
lap in their execution. In speech research, such parallelism is referred to as coarticulation (Kent & 
Minifie, 1977; Moll & Daniloff, 1971; Ohman, 1966), and it greatly complicates the traditional descrip­
tion of sequential speech processes. The second form of parallelism occurs when two actions are 
required to be performed in parallel by the demands of the task or by implicit constraints. Such is the 
case, for example, in the dual-task paradigm, in which actions that have been learned separately must 
be performed together. This differs from the case of coarticulation, in which actions that are nominally 
separate in time are allowed to be performed in parallel. It is important to characterize both how such 
parallelism can arise within a sequential process and how it can be constrained so that unwanted paral­
lel interactions are avoided. 

In this paper, I present a theory of serial order which describes how sequences of actions might be 
learned and performed. In the theory, parallel interactions across time (coarticulation) and parallel 
interactions across space (dual-task interference) are viewed as two aspects of a common underlying 
process. Briefly, both are seen as manifestations of a tendency of the output system to generalize 
learned relationships between internal state vectors and output vectors representing actions. These gen­
eralizations are constrained during the learning process so that inappropriate generalizations that cause 
interference are overridden with practice. 

Although the emphasis in this paper is on the production of sequences of actions, it should be noted 
that the system to be described has a natural interpretation as a dynamical system, and a continuous­
time perspective is possible. In this case, the sequences of actions defme trajectories in a state space. 
It will be shown that the learning of particular trajectories can generalize to nearby regions of the space 
and that interesting attractors such as limit-cycles can arise. The approach would therefore seem to 
have some potential for reconciling problems of serial order with problems relating to the continuous 
nature of behavior. 

The theory is embodied in the form of a parallel distributed processing (Rumelhart & McClelland, 
1986) or connectionist (Feldman & Ballard, 1982) network. Such networks are composed of a large 
number of simple processing units that are connected through weighted links. In various forms, such 
networks have been used as models of phenomena such as stereopsis (Marr & Poggio. 1976), word 
recognition (McClelland & Rumelhart, 1981), and reaching (Hinton, 1984). The success of these 
models has been in large part due to their high degree of parallelism, their ability to bring multiple, 
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interacting constraints to bear in solving complex problems, and their use of distributed representations. 
However, none of these properties seem particularly well suited to the problem of serial order, and 
indeed a criticism of this class of models has been their inability to show interesting sequential 
behavior, whereas the more traditional symbolic approaches, typically by assuming a sequential proces­
sor as a primitive, deal with serial order in a much more straightforward manner. This criticism is chal­
lenged in this paper, in the context of a theory of serial order that has been developed to take advantage 
of the underlying primitives provided by parallel distributed processing. 

SERIAL ORDER 

Many of the problems encountered in developing a parallel distributed processing approach to the 
serial order problem were anticipated by Lashley (1951). Lashley pointed out the insufficiency of the 
associative chaining solution to the serial order problem. The associative chaining solution assumes 
that serial ordering is encoded by directed links between control elements representing the actions to be 
ordered, and that the performance of a sequence involves following a path through the network of con­
trol elements. Lashley argued that this solution fails to allow different orderings of the same actions 
because there is no mechanism for specifying which link should be followed from an element having 
more than one outgoing link. He also argued that serial behavior shows anticipatory effects of future 
actions upon the current action, and that such context effects are not accounted for within the associa­
tionist framework. 

Lashley's arguments have had an impact on those seeking to understand the role of feedback in a 
theory of motor behavior, but have been less influential on those interested in the structure of motor 
programs. 1 This is in all likelihood due to the impact on theorists of the development of the digital 
computer, which made it possible to see how arbitrary sequential programs can be executed. Theories 
based explicitly on the computer metaphor have invoked the notion of a buffer which is loaded with the 
actions to be performed, and a program counter which steps through the buffer (Shaffer, 1976; Stern­
berg, Monsell, Knoll, & Wright, 1978). Despite the generality of such a theory, simple buffer theories 
are known to have several problems, including accounting for error patterns (Kent & Minifie, 1977; 
MacKay, 1981). It is also true that coarticulation is not well handled by buffer theories. One approach 
is to assume that buffer positions can interact with each other (Henke, 1966). However, this interaction, 
which must take place when successive actions are simultaneously present in the buffer, takes time, as 
does the process of reloading the buffer once a set of related actions have been executed, and implies 
the presence of delays at certain times in the production of long sequences. Such delays are not 
observed in fluent sequential behavior (cf. Shaffer & Hardwick, 1970). Another problem is that the 
interactions between actions should depend on their relative positions in the buffer, not their absolute 
positions. For example, the interactions between Ii! and /n/ should presumably be the same when say­
ing print and sprint. This would seem to imply the need for a complex mechanism whereby learned 
interactions can automatically generalize to all buffer positions. Such issues, which arise due to the 
explicit spatial representation of order in buffer theories, seem to be better handled within an associa­
tionist framework. 

Wickelgren (1969) revived the associationist approach by assuming that serial order is indeed 
encoded by directed links between control elements, but that the control elements are different for dif­
ferent orderings of the same actions. The control element for the action B in the sequence ABC can be 
represented by the form ABc whereas the control element for B in the sequence CBA is represented as 
c B A' These control elements are distinct elements in the network, thus there is no problem with 
representing both the sequences ABC and CBA in the same network. In this account, actions look 

1 That is, cootrol structures which can in principle produce sequences of actions without feedback from the periphery. Lashley 
also argued against associative chaining because of the relatively long response time of peripheral feedback. Note, however, that 
the arguments stated above hold for any associative chaining theory. whether or not the links go through the periphery. 
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different in different contexts not because of parallel execution but because they are produced by dif­
ferent control elements. 

Wickelgren's theory provides a solution to the problems posed by Lashley but it has several 
shortcomings. First, it requires a large number of elements, yet has difficulty with the pronunciation of 
words, such as barnyard, that have repeated subsequences of length two or more (Wickelgren, 1969). 
Second, effects of context in speech have been shown to extend up to four or five phonemes forward in 
an utterance (Benguerel & Cowan, 1974). Extension of the theory to account for such effects would 
require an impossibly large number of control elements. Finally, note that there are only representations 
for tokens in the theory, and no representations for types. There is nothing in the theory to tie together 
the contextual variations of a given action. This means that there is no way to account for the linguis­
tic and phonetic regularities that are observed when similar actions occur in similar contexts (Halwes & 
Jenkins, 1971). 

A different approach is to assume that actions are to some extent produced in parallel (Fowler, 1980; 
Rumelhart & Norman, 1982). The parallelism allows several control elements to influence behavior at 
a particular point in time, and therefore provides an account of coarticulatory effects, even though 
actions are represented in terms of context-free types. Rumelhart and Norman have shown that a model 
of typing incorporating parallelism can produce overlapping keystrokes much like those observed in 
transcription typing. 

Allowing parallel activation of control elements accounts for context sensitivity; however, there 
remains the problem of temporal ordering. Rumelhart and Norman achieved temporal ordering by 
assuming that elements suppress other elements through lateral inhibitory connections if they precede 
those elements in the sequence. This particular scheme is susceptible to Lashley'S critique because all 
possible inhibitory connections must be present to allow the performance of the same elements in dif­
ferent orders and a mechanism is needed for selecting the particular inhibitory connections used in the 
performance of a particular sequence. However, there are other ways of achieving the same effect that 
are not open to Lashley's critique (Grossberg, 1978; Grodin, 1981). Essentially, all of these schemes 
produce temporal order by inducing a graded activation pattern across the elements in the sequence to 
be performed, such that elements more distant in the future are activated less than earlier elements. 
Elements are assumed to influence behavior in proportion to their level of activation. Because the next 
action in the sequence is the most highly activated, it has the most influence on behavior. Once the 
activation of an element reaches a threshold, it is inhibited, allowing the performance of other items in 
the sequence. 

A problem with these parallel activation theories is that they have difficulty with sequences in which 
there are repeated occurrences of actions. In a pure type representation, there is simply no way to 
represent the repeated action. Rumelhart and Norman used a modified type representation in which 
they introduced special operators for doublings (e.g., AA) and alternations (e.g., ABA). However, they 
provided no general mechanism, and, for sequences such as ABCA, invoked a parser to break up the 
sequence into pieces, thus allowing no parallel influences across the break. This is not a satisfactory 
solution, in general, because data in speech show that coarticulatory influences can extend across 
sequences like ABCA (Benguerel & Cowan, 1974). Another possibility is to assume that repeated 
occurrences of actions are represented by separate control elements (representation by tokens). How­
ever, the combined effects of partially activated control elements will cause the first occurrence of a 
repeated action to move forward in time, whether or not this is actually desirable. Indeed, in a 
sequence such as ABBB, the B may overwhelm the A and be executed first These problems are 
enhanced in featural representations of the kind that are often posited for actions (Grodin, 1983; Perkell, 
1980; Rosenbaum, 1980) because the total activation from elements representing the repeated features 
will be greater than the activation levels for features that only occur once in the sequence, irrespective 
of the order of the features. Such problems arise because the single quantity of activation is being used 
to represent two distinct things: the parallel influences of actions and the temporal order of actions. 

It is my view that many of these problems disappear when a clear distinction is made between the 
state of the system and the output of the system. Explicitly distinguishing between the state and the 
output means that the system has two activation vectors, which allows both temporal order and parallel 
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influences to be represented in tenus of activation. In the theory developed in this paper, the state and 
the output are assumed to be represented as patterns of activation on separate sets of processing units. 
These sets of units are linked by connections defining an output function for the system. Serial order is 
encoded both in the output function and in recurrent connections impinging on units representing the 
state; there is no attempt to encode order information in direct connections between the output units. 

Coarticulation 

In this section, I briefly introduce some of the parallel aspects of sequential behavior that have been 
considered important in the development of the current theory. I will focus on the paralIelism between 
actions in a sequence and will return to the problem of dual-task parallelism in a later section. 

Several studies involving the recording of articulator trajectories have shown that speech gestures 
associated with distinct phonemes can occur in parallel. Moll and Daniloff (1971) showed that in an 
utterance such as freon, the velar opening for the nasal /n/ can begin as early as the frrst vowel, thereby 
nasalizing the vowels. 2 Benguerel and Cowan (1974) studied phrases such as une sinistre structure, in 
which there is a string of the six consonants /strstr/ followed by the rounded vowel /y/. They showed 
that lip-rounding for the /y/ can begin as early as the frrst lsi. This is presumably allowable because the 
articulation of the consonants does not involve the lips. 

These examples suggest that the speech system is able to take advantage of free articulators and use 
them in anticipating future actions. This results in parallel performance and allows speech to proceed 
faSter and more smoothly than would otherwise be possible. Such parallelism clearly must be con­
strained by the abilities of the articulators. However, there are other constraints involved as well. In 
the case of freon, for example, the velum is allowed to open during the production of the vowels 
because the language being spoken is English. In a language such as French, in which nasal vowels are 
different phonemes than non-nasal vowels, the velum would not be allowed to coarticulate with the 
vowels. Thus the articulatory control system cannot blindly anticipate articulations, but must be sensi­
tive to phonemic distinctions in the language being spoken by only allowing certain coarticulations. 

The situation is more complicated still, if we note that constraints on parallelism may be specific to 
particular features. For example, in the case of /strstry/, only the rounding of the /y/ can be anticipated. 
The voicing of the fyi, which also involves an articulator that is not used by the consonants, cannot be 
anticipated, because that would change the identities of the consonants (for example, the /s/ would 
become a /zj). Again, such knowledge cannot come from consideration of strategies of articulation, but 
must reflect higher-level phonemic constraints. 

Thus, speech presents a difficult distributed control problem in which constraints of various kinds are 
imposed on the particular patternings of parallelism and sequentiality that can be obtained in an utter­
ance. What I wish to show in the remainder of this paper is how this problem can be approached with 
a theory based on parallel distributed processing networks. 

PARALLEL DISTRIBUTED PROCESSING 

Before discussing the theory, I will provide a short discussion of those aspects of parallel distributed 
processing needed for the remainder of this paper. An extensive discussion of this class of models can 
be found in Rumelhart and McClelland (1986). 

A parallel distributed processing network is a network of processing units, connected by weighted, 
unidirectional links. The state of each processing unit, at each moment of time, can be described by a 

2 This is an example of forward coanicidation. It is also possible to see perseveration. which is referred to as backward coarticu­
lalion. 



SERIAL ORDER 5 

single real number, its activation. Units compute their activations in parallel, according to the follow­
ing equation: 

Il 

Xj = 41 (L Wji Xi + 9j ), 
(I) 

i=1 

where xi is the activation of the i th unit, W ji is the weight from the i th unit to the j th unit, 9 j is a bias 
associated with the j th unit, and n is the number of units in the network. The quantity inside the 
parentheses is referred to as the net input to a unit The net input is modified by a squashing function 
41, which is typically either a logistic function or a thresholding function. For units in the simulated 
networks described in this paper, 41 is either the identity function 

4I(X)=X, 

in which case the output of a unit is simply a linear function of its inputs, or the logistic function 

max - min 
<I> (x ) = + min, 

I+e-x 

where min is the minimum value attained by the logistic function, and therefore the minimum value of 
activation that any unit can have, and max is the maximum value. The logistic function is an S-shaped 
function with asymptotes at min and max. 

It is useful to give a geometric interpretation to the state of an entire network. The activations of the 
processing units form an n -dimensional vector, which is a point in a state space. Over time, as units 
update their activations, this point moves, tracing out a trajectory in the state space. The particular tra­
jectory that arises depends in general on the connection paUern of the network, the weights, and the ini­
tial state of the network. 

Recurrent and Nonrecurrent Networks 

An important distinction can be made between networks based on their overall connectivity. If a net­
work has one or more cycles, that is, if it is possible to follow a path from a unit back to itself, then the 
network is referred to as recurrent. A nonrecurrent networlc has no cycles. 

Nonrecurrent networlcs can be thought of as computing an input-output function. If we treat some of 
the units in the network as input units, and other units as output units, then we can speak of a func­
tional relationship between the inputs and the outputs. That is, the activations of the input units form a 
vector x, the activations of the output units form a vector y, and there is a function relating x and y. 

A simple example of a recurrent network is given in Figure 1. The recurrent connection of the out­
put unit back on itself means that the output of the network depends not only on the input, but also on 
the state of the network at the previous time step. For example, letting J.l be the value of the recurrent 
weight, and assuming for simplicity that the units are linear (i.e., the function 41 is the identity function), 
the activation of the output unit at time t is given by 

Xz(t) = J.lxz(t-I) + WZIXI (t) 

1-1 
= J.lI xz(O) + LJ.l~WZIXl (t-'t), 

't=O 

where Xl (t ) is assumed to be constant over time. This equation shows that the trajectory of the net­
work exponentially approaches a constant state for J.lless than one, and goes to infmity for larger values 
of J.l. 

Another simple example of recurrence is a network of three units connected in a ring with positive 
weights on the links. If the initial state has one unit with positive activation, and the other two units 
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FIGURE 1. An example recurrent network with two units. 

with activation zero, then the network will tend to pass the positive activation around the ring. Such 
behavior is characterized by a cycle in the state space. 

If the input to a nonrecurrent network is held constant, the trajectory of the network in state space 
will remain at a single point Clearly. in order to achieve interesting sequential behavior in the pres­
ence of a constant input, there must be recurrent connections in the network. 

Distributed Representations 

In order to use parallel distributed processing networks to model behavior, decisions must be made as 
to how patterns of activation in the network are to represent psychological entities. A local representa­
tional scheme assumes that each unit in the network represents an entity in the theory (Feldman & Bal­
lard, 1982). Most theories of serial order either implicitly or explicitly assume a local representation of 
actions in which an action is represented by a single unit or control element. and activation of that unit 
causes the action to be executed. 

In a distributed representational scheme, entities are represented not by single units. but rather by 
patterns of activation across a set of units (Hinton & Anderson. 1981). Different patterns of activation 
across the same units correspond to different entities. By virtue of this overlap in the representation of 
different objects, distributed representations can provide a natural account of phenomena of generaliza­
tion and similarity. This is due to the linear term in the activation functions; it is a general property of 
these networks that similar inputs produce similar outputs. Distributed representations also allow an 
economy of units: if there are n processing units, a local representational scheme can only represent n 
objects •. whereas a distributed scheme can potentially represent many more if the mechanisms that 
operate on these representations are able to make the necessary distinctions between patterns. 

N onlinearities 

Nonlinear mappings can be implemented in a network by interposing a set of intermediate units hav­
ing nonlinear activation functions (the function <j> in Equation 1) between the input units and the output 
units (Hinton & Sejnowski, 1983; Minsky & Papert, 1969; Poggio, 1975; Rosenblatt, 1962; Rumelhart, 
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Hinton, & Williams, 1985). These intennediate units will be referred to as hidden units, following the 
tenninology of Hinton and Sejnowski (1983). The role of hidden units can be clarified through a con­
sideration of the geometry involved. Consider a unit with a threshold activation function. That is, let 

Xj = {I if f Wij 
Xi ~ e 

o otherwise. 

Such a unit can be thought of as dividing the space of its input vectors into two regions: one region 
where its net input is less than the threshold e and one region where its net input is greater than the 
threshold. The border separating the regions is a hyperplane, due to the linear way in which the inputs 
to the unit are combined. The input vectors on the same side of the hyperplane are mapped to the same 
value. There are some functions, such as the logical functions AND and OR, that can be computed by 
dividing the space into two regions in this way. Such functions are referred to as linearly separable. 
However, there are a very large number of functions, including the logical function XOR, which cannot 
be computed in this way. Hidden units must be used to compute such functions. If each hidden unit 
divides the space into two regions, then a set of hidden units can partition the space into simplices. 
Each simplex can be mapped to a different value by the output units. 

A logistic function can be thought of as a continuous version of a threshold. The use of a logistic 
function instead of a threshold gives some more flexibility by allowing real-valued outputs. However, 
the problem of nonlinearly separable functions remains, and hidden units must be used to implement 
such functions. 

Learning 

Parallel distributed processing networks learn by changing the weights on the links between units so 
that the network can achieve certain criterion behaviors. In networks with no hidden units, learning 
rules have been developed that allow any linearly separable function to be learned (Kohonen, 1977; 
Rosenblatt, 1962; Widrow & Hoff, 1960). Only recently have algorithms been developed that allow 
learning to occur in networks with hidden units (Ackley, Hinton, & Sejnowski, 1985; Barto & Anandan, 
1985; Rumelhart, Hinton, & Williams, 1986). 

The algorithm developed by Rumelhart, Hinton, and Williams (1986) is used in the networks dis­
cussed in this paper. This algorithm is an error-correcting scheme in which errors generated at the out­
put units are propagated into the network to allow hidden units to change their weights. Let us assume 
that the network is a nonrecurrent network and that the task of the network is to produce a particular 
vector on the output units when a particular vector is present on the input units. The basic idea of the 
algorithm is the following. It is assumed that there is a teacher which provides the desired activation 
values of the output units. An error signal is generated at each output unit by comparing the desired 
output with the actual output. The weights on the links coming in to the output units are then changed 
by an amount proportional to the error signal. Error signals are then propagated back down these links 
to the hidden units and error signals for the hidden units are computed by adding the propagated sig­
nals. Essentially, the network assigns blame to units that lead to a large error in the output vector. 
Units with larger blame change their weights more in order to correct the error. Rumelhart, Hinton, 
and Williams (1986) have shown that this algorithm changes a given weight by an amount proportional 
to the partial derivative with respect to the weight of the sum of squared error at the output units. 
Thus, the algorithm is a gradient search in weight space for a set of weights that implements the desired 
function. 

The algorithm can also be applied to recurrent networks. However, in recurrent networks, it is neces­
sary for each unit to keep a history of its activations at prior time steps in order for the error­
propagation process to work properly. This seems an excessive requirement for networks in biological 
systems and prevents a direct application of the algorithm to the problem of temporal perfonnance. By 
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restricting the fonn of the recurrent connections in the network, however, it is possible to fmd biologi­
cally plausible architectures that implement the current theory and do not require histories of activations 
to be stored. 

A THEORY OF SERIAL ORDER 

Let there be some sequence of actions Xl> Xz, ••. ,Xr , which are to be produced in order in the pres­
ence of a plan p. Each action is a vector in a parameter or feature space, and the plan can be treated 
as an action produced by a higher level of the system. The plan is assumed to remain constant during 
the production of the sequence, and serves primarily to designate the particular sequence which is to be 
perfonned. 

In general, we would like the system to be able to produce many different sequences. Thus, different 
vectors p are assumed to be associated with different sequences of actions. A particular sequence is 
produced when a particular vector p is presented as input to the system. Note that, in principle, there 
need be no relationship between the fonn of plan vectors and the sequences that they evoke. Rather, a 
plan vector evokes a particular sequence because it was present as input to the system when the 
sequence was learned. Thus, plans can simply be arbitrary patterns of activation which serve to key 
particular sequences; they are not scripts for the system to follow. 

Actions are produced in a temporal context composed of actions nearby in time. This context 
entirely detennines the desired action, in the sense that knowing the context makes it possible to specify 
what the current action should be. It is proposed that the system explicitly represents the temporal con­
text of actions in the fonn of a state vector and chooses the current action by evaluating a function 
from states to actions. At each moment in time, an action is chosen based on the current state, and the 
state is then updated to allow the next action to be chosen. Serial order does not arise from direct con­
nections between units representing the actions; rather, it arises from two functions that are evaluated at 
each time step: a function f which detennines the output action X" at time n, 

X" = f (s",p) (2) 

and a function g which detennines the state S,,+h 

S,,+1 = g (s",p), 

where both functions depend on the constant plan vector as well as the current state vector. Following 
the tenninology of automata theory (Booth, 1967), f will be referred to as the output function, and g 
will be referred to as the next-state function. 3 

Assumptions are made in the theory about the fonn of these functions. The output function f is 
assumed to arise through the learning of associations from state and plan vectors to output vectors. 
These learned associations are assumed to generalize so that similar states and plans tend to lead to 
similar outputs. The major requirement for the next-state function g is that it have a continuity pro­
perty: State vectors at nearby points in time are assumed to be similar. This requirement makes sense 
if the state is thought of as representing the temporal context of actions; intuitively, it seems appropriate 
that the temporal context should evolve continuously in time. Note that if the continuity property 
holds, then the generalizations made by the output function are such as to spread actions in time, and 
that as learning proceeds there is a tendency towards the increasing parallel execution of nearby actions. 
This process will be discussed below in detail, where it will also be shown how the generalizations 
leading to parallelism can be constrained. 

3 From the definition, it can be seen that the plan P plays the role of the input symbol in a sequential machine. The use of the 
term "plan" is to emphasize the assumption that p remains constant during the production of the sequence. That is, we are not 

allowed to asswne temporal order in the input to the system. 
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The basic network architecture is shown in Figure 2. The entities of the theory - plans, states, and 
outputs - are all assumed to be represented as distributed patterns of activation on three separate pools 
of processing units. The plan units and the state units together serve as the input units for a network 
which implements the output function f through weighted connections from the plan and state units to 
the output units. The output function is generally nonlinear, as will be discussed below, therefore it is 
also necessary to have hidden units in the path from the plan and state units to the output units. 
Finally, the next-state function is implemented with recurrent connections from the state units to them­
selves and from the output units to the state units. This allows the current state to depend on the previ­
ous state and on the previous output (which is itself a function of the previous state and the plan). The 
full network is shown in Figure 3, and the connection scheme is summarized in Table 1. 4 

In the proposed network, there is no explicit representation of temporal order and no explicit 
representation of action sequences. This is due to the fact that there is only one set of output units for 
the network, so that at any point in time, only one output vector is present Output vectors must arise 
as a dynamic process, rather than being prepared in advance in a static buffer and then serially exe­
cuted. Representing actions as distributed patterns on a common set of processing units has the virtue 
that partial activations can blend together in a simple way to produce the output of the system. Like­
wise, the representation of states as distributed patterns on a single set of units has the advantage that 
similarity between states has a natural functional representation in terms of the overlap of patterns. The 
proposed network essentially implements the output function which relates these patterns as a network 
associative memory in which many associations are stored in the same set of weights. The learning and 
generalization abilities demonstrated for such networks (Hinton & Anderson, 1981; Rumelhart & 
McClelland, 1986) are just those that are needed for the output function in the current theory. 

Although it is possible that the next-state function as well as the output function arises through learn­
ing, this is not necessary for the system as a whole to be able to learn to produce sequences. Further­
more, given that the next-state function is set up in such a way that the continuity property holds, little 
is lost in the current framework if the recurrent connections implementing the next-state function are 
taken as ftxed and if only the output function is learned. This is the approach taken in the remainder of 
this paper. One choice of values for the fIxed recurrent connections is based on the conception of the 
state as a temporal context Consider the case of a sequence with a repeated subsequence or a pair of 

Input 
Units 

Output, 
Units 

Hidden 
Units 

000 

000 

000 000 
Plan 
Units 

State 
Units 

FIGURE 2. The processing units in the network. The plan and state units together constitute the input units for the network. 

4 In a later section, I will also suggest that the plan units should be interconnected with symmetric connections. 
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FIGURE 3. Basic network connection scheme (not all connections are shown). 

sequences with a common subsequence. It seems appropriate, given the positive transfer which can 
occur in such situations, as well as the phenomena of capture errors (Norman, 1981), that the state 
should be similar during the performance of similar subsequences. This suggests defining the state in 
terms of the actions being produced However, the representation must provide an extensive enough 
temporal context so that there are no ambiguities in cases involving repeated subsequences. If the state 
were to be defmed as a function of the last n outputs, for example, then the system would be unable to 
perform sequences with repeated subsequences of length n, or to distinguish between pairs of sequences 
with a common subsequence of length n. To avoid such problems, the state can be defmed as an 
exponentially weighted average of past outputs, so that the arbitrarily distant past has some representa­
tion in the state, albeit with ever-diminishing strength. This representation of the state is achieved if 

TABLE I 

SUMMARY OF CONNECTION PATTERNS IN THE NETWORK 

Plan Units State Units Hidden Units Output Units 

Plan Units x x 

State Units x x x 

Hidden Units x 

Output Units x 
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each output unit feeds back to a state unit with a weight of one, if each state unit feeds back to itself 
with a weight J.L, and if the state units are linear. 5 In this case, the state at time n is given by 

(2) 

II-I 
~ 1:-1 = .l.J Jl x,,~ . 
't=! 

The similarity between states depends on the particular actions that are added in at each time step and 
on the value of Jl. In general, however, with sufficiently large values of J.L, the similarity extends for­
ward and backward in time, growing weaker with increasing distance. 

Other possible representations of the state are discussed in Jordan (1985). It is worth mentioning that 
the recurrent connections from the output units to the state units are not necessary for the operation of 
the network, given that there are connections between the state units. Consider, for example, two state 
units with antisymmetric connections. That is, let the weight on the link from one state unit to another 
be the negative of the weight on the inverse link. Furthermore, let these units have logistic activation 
functions with asymptotes at -1 and 1. These units act as an oscillator, and the trajectory of activations 
of the units follows a circle in the plane. Finally, if the units also have connections onto themselves, 
then the trajectories will be continuous, as required of the next-state function. Note that with this 
representation, state trajectories do not differ between sequences. This does not cause problems in 
learning to perform different sequences, however, because the plan vector serves to distinguish between 
sequences. Both this representation of the state and the exponential trace representation have been used 
in simulations of the network; however, only the results from the exponential trace representation will 
be reported in this paper. 

Although I have presented the theory using discrete-time state equations, the continuous case does 
not present substantial changes. In the continuous case, the state equations become a system of dif­
ferential equations defining a continous time dynamical system. The network architecture is the same 
as before, as are the assumptions made of the functions f and g. 6 Associations are learned between 
state and plan vectors to desired output vectors at particular epochs, essentially constituting points in the 
space of activations of the output units through which trajectories must pass. As to be discussed in the 
next section, I will modify the form of desired output vectors so that they specify regions in the output 
space, rather than points. Transitions between these regions tend to be smooth due to the underlying 
continuity of the state. 

Learning and Parallelism 

Learning is assumed to occur throughout the sequence being learned (rather than only at the end of 
the sequence). In the network, learning is realized as an error-correcting process in which parameters 
of the network are incrementally adjusted based on the difference between the actual output of the net­
work and a desired output. Essentially, the next-state function provides a time-varying state vector, and 
associations are learned from this state vector and the plan vector to desired output vectors. 

The form that desired output vectors are assumed to take is a generalization of the approach used in 
traditional error-correction schemes (Duda & Hart, 1973; Rosenblatt, 1962; Rumelhart, Hinton, & Willi­
ams, 1986; Widrow & Hoff, 1960). Rather than assuming that a value is specified for each output unit, 
it is assumed that, in general, there are constraints specified on the values of the output units. 

5 The linearity assumption gives the state a simple interpretation and also gives the state units a more extended dynamic range, but 
is not essential for the operation of the network. 

6 For the continuous equations to go through, it is imperative that each state unit have a connection to itself. This requirement is 
met by both of the state representations discussed above. 
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Constraints may specify a range of values that an output unit may have, a particular value, or no value 
at all. This latter case is referred to as a "don't-care condition." It is also possible to consider con­
straints that are defmed among output units; for example, the sum of the activations of a set of units 
might be required to take on a particular value. Constraints enter into the learning process in the fol­
lowing way: if the activation of an output unit fits the constraints on that unit, then no error corrections 
are instigated from that unit. If, however, a constraint is not met, then the error is defined as a propor­
tion of the degree to which that constraint is not met, and this error is used in changing system parame­
ters towards a configuration in which the constraint is met An example of this process is shown in 
Figure 4, for a desired output vector with three specified values and two don't-care conditions 
(represented by stars). As shown in the figure, errors are propagated from only those units where con­
straints are imposed. In cases where more than one constraint is imposed on an output unit, the error is 
just the sum of the errors from the separate constraints. 

Consider first the case in which desired output vectors specify values for only a single output unit 
Suppose that a network with three output units is learning the sequence 

The network is essentially being instructed to activate its output units in a particular order, and this case 
can be thought of as involving local representations for actions. At each time step, errors are pro­
pagated from only a single output unit, so that activation of that unit becomes associated to the current 

Target 
vector 

Output 
units 

x. = 
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.7 

changes 
in 
f 
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.7 
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o 
.3 

changes 
in 
f 

FIGURE 4. The network learns by propagating errors from output units where constraints are imposed on the activations. 
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state. 7 Associations are leamed from Sl to activation of the flrst output unit, from ~ to activation of the 
second output unit, and from S3 to activation of the third output unit These associations also generalize 
so that, for example, Sl tends to produce partial activations of the the second and third output units. 
This occurs because Sl is similar to ~ and SJ, by the assumption of continuity of the next-state function, 
and similar inputs produce similar outputs in these networks. Mter learning, the networlc will likely 
produce a sequence such as 

where at each time step, there are parallel activations of all output units. If the network is driving a set 
of articulators that must travel a certain distance, or have a certain inertia, then it will be possible to go 
faster with these parallel control signals than with signals where only one output unit can be active at a 
time. 

The foregoing example is simply the least constrained case and further constraints can be added. 
Suppose, for example, that the second output unit is not allowed to be active during the flrst action. 
This can be encoded in the constraint vector for the flrst action so that the network is instructed to learn 
the sequence 

Mter learning, the output sequence will likely be as follows: 

[H [H tH 
where the added constraint is now met In this example, the network must block the generalization that 
is made from from Sz to Sl. In general, the ability to block generalizations in this manner implies the 
need for a nonlinear output function. 

As further constraints are added, there are fewer generalizations across nearby states that are allowed, 
and performance becomes less parallel. Minimal parallelism will arise when neighboring actions 
specify conflicting values on all output units, in which case the performance will be strictly sequential. 
Maximal parallelism should be expected when neighboring actions specify values on nonoverlapping 
sets of output units. Note that there is no need to invoke a special process to program in the parallel­
ism; it arises from the ability of the system to generalize and is a manifestation of the normal function­
ing of the system. Indeed, in most cases, it will be more difficult for the system to learn in the more 
sequential case when there are more constraints imposed on the system. These observations are sum­
marized in Figure 5, which shows the relationships between constraint vectors and parallelism. 

Attractor Dynamics 

The properties of the system that lead to parallel performance also make the system relatively insen­
sitive to perturbations. Suppose that the system has learned a particular sequence and that during per­
formance of the sequence the state is perturbed somewhat. Given that similar states tend to produce 
similar outputs, the output of the system will not be greatly different from the unperturbed case. This 
would suggest that the network will perform a sequence which is a "shifted" version of the learned 

7 I am ignoring the plan here to simplify the exposition. 
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less constraint 
.9 * 

more parallelism 

1i' 
~ 

.5 .9 .4 

more constraint .5 .1 .9 .4 .6 
less parallelism 

FIGURE 5. Relationships between constraint and parallelism. 

sequence. However, a stronger property appears to hold: The learned sequences become attractors for 
nearby regions of the state space and perturbed trajectories return to the learned trajectories. For exam­
ple, if the network learns a sequence that corresponds to a cycle in the state space, then the cycle 
becomes a limit cycle for the system. This behavior will be demonstrated in the next section. To have 
limit cycles, a dynamical system must be nonlinear (Hirsch & Smale, 1974), which further demonstrates 
the need for a nonlinear output function in the network. 

More globally, a network that has learned to produce several different cyclical sequences may have 
several regions of the state space that are attractor basins for the learned cycles. If the network is 
started in one of these basins, then the performed trajectory will approach the learned cycle, with the 
part of the cycle that first appears depending on where in the basin the network is started relative to the 
configuration of the cycle. The network can be regarded as a generalization of a content-addressable 
memory (cf. Hopfield, 1982) in which the memories correspond to cycles or other dynamic trajectories 
rather than static points. 

Serial Order 

Before turning to a discussion of simulations of the network. it is worth considering how the current 
theory fares with respect to some of the general requirements of a theory of serial order. It should be 
clear that the theory can account for the production of abstract sequences, given that the state changes 
over time, and given that an appropriate output function can be constructed. Different orderings of the 
same actions can be achieved, both because the state trajectories may differ between the sequences and 
because the output function depends on the plan, and the plan can distinguish the different orderings. 
The theory has no problem with repeated actions; the existence of repeated actions simply indicates that 
the output function is not one-to-one, but that two or more state, plan pairs can map to the same output 
vector. Finally, sequences such as ABAC, which cause problems for an associative chaining theory 
because of the transitions to distinct actions after a repeated action, are possible because the state after 
the first A is not the same as the state after the second A. 

The theory is able in principle to account for a variety of regularities that occur within and between 
sequences. This is due to the fact that outputs and states are represented as types-that is, there is only 
one set of output units and one set of state units. The same weights underlie the activation of actions, 
in whatever position in the sequence, and in whatever sequence. Thus, particular weights can underlie 
the regularities observed for similar actions in similar contexts. This mechanism can potentially extend 
to higher level regularities, such as the phonological regularities of speech production. For example, 
the fact that voiceless stops lose their aspiration following an initial lsi (e.g., IspIn! is pronounced 
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[sbIn)) could be encoded by inhibitory connections from state units encoding the recent occurrence of a 
voiceless fricative to output units controlling the degree of aspiration. The ability of distributed net­
works to capture linguistic regularities in this way has been discussed by Rumelhart and McClelland 
(1986) in the domain of verb morphology, and Sejnowski and Rosenberg (1986) in the domain of gra­
pheme to phoneme translation. 

One of the more important tests of a theory of serial order is that it account for interactions both for­
ward and backward in time. In the current theory, time is represented implicitly by the configuration of 
the state vector. Interactions in time are due to the similarity of the state vector at nearby points in 
time. There is no time arrow associated with this similarity, thus, forward and backward interactions 
are equally possible. 

Limitations on the structure of the functions f and g will lead to some sequences being more diffi­
cult to learn and perform than others. For example, the temporal context cannot extend indefinitely far 
in time; thus, the repetition of lengthy subsequences that make transitions to different actions can be 
difficult to learn and perform. Also. similarity between action transitions in different plans can cause 
interference, as can similarity between plan representations. The interference can lead to errors and to 
the learning of one sequence causing negative transfer on another sequence. Interference can also have 
a positive side, of course, in the form of positive transfer. 

An important issue not directly addressed by the theory concerns the information necessary for the 
learning process. The theory assumes that learning occurs during the course of a sequence, rather than 
only at the end of the sequence. This implies the existence of another sequential process, which can be 
referred to as a teacher, that makes available the constraint vectors needed for learning. In other words, 
the theory posits that learning takes place by deriving one sequential process from another. This would 
seem to lead to an immite regress. However, this need not be the case. Constraint vectors may arise 
through analysis or planning based on sensory information from long loops through the environment. 
The theory provides a way for the system to eventually liberate itself from the environment and to pro­
duce sequences without the need for waiting for and analyzing sensory information. Another possibility 
is that the teacher process may depend on simpler serial ordering mechanisms than are needed for the 
general theory. For example, consider learning to pronounce a word that one encounters for the first 
time. If the word is written, we may scan the word slowly, relying on the properties of foveal vision to 
activate perceptual representations of the letters in order. These representations are already temporally 
ordered, and can be converted directly into a sequence of phonemic representations to be learned. 
Similar considerations apply when the words are presented auditorally, in which case the decay of 
representations in a low-level auditory buffer can be used to induce temporal order. These arguments 
suggest that mechanisms that are more properly part of a theory of attention or of short-term memory 
are relevant to specifying how the basic sequential processes needed for learning arise. It should also 
be noted that there are several potential gains to be realized in passing from one sequential process to 
another. For example, the teacher process can produce non-context-sensitive actions, and the learning 
process will integrate the actions, producing the sequence in a more rapid and fluent manner. Also, the 
teacher process may decide on the actions through a computationally intense planning process. The 
learning process produces the actions without the need for the planning. In this sense, the learning sys­
tem can be likened to a compiler. Finally, there also remains the problem of specifying how the com­
ponents of the constraint vectors themselves arise through learning. One approach involves the learning 
of an inverse kinematic or dynamic mapping, which can then be used to generate motoric error vectors 
from spatial errors (Rumelhart, personal communication, 1985). Another approach is to suppose that 
constraint vectors are not explicitly present during learning, but that the learning process acts as if it 
were using the constraints. For example, the learning process may be using a simple evaluation of per­
formance (cf. Barto, Sutton, & Anderson, 1983), and the construction of the evaluation signal may obey 
the constraints. In the current paper, I have assumed that these problems, involving learning of how to 
produce basic actions, can be usefully separated from problems that involve learning to produce 
sequences of actions. 
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Examples and Simulations 

The operation.of the network can be elucidated with the example of a network designed to perform 

the sequence AAAB, where A is the vector [: 1 and B is the vector [~]. Consider the network shown in 

Figure 6 with two output units, two state units, and one hidden unit. In this example, there is no need 
for a plan because only one sequence is being learned by the network. The weights are shown near the 
links between the units, and the biases are shown in the circles representing the units. Assume that the 
hidden unit and the output units are binary threshold units that have an output of 1 if their net input is 
positive, and 0 if their net input is negative.s The state units are assumed to be linear. Consider now 
the operation of the network when it starts with the state units set to O. The hidden unit has a negative 
bias, so its output is O. Thus the net input to the output units is O. However, these units have a posi­
tive bias, thus, they both have an output of 1, and the action A is produced by the network. At 
succeeding time steps, the same action A is produced until the activation on the state units is large 
enough to turn on the hidden unit. As shown in Table 2, this occurs after three occurrences of A. At 
this point, the hidden unit inhibits the output units and the action B is produced. 

The more complex network in Figure 7 can produce the two sequences AB and AAAB. This net­
work is essentially the same as before, but with an added hidden unit and two plan units. If the plan is 

p = [~]. then the second hidden unit is strongly inhibited and the network functions exactly as in the 

1 1 

.5 .5 

FIGURE 6. An example network with five units. The biases are shown in the circles representing the units, and the weights are 
shown near the links between units. 

8 TIrreshold units are used in the example for simplicity of exposition; all simulations to be described later, however, used the 
logistic function both for hidden units and for output units. 



TABLE 2 

ACTIVATION OF SfA1E UNITS 

Tune step Activations 

0 0 0 
1 1 1 
2 1.5 1.5 
3 1.75 1.75 

Sum 

o 
2 
3 
3.5 
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",evio", example. producing the sequence AAAB. If. on the othe< hand, the plan is p ~ [~]. then the 

fIrst hidden unit is inhibited, and the second hidden unit comes into play. This hidden unit has a 
smaller bias, and turns on after one occurrence of A. Thus, the network performs the sequence AB. 9 

These examples give some indication of how nonlinear hidden units allow networks to perform 
repeated actions and to use plan vectors to distinguish different sequences of actions. In general, how­
ever, the weights in the network arise not through design but through learning. A variety of simulation 
experiments have been carried out in which the network learned to perform sequences by changing the 

1 1 

.5 .5 

plan 

FIGURE 7. A more complex network. with two hidden units and two plan units. 

9 This network is somewhat unrealistic in that it continues to perfonn the action A, even when the plan units are turned off. 
Note also that if the plan (0, I) is left on the plan units, the network. will cycle; but will not repeat AAAB. This issue is {\iscussed 
below. 
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weights in the path from the st~llnits to Fte output Units[ i]e such experiment used all possible per­

mutations of Ibe actions A = l' B = l; l, and C = -1 . Th"'e were four hidden unilS and six 

plan units in the network, with two state units and two output units. The hidden units and the output 
units had a logistic activation function with min = -1 and max = 1, while the state units were linear. 
There were recurrent connections from the output units to the state units and from state units to them­
selves. The recurrent weight Jl on these latter connections was set equal to 0.4. The plans were ran­
domly chosen six-dimensional vectors, one for each permutation. 

In the simulation, a learning trial involved the following sequence of events. All units were first ini­
tialized to zero, then a particular plan was chosen as the input to the plan units. At successive time 
steps, the output of the network was compared to the next action in the permutation being learned, and 
errors were propagated back into the network using the algorithm of Rumelhart, Hinton, and Williams 
(1986). This procedure was followed for each permutation, with the units being reinitialized between 
permutations. After 334 such learning trials, the network was able to correctly perform each permuta­
tion when presented with the appropriate plan vector~o 

During learning, there is a choice as to the vector which is fed back to the state units at each time 
step. It is possible to feed back the actual output vector, or to feed back the desired output vector. 
When this second approach was used, the number of learning trials needed to learn the permutations 
decreased to 145. The learning is slower in the fIrst case because the states change over the course of 
learning, and the mappings that are learned early on therefore need to be adjusted as learning proceeds. 
In further simulations, the second method was used exclusively. When the network performance was 
tested, of course, the actual output vectors were fed back. 

In a second experiment, a similar network with one plan unit and two hidden units was taught to be 
an. up-down counter. The network was required to produce the sequence 

when the plan unit had an activation of -1, and to produce the same sequence in the opposite order 
when the plan unit had an activation of 1. When Jl was set to 0.4, the network needed 78 trials to learn 
these two sequences. 

Note that the sequences in the up-down counter cycle back to the action they started from. In the 
case in which Jl is 0, the network is automatically able to repetitively cycle through the actions after 
only learning one cycle because in this case the network simply associates the previous action to the 
current action. On the other hand, when Jl is greater than 0, the network will not be in exactly the 
same state after the last action as after the fIrst action, because there will be some residual activation on 
the state units. If the network is allowed to cycle, the residual will build up and cause an error to 
occur. For example, a network with a value of Jl = 0.5 was taught the sequence AAABA, where A and 
B are as defIned in the permutation experiment. When the network was allowed to cycle, it produced 
the sequence AAABAAABABAAAB, in which there is an error in the third cycle. For this network to 
be able to cycle correctly, it was necessary to teach it how to connect two cycles by teaching it the 
sequence AAABAAABA 

Table 3 shows the mappings from the state units to the output units that the network must learn in 
the case of the up-down counter when the weight Jl is equal to zero. As can be seen in the table, the 
fIrst output unit must compute the parity function. Parity is a nonlinear function which is difficult for 
these networks to compute (Minsky & Papert, 1969; Rumelhart, Hinton, & Williams, 1986). This 
example suggests that even for simple sequences, the output function f should be expected to be non­
linear. 

10 Correct performance was defmed in terms of the sum of squared error over the output units, swnmed across all actions in all 
sequences. This total error was required to be less than .05. 
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TABLE 3 

COUNTER 'IRANSITION FUNCITON 

Plan State units Output units 

0 0 0 0 1 
0 0 1 1 0 
0 1 0 1 
0 1 1 0 0 
1 0 0 1 1 

0 1 0 0 
0 0 1 

1 0 

Certain sequences are more difficult than others for the network to learn. The number of trials 
needed to learn various sequences of the actions A, B, and C (as defmed above) are shown in Table 4. 
In all cases, the network was started with small random weights and learned only one sequence. As can 
be. seen, an important and obvious determinant of difficulty is sequence length. Also, repeated actions 
cause difficulty when different actions can follow the repeated action in the same sequence. Otherwise, 
repeated actions speed learning somewhat (compare AAB and AABA). The reader might wish to com­
pare the intuitive difficulty of these sequences by defining them as repetitive tapping sequences. 

Plan Representations 

The major role of the plan vectors is to distinguish between the different sequences that the network 
can perform. Thus, as in the example of the permutations, the plans can be arbitrary vectors that 
merely serve to key a particular sequential process. However, there is much to be gained if plans have 
some structure that relates them to the sequences they produce. For example, if similar plan representa­
tions are used for similar sequences, then there will be generalization or positive transfer from one 
sequence to another. Also, in a noisy system, the inadvertent choice of a plan that is nearly the correct 
plan should be expected to lead to a simple error, such as a transposition, rather than to an entirely dif­
ferent sequence. 

A comparison between plan representation schemes was made for the permutation-learning network 
described above. Three different ways of using the six plan units were compared. The first representa­
tion was an arbitrary representation. Ten different replications were run with different random choices 
for the plan vectors. In the second representation, the plan units were partitioned into three slots of two 
units each. Each slot directly represented one of the three actions in the sequence being learned. For 
example, the plan for the sequence ABC was (-1, 1, 1, 1, 1, -1), with A in the first slot, B in the 

TABLE 4 

LEARNING OF VARIOUS SEQUENCES 

Sequence Trials 

AA 16 
AB 29 
ABC 34 
AABB 45 
AAB 47 
AABA 55 
ABAC 61 
ACABAA 134 
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second slot, and C in the third slot The third scheme represented the transitions in the sequence being 
learned. There are six possible transitions: AB, AC, BA, BC, CA, and CB. One plan unit was used for 
each transition. If that transition appeared anywhere in the sequence being learned, then the unit had a 
value of 1; otherwise it had a value of -1. For example, the plan for the sequence ABC was (1, -1, -1, 
1,-1,-1). 

The number of learning trials needed to learn all the permutations to criterion was 135 trials in the 
arbitrary representation, 129 trials in the slot representation, and 98 trials in the transition representa­
tion. The value given for the arbitrary representation is the average over the ten replications. Four of 
the arbitrary choices were better than the slot representation; none, however, were better than the transi­
tion representation. These results suggest that transitions are a good way to represent similarity 
between sequences in these networks, given the particular state representation that is being used in these 
simulations. It is also clear that the slot representation captures no underlying similarity in the 
sequences, due to the fact that the underlying mechanism does not take absolute position of actions into 
account. However, with larger action sets, such that the sequences being learned do not always involve 
the same actions, the slot representation would capture some of the similarity between sequences that 
involve the same actions. In this case, it would be expected to fare better than an arbitrary plan 
representation. 

Dynamical Properties of the Networks 

When a network learns to perform a sequence, it essentially learns to follow a trajectory through a 
state space. The state space consists of the ensemble of possible vectors of activation of the output 
units. An important fact about the learned trajectories is that they tend to influence points nearby in the 
state space. Indeed, the learned trajectories tend to be attractors. 

Consider, for example, a network taught to perform the cyclic sequence 

[.25] [.75] [.75] [.25] [.25] .25' .25' .75' .75' .25' 
The trajectory of the network is on the four corners of a square in the ftrst quadrant of the plane. The 
trajectory will repeatedly move around this square if the initial vector of activations of the output units 
is one of the comers of the square! 1 It is also possible to set the initial activations of the output units to 
other values, thereby starting the network at points in the space other than the four comers of the 
square. Figure 8 shows the results of a simulation experiment in which the network was started at the 
point (A, A). As can be seen, the trajectory spirals outward and begins to approximate the square more 
and more closely. When the network is started at a point outside of the square, the trajectory is found 
to spiral inward towards the square. A sample trajectory starting from the point (.05, .05) is shown in 
Figure 9. 

The two ftgures taken together indicate that the the square is a limit cycle for the network. All tra­
jectories eventually reach the square in the limitP Note that trajectories starting inside the square 
approach the limit cycle less rapidly than do trajectories starting outside the square. At a point inside 
the square, the trajectory is subject to influences associated with all four corners, and these influences 
are in conflicting directions and therefore tend to cancel one another. At a point outside the square, 
however, only a pair of adjacent comers tend to influence the trajectory, and adjacent influences do not 
conflict in this example. 

11 I am asswning that the weight ~ in the network is 0, or that the network has been explicitly taught to cycle. 

12 Technically. there is a single point in the interior of the square which is a point of unstable equilibritun. 
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FIGURE 8. The activations of the two output units plotted with time as a parameter. The square is the trajectory that the network 
learned, and the spiral trajectory is the path that the network followed when started at the point (.4, .4). 
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FIGURE 9. The activations of the two output units plotted with time as a parameter. The square is the trajectory that the network 
learned, and the spiral trajectory is the path that the network followed when started at the point (.05, .05). 

Further experiments were conducted with an up-down counter, in which there are two cycles that are 
learned, one for each of two plan vectors. When the plan unit was set to either of the plans 
corresponding to the learned sequences, it was possible to observe the limit cycle behavior as before. 
However, when the plan unit was set to an intermediate value, the network cycled indeterminately ina 
complex manner depending on the particular value of the plan unit Thus, for this network, the learned 
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sequences are not limit cycles. This is because there is no force pushing the plan unit towards one of 
the known plan vectors. However, such a force can be easily arranged: the plan units can be linked by 
symmetric connections in such a way that the known plans become point attractors for the subnetwork: 
consisting only of the plan units (Hopfield, 1982). For example, in the case of the up-down counter, a 
single positive recurrent weight is sufficient to drive the plan unit towards -lor I, which are the plans 
corresponding to the learned sequences. When this is done, the entire network: can be started in an 
arbitrary configuration, and the activation trajectories will eventually approach one of the two learned 
sequences. In this network, the learned sequences are limit cycles. The particular cycle that is 
approached in the limit depends on the initial values of the units; each of the limit cycles has a basin of 
attraction. In general, such networks will have multiple basins of attraction, one for each of the learned 
sequences. 

An attractor dynamics of the kind exhibited by the networks described above has several nice proper­
ties. The system tends to be noise-resistant, because perturbed trajectories return to the attractor trajec­
tory. The system is also relatively insensitive to initial conditions. Finally, the learning of a particular 
trajectory automatically generalizes to nearby trajectories, which is what is desired in many situations. 
The relevance of these properties to motor control has been recognized by several authors (Kelso, Saltz­
man, & Tuller, in press; Saltzman & Kelso, in press). I wish to suggest that such dynamics may also 
characterize the higher-level dynamical system which is responsible for serial ordering. 

Learning With Don't-Care Conditions 

The learning of sequences with don't-care conditions will be treated in more detail in the sections on 
coarticulation and dual-task performance. In this section, I discuss briefly the limiting case in which 
actions have no output units in common, so that every action has don't-care conditions for units used by 
other actions. In this case, due to the exclusive use of units by particular actions, the output units are 
perhaps better thought of as representations for whole actions, rather than as action features. That is, 
this case essentially involves local representations for actions. 

A simulation was carried out using the sequence 

.9 .: I * * 
* * * 
* , * , .9 ' * , 
* * * .9 

in which a star is used to designate don't-care conditions. A network with two hidden units and a 
weight J..l = 0.2 learned to produce this sequence. Note that at each time step, errors are propagated 
back from only one output unit 

Table 5 shows the sequence that the network produced once learning was complete. As can be seen, 

TABLES 

SIMULATED NElWORK PERFORMANCE 

Output unit Activations 

1 .90 .81 .79 .77 
2 .81 .90 .82 .79 
3 .80 .82 .90 .83 
4 .79 .81 .83 .90 

Note. 100 four columns are the activations of the output units 
at four successive time steps. 
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the values of .9 are correctly produced by the units at the appropriate times. Also, the don't-care condi­
tions have been filled in by the network. The filled-in values are all above .75, thus the performance is 
highly parallel. When the weights in the network were inspected, it was found that these large activa­
tions were mainly due to the biases of the output units, which had grown fairly large. This explains the 
fact that there is little dropoff in the partial activations of the units over time: The partial activations 
are not determined by the time-varying state but rather by the constant biases. In a second simulation, 
the network was required to produce values of 0 on the output units for the two time steps immediately 
consecutive to the sequence being learned. This manipulation constrained the biases and insured that 
the values of .9 were achieved mainly by the weights in the path from the state units to the output 
units. The performance of the network after learning was complete is shown in Table 6. The table 
shows that the don't-care values that were filled in were smaller. The parallelism is more restricted in 
this example, and there is a dropoff in the partial activations over time. Also, at any given time step, 
there is a graded pattern of activation such that the current action is most highly active, and future 
actions are successively less active. Finally, notice that there is an asymmetry to the filling-in process: 
There is more anticipation of future actions than there is perseveration of past actions. This asymmetry 
has been observed in many other simulations and arises from the use of the exponential average 
representation of the state. 

COARTICULA nON 

The theory presented in this paper involves a dynamical system which is constrained through a learn­
ing process to follow particular trajectories in a state space. The learning process relies on lists of con­
straints on the output units of the network. 

In the case of speech, these constraint lists can be taken to encode knowledge about the phonetic 
structure of the language and it is natural to identify these constraint lists with phonemes. Thus, 
phonemes constrain the dynamic process that produces utterances by changing parameters of the process 
until the constraints are met. During the learning process, parallel interactions between nearby 
phonemes can arise as long as they do not violate constraints. 

In this section, I present some simple simulations to demonstrate some predictions that the theory 
makes. It should be emphasized that I am not proposing a realistic model of speech production in this 
section. The physical level of the speech articulators is itself a complex dynamical system with inertias, 
stiffnesses, and other dynamical parameters. The output of the network is best thought of as influenc­
ing articulator trajectories indirectly, by setting parameters or providing boundary conditions for lower 
level processes which have their own inherent dynamics. Saltzman and Kelso (in press) have recently 
presented a mathematical framework in which it is possible to model such lower level dynamics. Their 
approach may eventually provide a reasonable set of parameters in terms of which constraints on the 
output units of the network can be defined. For present purposes, however, I have simply used a subset 
of traditional speech features to provide constraints for the output units. Furthermore, only the simplest 

TABLE 6 

SIMULATED NETWORK PERFORMANCE 

Output unit Activations 

1 .90 .62 .35 .17 
2 .59 .90 .70 .36 
3 .37 .79 .90 .53 
4 .26 .66 .81 .90 

Note. The foor columns are the activations of the output units 
at four successive time steps. 
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fonn of constraints were employed - value constraints and don't-care conditions. The value con­
straints were adapted from a list of real-valued features proposed by Ladefoged (1982). Choices for 
don't-care conditions were based on known allophonic variations when possible (for example, the 
rounding for the French lsI was taken to be a don't-care condition, because it is possible to have a 
rounded or an unrounded lsI). These simplifications make it unrealistic to attempt to model the details 
of the time course of coarticulation. However, certain more global aspects of coarticulation can still be 
discussed and the general operation of the network further elucidated. 

The problem of serial ordering in speech is typically treated in discrete tenns, and the relationship 
between discrete higher level processes and continuous lower level articulatory processes has provoked 
much debate in the literature on speech production (Fowler, 1980; Hammarberg, 1982; Perkell, 1980). 
In the current theory, however, such issues are not particularly problematic, because the entire system 
can be thought of as operating in continuous time. It is consistent with the current theory to assume 
that the defining state equations are simply a discrete version of a continuous dynamical system. In the 
continuous case, learning involves imposing constraints intermittently on the system at various points in 
time. In geometric tenns, constraints appear as regions through which continuous network trajectories 
must pass, with trajectories between regions unconstrained.13 To approximate the continuous system in 
the simulation, I have inserted several time steps between steps at which constraints are imposed. Dur­
ing these intennediate time steps, the network is free running (these intermediate steps can be thought 
of as having don't-care conditions on all of the output units). By conducting the simulation in this 
manner, it is possible to demonstrate the differences between the current approach and an assimilatory 
model in which different allophones are produced at each time step and interactions must begin and end 
at allophonic boundaries (cf. Fowler, 1980). 

Simulation Experiments 

Representations for the phonemes were adapted from Ladefoged (1982). Eight features were selected 
that provided adequate discriminations between the particular phonemes used in the simulations. The 
feature values were all between 0.1 and 0.9. 

The network used in the simulations had 8 output units, 10 hidden units, 6 plan units, and 8 state 
units. The state units had recurrent connections onto themselves with weights of J..l. = 0.5. 

The procedure used in the simulation was essentially that of the preceding section, with the following 
modification. During learning trials, constraint vectors were presented to the network every fourth time 
step. Learning occurred only on these time steps. During the intennediate three time steps, the units 
were updated nonnally with no learning occurring. 

In the first experiment, the network was taught to perform the utterance sinistre structure. The 
phoneme representations which were used are shown in Table 7, for the embedded sequence listrstryl 
only. The learning process involved repeated trials in which the phonemes in the sequence were used 
as constraint vectors for the network. The pIan was a particular constant vector whose composition is 
irrelevant here because the network learned only this one sequence. The results for the embedded 
sequence listrstryl are shown in Figure 10, which displays the output trajectories actually produced by 
the network once the sequence was learned to criterion. The network has learned to produce the speci­
fied values, as can be seen by comparing the values produced at every fourth time step with the values 
in the table. The network has also produced values for the don't-care conditions and for unconstrained 
parts of the trajectories. In particular, the value of .9 for the rounding feature of the rounded vowellyl 
is being anticipated as early as the third time step. In a control experiment, the sequence sinistre stric­
ture, in which the same consonant sequence is followed by the unrounded vowel IiI, was taught to the 
network. As shown in Figure 11, there is no rounding during the entire utterance. These results paral­
lel the results obtained by Benguerel and Cowan (1974). 

13 A game of croquet, with large, perhaps overlapping, wickets provides a picturesque analogy. 
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TABLE 7 

TIlE PHONEMES OF listrstryl 

Feature s r s r y 

voice 8 1 1 • 1 1 • 8 
place 7 9 9 2 9 9 2 7 
sonorant 8 2 1 5 2 1 5 8 
sibilant 1 9 2 4 9 2 4 1 
nasal • • 1 • • 1 • • 
height 9 9 9 9 9 9 9 9 
back • • 2 • • 2 1 
round • • • • • • 9 

Performance on listrstryl 

Voice [ 
Place [ 

Sonorant [ 
Sibilant [ 

Nasal [ 
Height [ 

Back [ - -
[ Round J 

0 8 16 24 32 

Time 

FIGURE 10. Output trajectories for the sequence lislrstryl. 

In a third experiment, the network learned the word freon, where the feature of interest is the nasal 
feature associated with the terminal In!. In the phoneme vectors, the IjI was specified as 0.1 for the 
nasal feature, the In! was specified as 0.9, and the intervening three phonemes had don't-care values for 
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Performance on listrstril 

Voice [ 
Place [ 

Sonorant [ 
Sibilant [ 

Nasal [ 
Height [ 
Back [ - -

Round 

[0" 0 8 16 24 32 

Time 

FIGURE 11. Output trajectories for the sequence listrslril. 

the nasal feature. Thus, this experiment is analogous to the previous experiment, with the interest in 
the anticipation of the nasal feature rather than the rounding feature. The results are shown in Figure 
12, in terms of the activation of the nasal feature at every fourth time step. As in the data of Moll and 
Daniloff (1971), there is substantial anticipation of the nasal value of the In! before and during the two 
vowels. Note that there is a steeper dropoff in the amount of anticipation in this sequence than in the 
sequence listrstryl. An investigation of the weights learned during these sequences revealed that the 
extensive coarticulation in the latter sequence arises from the repetition of phonemes. The rounding of 
Iyl is produced in a temporal context in which Istr/ was the preceding subsequence. A very similar con­
text occurs after the fIrst Irl, thus, there is necessarily coarticulation into the fIrst repetition of Istrl. 
These considerations suggest that there should be more coarticulation over strings that have homogene­
ous phonemic structure than over strings with heterogeneous phonemes. 

Another interesting aspect of the way in which coarticulation occurs can be seen by considering the 
voicing feature in Figure 10. This feature is unspecifIed for the phoneme Irl,14 but is specifIed as a 0.1 
for the directly adjacent features It I and lsI. Nevertheless, the fIrst Irl receives a smaIl amount of voic­
ing, which comes from the positive value of voicing for the nearby, but not adjacent, phonemes iii 

14 The Irl in French can be voiced or unvoiced depending on the context; compare rouge and Ietlre. 
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FIGURE 12. Activation of the nasal feature at every fourth time step during performance of the word freon. 

and Iyl. This result emphasizes the underlying mechanism of activation of the output units: Units are 
activated to the extent that the current state is similar to the state in which they were learned. This 
means that units with don't-care conditions take on values that are, in general, a compromise involving 
the values of several nearby phonemes, and not simply the nearest specified value. Typically, however, 
the nearest phoneme will have the most influence. 

These considerations suggest that the amount of forward coarticulation should be expected to depend 
not only on the preceding phonemes, but also on the following phoneme. If the phoneme following Iyl 
is unrounded, for example, then there should be less anticipation of the rounding of the Iyl than when 
the following phoneme is rounded or unspecified on the rounding feature (as in the example of struc­
ture). This prediction is borne out in simulation. The French pseudowords virtuo, virtui, and virtud, in 
which the rounded phoneme Iyl is followed by the rounded phoneme 101, the unrounded phoneme Iii, or 
the "don't-care" phoneme Id!, were taught to the network. The results are shown in Figure 13, in terms 
of the activation of the rounding feature at successive points in time. The figure shows that forward 
coarticulation in the network clearly depends on the following context 

Discussion 

In their review on coarticulation, Kent and Minifie (1977) distinguish between submovements in an 
articulatory sequence that have "immediate successional impact," that is, those that "must follow one 
another in a prescribed sequence," and sub movements without immediate successional impact, that are 
"accommodated within the sequential pattern defmed by the locally critical articulatory transitions." The 
model presented in this section obeys this distinction, where constraints specify the locally critical arti­
culatory transitions. The model also provides a mechanism for the process of "accommodation," by 
which features without immediate successional impact can be integrated into the articulatory program. 

If the distinction made by Kent and Minifie is correct, the question arises as to how the system 
knows which transitions have immediate successional impact and which do not. The model presented 
here assumes that this knowledge is encoded in the definitions of the phonemes. Note that these 



28 MICHAEL L JORDAN 

1.0 

C 0 virtuo 
0 

virtud 0.8 • -+-
0 • virtui 
> 

-+-
U 0.5 « 
<J) 
I.... 
:J 0.4 

-+-
0 
(j) 

It... 
0.2 

0.0 
v i r t u o/i/d 

Segment 

FIGURE 13. Activation of the rounding feature at every fourth time step during performance of three French pseudowords. 

definitions are themselves independent of context: They specify in what ways a phoneme can be 
altered by its context, without specifying values for particular contexts. 

It is worthwhile to compare the current model to a feature-spreading model such as that proposed by 
Henke (1966). Henke's model is essentially a buffer model, in which positions in the buffer are loaded 
with the phonemes to be produced. Phonemes are lists of trinary features, each of which can have the 
value +, -, or O. When a buffer position is to be executed, features having value 0 are filled in by an 
operator that serially inspects "future" buffer positions until a plus or a minus is found. Once all 
features are filled in, the allophonic variation thus created can be executed. Although this model is 
similar to the current model in the sense that both rely on context-independent representations of 
phonemes that specify dimensions along which the phonemes can be altered, there are important differ­
ences. From a conceptual point of view, the underlying mechanisms that determine output values are 
quite different and have different empirical consequences. In the current model, parallel performance 
arises automatically, without the need for a special process to program in the parallelism. This occurs 
because the current state is similar to the state in which nearby phonemes were learned, and similar 
states tend to produce similar activations of the output units. There is therefore no implication that 
features can spread indefinitely in time, which is true of a strict intetpretation of Henke's model (cf. 
Gelfer, Harris, & Hilt, 1981). Rather, the spread of a feature in time diminishes due to the dropoff in 
similarity of the state. For similar reasons, there is no implication that feature vectors change discretely 
in time. As the state evolves continuously in time, the components of the output vector also evolve 
continuously in time, with no necessary coherence between anticipated or perseverated features and 
adjacent segments (cf. Fowler, 1980). Indeed, there is really no notion of a segment in the output of the 
network. Also, whereas Henke's model is an assimilatory model of coarticulation, the current model is 
best thought of as a model of parallelism in speech production. As shown in the simulations, the paral­
lel model predicts nonadjacent interactions: For example, the amount of forward coarticulation of a 
feature in a phoneme depends on what follows the phoneme. Although an assimilatory model could be 
constructed to mimic this behavior (if need be), it would seem better accounted for within the parallel 
approach. However, I know of no empirical evidence relevant to deciding this issue. Finally, it should 
be noted that in the current model, utterances are not explicitly represented (i.e., in a buffer) before . 
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being produced. Rather, the process is truly dynamic; utterances are implicit in the weights of the net­
work, and become explicit only as the network evolves in time. 

The simulations presented above relied only on the simplest constraints on the output units. How­
ever, there is much to be gained by considering more complex constraints such as inequality constraints, 
range constraints, or constraints between units. Certain effects of context, such as the dentalization of 
thy Id/ in width, are often treated as phonological in origin, rather than resulting from coarticulation. In 
the current model, however, the Id/ could be represented as having a range constraint on the place of 
constriction feature (Le., a constraint that the place be between a pair of values). The actual value 
chosen for the place feature will be dependent on the neighboring context through a constraint satisfac­
tion process during learning, rather than dynamically at the time of production. Similarly, constraints 
between units can determine which gesture is chosen out of several possibilities. For example, if the 
sum of the activations of three output units must be a particular value, then it is possible to trade off 
the activations among the units if particular units are further constrained by neighboring context 

There are two possible versions of a parallel model of coarticulation. The first assumes that parallel­
ism is feature-specific, that is, that particular features of a phoneme can be anticipated or perseverated. 
This approach is consistent with the distinction of Kent and Minifie (1977) discussed above, and is the 
approach that I have emphasized. However, it is also possible to assume that all of the components of 
a phoneme must be activated together. This is the approach favored by Fowler (1980), who claims that 
coarticulation results from the coproduction of "canonical forms." In the current framework, such 
phoneme-specific parallelism occurs when phonemes specify constraints on nonoverlapping sets of out­
put units. In the limiting case, each phoneme can constrain a unique output unit, in which case the par­
tial activations of output units lead to the partial production of entire phonemes rather than specific 
features. It is still possible to represent phonemes by features, but this must be done at a lower level in 
the system, below the level at which parallelism arises. 

However, it would appear that feature-specific parallelism is necessary. For example, in the produc­
tion of a sequence of vowels followed by an Inf, it would seem important that only the velar movement 
associated with the nasal be anticipated, and not the alveolar tongue position. There is some evidence 
for this kind of phenomenon in the data of Kent, Carney, and Severeid (1974). In recordings of the 
articulatory movements during the utterance contract, they found that the movement towards the alveo­
lar tongue position for the Inl began 120 milliseconds after the onset of velar lowering for the Inl. 
More detailed investigation of this issue, particularly EMG studies, would seem highly relevant to a 
better understanding of coarticulation and the representation of speech. 

To summarize, the current proposal is that coarticulation results from the similarity structure of the 
state at nearby points in time. The dropoff in similarity of the state defmes the zone in which the 
features of a phoneme can possibly be present in the output. Within this zone, the pattern of coarticula­
tion that is obtained depends on the constraints that are imposed by other nearby phonemes. 

DUAL-TASK PARALLELISM 

In previous sections, I have concentrated on the interactions that arise between actions in a sequence. 
It has been shown how a network that learns to produce sequences comes to merge actions so that they 
are produced at least partly in parallel. I now discuss interactions between actions that are to be per­
formed simultaneously. In this case, parallelism is not simply allowed by the task demands, it is 
required. 

In a simple sense, such parallelism is already exhibited by the networks previously discussed. The 
actions produced by the network are vector-valued and can be thought of as composed of subactions 
that are performed in parallel. However, these subactions have been treated only as parts of a whole, 
and have not been thought of as being separate actions which can be performed alone. I now wish to 
focus on the "dual-task" problem: How is it possible for actions that have been learned separately to be 
performed simultaneously? What I intend to show is that the interference that arises in such a situation 
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is due to the same mechanism as the coarticulatory "interference" that arises between actions in a 
sequence. Furthermore, the learning process which eliminates dual-task interference is of the same 
form as that required to block coarticulatory interactions when neighboring actions are not allowed to 
overlap. 

~ Figure 14 shows a simplified network model of interaction between tasks. In the figure, both the 
input units and the output units can be partitioned into nonoverlapping sets of units, over which states 
and outputs corresponding to the two tasks can arise simultaneously and independentlr.s The tasks 
interact because the mappings from states to outputs pass through overlapping sets of hidden units. The 
hidden units therefore form a channel in which task interference can arise. Such interference is not 
inevitable because it is perfectly possible for vectors of activation to coexist on a set of units without 
creating interference. This will be the case if the weights emanating from the channel are organized in 
such a way as to "fIlter" the relevant vectors from the overall activation pattern. However, interference 
is highly likely when the tasks have been learned separately, and special learning regimes are needed to 
allow simultaneous performance. 

Consider first the learning of a single task in isolation. Suppose that this involves the learning of an 
association between a vector Sl on the state I units and a vector Xl on the OUtputl units. The learning 
should be restricted to the path between the statel units and the outputl units. Given the way the net­
work learning rule works, the entire network can be thought of as learning an association between the 
state vector <51> 0> and the output vector <Xl> *>, where 0 stands for zero activation on all of the state2 
units and the star stands for a vector of don't-care conditions on the output2 units. This notation 
emphasizes the fact that the desired output vector specifies only those values that are relevant to the 
association being learned (it is also likely that there are don't-care conditions within the Xl vector, so 
that coarticulation is possible). Learning of only the relevant values simplifies the learning process; 

Output 
Units 

Hidden 
Units 

Input 
Units 

output
1 

output2 

FIGURE 14. A network: model of task interference. The output units are partitioned into two sets of units corresponding to the 
two tasks, as are the input units. 

IS In what follows, I have simplified the notation by omitting reference to the plans. 
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however, it also means that the activation of the state I units will produce spurious activation of the out­
put z units. due to the existence of the shared channel. This spurious activation or crosstalk will pose 
no problem for single task performance, because these output units can be inhibited as a group. How­
ever, there will be interference when tasks involving both sets of units are performed simultaneously, 
because the crosstalk from one task will conflict with the activations produced by the other task (and 
vice versa). 

There are two ways in which learning can suppress this interference and allow dual-task performance 
to improve. First, the crosstalk can be eliminated, by relearning the tasks in such a way as to take each 
other into account Second, the crosstalk can be incorporated into the output activations. This involves 
a different sort of relearning in which the two tasks are redefined as a single combined task. In the 
combined task, the state vectors and the output vectors are simply the juxtaposition of the correspond­
ing vectors in the tasks as defmed separately. As will be shown, this second method has the disadvan­
tage of potential negative transfer to single task performance. 

Simulation Experiments 

A number of simulation experiments have been carried out to investigate some of the relationships 
between crosstalk, task similarity, and learning. 

The network used in the simulation is essentially that shown in Figure 14. There were 6 input units, 
3 hidden units. and 6 output units, with all possible connections between the input units and the hidden 
units, and between the hidden units and the output units. The units themselves were as described in 
Equation 1, with linear output functions. The assumption of linearity is made simply for purposes of 
clarity of presentation, and the results obtained apply qualitatively to the nonlinear case as well. 

The following notation will be used to describe the simulations. There are assumed to be two tasks, 
each involving a single association. The state vectors associated with the tasks are denoted SI and Sz, 
respectively. They are three-dimensional vectors representing the activation patterns on nonoverlapping 
sets of units-51 is a pattern on the first three input units, whereas Sz is a pattern on the remaining three 
units. The single-task situation involves the presentation of either SI or Sz, with zeroes on the remaining 
input units. Thus, the full input vector is either <SI' 0> or <0, Sz>. In the dual-task situation, the pat­
tern < SI, Sz> is presented to the input units. The desired output vectors are also three-dimensional and 
are denoted by XI and Xz. The first task is performed correctly when XI appears on the first three out­
put units, with undefined values on the remaining output units. For the second task, the vector Xz 

should arise on the last three output units, with the first three units undefined. In dual-task perfor­
mance, the desired output vector is <Xl> xz>. I will use the star notation introduced earlier to refer to 
don't-care conditions. Thus, the pattern <*, xz> is a six-dimensional vector with the first three values 
unconstrained. Finally, the patterns of activation on the hidden units are denoted VI and vz. Unlike the 
other vectors, these vectors arise on the same set of units. In the dual-task condition, due to the linear­
ity assumption, the pattern VI + Vz will appear on the hidden units. It is the relationship between VI and 
vz, as well as the mappings from these vectors to the output vectors, that determine the interference 
between processes. 

The learning rule is the same as that used in previous networks. During each learning trial, the 
actual output of the network is compared to the desired output, and the weights are changed to reduce 
the discrepancy. This occurs only for outputs with specified values; no learning takes place for don't­
care conditions. In all of the simulations, the network was started with zero initial weights. 

Experiment 1 

As discussed above, dual-task interference is assumed to arise from crosstalk through a shared chan­
nel. The first experiment shows how to quantify this crosstalk and how it can be eliminated through 
learning. 
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Particular random values were chosen for the vectors SI and XI> and the network learned the mapping 
from SI to XI until a criterion performance was achieved!6 The full patterns used on each learning trial 
were <Sit 0> on the input units and<XI~ *> on the output units. With these patterns, the properties of 
the learning rule lead to only those weights in the path from SI to XI being changed. 

Once the first task had been learned, two different versions of the second task were created. The two 
versions were used in separate replications of the experiment, and were created by the following pro­
cedure. First, a particular vector V2 was chosen such that its inner product with VI was a particular 
value (0.5 in the fIrst version of the task and 0.7 in the second version)~7 Then, by inverting the matrix 
from the Sz units to the hidden units, a particular Sz vector was found that produced v2' Finally, the 
desired output vector X2 was defmed to be the output produced when <0, Sz> was presented to the net­
work, effectively eliminating the need for learning of the second task. This manner of defming the 
second task was simply a convenient way of insuring a particular value of the inner product between VI 

and V2 at the outset. 
At this point, the network could correctly perform the two tasks in single-task conditions. However, 

no provisions had been made for simultaneous performance, and it was expected that there would be 
interference in this condition. 

Dual-task trials were performed by putting <SI> Sz> on the input units and observing the output pro­
duced on the XI units. The output error was calculated as the sum of the squared error between XI and 
the actual output. This error constitutes a measure of crosstalk because XI was correctly produced in 
the single-task condition. The data are shown as the left most data points in Figure 15. As can be 
seen, the crosstalk is larger when the inner product of V2 with VI is larger. This is the case in which 
there is more similarity in the representations of the simultaneous processes in the shared channel. 
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FIGURE 15. Crosstalk as a function of amount of learning for high and low similarity tasks. 

16 The criterion was that the squared error, summed over the output units, was less than .01. 

17 The vector VI is that vector present on the hidden units when <51,0> is put on the input units. It is detennined entirely by 
the learning process. In both versions, the vector v2 was chosen such that HV2n = HVIIi. 
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Next, a learning process was initiated whereby the crosstalk could be eliminated and dual-task perfor­
mance improved. Ten learning trials were run in which the mapping <0. Sz> to <0. X2> was learned. 
Note that the values of the fIrst three output units, which would normally be don't-care features, are 
now specilled as O. The Sl to Xl mapping was then relearned to criterion. and crosstalk in the dual-task 
condition was remeasured. As shown in the figure. the crosstalk was lowered and dual-task perfor­
mance was therefore improved. The learning process was then repeated, leading to even less crosstalk. 
Eventually, after a suffIcient number of learning trials, the dual-task interference was reduced to zero. 
This held for both levels of initial similarity. At this point, the tasks could be performed correctly in 
both the single-task condition and the dual-task condition. 

Experiment 2 

Experiment 1 demonstrated the influence of task similarity on crosstalk. where task similarity is 
defmed by the similarity in the representations of two tasks in a shared channel. In Experiment 1, the 
two tasks were the only tasks that the network learned to perform. In a more realistic situation, how­
ever, the network will have learned many other tasks, and this prior learning may have some effect on 
the crosstalk observed between tasks. In terms of a communication metaphor, it might be expected that 
the shared channel has some inherent capacity, and as this capacity is approached, interference between 
processes will grow. 

Experiment 2 was performed to investigate the notion of interference due to channel capacity. The 
experiment involved a replication of Experiment 1, with the following change. Six pairs of vectors 
were selected randomly and the network learned to associate these vector pairs. Three of the pairs 
involved the fIrst three input and output units and three of the pairs involved the remaining input and 
output units~8 The procedure of Experiment 1 was then followed, using the same vectors Sl and Xl' The 
vectors Sz and X2 were again defIned such that at the beginning of the dual-task trials, the similarity 
be.tween the tasks was 0.5 and 0.7, and both mappings were being performed correctly in the single-task 
condition. 

The results in the dual-task condition are shown in Figure 16. The results are similar to those shown 
in Figure 14; however, the crosstalk is initially much larger than in Figure 14, and it takes more trials 
to reduce the crosstalk to zero. There is once again an effect of similarity, with more similar tasks pro­
ducing more crosstalk. 

The larger crosstalk in this experiment is due to proactive influences being evoked through the shared 
channel. It is not difficult to see why this must happen. Consider the weights between the hidden units 
and the fIrst three output units. These weights implement the mapping from VI to Xl and thus allow the 
fIrst task to be performed correctly. However, the same weights also implement other mappings involv­
ing the prelearned vector pairs. When VI + V2 is present on the hidden units in the dual-task condition, 
the V2 vector evokes some of these other mappings, to the extent that these other mappings involve 
similar representations on the hidden units. This leads to crosstalk over and above the direct influence 
of V2 on the VI to Xl mapping that was observed in Experiment 1. 

Experiment 3 

The third experiment investigated how learning can occur in the dual-task condition through the 
incorporation rather than the elimination of crosstalk. In the fIrst two experiments, the dual-task learn­
ing procedure respected the integrity of the separate tasks. That is, learning trials involved learning one 
task or the other, with the added stipulation that a task not produce crosstalk on units used by the other 
task. This learning procedure would be expected to improve both dual-task and single-task 

18 The procedure was repeated ten times, with different random selections of the vector pairs. The results are averages over the 
repetitions. 
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FIGURE 16. Crosstalk as a function of amount of learning for high and low similarity tasks, in a network with previous learning. 

perfonnance. Another learning procedure is possible in which the tasks are integrated into a single 
combined task. In the combined task, the input and output patterns are the juxtapositions of the pat­
terns in the tasks as defined separately. Thus, dual-task learning trials involve learning to associate the 
combined input vector <81> ~> with the combined output vector <Xl> X2>' 

As in Experiment 1, the mapping from 51 to Xl was first learned to criterion, and the vectors ~ and 
X2 were defined so that the network was able to correctly perform both tasks in single-task conditions. 
At this point. error in the dual-task condition was exactly as in Experiment 1. These data are shown as 
the left most data points in Figure 17. The second learning procedure was then used to learn the com­
bined task. As can be seen in the figure, the error in dual-task performance eventually goes to zero. 
Transfer to single-task performance was then investigated by presenting the network with the vector 
<81> 0>. The error, which was zero before the dual-task learning trials, was found to have increased to 
0.18. Relearning the task separately led once again to error in dual-task performance; but it was possi­
ble, through alternation of the two learning procedures, to eventually find a set of weights where both 
single-task and dual-task performances were correct 

Discussion 

The simulation experiments show how phenomena similar to those observed in behavioral experi­
ments on dual-task performances can arise from crosstalk in a parallel distributed processing network. 
Interference due to crosstalk was shown to be a function of the similarity of the tasks in terms of their 
representations in a shared channel. Interference also arises from limited channel capacity when the 
same channel is used to implement several mappings. Both sources of interference have a graded 
deleterious effect upon performance; the network thus obeys the principle of graceful degradation (Nor­
man & Bobrow, 1975). 

Interference can be lessened and eventually eliminated through learning. The learning procedure 
essentially finds representations that interfere minimally so that tasks can be performed in parallel. This 
process has implications for the distinction between automatic and serial processes (Shiffrin & 
Schneider, 1977). It suggests that the automaticity of a task is always relative to a particular set of 
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FIGURE 17. Amount of crosstalk as a function of learning in the integrated learning condition. 

tasks with which it no longer interferes. There may be other tasks that show interference with an 
"automatic" task. This is a very different conception of automaticity from the view that says that a task 
is automatic when it no longer needs limited resources. 

A fmal point should be made about learning. If crosstalk can be eliminated through learning, the 
question arises as to why it is not eliminated ab initio. That is, during the original learning process, it 
would seem possible to specify values for all don't-care conditions so that no crosstalk would be pro­
duced once learning was complete. However, there are several reasons why this approach would not be 
possible. First, it would destroy previously established connections within domains (learning with 
don't-care conditions on units protects associations previously made to those units). It would also des­
troy potentially useful connections that had previously been established between domains, such as those 
underlying the relationships between speech and hand gestures. Also, in general, the number of units 
that have don't-care conditions would be expected to be very much larger than the number of units with 
constrained values (for example, in speech no values would be specified for limbs, hands, etc.). Even if 
it were possible to specify values for all of these units, this would impose a large number of further 
constraints upon the weights being learned and slow learning considerably. Finally, as argued in previ­
ous sections, don't-care conditions are needed for interactions between actions in a sequence. Such 
co articulatory interactions can be thought of as a useful form of crosstalk. 

In general, both coarticulatory parallelism and dual-task parallelism would be expected to be present 
in complex sequential behavior. They essentially involve interactions across time and across space, 
respectively (where by "space," I mean different motor subsystems):9 Coarticulatory parallelism is pos­
sible because the generalizations leading to actions spreading in time have been allowed. Dual-task 
parallelism is possible because generalizations leading to interference (actions spreading in "space") 
have been suppressed. 

19 Perhaps a better terminology would be the linguist's "syntagmatic" and "paradigmatic" dimensions. 
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OTHER ISSUES 

The present paper has concentrated on only certain aspects of the serial order problem, namely, those 
involving temporal ordering, learning, and parallelism. However, there are many other phenomena that 
are relevant to the serial order problem and in this section I briefly consider some of these other 
phenomena The discussion here should be taken only as indicating directions in which further research 
should proceed. 

Rate 

There are several possible approaches to making the overall rate of performance speed up or slow 
down in the networks considered here. One approach would be to add tonic excitation or inhibition to 
the entire network. However, this would likely have the effect of expanding or contracting behavioral 
sequences without regard to their content, which is not what is typically observed (Gentner, 1985). 
Another approach, similar to that used by Rumelhart and Norman (1982), is to have mutually inhibitory 
connections with variable gain between the output units. In the current approach, these connections 
would not be used to encode serial order, but rather would allow a kind of competition in which 
stronger outputs would suppress weaker outputs. Larger values of inhibition would tend to suppress 
weak coarticulatory interactions and slow down the overall rate of performance. 

Errors 

A discussion of the kinds of errors that can be generated by a sequential network modified to have a 
stochastic activation rule is beyond the scope of this paper. However, the basic principle is fairly clear: 
The network: embodies the assumption that similar inputs tend to lead to similar outputs, so that cases 
in which discriminations must be made between similar plan and state vector pairs yield the most 
potential for error. This means that capture errors, substitution errors, and omission errors would be 
likely (cf. Grudin, 1983; Norman, 1981). Also, increasing parallelism between neighboring actions can 
be expected to increase the probability of errors (cf. Rumelhart & Norman, 1982). 

Dell (Dell, 1984; Dell & Reich, 1980) has shown how a variety of error patterns, including transposi­
tions and spoonerisms, can be accounted for in a connectionist model. The output of his model is a 
single static vector encoding the string of phonemes to be produced, thus the problem of temporal per­
formance is not directly addressed. However, this approach could be treated as a specification of how 
the plan is set up, in the terminology of the current theory. This approach of assuming that errors can 
be made in setting up the plan is able to account for the fact that coarticulatory interactions tend to be 
appropriate to the sequence actually produced, not the intended sequence (Harris, 1984). 

Hierarchies 

Many researchers have suggested that motor sequences are organized into hierarchical structures 
(Albus, 1981; Estes, 1972; Greene, 1972; MacKay, 1982; Miller, Galanter, & Pribram, 1960; Povel & 
Collard, 1983; Rosenbaum, Kenny, & Derr, 1983). The concept of a hierarchy is not inconsistent with 
the current approach - it is possible to construct layered systems where each layer is a sequential net­
work of the kind discussed in this paper. The output units of higher layers would constitute plan units 
for lower layers, and it would be necessary to have backward connections from the state units in a layer 
to the state units in the preceding layer. Some of the technical considerations involved in this construc­
tion are discussed in Jordan (1985). 
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CONCLUSIONS 

The current theory provides an alternative to the traditional motor program approach to the serial 
order problem. The traditional approach, based on the von Neumann stored program, assumes that 
motor actions are instructions that are assembled into a structure which is then scanned by a sequential 
processor. The parallelism and interactiveness of real behavior prove burdensome to such an approach, 
and typically, extra mechanisms must be invoked. In the current approach, on the other hand, parallel­
ism is a primitive, arising directly from the continuity of the mappings defming the system. Strictly 
sequential performance is simply the limiting, most highly constrained case. 

The concept of state is central to the current theory. Time is represented implicitly by the configura­
tion of the state vector, and it is the assumption of a continuously varying state that relates nearby 
moments in time and provides a natural way for behavior to be parallel and interactive locally in time 
while still broadly sequential. The similarity structure of the underlying state should provide, according 
to the current approach, a theoretical point of convergence for many kinds of behavioral data. The pat­
tern of coarticulation depends on this similarity structure, errors are more likely when discriminations 
must be made between similar states, dual-task interference is a function of similarity, and learning is 
faster when similar actions are associated to similar states. Thus, if the theory is to prove useful, eluci­
dation of the similarity structure of the states underlying sequential behavior becomes an overriding 
theoretical and empirical concern. 
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