arXiv:2506.12708v1 [cs.DC] 15 Jun 2025

T

HUAWEI

Serving Large Language Models on Huawei CloudMatrix384

Pengfei Zuo, Huimin Lin, Junbo Deng, Nan Zou, Xingkun Yang, Yingyu Diao,
Weifeng Gao, Ke Xu, Zhangyu Chen, Shirui Lu, Zhao Qiu, Peiyang Li, Xianyu Chang,
Zhengzhong Yu, Fangzheng Miao, Jia Zheng, Ying Li, Yuan Feng, Bei Wang, Zaijian Zong,
Mosong Zhou Wenli Zhou, Houpang Chen’, Xingyu Liao* Ylpeng Li’ WenX|ao Zhang ,
Ping Zhu', Yinggang Wang’, Chuanjie Xiao , Depeng Liang , Dong Cao , Juncheng Liu’,
Yonggiang Yang, Xiaolong Bai, Yi Li, Huaguo Xie, Huatao Wu, Zhibin Yu, Lv Chen, Hu Liu,
Yujun Ding, Haipei Zhu, Jing Xia, Yi Xiong, Zhou Yu™, Heng Liao™
Huawei
“SiliconFlow

Abstract
The rapid evolution of large language models (LLMs), driven by increasing parameter scales, adoption of
mixture-of-experts (MoE) architectures, and expanding context lengths, imposes unprecedented demands
on Al infrastructure. Conventional Al clusters are increasingly constrained by compute intensity, memory
bandwidth limitations, inter-chip communication overhead, and stringent latency requirements. In real-world
deployments, these challenges are further compounded by the need to handle diverse, bursty workloads,
variable-length inputs, and imbalanced expert activations, while meeting strict service-level objectives. Over-
coming these constraints requires a fundamentally re-architected, co-designed hardware and software stack.

To address these challenges, this paper introduces Huawei CloudMatrix, a next-generation Al datacen-
ter architecture that embodies Huawei’s vision for reshaping the foundation of Al infrastructure. Huawei
CloudMatrix384 represents the first production-grade realization of this vision. It integrates 384 Ascend 910C
NPUs, 192 Kunpeng CPUs, and other hardware components into a unified supernode, interconnected via an
ultra-high-bandwidth, low-latency Unified Bus (UB) network. Unlike conventional hierarchical designs, this
architecture enables direct all-to-all communication via UB, allowing compute, memory, and network resources
to be dynamically pooled, uniformly accessed, and independently scaled. These architectural features are
particularly beneficial for communication-intensive operations such as large-scale MoE expert parallelism and
distributed key-value (KV) cache access, making CloudMatrix384 a scalable and high-performance foundation
for next-generation LLM serving.

To fully harness CloudMatrix384’s capabilities, we propose CloudMatrix-Infer, a comprehensive LLM
serving solution that establishes a best practice for deploying large-scale MoE models such as DeepSeek-R1.
CloudMatrix-Infer incorporates three core innovations. First, we design a peer-to-peer serving architecture that
disaggregates prefill, decode, and caching into independently scalable resource pools. Unlike existing KV cache-
centric architectures, this design enables high-bandwidth, uniform access to cached data via the UB network,
thus reducing data locality constraints, simplifying task scheduling, and improving cache efficiency. Second,
we design a large-scale expert parallelism (EP) strategy that leverages the UB network to achieve efficient
token dispatch and expert output combination. This strategy supports a very large EP degree, e.g., EP320,
enabling each NPU die to host exactly one expert, thus achieving low decode latency. Finally, we propose
a set of hardware-aware optimizations tailored to CloudMatrix384, including highly-optimized operators,
microbatch-based pipelining, and INT8 quantization, to enhance execution efficiency and resource utilization.

Our extensive evaluation with the DeepSeek-R1 model shows that CloudMatrix-Infer achieves state-of-the-
art efficiency without sacrificing accuracy. CloudMatrix-Infer delivers a prefill throughput of 6,688 tokens/s
per NPU, and a decode throughput of 1,943 tokens/s per NPU (at <50 ms TPOT). These results correspond to
compute efficiencies of 4.45 tokens/s/TFLOPS for prefill and 1.29 tokens/s/TFLOPS for decode, both exceeding
published results for SGLang on NVIDIA H100 and DeepSeek on NVIDIA H800. CloudMatrix-Infer also
effectively manages the throughput-latency trade-off, sustaining a 538 tokens/s decode throughput even under
the stricter sub-15 ms TPOT constraint. Furthermore, the INT8 quantization on Ascend 910C maintains model
accuracy comparable to the official DeepSeek-R1 API across 16 distinct benchmarks.

¥ Corresponding authors: yuzhou@huawei.com, liaoheng@hisilicon.com.

https://arxiv.org/abs/2506.12708v1

CONTENTS

ADSEEACT . i e e 1
Comntentst i i i i e et i et et 2
1 Introduction.ttt ittt iiiiiieeeeeeeanns 4
2 LLM Trends and Their Challenges for Datacenter Infrastructure................ 6
2.1 LLMTIends.ttt e e e 6
2.2 Challenges for Datacenter Infrastructure. 7

3 Huawei CloudMatriXoovtiiiiuniiiii ittt iiiinneeneen 8
3.1 Vision for Huawei CloudMatrix i 8
3.2 CloudMatrix384 Overview: A Fully Peer-to-Peer Hardware Architecture........... 9
3.3 Hardware Componentsutunttnn e 11
331 Ascend 910C Chipottt 11

332 Ascend 910C NOde.ottt 12

3.33 UBSwitch System 12

3.4 Software Stack. 13
3.4.1 CANNfor Ascend NPUS.t 13

3.4.2 Infrastructure Software for Cloud Deployment 15

3.5 Suitability Analysis for DeepSeek Models............... i 16
3.5.1 DeepSeek Models and Their Deployment on NVIDIA H800. 16

3.5.2 Architectural Synergy between CloudMatrix384 and DeepSeek Models. 16

4 DeepSeek Serving on Huawei CloudMatrix384t 17
4.1 Overview: A Peer-to-Peer Serving Architecture with PDC Disaggregation. 18
4.2 Tightly-Coupled Decode with Large-scale Expert Parallelism. 20
4.2.1 Fused Communication Operators for LEP 20

4.2.2 MLA Optimization. 24

4.2.3 Microbatch-Based Decode Pipeline 26

4.2.4 Multiple-Token Prediction Support........, 27

4.3 Resource-Efficient Prefill with Hybrid Parallelism and Microbatching. 28
4.3.1 Hybrid Parallelism for MLA Computation 28

4.3.2 Microbatch-Based Prefill Pipeline 30

433 Low-interference Transferring between Prefill and Decode.................. 31

4.4 UB-Driven Distributed Caching with Unified Memory Access 32
441 Disaggregated Memory Pooling. 33

442 Context Caching 35

443 Model Caching. 36

45 INT8 Quantizationttt e e e 37

5 Evaluations...........c.eiiiiiiiiii i i e 39

5.1 Experimental Setup 39

Serving Large Language Models on Huawei CloudMatrix384 3

5.2 Overall Performance. o 40
5.3 ACCUIACY .« ottt ettt ettt e e e e e e e e e e 42
54 Ablation Study 43
5.4.1 Microbatch-based Pipeline i 43

5.4.2 M P . 45

543 Context Cachingot 45

5.5 Performance of Operatorsooouiiiiiiiiiiinnn i 46
5.5.1 Communication Operators................ 47

552 MLA Operator 48

553 GEMM Operatorttt 48

6 Discussions on Future Directions............... i, 49
6.1 Future CloudMatrix Evolutions. i i i 49
6.1.1 Unifying VPCand RDMA Planes.t 49

6.1.2 Larger-scale Supernodes.o 50

6.1.3 Physical Disaggregation and Pooling of CPUs............................. 51

6.2 Future Serving System Enhancements.......... 52
6.2.1 Component-Level Disaggregation.......... i, 52

6.2.2 Hybrid and Adaptive Deployment. 53

7 ConCluSION . ..ot e et et 54

=] =3 =3 4 (o <1 54

1 Introduction

The landscape of large language models (LLMs) has undergone a dramatic transformation in recent
years, driven by several defining trends: the exponential growth of parameter scales, the widespread
adoption of mixture-of-experts (MoE) architectures, and the substantial extension of context
lengths [33]. Modern LLMs such as DeepSeek-R1 [13], LLaMA-4 [39], and Qwen-3 [49] routinely
scale to hundreds of billions or even trillions of parameters, placing unprecedented demands on
compute power and memory capabilities. MoE models introduce structural sparsity by selectively
activating a small subset of experts per token, enabling greater efficiency at scale while introducing
new system-level challenges in expert routing and synchronization [18, 30, 34]. Simultaneously,
context windows have expanded from tens of thousands to over a million tokens [21, 45], imposing
immense strain on attention computation and key-value (KV) cache storage. The total KV cache
capacity grows linearly with the number of concurrent users, placing significant constraints on
how KV cache is distributed, placed, and accessed across the system to support efficient inference.
These trends collectively cause intense pressure on Al infrastructure, requiring massive compute
power, high memory capacity and bandwidth, intensive inter-chip communication, and stringent
latency constraints, ultimately pushing conventional Al clusters to their scalability limits.

In production environments, serving such models is further complicated by the dynamic and
heterogeneous nature of real-world workloads. To be specific, LLM serving systems must accom-
modate variable-length user inputs, imbalanced expert activations across tokens, and highly bursty
user queries, while sustaining stringent latency and throughput targets. Meeting these demands
goes beyond simply scaling up hardware resources. It demands a comprehensive hardware and
software co-design, including tightly integrated compute, memory, and network hardware resources
complemented by intelligent task scheduling, adaptive runtime orchestration, and elastic resource
management strategies that dynamically respond to evolving model structures and fluctuating
workloads. In summary, as LLMs continue to scale in both size and complexity, it becomes essential
to reimagine the design of Al infrastructure from the ground up.

In response to these needs, we present Huawei CloudMatrix, a next-generation Al datacen-
ter architecture built on the principle of fully peer-to-peer high-bandwidth interconnectivity and
fine-grained resource disaggregation. We specifically highlight CloudMatrix384, the first production-
grade implementation of this innovative architectural concept. CloudMatrix384 is an Al supernode
purpose-built for large-scale Al workloads, featuring a fully peer-to-peer interconnected hard-
ware design. It comprises 384 Ascend 910C NPUs and 192 Kunpeng CPUs, interconnected via
an ultra-high-bandwidth and low-latency network named unified bus (UB). In particular, this
UB network enables direct all-to-all data exchange across all compute and memory components.
Unlike conventional hierarchical architectures with uneven intra-node and inter-node intercon-
nect bandwidth, CloudMatrix384 allows the entire supernode to operate as a logically unified,
tightly coupled compute entity, embodying the fully peer-to-peer principle that “everything can
be pooled, treated equally, and combined freely”. These architectural features are particularly
beneficial for communication-intensive operations such as large-scale MoE expert parallelism and
distributed KV cache access, making CloudMatrix384 a scalable and high-performance foundation
for next-generation LLM serving.

The initial design of CloudMatrix384 predates the widespread adoption of MoE architectures [15,
39, 49], as the design and deployment of such a comprehensive supernode system typically spans
several years. Nonetheless, CloudMatrix384 was purpose-built to enhance interconnect bandwidth
and communication efficiency—core capabilities essential for scaling large training and inference
workloads. The emergence of large-scale MoE models such as DeepSeek-R1 [13] validates this

Serving Large Language Models on Huawei CloudMatrix384 5

architectural foresight, highlighting that communication bandwidth is as crucial as compute and
memory bandwidth capabilities in modern LLM deployments.

To fully exploit CloudMatrix384’s capabilities, we propose CloudMatrix-Infer, a comprehensive
LLM serving solution that represents a best practice for deploying large-scale MoE models such as
DeepSeek-R1. CloudMatrix-Infer introduces three core innovations.

First, we design a novel peer-to-peer serving architecture that disaggregates the LLM inference
system into three independent subsystems: prefill, decode, and caching. Peer-to-peer means that
the three subsystems operate as equal and independent resource pools, without being orchestrated
around a centralized entity. This contrasts sharply with conventional KV cache-centric architec-
tures [41, 48], which tightly couple request scheduling to the physical placement of cached KV
blocks, adding scheduling complexity and limiting flexibility in resource assignment. By leveraging
the high-bandwidth UB interconnect, we construct a disaggregated memory pool that provides
shared caching services across the system. All NPUs in the prefill and decode subsystems can access
cached KV data directly from this pool in a peer-to-peer manner, with uniform bandwidth and
latency, regardless of where the data was originally computed or stored. This design decouples
request scheduling from data locality, greatly simplifying task scheduling logic, improving cache
efficiency, and enhancing overall system resource utilization.

Second, we develop a large-scale expert parallelism (LEP) strategy specifically optimized for MoE
models. The core principle of LEP is to aggregate compute power and memory bandwidth across a
large number of NPUs to accelerate the computation of attention and feed-forward networks. This
acceleration comes at the cost of increased communication overhead due to token dispatch and
expert output combination. However, CloudMatrix384’s ultra-high-bandwidth UB interconnect
ensures that this communication latency remains bounded and does not become the dominant
performance bottleneck. Furthermore, our LEP strategy supports extremely high degrees of expert
parallelism, such as EP320, enabling each NPU die to host exactly one expert for DeepSeek-R1. This
configuration minimizes serial execution among experts within the same rank, thereby reducing
overall MoE execution latency. Together, these design choices enable low decode latency and deliver
substantial end-to-end performance gains for MoE-based inference.

Finally, we introduce a suite of hardware-aware optimizations explicitly tailored for CloudMa-
trix384, including highly-optimized Ascend operators, microbatch-based pipelining, and INT8
quantization. The optimized operators accelerate end-to-end execution and provide efficient sup-
port for LEP. The microbatch-based pipelining design enhances both resource utilization and system
throughput by overlapping the processing of two consecutive microbatches. INT8 quantization
boosts computational efficiency and substantially reduces memory bandwidth consumption. Collec-
tively, these optimizations are co-designed with the unique architectural features of CloudMatrix384,
including on-chip cube, vector, and communication engines, as well as the high-bandwidth UB
interconnect, to maximize overall execution efficiency.

Our evaluation of CloudMatrix-Infer on the CloudMatrix384, using the 671-billion-parameter
DeepSeek-R1 model, demonstrates impressive performance and hardware efficiency. In the prefill
phase, CloudMatrix-Infer achieves a throughput of 6,688 tokens/s per NPU for a 4K prompt length.
Leveraging the Ascend 910C’s 1,054 TFLOPS (INT8) capability, this translates to a compute efficiency
of 4.45 tokens/s per TFLOPS. For the decode phase, the system sustains 1,943 tokens/s per NPU for
a 4K KV cache Length while maintaining a time-per-output-token (TPOT) consistently below 50
ms, yielding an efficiency of 1.29 tokens/s per TFLOPS. Notably, the compute efficiency metrics
for both phases surpass those of leading frameworks like SGLang on NVIDIA H100 and DeepSeek
on NVIDIA H800. CloudMatrix-Infer also demonstrates effective management of the fundamental
throughput-latency trade-off. To meet a stricter sub-15 ms TPOT requirement, CloudMatrix-Infer
can dynamically adjust its batch size, achieving a decode throughput of 538 tokens/s per NPU.

This highlights its predictable performance and adaptability under varying service-level objectives.
Furthermore, the INT8 quantization maintains accuracy comparable to the official DeepSeek-R1
API across 16 representative benchmarks. These results collectively establish CloudMatrix384,
in combination with our peer-to-peer serving solution CloudMatrix-Infer, as a scalable, high-
throughput, and production-grade platform for large-scale LLM deployment.

The remainder of this paper is organized as follows. Section 2 begins by reviewing key LLM
trends and presenting system-level challenges inherent in conventional datacenter infrastructure.
Section 3 describes the vision of Huawei CloudMatrix and details the design of CloudMatrix384.
We then introduce the serving system architecture and optimization techniques employed in
CloudMatrix-Infer in Section 4. A detailed performance evaluation is presented in Section 5. Finally,
Section 6 outlines our future research directions before Section 7 concludes the paper.

2 LLM Trends and Their Challenges for Datacenter Infrastructure

In this section, we first discuss recent trends in large language model (LLM) design that are shaping
the landscape of Al computing (§2.1). We then present the corresponding system-level challenges
these trends impose on conventional datacenter infrastructure (§2.2).

2.1 LLM Trends

The rapid evolution of LLMs has been marked by three prominent trends: the ever-increasing
model parameter counts, the adoption of sparsity through Mixture-of-Experts (MoE) architectures,
and the extension of context windows. These developments aim to enhance model performance
while addressing computational efficiency and scalability.

Ever-Larger Parameter Counts. Empirical scaling laws suggest that increasing the number
of parameters in LLMs leads to improved model performance across various tasks [33]. Recent
developments exemplify this trend: Meta’s Llama 4 Behemoth boasts nearly 2 trillion parameters,
while its counterpart, Llama 4 Maverick, comprises 400 billion parameters [39]. DeepSeek-V3,
developed by DeepSeek-Al, contains 671 billion parameters [15]. Google’s PaLM model includes
540 billion parameters [8], and xAI's Grok-1 features 314 billion parameters [54]. These models
underscore the industry’s ongoing pursuit of scaling LLMs to enhance capabilities in reasoning,
multilingual understanding, and code generation.

Sparsity through MoE. To manage the escalating costs of training and inference, modern LLMs
increasingly adopt sparsely-activated MoE architectures, which decouple total model capacity from
per-token computational requirements. Notable implementations include Mixtral 8x7B, which
comprises 46.7 billion total parameters but activates only 12.9 billion per token by routing each
token to 2 of 8 experts per layer, achieving performance comparable to GPT-3.5 while maintaining
computational efficiency [32]. Databricks’ DBRX employs a fine-grained MoE architecture with 132
billion total parameters, activating 36 billion per token through the selection of 4 out of 16 smaller
experts, enhancing throughput and reducing latency [19]. Meta’s Llama 4 series introduces MoE in
open-source models, with Llama 4 Maverick utilizing 128 experts and Llama 4 Scout employing
16 experts, both maintaining 17 billion active parameters per token [39]. DeepSeek-V3 expands
upon its predecessor by increasing the number of routed experts per layer from 160 to 256, thereby
enhancing model capacity without proportionally increasing computational load [14, 15]. Alibaba’s
Qwen3-235B model incorporates 128 experts, activating 22 billion parameters per token, balancing
large-scale capacity with computational efficiency [49]. Huawei’s Pangu Ultra MoE model scales to
718 billion parameters, with 39 billion active parameters per token. It employs an MoE architecture
featuring 256 experts per layer, of which 8 are activated per token [52]. Collectively, these models
underscore a paradigm shift in LLM scaling strategies, emphasizing the importance of architectural
sparsity over sheer parameter count to achieve enhanced performance and efficiency.

Serving Large Language Models on Huawei CloudMatrix384 7

Extension of Context Windows. The expansion of context windows in LLMs enables the
processing of longer sequences, which is vital for tasks requiring extended reasoning and coherence.
Recent advancements reflect this shift: OpenAI's GPT-4.5 supports a context window of 128,000
tokens [45], while Google’s Gemini 2.5 Pro offers a context window of up to 1 million tokens [21].
Benchmarks such as LongBench [6] quantify the benefits of extended context windows for tasks like
question answering, summarization, and multi-step reasoning. However, feeding LLMs with long
prompts significantly increases computational costs and prolongs inference latency. To mitigate
these costs, production systems adopt context caching, wherein key-value (KV) blocks generated
from earlier prompt segments are stored and reused across subsequent turns or requests. This
approach eliminates redundant attention computations for prompts, thereby reducing latency and
improving efficiency [20, 48].

2.2 Challenges for Datacenter Infrastructure

These LLM trends place stringent new demands on underlying datacenter infrastructure. As model
capabilities continue to expand, they drive the emergence of increasingly complex workloads,
such as reasoning-intensive inference, reinforcement learning (RL)-based post-training, interactive
media generation, and autonomous Al agents. These applications require not only significantly
greater compute and memory capacity, but also a fundamental re-architecture of infrastructure to
support high-bandwidth communication, low-latency storage access, and sustained throughput,
while meeting tight service-level latency objectives under dynamic, heterogeneous real-world
conditions. In this context, we identify four key system-level challenges:

Challenge 1: Scaling Communication-Intensive Parallelism. As model sizes grow, state-of-
the-art Al models often exceed the capacity of a single compute node, necessitating multi-node
parallelism strategies. While existing Al clusters support inter-node communication via RDMA
networks, their bandwidth and topology are typically optimized for data or pipeline parallelism
(DP/PP), which involve modest inter-node traffic. However, tensor parallelism (TP) and expert
parallelism (EP) demand frequent, fine-grained, and low-latency communication that is difficult to
scale efficiently across node boundaries. This forces many deployments to confine TP/EP groups
within a single compute node, limiting scalability.

Challenge 2: Maintaining High Utilization under Heterogeneous AI Workloads. Modern
Al workloads exhibit highly diverse and dynamic resource requirements. Training is typically
compute-intensive, inference (particularly the decode phase of LLMs) is often limited by memory
bandwidth, and tasks such as autonomous-driving model training involve substantial CPU-side
data preprocessing. Fixed node configurations cannot efficiently accommodate this diversity, often
leading to over-provisioning or underutilization. To maximize efficiency and adaptability, modern
Al infrastructure must enable dynamic, fine-grained composition of heterogeneous resources, e.g.,
NPUs, CPUs, and memory, adapted to the specific demands of each workload.

Challenge 3: Enabling Converged Execution of Al and Data-Intensive Workloads. Al
workflows increasingly intersect with traditional data-intensive operations such as data inges-
tion, preprocessing, retrieval, analytics, and simulation. Meanwhile, general-purpose workloads,
e.g., databases, big data, and HPC, are themselves evolving to incorporate Al capabilities. These
converged execution patterns demand high-throughput, low-latency communication and flexible
resource orchestration. However, legacy datacenter infrastructures primarily optimized for conven-
tional general-purpose workloads struggle to meet these stringent requirements. Enabling efficient
convergence of Al and data-intensive tasks requires a fundamentally new infrastructure.

Challenge 4: Delivering Memory-class Storage Performance. Modern Al pipelines operate
at unprecedented data scales that far exceed the capabilities of traditional storage systems. Tasks,

Disaggregated Disaggregated Disaggregated Disaggregated h
NPU Pool CPU Pool Memory Pool Other Resources
¥ ¥ ¥ ¥
@%H @%H @‘i//?“ @"t//:“
Disaggregated

NPU cPU Mem Others NIC Pool g

2

dz} |
@L//’ ‘;‘;
®
c g
Ultra-High-Performance Networking (Scale Up) NI]
o
One CloudMatrix Supernode %
- J 2
9]
e N [E
f‘ 3 8
]
W g
a

Ultra-High-Performance Networking (Scale Up) NIC
Other CloudMatrix Supernodes

Fig. 1. Huawei’s CloudMatrix architecture vision reimagines Al datacenter infrastructure from the ground
up. By dismantling traditional siloed designs, it enables full peer-to-peer disaggregation and pooling of CPUs,
NPUs, memory, NICs, and other resources over a unified, ultra-high-performance networking, forming the
foundation for scalable, Al-native datacenters.

such as ingesting petabyte-scale datasets, managing multi-terabyte model checkpoints, and sup-
porting latency-sensitive inference, particularly with large KV caches and retrieval-augmented
generation (RAG) modules, require storage subsystems with memory-class bandwidth, latency, and
IOPS. Legacy storage hierarchies, designed around disk-based access patterns, frequently become
performance bottlenecks, leading to NPU underutilization due to data starvation.

3 Huawei CloudMatrix

To address these emerging challenges in Al workloads, Huawei proposes CloudMatrix, a next-
generation Al datacenter architecture designed to reshape the foundation of Al infrastructure. This
architectural vision centers on constructing a unified, tightly-coupled compute fabric that can
efficiently support the scale, heterogeneity, and communication demands of modern Al applications.
CloudMatrix384 represents the first production-grade realization of this vision, delivering a purpose-
built platform optimized for large-scale Al workloads.

This section begins by outlining the CloudMatrix vision (§3.1). We then provide an overview of
the fully peer-to-peer hardware architecture of CloudMatrix384 (§3.2), followed by a breakdown of
its core hardware components (§3.3). Next, we present the software stack that enables CloudMatrix
deployment in Huawei Cloud (§3.4). Finally, we analyze its suitability for efficiently serving large-
scale MoE models like DeepSeek-R1 (§3.5).

3.1 Vision for Huawei CloudMatrix

In response to the escalating demands of modern large-scale Al workloads, Huawei introduces
CloudMatrix, a pioneering next-generation Al datacenter architecture. This architecture is meticu-
lously designed around the principle of fully peer-to-peer high-bandwidth interconnectivity and
fine-grained resource disaggregation. As conceptually outlined in Figure 1, CloudMatrix moves

Serving Large Language Models on Huawei CloudMatrix384 9

beyond traditional CPU-centric hierarchical designs. It facilitates direct, high-performance commu-
nication among all heterogeneous system components, including NPUs, CPUs, DRAM, SSDs, NICs,
and domain-specific accelerators, notably without requiring CPU mediation.

At the heart of this architecture is the ultra-high-bandwidth, low-latency Unified Bus (UB)
network, which facilitates efficient, system-wide data movement and coordination. Built upon this
interconnect substrate, CloudMatrix delivers four foundational capabilities that collectively define
a new paradigm for Al-native infrastructure:

(1) Scalable Communication for TP/EP. The UB interconnect supports direct, high-throughput
peer-to-peer communication across NPUs, enabling TP and EP groups to scale beyond the
boundary of a single node. This removes inter-node bottlenecks and allows large models to
be efficiently distributed across the supernode.

(2) Flexible Resource Composition for Heterogeneous Workloads. CloudMatrix disaggre-
gates CPUs, NPUs, and memory into independently pooled resources, enabling fine-grained,
workload-driven composition. This flexibility allows resource allocation at fine granularity
based on workload needs, e.g., memory-rich caching nodes, CPU-heavy preprocessing nodes,
freeing deployments from fixed node configurations or PCle-based host-device coupling.

(3) Unified Infrastructure for Converged Workloads. The high-bandwidth UB network
supports both Al and data-intensive applications within a single, scale-up infrastructure.
This enables converged execution of LLM inference, training, simulation, and analytics
workloads, an increasingly common requirement for hybridized Al pipelines.

(4) Memory-class Storage via Disaggregated Memory Pool. CloudMatrix aggregates CPU-
attached DRAM across the cluster into a shared, high-performance memory pool accessible
via UB. This substrate powers services such as the elastic memory service (EMS) [26], which
accelerates latency-critical operations like KV cache reuse, parameter loading, and model
checkpointing by eliminating conventional I/O bottlenecks.

Huawei CloudMatrix384, described in the following sections, is the first production-grade real-
ization of this architectural vision. It is specifically engineered to meet the compute, memory, and
communication demands of next-generation Al workloads at scale.

Table 1. Comparison of intra-node and inter-node communication bandwidth and latency in a CloudMa-
trix384. NPU-related metrics are per-die (each Ascend 910C has two dies). The Ratio column is calculated as
Inter-node value / Intra-node value. All reported network bandwidth values denote unidirectional bandwidth.

Unidirectional Bandwidth (GB/s) Latency (ps, 512 Bytes)
Path Operation Inter-node Intra-node Ratio Inter-node Intra-node Ratio
Read 164 167 0.98 1.9 1.2 1.58
NPUNPU Waite 135 137 0.99 2.1 13 1.62
Read 147 151 0.97 1.7 1.0 1.70
NPU-CPU Write 107 110 0.97 1.9 1.1 1.73

3.2 CloudMatrix384 Overview: A Fully Peer-to-Peer Hardware Architecture

CloudMatrix384 is engineered as an Al supernode that integrates 384 Ascend 910C neural-network
processing units (NPUs) and 192 Kunpeng central processing units (CPUs), as illustrated in Figure 2.
A defining feature of CloudMatrix384 is its peer-to-peer, fully interconnected, ultra-high-bandwidth
network that links all NPUs and CPUs via the UB protocol. CloudMatrix384’s UB design is a

10

384 NPUs + 192 CPUs per Supernode

«———— 8NPUs +4CPUs per Node ——— > «——— 8NPUs +4CPUs per N\ode —— >

‘ Scale Up: UB Switch (Level 2) ‘

‘ Scale Up: UB Switch (Level 1) ‘ ------ ‘ Scale Up: UB Switch (Level 1) ‘
t t+ ¢t ¢ ¢t ¢t ¢t ¢t ¢t t ¢t ¢t t + ¢t ¢t ¢ttt ¢ttt ?
392 GBJs per NPU | [160GBIs percPu__| 392 GBIs per NPU | [160 GBIs percPU_ |

ooz

e—
— |
fe— .
le—1
le—1
fe— "~ -
—
le— [

:

‘ Scale Out: RDMA (Up to 165K NPUSs)

400 Gbps per Node 400 Gbps per Node

‘ VPC (via Qingtian Card)

Fig. 2. Peer-to-peer hardware architecture of a CloudMatrix384 supernode, featuring an ultra-high-bandwidth
Unified Bus (UB) plane for intra-supernode scaling, an RDMA plane for inter-supernode communication,
and a Virtual Private Cloud (VPC) plane for integration with the datacenter network. All reported network
bandwidth values denote unidirectional bandwidth.

precursor to the UB-Mesh proposed in [38]. Each of the 384 NPUs and 192 CPUs connects through
UB switches, enabling inter-node communication performance that closely approximates intra-
node levels. As shown in Table 1, inter-node bandwidth degradation is under 3%, and inter-node
latency increase is less than 1 ps. Given that modern Al workloads are predominantly bandwidth-
intensive rather than latency-sensitive, this marginal latency overhead has a negligible impact on
the end-to-end performance of Al tasks. Overall, this design allows CloudMatrix384 to function
as a tightly-coupled, large-scale logical node with globally addressable compute and memory,
facilitating unified resource pooling and efficient workload orchestration.

To support diverse traffic patterns and maintain compatibility with legacy datacenter networks,
CloudMatrix384 incorporates three distinct yet complementary network planes:

1) UB Plane. The UB plane forms the primary ultra-high-bandwidth scale-up fabric within
the supernode. It directly interconnects all 384 NPUs and 192 CPUs in a non-blocking all-to-all
topology. Each Ascend 910C contributes over 392 GB/s of unidirectional bandwidth. UB enables:
(1) efficient implementation of fine-grained parallelism strategies such as TP and EP, unconstrained
by node boundaries; (2) fast peer-to-peer access to pooled memory (spanning both CPU and NPU
memory), which is crucial for efficiently caching model weights and KV caches.

2) RDMA Plane. The RDMA plane enables scale-out communication across CloudMatrix384
supernodes and external RDMA-compatible systems. It currently adopts RDMA over Converged
Ethernet (RoCE) to ensure compatibility with standard RDMA stacks.! Each NPU contributes up to
400 Gbps of unidirectional RDMA bandwidth. NPUs are the sole participants in this plane, isolating
RDMA traffic from control and storage operations. Key functions include: (1) high-speed transfer of
active KV cache data between prefill and decode NPUs during inference; (2) support for distributed
training and inference using RDMA-compliant frameworks; (3) low-latency interconnect across
supernodes in multi-cluster deployments.

1An alternative design, RDMA over UB, leverages UB’s native support for remote memory access to form a unified UB
domain for both intra- and inter-supernode communication. While this approach offers streamlined semantics and avoids
protocol translation overhead, the current implementation opts for RoCE to ensure immediate compatibility with existing
RDMA libraries and tooling.

Serving Large Language Models on Huawei CloudMatrix384 11

UB Plane ‘
A A
196 GB/s (One-wa 196 GB/s (One-wa

A A\
> g =
2 P :

BS g

S m Ascend 9 Ascend 2
o IS 910C Die 2 910C Die .
) 8 O)
3 ! 2 3

[200 Gbos*(One»wav)] [200 Gbps (One-way

RDMA Plane ‘

Fig. 3. Logical overview of the Huawei Ascend 910C chip, highlighting its dual-die architecture. All reported
network bandwidth values denote unidirectional bandwidth.

3) VPC Plane. The virtual private cloud (VPC) plane connects the CloudMatrix384 supernode
to the broader datacenter network via high-speed NICs (Huawei’s Qingtian card), offering up to
400 Gbps of unidirectional bandwidth per node. It operates over standard Ethernet and IP protocols,
optionally augmented with UB-over-Ethernet (UBoE). The VPC plane handles: (1) management and
control-plane operations such as deployment, monitoring, and scheduling; (2) access to persistent
storage, including the object storage service (OBS), the elastic volume service (EVS), and the scalable
file system service (SFS); (3) external service communication from CPU-resident workloads, e.g.,
databases and user interfaces.

Although the long-term vision of CloudMatrix aims to converge RDMA and VPC planes into a
single unified plane as shown in Figure 1, the current CloudMatrix384 separates them to ensure
backward compatibility with legacy datacenter infrastructure. We discuss the future work of
unifying VPC and RDMA planes in §6.1.1.

3.3 Hardware Components
3.3.1 Ascend 910C Chip

At the core of CloudMatrix 384 is the HiSilicon Ascend 910C NPU, Huawei’s 2024-era flagship Al
accelerator that succeeds the original Ascend 910B. The 910C is a dual-die package: two identical
compute dies are co-packaged, sharing eight on-package memory stacks and connected by a
high-bandwidth cross-die fabric, as shown in Figure 3.

Compute. Each die sustains approximately 376 TFLOPS of dense BF16/FP16 throughput, yielding
a total of 752 TFLOPS per package. Each die contains 24 Al cube (AIC) cores, optimized for matrix
and convolution workloads, and 48 Al vector (AIV) cores for element-wise operations. All compute
engines support FP16/BF16 and INTS8 data types. The 8-bit quantization can be implemented with
INTS precision, enabling computational efficiency comparable to native FP8 hardware without
requiring dedicated FP8 support. The two dies communicate over an on-package interconnect that
provides up to 540 GB/s of total bandwidth, 270 GB/s per direction.

Memory. The Ascend 910C package integrates eight memory stacks (16 GB each), providing
a total of 128 GB of on-package memory (64 GB per die). The package delivers up to 3.2 TB/s of
aggregate memory bandwidth, with 1.6 TB/s available per die.

Network Interfaces. Each Ascend 910C die interfaces with two distinct network planes. 1) UB
Plane: The die integrates seven high-speed transceivers, each operating at 224 Gbps, providing a

12

@ e UB Plane (2]
p A \ The RDMA Plane
448 GB/s per Switch 3.2 Thps
(UB) (RDMA)
: Ywitch Boar ; g Ywitch Boar ; é Ywitch Boar § g Ywitch Boar !

|
160 GB LN XTI = e A

i i a3 |l ; : a3 Driver :
CPU Board : W i1 | Switch H

— CPU [+

 cru i

° = cPu (4
The VPC Plane / \392/GB/s per NPU
Y2 N\ (UB)
<+<—— DPU — CPU
400 Gbp,
(VPC)
NPU NPU NPU NPU NPU NPU NPU NPU
400 Gbpg per NPU NPU Board NPU Board

(ROMA)

Fig. 4. Logical overview of an Ascend 910C node within the CloudMatrix384. All reported network bandwidth
values denote unidirectional bandwidth.

total of 196 GB/s unidirectional (or 392 GB/s bidirectional) bandwidth to the scale-up UB plane.
2) RDMA Plane: Separately, each die includes a dedicated interface delivering up to 200 Gbps of
unidirectional bandwidth for the scale-out RDMA plane.

3.3.2 Ascend 910C Node

Each compute node in CloudMatrix384 integrates 8 Ascend 910C NPUs, 4 Kunpeng CPUs, and 7 UB
switch chips onboard, as illustrated in Figure 4. The 12 processors (8 NPUs and 4 CPUs) connect to
these on-board switches via UB links, creating a single-tier UB plane within the node. Each NPU is
provisioned with up to 392 GB/s of unidirectional UB bandwidth, while each Kunpeng CPU socket
receives approximately 160 GB/s of unidirectional UB bandwidth. An individual UB switch chip
onboard offers 448 GB/s of uplink capacity to the next switching tier in the supernode fabric.

Only NPUs participate in the secondary RDMA plane. Each NPU device contributes an additional
400 Gbps unidirectional link for scale-out RDMA traffic, yielding an aggregate of 3.2 Tbps of RDMA
bandwidth per node.

Within the CPU complex, the four Kunpeng CPU sockets are interconnected via a full-mesh
NUMA topology, enabling uniform memory access across all CPU-attached DRAM. One of the CPUs
hosts the node’s Qingtian card, a dedicated data processing unit (DPU) that not only integrates high-
speed network interfaces but also performs essential node-level resource management functions.
This Qingtian card serves as the primary north-south egress point from the node, interfacing with
the third distinct network plane: the datacenter’s VPC plane.

3.3.3 UB Switch System

The CloudMatrix384 supernode spans 16 racks: 12 compute racks, which collectively host the 48
Ascend 910C nodes (384 NPUs in total), and 4 communication racks. These communication racks
house the second-tier (L2) UB switches that interconnect all the nodes within the supernode.

Serving Large Language Models on Huawei CloudMatrix384 13

i i Sub-plane 1 i Sub-plane 6
Level 2: [uB s |, [us H T B s |i...i[uB uB L[s
; Switch 0 Switch 1 Switch 15 | i|_Switch 0 Switch 1 Switch 15 i|_Switch 0 Switch 1 Switch 15
{ 4 i Z ~ —
48* 28 GB/s \ i ~__~ < —_
per Switch e _ A —— -
16 * 28 GBIs
per Switch
uB uB uB uB uB uB il us uB | ... uB
Level 1: Switch 0 Switch 1 Switch 6 Switch 0 Switch 1 Switch 6 " | Switch 0 Switch 1 Switch 6
l b l
Node 0 Node 1 i Node 47

Fig. 5. The UB switch system in the CloudMatrix384. All reported network bandwidth values denote unidi-
rectional bandwidth.

Figure 5 illustrates the topology between the on-board first-tier (L1) UB switches (located inside
each Ascend 910C node) and the rack-level L2 UB switches. The network is designed to be non-
blocking, meaning there is no bandwidth oversubscription at the L2 switching tier. The L2 switches
are partitioned into 7 independent sub-planes. Each sub-plane contains 16 L2 UB switch chips, and
each L2 switch chip provides 48 x 28 GB/s ports.

Inside each node, the 7 on-board L1 UB switch chips map one-to-one onto these 7 L2 sub-planes.
Each L1 switch chip fans out over 16 links (one link to every L2 switch chip in its corresponding
sub-plane). This configuration ensures that a node’s aggregate uplink bandwidth to the L2 fabric
precisely matches its internal UB capacity, maintaining the non-blocking characteristic across the
supernode.

3.4 Software Stack
3.4.1 CANN for Ascend NPUs

Huawei has developed a comprehensive software ecosystem for Ascend NPUs, known as the com-
pute architecture for neural networks (CANN) [29]. CANN functions as an intermediary software
layer, enabling efficient integration between high-level Al frameworks (like PyTorch [46] and
TensorFlow [2]) and the low-level hardware interfaces of Ascend NPUs. By translating abstract
computational graphs generated by these frameworks into optimized, hardware-executable instruc-
tions, CANN simplifies developer interaction with Ascend hardware, facilitates software-hardware
co-design, and aims to maximize application performance on Ascend architectures.

CANN Architecture. The CANN software stack (Figure 6) is composed of three primary layers:
the driver, runtime, and libraries, an architecture analogous to NVIDIA’s CUDA ecosystem [40].

1) Driver Layer: At the foundation, the Ascend NPU driver, comprising kernel modules and
firmware, acts as the low-level interface between the operating system and the Ascend NPUs.
It manages essential hardware interactions, including device initialization, resource allocation
(memory, streams), command scheduling, and inter-NPU communication setup.

2) Runtime Layer: The CANN Runtime is the core execution engine for applications on Ascend
NPUs. It oversees the application lifecycle, orchestrates model computations, and provides compre-
hensive device control, memory management, and execution management for models and operators.
These functionalities are primarily accessed via the Ascend computing language (ACL) APL

3) Library Layer: This layer offers a suite of highly optimized software components to accelerate
diverse Al workloads. Key elements include domain-specific acceleration libraries (AOL), the
Huawei collective communication library (HCCL) for distributed tasks, an extensive operator
package (OPP) with pre-optimized kernels, and engines for neural network acceleration (NNAE)

14

LLM Serving Engine
[vitm][sGlang][siliconLLM | | |

Al Framework
| Pytorch || TensorFlow || MindSpore || |

Graph Engine (GE)

CANN Library
| AOL | | HCCL | | |

CANN Runtime
| ACLAPI |

CANN

Ascend Driver

Fig. 6. The CANN software stack for Huawei Ascend NP Us.

and offline inference (NNRT). Support for custom operator development (e.g., via Ascend C) and
integration with third-party libraries to further enhance its capabilities.

Beyond the core layers, the graph engine (GE) compiles and optimizes computation graphs
from frameworks like PyTorch, TensorFlow, and MindSpore [28]. It bridges high-level models
and low-level execution by applying whole-graph optimizations such as operator fusion, memory
planning, dynamic shape handling, and scheduling. These optimizations reduce overhead and
improve execution efficiency on Ascend NPUs.

Framework Integration. CANN offers extensive support for popular Al frameworks, signifi-
cantly lowering the barrier to entry for adopting Ascend NPUs for existing and new Al projects:

e PyTorch: Through the PyTorch Ascend adapter (torch_npu) [4], developers can seamlessly
leverage Ascend NPU acceleration within their existing PyTorch workflows. Huawei pro-
vides straightforward installation via pre-built Python wheel packages, comprehensive
documentation on API compatibility and best practices, and simplified tools or guidelines
for migrating CUDA-based code to CANN.

o TensorFlow: CANN’s TF_Adapter [5] integrates Ascend acceleration capabilities directly
into the TensorFlow framework, enabling high performance and straightforward adoption
for TensorFlow-based Al projects with minimal code modification.

e ONNX: Huawei offers a dedicated CANN execution provider [43] for the ONNX runtime.
This enables efficient execution of models exported in the open neural network exchange
(ONNX) format [42], facilitating broad model compatibility and streamlined deployment
across heterogeneous hardware environments that include Ascend NPUs.

e MindSpore: Developed internally by Huawei, MindSpore provides native and highly opti-
mized integration with Ascend hardware. This framework is designed to deliver potentially
superior performance and ease of use within Huawei’s Al ecosystem, offering a tightly
coupled software-hardware solution.

In summary, CANN delivers a vertically-integrated software stack including driver, runtime, and
libraries comparable to NVIDIA’s CUDA while being tailored to Ascend NPUs. Its GE compiles
whole-graph representations into highly-optimized execution plans, and rich framework adapters
make porting existing workloads almost friction-free. Together, these components enable devel-
opers to harness Ascend hardware with minimal code changes while achieving near-peak device
performance across a broad spectrum of Al applications.

Serving Large Language Models on Huawei CloudMatrix384 15

| Al Workloads
£ { -
Al Model Service ModelArts |
- Al ToolChain Other
£ ‘ ModelArts Studio (MaaS) ‘ Service
_5 Al Compute & Workloads
<E | ModelArts Standard | container Service
o
‘ ModelArts Lite (Server and Cluster Modes)

Cloud Infrastructure Software

-

2 ‘ MatrixContainer ‘
£
5 § ‘ MatrixCompute ‘
J ‘ MatrixLink ‘ ‘ MatrixResource ‘ {* Qingtian Card in
! Each Node i
T CloudMatrix Cluster i MatrixLink Agent |}
CloudMatrix384 CloudMatrix384 -7 ... |MatrixResource Agent
= T T T T e
g Rack B Rack Rack Rack | =1
kel . 225
: ||| S = = =
T
384 NPUs 384 NPUs
| | |

~
-

~
165K NPUs

Fig. 7. The cloud infrastructure software stack for deploying CloudMatrix384.

3.4.2 Infrastructure Software for Cloud Deployment

To enable CloudMatrix384 deployment in cloud environments, Huawei Cloud provides a sophis-
ticated suite of infrastructure software, including MatrixResource, MatrixLink, MatrixCompute,
and MatrixContainer, designed to abstract hardware complexity and enable seamless resource
orchestration via standard cloud APIs, as illustrated in Figure 7.

MatrixResource manages physical resource provisioning within a supernode, including com-
pute instance allocation based on topology-aware scheduling. The instance provisioning tasks are
executed by a MatrixResource agent that runs on the Qingtian card in each compute node of the
CloudMatrix384.

MatrixLink delivers service-oriented networking for the UB and RDMA networks, supporting
QoS guarantees and dynamic routing. It manages link-level configurations and enables network-
aware workload placement for optimal communication efficiency. These tasks are also executed by
a MatrixLink agent on the Qingtian card in each compute node.

MatrixCompute coordinates the lifecycle of CloudMatrix instances, from bare-metal provi-
sioning to auto-scaling and fault recovery. It orchestrates resource composition across multiple
physical nodes to create tightly-coupled logical supernode instances.

MatrixContainer provides container services based on Kubernetes, enhanced with topology-
aware scheduling to exploit CloudMatrix’s high-performance interconnect. It enables users to
deploy distributed AI workloads using familiar containerized workflows.

ModelArts sits atop the infrastructure stack, offering end-to-end Al platform services [27]. It
comprises: ModelArts Lite, for direct access to Ascend hardware via bare-metal and containerized
environments; ModelArts Standard, which supports full Al development and MLOps pipelines;
ModelArts Studio, which delivers Model-as-a-Service (MaaS) capabilities for fast deployment and
customization of LLMs and other models.

16

Together, these components enable users to build and deploy large-scale Al applications efficiently
on CloudMatrix384, abstracting underlying complexity while preserving performance.

3.5 Suitability Analysis for DeepSeek Models
3.5.1 DeepSeek Models and Their Deployment on NVIDIA H800

DeepSeek-Al has emerged as a significant player in the LLM landscape, particularly with its
DeepSeek-V3 and R1 models, which share a common architecture optimized for efficient training
and inference [13, 15]. These models integrate several system-level innovations: a 671B-parameter
mixture-of-experts (MoE) architecture that activates only 37B parameters per token using top-8
routing across 256 router experts; multi-head latent attention (MLA) that reduces KV cache size by
up to 93.3%; multi-token prediction (MTP) that enables multi-token generation with decode-time
validation; and FP8 quantization to enhance performance while preserving accuracy. Together,
DeepSeek’s models exemplify a design philosophy centered on training and inference efficiency.
These innovations collectively contribute to the models’ ability to deliver high-quality outputs with
reduced computational and memory requirements.

DeepSeek deploys its V3 and R1 models on clusters of NVIDIA H800 GPUs, each equipped with 80
GB of memory and connected via NVLink within nodes and 400 Gbps InfiniBand across nodes [11].
The deployment adopts a disaggregated prefill-decode architecture. In the prefill phase, DeepSeek
organizes four H800 nodes (32 GPUs in total) into a single deployment unit. Within each unit, 256
router experts are strategically distributed across GPUs, with each GPU hosting nine router experts
and one shared expert. This configuration, denoted as DP32+EP32, employs expert parallelism
(EP) across the 32 GPUs, while both the shared expert and the MLA mechanism are replicated
via data parallelism (DP) across the same group of GPUs. During the decode phase, DeepSeek
expands parallelism further to DP144+EP144, grouping 18 nodes for a total of 144 GPUs. Under this
larger deployment, each GPU manages two router experts and one shared expert, maintaining a
system-wide redundancy of 32 router expert replicas.

To optimize throughput and latency, DeepSeek employs a dual-microbatch pipeline strategy that
overlaps computation and all-to-all communication effectively. Specifically, while one microbatch
is involved in MoE-related dispatch and combination, the next microbatch concurrently undergoes
local attention or MLP computations.

This carefully orchestrated deployment delivers substantial throughput gains. Each H800 GPU
achieves up to 9,213 tokens/s during prefill, aided by a 56.3% context caching hit rate, resulting
in an effective throughput of 4,026 tokens/s when cache hits are excluded. During decoding, each
GPU sustains an average throughput of 1,850 tokens/s.

These performance optimization strategies serve as valuable references for the forthcoming
deployment of DeepSeek models on Huawei CloudMatrix384.

3.5.2 Architectural Synergy between CloudMatrix384 and DeepSeek Models

This subsection uses DeepSeek-R1 as a representative workload to analyze how Huawei CloudMa-
trix384’s architectural characteristics align with the demands of large-scale MoE model serving.
We focus on four critical dimensions of synergy: MoE communication, memory scalability, cache
reuse, and quantization support.

MoE Communication Synergy: Efficient Dispatch and Combination. DeepSeek-R1 adopts
an MokE architecture, which imposes substantial inter-NPU communication demands during token
dispatch and expert output combination. CloudMatrix384’s high-bandwidth, low-latency UB inter-
connect is particularly well-suited to these requirements. During dispatch, tokens must be routed
from routers to selected experts, potentially spanning hundreds of NPUs. The all-to-all UB topology

Serving Large Language Models on Huawei CloudMatrix384 17

ensures rapid delivery with minimal overhead. Similarly, in the combination phase, multiple ex-
perts’ outputs must be merged via weighted summation across distributed compute units. The high
bandwidth of the UB plane enables efficient collection of expert output, outperforming traditional
architectures where network performance can severely hinder MoE inference throughput.

Memory Capacity and Management: Accommodating Large Models and KV Caches.
DeepSeek-R1, with parameter counts approaching 671B, requires vast memory resources for both
weights and activations, including attention KV caches. CloudMatrix384 provides 49.2 TB of total
NPU-attached memory (128 GB per NPU x 384 NPUs), enabling distributed storage of model weights
through a combination of tensor, pipeline, and expert parallelism. Beyond model weights, LLMs’
attention mechanisms maintain sizable KV caches, especially under long-context or high-batch
workloads. CloudMatrix384’s generous memory footprint supports these scenarios, but efficient
partitioning and synchronization of KV caches across NPUs remain essential.

Context Cache Reuse: Accelerating Cache Access. LLM workloads, especially in multi-
turn dialogue and long-context applications, benefit substantially from prefix cache reuse, with
DeepSeek-Al reporting cache hit rates exceeding 56%. In conventional systems, retrieving historical
KV cache from off-chip DRAM or even slower storage layers introduces significant latency, impeding
inference performance. CloudMatrix384 mitigates this bottleneck by enabling NPUs to access a
disaggregated, CPU-attached DRAM pool directly over the high-bandwidth UB plane (§4.4.1). This
architecture delivers memory-class bandwidth and latency for remote KV cache access. As a result,
it minimizes redundant prefill computation, significantly lowers time-to-first-token (TTFT), and
scales efficiently to long-context workloads without exhausting limited NPU memory.

Quantization for Efficiency: INT8 Support. The Ascend 910C’s support for INT8 computation
(as described in §3.3.1) presents a valuable opportunity for optimizing the inference performance
of DeepSeek models. Quantifying model weights and activations from higher precision formats
(like FP16 or BF16) to INT8 can significantly decrease the model’s memory footprint, reduce
computational overhead, and lessen memory bandwidth demands during execution. These benefits
can translate into improved throughput and reduced latency.

In summary, CloudMatrix384’s architecture, including its large-scale NPU compute, extensive
memory capacity, high-bandwidth UB interconnect, and DRAM-pool-based caching, is tightly
aligned with the needs of large-scale LLM serving. These synergies provide a solid foundation for
the optimized inference architecture presented in subsequent sections.

4 DeepSeek Serving on Huawei CloudMatrix384

To fully exploit CloudMatrix384’s capabilities, we propose CloudMatrix-Infer, a comprehensive
LLM serving solution that establishes a best practice for deploying large-scale MoE models. We use
the DeepSeek-R1 model as a representative example to illustrate our recommended architecture and
techniques that exploit cross-layer optimizations for efficient LLM serving on the CloudMatrix384.
Figure 8 provides an overview of the proposed optimization techniques across multiple layers of
the Al software stack.

In this section, we begin by introducing a novel peer-to-peer serving architecture based on prefill-
decode-caching (PDC) disaggregation, which decouples prefill, decode, and caching responsibilities
and maps them to dedicated NPU and CPU groups connected via high-performance UB intercon-
nects (§4.1). We then introduce our tightly-coupled decode optimizations, which scale large-scale
expert parallelism (LEP) across hundreds of NPU dies to accelerate MoE inference (§4.2). Next, we
describe resource-efficient prefill strategies that apply hybrid parallelism and pipeline to improve
compute efficiency (§4.3). We further elaborate on UB-driven distributed caching mechanisms that
unify memory access across nodes, enabling low-latency access of models and historical KV caches

18

Algorithms

Algorithm: i
gorithm (INT8 Quantization in §4.5)

LLM Serving Engine

Serving Engine: (Peer-to-Peer Serving Architecture in §4.1; Decode Execution in $4.2; Prefill Execution in §4.3)

. CANN
CANN Lib: . -
! (Operators for Decode in §'4.2; Operators for Prefill in §4.3)
ina ModelArts EMS
Cloud Service: (CloudMatrix384 Provisioning in §3.4) (UB-Driven Caching in §4.4)

Fig. 8. An overview of our proposed optimization techniques in different layers of the Al software stack.

(§4.4). Finally, we detail the system’s support for INT8 quantization, which further boosts end-to-end
inference efficiency (§4.5).

4.1 Overview: A Peer-to-Peer Serving Architecture with PDC Disaggregation

The architectural design of CloudMatrix-Infer is guided by the principles of disaggregation and
peer-to-peer communication, decomposing the LLM inference workflow into independently scalable
components while leveraging the high-bandwidth interconnects of CloudMatrix384 for efficient
coordination. Building on these principles, we propose a distinctive peer-to-peer serving architecture
that separates the system into three functional subsystems, i.e., prefill, decode, and caching (PDC),
each operating independently and communicating via explicit KV cache transfer interfaces, as
shown in Figure 9. This peer-to-peer design enables each subsystem to scale elastically based on
workload demands, maximizing resource utilization and end-to-end performance. These subsys-
tems are interconnected through CloudMatrix384’s high-bandwidth networking to form a tightly
integrated inference pipeline:

o Prefill Cluster: A set of NPUs dedicated to processing the input prompt, consisting of all
tokens in the user’s query or context, to generate the first output token and construct the
initial KV cache.

o Decode Cluster: A distinct group of NPUs responsible for autoregressively generating subse-
quent tokens by consuming and updating the KV cache until an end-of-sequence token is
emitted or the output length limit is reached.

e Caching Cluster: A UB-connected caching layer built on a disaggregated memory pool,
providing (i) context caching to accelerate prefill through KV cache reuse, and (ii) model
caching to expedite model block loading and reduce cold-start latency.

To better understand the motivation and effectiveness of our proposed design, it is instructive to
contrast it with existing KVCache-centric architectures [41, 48] that dominate existing LLM serving
systems.

KVCache-centric vs. Peer-to-Peer Serving Architectures: Existing LLM serving systems
such as NVIDIA Dynamo [41] and Mooncake [48] follow a KVCache-centric design, where request
scheduling is tightly coupled with KV cache locality. In these systems, requests are typically
routed to the specific compute nodes that already hold the corresponding KV cache from previous
interactions. This cache-aware scheduling is essential to mitigate the significant performance
penalty of remote memory access, as intra-node memory access (e.g., via PCle at ~256 GB/s) vastly
outpaces inter-node bandwidth (typically at ~25 GB/s or 200 Gbps). As a result, remote KV cache
loading often incurs substantial latency. However, this design introduces non-trivial scheduling
complexity and risks degrading load balance, especially under dynamic workloads. Additionally,

Serving Large Language Models on Huawei CloudMatrix384 19

< / Global theduler \ >

Prefill Cluster Decode Cluster Caching Cluster
‘ Inter-instance Router ‘ ‘ Inter-instance Router ! !
! ﬁ‘ i *,ﬂ:\ Context Model
: - Cachin Cachin
Prefill Instance Decoding Instance 9 9 L
Intra-instance Router Intra-instance Router
f\ & Disaggregated Memory Pool
AN: Hybrid Parallelism Attn: DP320
KV Model
Cache Weight
MoE: EP32 MoE: EP320
(16 NPUs per Instance) L= (160 NPUs per Instance) [- (192 CPUs in the Supernode)

I RDMA Plane I VPC Plane
UB Plane
Persistent Storage

Fig.9. Peer-to-peer serving architecture with prefill-decode-caching (PDC) disaggregation on CloudMatrix384,
enabling all NPUs to uniformly access a shared caching cluster backed by a disaggregated memory pool over
the ultra-high-bandwidth UB network.

this design limits global resource efficiency, as DRAM on decode nodes usually remains siloed and
underutilized, unable to contribute meaningfully to shared caching capacity.

Our peer-to-peer serving architecture in CloudMatrix-Infer takes full advantage of the Cloud-
Matrix384’s ultra-high-bandwidth UB interconnect. This enables uniform access to a distributed
caching cluster (Section 4.4) built on a disaggregated memory pool. Crucially, all NPUs, regardless
of whether they serve prefill or decode tasks, can directly access this shared disaggregated memory
pool, which spans both prefill and decode nodes. This fully peer-to-peer design effectively flattens
the memory hierarchy, bridging the traditional gap between local and remote access latency.

Decoupling request scheduling from KV cache placement offers several key advantages. First,
it enables lightweight, stateless scheduling, allowing inference requests to be dispatched to any
available NPU instance without constraints imposed by data locality. This significantly improves
system-wide load balancing and NPU utilization. Second, it eliminates the need for complex,
affinity-aware scheduling mechanisms, thereby reducing architectural complexity and easing
system maintenance. Third, by pooling DRAM resources across prefill and decode nodes, the
system forms a unified, elastic caching substrate that enhances memory utilization, increases cache
hit rates, and offers greater resilience under skewed or bursty workloads.

Prefill and Decode Deployments. Aligned with prior work [41, 47, 48, 57], CloudMatrix-Infer
adopts the strategy of disaggregating the prefill and decode phases across distinct NPU groups. By
decoupling these two phases (each characterized by distinct performance bottlenecks), CloudMatrix-
Infer enables phase-specific hardware allocation, parallelism execution, and independent scalability
in response to dynamic workload characteristics.

Each prefill instance is provisioned with 16 Ascend 910C NPUs (32 dies) on CloudMatrix384 and
operates with 32-way expert parallelism (EP32). The expert configuration includes 10 experts per
rank: one shared expert, eight router experts, and one redundant router expert to support expert
parallelism load balancing (EPLB). To further improve efficiency, we employ a hybrid parallelism

20

strategy for MLA computation and apply a microbatch-based pipeline to overlap communication
overheads (§4.3).

Each decode instance is allocated a significantly larger NPU group, typically 160 Ascend 910C
NPUs (320 dies), to meet the high throughput and low latency demands of autoregressive generation.
This setup corresponds to 320-way expert parallelism (EP320) for the MoE layers. Each rank hosts
one expert, with the overall configuration consisting of 32 shared experts, 256 distinct router
experts, and 32 redundant router experts to facilitate EPLB. To further accelerate decoding, we
introduce optimized Ascend-native operators, a pipelined decoding strategy, and multiple-token
prediction support, as detailed in §4.2.

Dynamic Adjustment for Asynchronous Real-World Workloads. In real-world online
serving scenarios, the disaggregated PDC serving architecture enables dynamic, fine-grained ad-
justment of the numbers of prefill, decode, and caching nodes based on the statistical characteristics
of incoming workloads. For example, requests with longer input prompts increase the relative
demand for prefill nodes, while workloads generating longer outputs require more decode capacity.
These ratios are not fixed but adapt over time to maximize efficiency and maintain latency SLOs.

Furthermore, user sessions arrive and depart asynchronously, each with its own start time,
prompt length, and generation duration. To cope with this highly dynamic and unpredictable work-
load pattern, the responsibility of CloudMatrix-Infer is to enforce pseudo-synchronous execution
through batching and scheduling mechanisms. Specifically, it aligns requests at token boundaries,
allowing multiple sessions to be co-scheduled and processed concurrently. This batching strategy
amortizes computation, improves throughput, and ensures high resource utilization, even under
fully asynchronous request arrival patterns.

4.2 Tightly-Coupled Decode with Large-scale Expert Parallelism

This section outlines the decode-phase optimizations in CloudMatrix-Infer enabled by the tightly-
coupled UB plane on the CloudMatrix384. Minimizing TPOT latency for MoE models requires
fine-grained expert parallelism, with each expert placed on a dedicated NPU die. In the DeepSeek-
R1 model, 256 router experts are deployed, making large-scale expert parallelism (LEP) a core
requirement. However, implementing LEP is non-trivial due to sequential dependencies in token
processing and the significant communication overhead incurred when coordinating hundreds of
NPU dies.

To address these challenges, we introduce a set of hardware-aware optimization techniques
tailored to the CloudMatrix384. First, we present our fused communication operator design that
exploits the UB plane for low-latency, high-throughput MoE execution (§4.2.1). Next, we detail our
custom MLA implementation for the Ascend 910C (§4.2.2) and describe a microbatch-based decode
pipeline that overlaps two execution streams to hide latency (§4.2.3). Finally, we explain how the
CloudMatrix-Infer supports multiple-token prediction (MTP), a feature leveraged by DeepSeek-R1
to improve decode throughput (§4.2.4).

4.2.1 Fused Communication Operators for LEP

Figure 10a illustrates a basic MoE computation flow. After the gating mechanism selects the
Top-K (K = 8 in DeepSeek R1) activated experts for each token, two all-to-all communication
steps are required before the feed-forward network (FFN) stage. The first all-to-all operation
exchanges routing metadata such as token-to-expert assignments across all NPUs. The second
all-to-all operation exchanges the actual token data, typically a 7,168-dimensional hidden state
vector per token. This data, initially stored in BF16 format, is quantized to INT8 on each NPU to
reduce communication and compute costs before being processed by its assigned FEN. After FFN
computation, a third all-to-all communication sends the expert outputs back to their source ranks,

Serving Large Language Models on Huawei CloudMatrix384 21

Rank 0 Rank N-1 Rank 0 Rank N-1

Gating Top-K Gating Top-K Gating Top-K Gating Top-K

All-to-All

Original
Dispatch

All-to-All

(Original
| Combine
1
[}
1

| All-to-All

Add & Norm Add & Norm Add & Norm

(a) A basic MoE computation flow with all-to-all (b) Our proposed MoE computation flow with
communications. FusedDsipath and FusedCombine.

Fig. 10. Comparison between basic MoE computation flow with all-to-all communications and our proposed
MoE computation flow with fused communication operators.

where each NPU performs the final token combination step to reconstruct the output. However,
this basic MoE implementation suffers from several inefficiencies:

(1) Communication Overheads: The three all-to-all communications introduce significant latency,
exacerbated by the large communication domain (hundreds of NPUs).

(2) Dynamic Shapes: Data shapes for all-to-all communication are dynamic because the number
of tokens assigned to each expert varies per decode iteration. This dynamism reduces
execution efficiency due to the need for dynamic memory allocation and frequent CPU-NPU
synchronization.

(3) Sequential Dependencies: The sequential execution nature of the MoE computation creates
dependencies between steps, reducing resource utilization and throughput.

To address these inefficiencies, we developed FusedDispatch and FusedCombine, two fused
operators that integrate communication and computation, specifically designed to achieve optimal
decode performance on CloudMatrix384. First, to reduce the overheads of all-to-all communications,
the two fused operators replace all all-to-all communications with the send-receive primitive. We
further leverage the direct writes among NPUs in the UB plane to reduce the communication latency
and move the quantization operation in the dispatch stage before the NPU-to-NPU communication
to reduce the message size. Second, to eliminate the overheads related to the dynamic shapes,
we pre-allocate all necessary memory space needed for the operators, thus enabling static graph
execution. Third, to reduce the overheads of sequential execution, communication and computation
steps within the operators are also organized into a pipeline, improving resource utilization and
throughput. These optimizations are detailed as follows.

@ AlV-Direct Communication across NPUs: The conventional all-to-all communication
among NPUs typically relies on communication firmware such as a system direct memory access
(SDMA) engine to transfer data (red line in Figure 11). However, SDMA introduces considerable
startup overhead, which becomes a critical performance bottleneck in ultra-low-latency scenarios,

22

UB Switch, =

= = .
uB'swich ,¢]] UBswitch’S, |
- ’ .

910C Die
AlV

| Ggurer |

IEREDEY I”!!Il”

NPU NPU

910C Die

|
SDMA e

&

>

=Y It

a <
|

sova ==l

Fig. 11. SDMA-based vs. AlV-direct communication across NPUs. The red and blue lines indicate data
transmission paths using SDMA and AlV-direct, respectively.

particularly during decode. To overcome this bottleneck, we design a new communication mecha-
nism, which we refer to as AIV-Direct. AIV-Direct enables Al vector (AIV) cores to directly write data
into the memory of remote NPUs via the UB interconnect, completely bypassing the latency-prone
SDMA path (blue line in Figure 11). By eliminating SDMA’s startup overhead, AIV-Direct provides
a fast and lightweight pathway for peer-to-peer communication. This sharply reduces transfer
initiation latency and accelerates inter-NPU data exchange, significantly improving performance
in latency-sensitive operations such as decode.

@ Early Quantization: In the original MoE computation flow, as shown in Figure 10a, BF16
token data is transmitted during token dispatch, resulting in high communication volume. To
mitigate this, we introduce early quantization by performing INT8 quantization before sending
token data within FusedDispatch. Specifically, instead of sending BF16 data, we transmit INT8-
quantized data together with its scaling factor. This reduces the communication payload during the
data exchange phase. Given a token data with 7,168 dimensions, the INT8 representation requires 7
KB per token. The scaling factor occupies 4 bytes (INT32), but for alignment, we allocate 512 B. As
a result, the transfer message size for each token is 7.5 KB. This optimization substantially reduces
communication overhead in the most bandwidth-intensive stage.

@ Static Execution via Shared-Memory Pre-allocation: To avoid dynamic memory alloca-
tion and its associated CPU-NPU synchronization overhead, we statically pre-allocate shared-memory
buffers in each NPU rank for data arriving from every other rank in the MoE layer. The required
buffer size is:

buffer_size = rank_num X max_tokens X msg_size, (1)

where

max_tokens = local_batch X min(topK, experts_per_die) (2)

max_tokens is the worst-case number of tokens an NPU may send to a single peer, and msg_size
is the per-token message length (7.5 KB after INT8 quantization for token dispatch and 14 KB for
token combine).

With this space pre-allocated, both FusedDispatch and FusedCombine directly write data into
the target NPU memory buffer via AIV-direct communication, avoiding an intermediate local copy
and the subsequent remote read, thus reducing memory traffic and synchronization latency.

Serving Large Language Models on Huawei CloudMatrix384 23

UBUffer In: Copy Data from Local Copy Data from Local Copy Data from Local
: HBM to UBuffer HBM to UBuffer HBM to UBuffer
Lo Calc. Calc. Calc.
AlV Computation: [Quant.][Offset] [Quant.][Offset] [Quant.][Offset]
. Copy Data from UBuffer to Copy Data from UBuffer to
UBuffer Out: [Remote HBM] [Remote HBM
(a) Data-sending pipeline during dispatch.
UBUffer In: Copy Data from Local Copy Data from Local Copy Data from Local
: HBM to UBuffer HBM to UBuffer HBM to UBuffer
s Calc. Calc. Calc.
. Copy Data from UBuffer to Copy Data from UBuffer to
UBuffer Out: [Remote HBM Remote HBM

(b) Data-sending pipeline during combine.

Fig. 12. Data-sending pipelines for token dispatch, which employs dynamic quantization, and for combine,
which transmits unquantized data.

Because FusedDispatch and FusedCombine execute back-to-back, sharing a single buffer would
create a race: a faster NPU could launch FusedCombine and overwrite a peer’s buffer before that
peer finishes consuming the prior FusedDispatch payload, corrupting data. We eliminate this
hazard with double buffering: distinct buffers are reserved for FusedDispatch and FusedCombine,
ensuring that one buffer is always free for writers while the other is being read.

The pre-allocation memory overhead is modest. In our experimental setup, each die handles a local
batch of at most 96 tokens and hosts up to two experts, yielding max_tokens = 96 X min(8, 1) = 96.
Across a communication domain of 320 ranks, the dispatch buffer occupies 320 X 96 X 7.5 KB »~
225 MB, and the combine buffer 320 X 96 x 14 KB ~ 420 MB. The two buffers together consume
only about 645 MB memory per die.

@ Data-Sending Pipeline: Remote data writes require computing the target offset within a
peer NPU’s pre-allocated memory buffer. However, performing this calculation and the transfer
sequentially would stall execution. To avoid this, we design a data-sending pipeline inside each
fused operator as shown in Figure 12, which pipelines the following three stages: (1) copy the next
token into the local UBuffer; (2) compute the remote buffer offset and apply INT8 quantization
if enabled; (3) issue the AIV-Direct write to the peer NPU’s memory. Tokens flow through this
pipeline as one-token microbatches. While Stage 3 of a microbatch transmits data, Stages 1 and
2 of the following microbatches execute in parallel. This overlap hides both computation and
communication latency, enabling continuous and efficient token dispatch.

By combining these techniques, including AIV-direct communication, early quantization, pre-
allocated double-buffered memory, and data-sending pipeline, the FusedDispatch and FusedCombine
operators significantly reduce the latency of the MoE layer during decode compared to basic imple-
mentations. The workflows of the two fused operators are illustrated in Figure 10b.

The FusedDispatch operator proceeds in three main steps. The first step is a pipelined token-
sending phase (Opt. @). Each rank iterates over the tokens assigned to remote experts. For each
token, the dispatch AIV cores first load the relevant token data from memory into the local UBuffer,
then quantize the token data to INT8 format (Opt. @) while appending the associated scale. Routing
metadata, including the source rank ID, batch-slot ID, and key offset, is attached to each token data.
The system then determines the target rank for each expert ID and writes the data packet into the
peer’s pre-allocated shared memory buffer via AIV-direct (Opt. @) and €)). In the second step, once

24

all data packets are issued, a barrier ensures that all token data writes are completed before flags are
sent. The dispatch cores compute the token count per expert in parallel, synchronize across cores,
and then issue completion flags and token counts to the corresponding peers using AIV-direct
(Opt. @ and @). The final step involves coordination and output assembly. Each rank polls the
flags written by remote ranks and waits until all flags are set to ‘1’. It then reads the associated
token counts to compute output offsets. Finally, all dispatch cores work in parallel to assemble the
received token data, quantization scales, and per-expert token counts from shared memory into
contiguous output buffers, ready for the subsequent FFN computation stage.

The FusedCombine workflow similarly consists of three main steps. The first step is a pipelined
data-sending phase (Opt. @), in which each combine AIV core loops over its assigned peer ranks.
The core reads the corresponding receive count for each peer and copies the associated FFN result
data into the local UBuffer. It uses the token’s source metadata—specifically the source rank ID,
batch-slot ID, and key offset—to compute the destination address on the peer. The token data is
then transmitted back via ATV-direct into the pre-allocated buffer on the originating rank (Opt. @
and @). In the second step, each token’s metadata is again used to compute the target address for
its flag update. The combine AIV core issues an atomic-add operation over AIV-direct to increment
the corresponding flag on the peer side, signaling that one contribution has been delivered (Opt.
@ and @). In the final step, each core waits until the flags for its assigned batch are all set to
‘1, indicating that all expert outputs for that token have been received. The combine core then
gathers the expert FFN outputs from shared memory, retrieves the corresponding scale factors
from memory, performs element-wise scaling, and sums the results. The combined expert outputs
are then added to the shared FFN output to produce the final result for each token.

4.2.2 MLA Optimization

Multi-head latent attention (MLA), introduced by DeepSeek, leverages low-rank compression to
reduce the spatial footprint of the KV cache and incorporates weight absorption techniques to
lower computational costs. While MLA can be deployed on the CloudMatrix384, directly migrating
DeepSeek’s operators to Ascend 910C NPUs exposes several performance bottlenecks:

(1) Launch Overhead of Fine-Grained Operators: MLA introduces numerous fine-grained op-
erations, such as RMSNorm, linear projections, and RoPE encoding, that are typically
implemented as separate NPU operators. Each operator invocation incurs non-negligible
launch latency, stemming from CPU-side dispatch, parameter loading, instruction schedul-
ing, and tiling configuration. Although capturing these operators into a graph can amortize
the CPU dispatch overhead by grouping multiple operations, it does not eliminate the
per-operator startup cost on the NPU. As a result, the accumulation of these small kernel
launches introduces significant latency in the MLA execution path.

(2) KV Cache Format Conversion Overhead: To support high-performance matrix computations,
the L1 Cache of the Ascend 910C NPU’s Al cube cores (AICs) optimally stores data in
an NZ format (a specialized hybrid row-major and column-major layout, resulting in a
combined N-shaped and Z-shaped traversal path). However, the KV cache is typically stored
in the NPU’s memory using a standard N-Dimensional (ND) format. Consequently, operator
internals often need to explicitly convert KV cache data to the NZ format before AICs can
perform matrix calculations. This explicit format conversion consumes memory bandwidth
and impacts access efficiency, thereby reducing the effective memory bandwidth available
for computation.

(3) Load Imbalance with Multi-Token Prediction (MTP): When MTP is enabled, the decode phase
must validate multiple tokens predicted in the previous step. This results in varying effective
sequence lengths for different queries within the same batch (as detailed in §4.2.4). The

Serving Large Language Models on Huawei CloudMatrix384 25

wk_proj
q_a_proj HRMSNormH q_b_proj H Split —-{ Concat
Rope
en [{_swe -
RMSNorm
Split 7*[Concat
MLAProlog IR) FusedAttention (FA)

Fig. 13. The MLAProlog and FA operators, key components of our MLA optimization.

original tiling strategies for attention operators, often assuming a BNSD (Batch, Num-heads,
Sequence-length, Head-dimension) memory layout, can lead to significant load imbalance.
Specifically, without MTP, all queries in a decode step typically have a sequence length
of 1, allowing tiling strategies based on B and N axes to create compute tasks of equal
size (as S and D are constant per task), thus ensuring load balance. With MTP active, the
sequence length S can differ per query. Persisting with B-axis and N-axis tiling under these
conditions leads to substantial load disparities among NPU cores, extending the overall
MLA computation time.

To overcome these limitations and fully exploit the capabilities of Ascend NPUs, we propose the
following NPU-friendly optimizations:

Fused Operators: MLAProlog and Fused Attention (FA). To drastically reduce the launch
overhead from numerous small operators in the MLA computation path, we employ aggressive
operator fusion, as illustrated conceptually in Figure 13.

Firstly, multiple pre-attention operations, including RMSNorm, Q/K/V projections, and RoPE, are
consolidated into a single composite operator, termed MLAProlog. This fusion reduces the operator
startup costs from those of many individual operators to only one. Furthermore, MLAProlog is
designed with internal micro-parallelism, dividing its workload into multiple sub-tasks that are
executed in a pipelined fashion across the AIC and AIV units. This fine-grained AIC-AIV parallelism
allows the computation times of different sub-tasks on these heterogeneous cores to effectively
mask each other, further minimizing the fused operator’s execution time.

Secondly, to complement MLAProlog, we developed a fused attention (FA) operator that integrates
FlashAttention with adjacent data shaping operations, such as pre-attention Concat (for preparing
Q, K, V) and post-attention Slice (for extracting relevant outputs). This further minimizes kernel
launches and improves data locality throughout the attention computation path.

NZ-Formatted KV Cache. To eliminate tensor format conversion overhead, we natively store
the KV cache in NZ format within NPU memory. During the MLA computation, the calculated KV
tensors are appended to the KV cache directly in this NZ format. In the decode phase, as new KV
tensors are generated token by token, they can be efficiently written to NPU memory according
to NZ format rules. Ascend NPUs provide data movement interfaces capable of on-the-fly format
conversion during memory writes. This write-with-format-conversion capability avoids an explicit,
separate ND-to-NZ data transformation step for the KV cache, thereby improving effective NPU
memory bandwidth utilization.

MTP-Aware Tiling with BSND Layout. To restore load balance under MTP, we shift from
BNSD to BSND memory layout and adopt a dynamic tiling strategy along batch (B) and sequence
(S) axes, which vary across queries. Since the N (number of heads) and D (head dimension) values
remain relatively stable during these operations, this ensures better uniformity in task size across
AIC cores, reducing tail latency caused by straggling compute tasks.

26

Con;gzust;tion: SET’:: [ATTN—o M MLP M ATTN-1 } SET’:: {A'I'I’N—D M MLP H ATTN-L }
(s)) { s

\
Y \ ’

. . 3, I, \ !
mm . \.
Co (OuSn |(s:)at|0n. Dispatch \[Combine }/ "[Dispatch }” N Combine !

(a) The DeepSeek’s decode pipeline on NVIDIA H800 (ATTN-0: MLA down/up projection before core
attention; ATTN-1: core attention, attention output projection, and MoE routing gate).

~600 us ~600 us

A A
(1?;\?:6,1?2 gl:\/) [MLAProlog][FusedAttn M OP%APH}IOQ][FusedAttn M Ol}/'
(as;t\:(?aﬂ;:;v) [Gate H Dispatch M MLP H Combine = } [Gate][Dispatch][MLP][Combine]“

~600 us ~600 us

(b) Our proposed microbatch-based decode pipeline on CloudMatrix384 (The latency example is for
decoding with a 4K sequence length, a batch size of 96 per NPU, and MTP enabled).

Fig. 14. Comparison of decode pipelines: (a) DeepSeek’s approach on H800 and (b) our proposed pipeline on
CloudMatrix384. Alternating colors denote two interleaved microbatches.

Together, these three strategies, including operator fusion, native NZ storage, and adaptive tiling,
maximize the performance of MLA-based inference on CloudMatrix384, yielding substantial gains
in latency and throughput for DeepSeek models.

4.2.3 Microbatch-Based Decode Pipeline

While fused communication operators (§4.2.1) help mitigate some overheads, the latency associated
with expert parallelism communication remains a significant factor in the decode phase. To further
improve efficiency, inspired by DeepSeek’s microbatch pipelining strategy [56], we design a tailored
microbatch-based decode pipeline for CloudMatrix384 that maximizes resource utilization and
reduces execution latency via fine-grained latency overlap across two streams.

Our proposed resource partitioning and pipelining strategies diverge from DeepSeek’s method
due to both the unique characteristics of the Ascend NPU and our specific parallelism deployment
for MoE models. Unlike DeepSeek’s deployment on NVIDIA H800s, which co-locates three experts
per GPU (one shared expert and two router experts) as shown in Figure 14a, our deployment on
CloudMatrix384 involves deploying a large expert parallelism degree (EP320) with typically one
expert per NPU die for low decode latency. Without the shared expert computation, the compute
latency of ATTN-@ alone is insufficient to fully mask the MoE dispatch latency. This necessitates a
different load-balanced pipelining strategy.

To achieve efficient latency overlap under these conditions, we implement a microbatch-based
pipeline with asymmetric AIC and ALV partitioning for CloudMatrix384, as illustrated in Figure 14b.
The pipeline comprises two interleaved execution streams, each responsible for distinct portions of
the decode process and provisioned with differing compute capacity:

e Stream 0 (Attention Path): Executes MLAProlog, FusedAttention, and O_PROJ. These are
compute-heavy or memory-intensive operators and thus assigned more NPU resources—16
AICs and 32 AIVs. Under typical decode conditions (4K sequence, batch size 96, MTP
enabled), this stream has a per-microbatch latency of 600 us.

e Stream 1 (MoE Path): Handles the MoE sequence: Gate, Dispatch, MLP, and Combine. Due
to the inclusion of both compute and communication phases, this stream is given 8 AICs
and 16 AlIVs, half the resources of Stream 0, yet achieves a comparable latency (600 us)
owing to lower computational load but higher communication latency.

Serving Large Language Models on Huawei CloudMatrix384 27

G Init Metadata G Sample

! Step N-1 ! Step N H H
' LLM H LLM ! LLM !
CPU: ED Launch DED Launch DED Launch D i
' '
' '

NPU:

(a) The basic LLM decode workflow without MTP.
() nit Metadata () sample

Step N

r
. .
, ,
. " LLM MTP i LLM
e () =) A L)
= e (]
, ,

NP (] i

(b) The original LLM decode workflow with MTP.

____________ A mm g
StepN-1 StepN i StepN+1 () it Metadata (D) sample
. MTP !~ LM MTP)!(L™

CPU: o Launch)1 Launch Launch Jil_Launch J ***

) Step N-1 ; Step N ' StepN+1
| |

NPU: [MTP Model]D:D[LLM Module]D[MTP Model]D :D[LLM Module]

____________________ e e e i e

(c) Our proposed LLM decode workflow with pipelined MTP.

Fig. 15. The pipelined MTP optimization on Asend NP Us.

The asymmetric allocation ensures a close per-layer latency when executing Streams 0 and 1,
thereby enabling the perfect overlap of two interleaved microbatches. As depicted by alternating
colors in Figure 14b, Stream 0 processes attention computation for one microbatch while Stream 1
simultaneously performs MoE computation and communication for another.

To accommodate changing runtime conditions, such as variable KV cache lengths, the allocation
of compute resources to the two streams can be adjusted adaptively. This elasticity ensures that
latency balance is preserved, enabling sustained performance across diverse workloads.

4.2.4 Multiple-Token Prediction Support

Multiple-Token Prediction (MTP) is a speculative decoding technique used in DeepSeek-R1, wherein
k tokens are predicted during each decode step. These predictions are then validated in subsequent
steps. By generating multiple tokens per decode, MTP can significantly improve the throughput.
However, enabling MTP in existing inference frameworks often incurs substantial inefficiencies due
to tight CPU-NPU synchronization, leading to pipeline interruptions and diminished performance.
We refer to this as the pipeline break problem.

As shown in Figure 15b (naive MTP pipeline), MTP typically triggers k + 1 compute graphs per
decode step, k for speculative modules and one for final validation. Each graph dispatch introduces
a startup latency of 0.6 — 0.8 ms. This overhead, especially under CPU-mediated orchestration,
leads to idle bubbles on NPUs, undermining the benefits of MTP. We identify two main sources of
these obstacles:

e CPU Intervention for Dynamic Metadata Initialization: Both the MTP modules and the main
LLM rely on metadata, such as the current sequence length, which changes dynamically
during decoding. This metadata can only be finalized after the completion of the preceding

28

module’s execution. For example, an MTP module requires the sequence length deter-
mined after the previous LLM validation. As shown in Figure 15b, the CPU initializes and
transfers this metadata before dispatching each graph, resulting in frequent CPU-NPU
synchronization barriers.

e CPU-Intervened Sampling Disrupts NPU Execution: After MTP modules and the main LLM
generate token distributions, sampling is needed to select the actual tokens. This process
involves a mix of CPU procedures and discrete NPU operations. These frequent CPU-NPU
interactions create overhead from data copying between the host and device. Crucially,
because each subsequent computational graph relies on the sampled output from the
previous one, this introduces serialization, preventing consecutive NPU execution.

To overcome these bottlenecks, we introduce a pipelined MTP execution technique (Figure 15c)
that eliminates these CPU dependencies and enables efficient graph execution:

Aggregated Metadata Initialization. Rather than performing metadata setup separately for
each of the k + 1 graphs, we precompute and batch all metadata tensors at the start of the decode
step. These tensors that are stored directly in NPU memory include incremental sequence lengths
for each MTP module and a metadata block for the validation graph. This eliminates repeated CPU
involvement and enables seamless, metadata-aware execution on the NPU.

CPU-Free In-NPU Sampling. To eliminate NPU execution stalls frequently caused by CPU-
based sampling, we migrate the entire sampling process to the NPU. This strategy involves imple-
menting the necessary sampling operations, such as token probability sorting, cumulative sum
calculations, and candidate filtering, as a sequence of NPU operators. Furthermore, to minimize the
launch overhead that could arise from dispatching numerous NPU sampling operators, these oper-
ators are fused into the MTP and LLM validation graphs. By keeping sampling entirely on-device,
we prevent execution stalls between MTP stages and the LLM validation stage, allowing compute
graphs to execute back-to-back with no host intervention.

Together, these enhancements eliminate the frequent pipeline breaks caused by CPU-NPU
coordination in naive MTP implementations. As the NPU executes one compute graph, the CPU
concurrently schedules the next, enabling sustained parallelism and continuous NPU execution.
This achieves a seamless flow of operations on the NPU, maximizing its utilization and fully realizing
the potential latency benefits of MTP.

4.3 Resource-Efficient Prefill with Hybrid Parallelism and Microbatching

The prefill phase, responsible for processing the input prompt to generate the initial KV cache,
significantly impacts time-to-first-token (TTFT) and system throughput. Given its typically compute-
intensive nature, achieving high NPU utilization during prefill is paramount. However, this phase
often faces challenges such as load imbalances due to heterogeneous input sequence lengths and
communication overheads, particularly in complex architectures like MoE models. To address these
issues and maximize efficiency on the CloudMatrix384, we propose three key optimizations in
CloudMatrix-Infer. First, we introduce a staged hybrid parallelism scheme for MLA computation that
overcomes the inherent inefficiencies of conventional data parallelism (§4.3.1). Second, we present a
microbatch-based prefill pipeline that exploits the heterogeneous compute and communication units
of the Ascend 910C NPU to maximize latency overlap and reduce contention (§4.3.2). Finally, we
present the transfer optimizations between prefill and decode phases to minimize the interference
to decoding (§4.3.3).

4.3.1 Hybrid Parallelism for MLA Computation

Prefill in LLMs presents a significant computational bottleneck. Although CloudMatrix384 offers
substantial compute power and high-bandwidth interconnects, we observe that the pure data

Serving Large Language Models on Huawei CloudMatrix384 29

: TR f sp 1
1 _ 1 1 (with Packing) 1
! [=] | ! 1
! 51) i 1
i gl i i i
1 3| | 1 |
=) = | = 1 _ 1 1
g |8 2 g L 1e 1E (A :
_\ c 1 | 8 o] 2 1
JHNE : 5 N NEE |
E‘ -8 = © 1 < — 1 < (= 1
1 § 1 : 1
i 9 | i :
i g | [i
1 =] 1 1 1
: o : : :
(a) The basic MLA flow with pure DP. (b) Our proposed MLA flow with hybrid parallelism.

Fig. 16. Comparison between basic MLA flow using pure DP and our proposed MLA flow leveraging hybrid
parallelism during the prefill phase.

parallelism (DP) for MLA computation, as originally used in DeepSeek’s GPU deployment (§3.5.1),
leads to suboptimal load balancing and resource utilization on Ascend NPUs. This inefficiency
stems from two primary reasons:

(1) Sequence-Length Skew: In practice, incoming requests often have varying input sequence
lengths. With a typical 32-way DP configuration, NPUs assigned shorter sequences complete
their work earlier and then idle while waiting for those processing the longest sequence in
the batch, leading to wasted compute cycles.

(2) Insufficient Concurrency: If the number of in-flight requests is less than the DP degree (e.g.,
fewer than 32 requests for DP32), some DP shards receive no work. Delaying processing
to accumulate a full batch of 32 requests increases TTFT, while proceeding with a partial
batch underutilizes the NPU resources.

To mitigate these inefficiencies, we introduce a staged hybrid parallelism strategy optimized for
MLA computation during the prefill phase, visually contrasted with basic DP in Figures 16a and
16b. We decompose MLA into three stages and apply different parallelism schemes to each.

The first stage, which includes processing the layer input and the down_proj operation, and
the third stage, comprising the o_proj operation, involve computations that are not inherently
dependent on token positions within the sequence for their parallelization strategy. For these stages,
we leverage Sequence Parallelism (SP) combined with sequence packing, replacing pure DP. This
method involves concatenating the prompt sequences of multiple requests and then distributing
segments of this packed super-sequence across the SP ranks. Consequently, tokens from requests
of varying lengths are distributed in an approximately uniform manner among the NPU dies,
achieving effective load balancing irrespective of individual request lengths.

The second stage, which includes q_up_proj, kv_up_proj, and the core FlashAttention mecha-
nism, critically depends on token positions for the attention computation. For this stage, we apply
tensor parallelism (TP) to ensure a balanced distribution of the computational load across NPU dies.
In our prefill implementation, MLA is typically performed without certain weight matrix absorption
to enhance raw computational efficiency, allowing it to be treated effectively as a standard 128-head
multi-head attention (MHA) operation. Given that MHA computation is independent for each
attention head, we apply TP by distributing these attention heads evenly across the NPU dies.

Transitioning between these different parallelism strategies across stages necessitates data
redistribution. We insert an A11-Gather between Stages 1 and 2 and an A11-to-All between
Stages 2 and 3 to correctly re-shard and distribute the activation data among the ranks.

30

Input 0: Input 1: ... Input 2: Input 3:
Stage 1 (SP) Stage 2 (TP) Stage 3 (SP)
A A
layer_input down_proj q_up_proj, kv_up_proj, FA 0_proj
Rank 0: l | |
Rank 1. [L]] (BRI (]]
Rank 2: l l |
Rank 3: l l l

Fig. 17. lllustrative data flow of the staged hybrid parallelism (SP-TP-SP) for MLA computation in prefill.

Figure 17 provides an illustrative example of this hybrid parallelism data flow with four inputs of
varying lengths (Input 0, Input 1, Input 2, Input 3) processed across four NPU ranks. Initially, in Stage
1, tokens from these inputs are packed and distributed using SP. Each rank processes a contiguous
segment of the packed sequence, ensuring that all ranks receive a roughly equal number of tokens,
thereby balancing load despite the differing original query lengths. For Stage 2, after an AL1-Gather,
the data is redistributed for TP. Here, each rank processes a shard (e.g., a subset of attention heads)
of all tokens from all four inputs. The colored blocks in the figure at this stage indicate how each
rank now handles parts of every input. Finally, following an A11-to-Al1l operation to gather results
from the TP stage, Stage 3 performs its computations with data once again organized according to
SP, similar to Stage 1. This example highlights how the hybrid approach maintains load balance
throughout the MLA computation.

Compared to a conventional DP strategy (Figure 16a), this hybrid parallelism introduces these
two additional collective communication steps. However, their overhead is carefully managed. The
All-Gather operation is performed after a dimensionality reduction step (implied by down_proj),
thus operating on potentially smaller tensors. The AL1-to-All collective primarily redistributes the
tensor-parallel shards of the attention mechanism. Since these shards are already reduced in size by
the TP degree, the data exchanged per rank during this operation is substantially less than collectives
that might handle full, unsharded tensors. On the CloudMatrix384 with its high-bandwidth UB
plane, the communication overhead of both operators is relatively small.

4.3.2 Microbatch-Based Prefill Pipeline

To alleviate the communication overhead introduced by expert parallelism, the original DeepSeek
deployment adopts a dual microbatch pipeline. As shown in Figure 18a, this approach interleaves
computation and communication from two concurrent microbatches on NVIDIA H800 GPUs. By
overlapping the computation of one microbatch with the communication overhead (i.e., Dispatch
and Combine) of the other, this method improves pipeline efficiency and amortizes latency during
the prefill phase.

However, directly porting this strategy to the Ascend 910C NPU on CloudMatrix384 proves
inefficient due to architectural mismatches. The pipeline on H800 typically reserves a subset of
its streaming multiprocessors (SMs) for communication tasks, enabling concurrency but reducing
available compute resources. In contrast, the Ascend 910C offers a heterogeneous compute fabric,
which comprises AICs for matrix operations, AIVs for lightweight computation, and SDMA engines
for data movement, enabling finer-grained, role-specific task distribution.

To fully exploit this heterogeneity, we introduce an optimized microbatch-based prefill pipeline
for CloudMatrix384, illustrated in Figure 18b. Our design orchestrates workload distribution across
the AIC, AIV, and SDMA subsystems as follows:

Serving Large Language Models on Huawei CloudMatrix384 31

Computation: [H Shared H H H H Shared J
(108 SMs) L3 Expert Lt P P Expert) =

Communication: {

(24 SMs) Combine } { Dispatch J [Dispatch } [Combine }

(a) The DeepSeek’s prefill pipeline on NVIDIA H800.

AIC+AIV: [ATTN J [ATTN] [Shared Experts & MLP J [Shared Experts & MLP] [ATTN }
! Compute Compute Compute Compute
. All-to-All All-to-All All-to-All All-to-All

(b) Our proposed prefill pipeline on CloudMatrix384.

Fig. 18. Comparison of prefill pipeline strategies: (a) DeepSeek’s approach on H800, reserving compute units
for communication, versus (b) our proposed pipeline on CloudMatrix384, leveraging heterogeneous AIC, AlV,
and SDMA units for specialized task execution and enhanced computation-communication overlap. In both
diagrams, alternating colors are used to distinguish the two interleaved microbatches being processed.

First, we offload low-intensity auxiliary computations to the AIVs, freeing the AICs to focus
on compute-intensive operators such as ATTN and MLP. Tasks like token reordering and metadata
generation prior to Dispatch (denoted DispatchCompute), and expert output accumulation af-
ter Combine (denoted CombineCompute), are assigned to AIVs. These operations are lightweight
and vectorizable, making them ideal for AIV execution. As depicted in Figure 18b, AIVs can pro-
cess DispatchCompute for one microbatch while AICs execute core computations for another
microbatch, achieving fine-grained operator-level overlap.

Second, we explicitly route high-volume data transfers, such as All-to-All communication for MoE
Dispatch and Combine, to SDMA engines. By isolating these memory operations to a dedicated
transfer stream, we prevent contention with AIC and AIV execution. This segregation ensures that
compute-heavy operations can proceed uninterrupted, and communication latency is overlapped
by concurrently executing AIC/AIV tasks. Given that prefill workloads are dominated by dense
matrix operations and communications, this explicit channeling of data flow through SDMA plays
a crucial role in preserving peak NPU throughput.

This hardware-aware task assignment, i.e., AIC for primary compute, AIV for auxiliary vector
tasks, and SDMA for communications, improves concurrency and minimizes execution stalls.

Moreover, this design is notably different from our decode-phase pipeline (§4.2.3), where commu-
nication logic is more tightly coupled with compute streams due to different latency and throughput
requirements. In prefill, the need to process longer sequences and larger microbatches makes it more
sensitive to compute saturation and bandwidth contention. Thus, separating concerns through dedi-
cated execution units and overlapping tasks at the operator level aligns better with the performance
characteristics of CloudMatrix384.

4.3.3 Low-interference Transferring between Prefill and Decode

In the prefill-decode disaggregated serving architecture, the prefill phase is responsible for generat-
ing the first token and producing the corresponding KV cache, which must then be transferred to the
decode phase to initiate autoregressive generation. To prevent the performance of latency-sensitive
decoding from being disrupted by prefill activities, we introduce three system-level optimizations in
CloudMatrix-Infer: (1) hardware-level isolation of KV cache transfers via the RDMA plane, (2) asyn-
chronous scheduling to decouple prefill execution from decode scheduling, and (3) model-aware
connection grouping to evenly balance prefill-decode communication traffic.

32

RDMA-plane-based KV Cache Transfer. Upon completion of the prefill phase, the complete
KV cache is transferred to the assigned decode node. To eliminate potential interference with
decode-phase communication, this NPU-to-NPU transfer is conducted via the RDMA plane, which
is physically and logically decoupled from the UB plane used for bandwidth-intensive decode
operations such as token dispatch and expert output combination. Using the dedicated path of the
RDMA plane, we isolate the movement of the KV cache from the latency-critical decode traffic.
Furthermore, since the KV cache of each request is transferred only once, the RDMA plane offers
sufficient bandwidth without becoming a performance bottleneck.

Asynchronous Prefill Scheduling. To further minimize interference between the two phases,
we offload prefill scheduling and KV cache transfer to a dedicated background thread in the decode
scheduler. When a new inference request arrives, the inference engine immediately yields control
back to the background thread, which asynchronously performs the following steps: (i) allocates a
KV cache buffer on the target decode node, (ii) routes the prefill task to a low-load prefill node,
and (iii) triggers RDMA-based cache transfer upon completion. This design ensures that decode
threads are never blocked by prefill computation or data transfer, thus enabling continuous decode
scheduling and improved responsiveness.

Load-balanced Prefill-Decode Connection Mapping. A common scenario in a PD-disaggregated
system is the use of different parallel configurations for the prefill and decode phases. For instance,
the decode phase may employ a combination of tensor parallelism (TP) and data parallelism (DP),
while the prefill phase typically uses a larger TP degree to accelerate the processing of long input
sequences. A key characteristic of the DeepSeek-R1 model, which uses the MLA with a single latent
head, is that all ranks within a TP group (tp_rank) hold an identical, complete copy of the KV
Cache.

While this data redundancy provides flexibility, it also introduces a risk of creating network hot
spots if not managed correctly. If all ranks of a decode instance are to pull the KV cache from the
same source prefill rank, that single network link would become a severe bottleneck. To prevent
this, we developed a deterministic group connection mechanism that ensures a balanced transfer
load. This mapping scheme is calculated as follows:

o Let prefill tp_size be the TP size of the prefill instance.

o Let decode_tp_size and decode_dp_size be the TP and DP sizes of the decode instance,
respectively.

o Let decode_tp_rank_id and decode_dp_rank_id be the TP and DP rank ids of a specific decode
process.

prefill_tp_size . _ decode_dp_size
decode_tp_size and group_size = ratio

Subsequently, each decode rank determines its source prefill rank using the following mapping:
w] and prefill_tp_rank_id = (group_idxdecode_tp_size)+decode_tp_rank_id.

roup_size
This scheme ensirepsia balanced connection topology across all prefill-decode links, avoiding com-
munication hotspots and sustaining high throughput.
Together, these three techniques enable a seamless and low-interference handoff from prefill to
decode, preserving system efficiency and ensuring high-performance serving of large-scale LLMs

under disaggregated architectures.

First, the grouping parameters are established: ratio =

group_id = |

4.4 UB-Driven Distributed Caching with Unified Memory Access

The efficient deployment of LLMs in cloud environments critically depends on high-performance
caching strategies. These strategies are essential for accelerating data access and primarily target
two key scenarios: historical KV caches to optimize context prefill (Context Caching), and model

Serving Large Language Models on Huawei CloudMatrix384 33

UB Plane
The Data Plane:

Node 0 Node N-1 The Ctrl Plane: >
NPY u Lt U MP Server Process
CPU CcpPU { Data Index } { Mem Access J

Al Process Al Process

{ Mem Mgr } { Mem Tiering }

Al Workflow Al Workflow

Caching SDK Caching SDK

Node X

CPU
MP Server Process MP Server Process MP Controller

[\

.

VPC Plane

Fig. 19. The deployment architecture of the UB-driven disaggregated memory pool in EMS.

parameters to facilitate rapid model deployment and switching (Model Caching). Effective imple-
mentation of these caching layers significantly reduces redundant computation, curtails model
loading latencies, and enhances overall system performance. Supporting such caching function-
alities mandates a high-performance, large-capacity, and low-latency intermediate memory tier,
strategically positioned to bridge the performance gap between the NPUs’ high-speed memory and
slower persistent storage services, e.g., object storage services (OBS).

This section details the UB-driven distributed caching for LLM serving on CloudMatrix384. We
first describe the disaggregated memory pooling foundation (§4.4.1), which leverages the high-
bandwidth UB plane to build a disaggregated memory pool with unified memory access. We then
introduce two key caching services built atop this pool: Context Caching (§4.4.2) and Model Caching
(§4.4.3), both delivered via Huawei Cloud’s elastic memory service (EMS) [26].

4.4.1 Disaggregated Memory Pooling

At the heart of EMS caching services is a logically disaggregated memory pool, composed of
CPU-attached DRAM aggregated across nodes within a CloudMatrix384. This pool acts as a unified,
high-performance memory substrate for caching historical KV cache and model parameters. A
distinguishing characteristic of this memory pool is its deep integration with the UB network
plane, enabling efficient, unified memory access to this distributed DRAM and allowing NPUs to
rapidly retrieve necessary data regardless of its physical location, facilitating a peer-to-peer serving
architecture as presented in §4.1. The design’s efficacy is critically driven by the following UB’s
hardware capabilities: 1) High-Speed Peer-to-Peer Fabric: The UB network enables fast inter-node
data transfers, allowing any NPU or CPU to access DRAM on other nodes efficiently; 2) DMA
over UB: Zero-copy data transfers are enabled via direct memory access (DMA), bypassing CPU
mediation and cutting transfer latencies; 3) Low-Level Memory Primitives: The UB protocol exposes
primitives for remote memory registration and access, allowing the software stack to maintain a
global memory view.

As illustrated in Figure 19, this disaggregated memory pool is managed by a dedicated, three-
component software architecture: 1) MP SDK: Embedded in AI application’s processes, it translates

34

upper-layer caching requests into distributed memory operations, exposing key-value store style
APIs like Put and Get; 2) MP Controller: A centralized control plane that maintains metadata (e.g.,
distributed hash table (DHT) view, namespaces), coordinates operations, and orchestrates resource
management; 3) MP Server: Deployed on DRAM-contributing nodes, it manages local memory,
handles tiering and recovery, and participates in load balancing.

The interplay of these software components with the UB plane enables several key operational
mechanisms and system features:

Distributed Data Indexing and Placement. To determine the placement of a key-value pair
within the disaggregated memory pool and to efficiently locate it, the memory pool employs a
global consistent hashing index. This index maps an input key to a responsible MP Server node. A
DHT view, whose overall consistency and metadata are managed by the MP Controller, underpins
this scheme. Individual MP Servers participate in the DHT by managing their local data portions
and responding to routed requests. The MP SDK utilizes this mechanism to distribute keys to
specific nodes and DRAM addresses for data access.

High-Performance Remote Memory Access. A critical function enabled by the UB plane and
managed by the software components is direct, high-performance access to remote DRAM by NP Us.
This involves a memory mapping and registration process established during the initialization of
MP Server instances and MP SDK clients. Control messages are negotiated to exchange physical
address ranges of DRAM segments designated for the pool, which are then registered with the UB
fabric and the MP Controller. This cross-node mapping capability leverages the CloudMatrix384
supernode’s support for global unified memory addressing and routing, allowing UB switches to
route NPU SDMA-driven access requests directly to the target MP Server’s managed DRAM.

Fine-Grained Local Memory Management. To effectively manage its allocated DRAM seg-
ment and combat fragmentation from variable-sized data objects (such as KV cache blocks or
model shards), each MP Server employs a multi-granularity memory allocation system. A key
aspect is the use of huge pages to reduce the frequency of memory slice allocations and associated
management overhead. For data allocation, the system supports variable-length memory partitions,
significantly improving memory utilization compared to fixed-size allocators. Furthermore, the MP
Server allows dynamic memory flow between different granularities within its managed DRAM,
enhancing resource efficiency based on workload-dependent usage patterns.

Memory Tiering with Persistence and Recovery. To manage storage costs and ensure data
persistence, the disaggregated memory pool incorporates an SSD-based tiering layer managed by
the MP Server. This layer leverages cloud-provisioned elastic volume service (EVS) SSDs to provide
large-capacity, persistent storage. An alternative to EVS-based tiering is using the cloud’s scalable
file system service (SFS), which however incurs higher costs. Within this hierarchy, the distributed
DRAM pool acts as a fast cache layered above the EVS tier, enabling low-latency access to frequently
used data. Persistence is enforced by writing all data to EVS. As EVS volumes have finite capacity,
the system employs local eviction policies, e.g., least recently used (LRU), to free space when needed.
The MP Server manages DRAM residency independently, using its own LRU eviction logic and
capacity thresholds for the DRAM tier. Data evicted from DRAM remains persistently stored in
EVS unless it is later removed by EVS’s own space management routines. This tiered structure
ensures fault resilience: if in-memory data is lost (e.g., due to node failure), it can be recovered
from the EVS tier, assuming it has not been evicted.

Importantly, while the per-node bandwidth to access EVS via the Qingtian card is relatively
modest, typically under 400 Gbps, the disaggregated memory pool in the CloudMatrix384 aggregates
this bandwidth across all 48 nodes, yielding a total EVS access bandwidth of up to 48 x 400
Gbps. Since data is partitioned into fine-grained blocks and distributed across nodes, NPUs can
concurrently fetch these blocks from multiple nodes via the high-bandwidth UB plane. This enables

Serving Large Language Models on Huawei CloudMatrix384 35

high aggregate load bandwidth even when the requested data resides in the EVS tier, effectively
amortizing the limitations of per-node EVS access through system-wide parallelism.

Namespace Isolation. To support multi-tenancy and manage data for different Context Caching
and Model Caching instances, the disaggregated memory pool provides KV Namespace isolation.
This is primarily orchestrated by the MP Controller, which manages namespace creation, deletion,
and metadata. Each MP Server is aware of active namespaces and ensures that data operations
are confined to the designated namespace, providing logical data segregation and capacity usage
limitation within the shared pool.

In summary, CloudMatrix384’s UB-driven disaggregated memory pool delivers a high-throughput,
scalable memory tier for LLM inference. By combining hardware-level peer-to-peer access with
distributed memory management software, the system supports efficient caching for both KV cache
and model parameters, forming the backbone of EMS.

4.4.2 Context Caching

The prefill phase of LLM inference, responsible for processing input prompts and generating
the initial KV cache, is computationally intensive, particularly for long sequences. Substantial
performance gains are possible by reusing historical KV cache from earlier requests. This is
especially valuable in scenarios involving recurring prefixes, such as multi-turn conversations,
few-shot prompting, and repeated system instructions. Within our architecture, Context Caching
refers to a dedicated mechanism for storing and efficiently retrieving these historical KV caches.

Context Caching is implemented by EMS [26], a service on Huawei Cloud. EMS leverages the UB-
driven disaggregated memory pool (§4.4.1) to create a shared, distributed repository for historical
KV caches. These caches are organized into paged blocks (e.g., 128-512 tokens per block) based
on model characteristics and UB transfer efficiency. All NPUs in the serving cluster can access or
contribute to this cache via EMS APIs.

Indexing, Deduplication, and Retrieval. EMS provides a specialized Context Caching SDK
(i.e., API layer) to the upper-level LLM serving framework for storing and retrieving historical KV
cache blocks. Internally, this EMS SDK utilizes the APIs of the MP SDK (§4.4.1) to interact with
the underlying distributed DRAM and tiered storage. Each KV cache block is associated with a
unique hash key derived from its token sequence and augmented with a prefix hash to enable
content-addressable indexing. This allows for fast lookups and deduplication: identical KV blocks
are stored once and reused across requests.

The portion of the disaggregated memory pool allocated to Context Caching is subject to capacity
constraints. When nearing these limits, the MP Server (§4.4.1) triggers eviction of colder KV cache
blocks from DRAM to the EVS-backed SSD tier. If SSD capacity is also constrained, data is removed
entirely based on LRU-style policies. This eviction process ensures fair and efficient resource sharing
between context and model caches within the unified pool.

Interaction with PDC Disaggregation. EMS tightly integrates with the disaggregated prefill
and decode pipeline:

Prefill — Reuse and Store: Upon receiving a new request, the prefill engine queries EMS with a
hash of the input prefix to identify reusable KV cache blocks. If found, these blocks are fetched via
the UB plane and loaded directly into NPU memory, bypassing redundant computation. The engine
then processes the remaining suffix and generates the corresponding KV cache blocks. These new
blocks are asynchronously stored back to EMS, enabling reuse in future requests without stalling
ongoing computation.

Decode — Selective Cache Storage: KV cache generated during the decode phase can be reused for
non-reasoning models, but not for reasoning models like DeepSeek-R1. These reasoning models
emit intermediate reasoning tokens followed by final response tokens. Intermediate tokens are

36

typically not re-ingested in subsequent turns, and hence final response tokens shift in position when
included in later prompts. Such positional changes disrupt cache validity due to position-sensitive
attention. As a result, decode-generated caches are usually excluded from storage. However, if the
system adopts approximate KV reuse techniques that tolerate positional shifts, selectively storing
final response tokens’ cache blocks can offer performance benefits.

4.4.3 Model Caching

Modern LLM serving infrastructures must efficiently support a diverse portfolio of models varying
in size, architecture, and task specializations. These infrastructures must also accommodate dy-
namic model switching in response to fluctuating service demands and continuous model updates.
However, loading multi-billion-parameter LLMs from persistent storage, e.g., object storage service
(OBS), into NPU memory incurs significant latency. For example, loading a DeepSeek-R1 model
with 671B parameters from OBS, assuming a standard 2.5 GB/s access bandwidth per bucket, takes
over five minutes. This delay severely limits the practicality of dynamic model switching and
impairs service responsiveness, particularly during model updates or A/B testing. Thus, a fast
caching mechanism is essential not only to mitigate these overheads but also to ensure responsive,
agile model deployment.

To address these challenges, we incorporate Model Caching provided by EMS. At its core, EMS
utilizes the UB-driven disaggregated memory pool (§4.4.1) as a high-performance, distributed
caching substrate to support low-latency model access across the system. To integrate with upper-
layer serving frameworks, EMS provides a Model Caching SDK that exposes APIs for checking,
prefetching, and loading models from the cache. Specifically, the SDK allows users to query whether
a model is currently cached in the EMS memory pool, initiate asynchronous prefetching of model
blocks from persistent storage into EMS, and trigger model block loading into target NPU memory
for inference. When a model is already partially cached, prefetching acts as a hint to promote blocks
from slower tiers (e.g., SSD) to faster tiers (e.g., DRAM), further optimizing access latency.

Cache Management Policies. Internally, EMS decomposes each model into memory blocks and
stores them as key-value entries within the disaggregated memory pool. A centralized metadata
service tracks the mapping from each model to its corresponding set of blocks, enabling fine-grained,
sharded model loading and efficient retrieval during inference. EMS manages cached model blocks
through coordinated policies spanning admission, eviction, and versioning. For admission and
prefetching, EMS loads model blocks into DRAM or SSD tiers based on application hints and
observed access patterns. Eviction is handled by the native LRU-based policy of the disaggregated
memory pool, which, due to the coherent access behavior of model blocks, typically operates
at model-level granularity, i.e., entire models or large segments are evicted together, avoiding
fragmented state. For versioning, EMS ensures NPUs always execute the correct model version by
maintaining version-aware identifiers and associating each model with its corresponding block set.
When a new version is deployed, the serving framework requests it explicitly, while stale versions
are gradually phased out via natural cache eviction.

Benefits of Model Caching with the UB-driven Disaggregated Memory Pool. EMS lever-
ages the UB-driven disaggregated memory pool to achieve two key advantages for model caching.
First, the high-bandwidth, low-latency UB plane facilitates fast transfer of model blocks from EMS
memory tiers (e.g., DRAM or SSD) to NPU memory, substantially reducing model loading latency.
Second, EMS uses a unified, cluster-wide memory pool that eliminates data redundancy, allowing
a single cached model version to be shared by all NPU instances. This design reduces both the
pressure on persistent storage bandwidth and the cumulative DRAM and SSD footprint required
for caching, resulting in improved scalability and resource efficiency.

Serving Large Language Models on Huawei CloudMatrix384 37

Table 2. Performance comparison of model loading strategies for loading a 671B INT8 model (approximately
671GB data size) into 8 model instances within a CloudMatrix384 (The model is originally stored in an OBS
bucket with 2.5GB/s bandwidth. We consider two scenarios: 1) Model load: all 8 instances concurrently load
the same model using different load strategies for comparing their load latency and DRAM overhead; 2) Model
switch: with 8 distinct active models, we compare the model switch latency and cache hit rate when one instance
performs a random model switching to one of these 8 models. Latencies are illustrative and representative of
defined scenarios.).

Scenario Metric No Cache (OBS Load) Local DRAM Cache EMS
Model Cold Start Latency (Initial OBS to NPU, s) ~2,560! ~2,5601 ~320
Load Warm Start Latency (DRAM to NPU, s) N/A ~5 ~5

DRAM Capacity Overhead (x Model Size) 0 8 % 1%
Model Cache Hit Rate (%) 0 12.5% 100%?2
Switch Average Latency to Switch (s) ~320 ~281 ~5

1 When 8 instances concurrently load the same model from the shared OBS bucket, reflecting significant contention.
2 Assumes the capacity of EMS exactly holds all 8 distinct 671B active model versions.

Table 2 quantifies these benefits through a performance comparison across different model loading
strategies for a 671B-parameter model with INT8 quantization. When no caching is used, all 8 model
instances concurrently loading the model from OBS experience a cold start latency of approximately
2,560 seconds each, due to severe contention on the shared 2.5 GB/s OBS bandwidth. Local DRAM
caching offers no improvement in this cold start latency, as each node still independently fetches the
full model from OBS. In contrast, EMS reduces cold start latency to only ~320 seconds by enabling
shared loading through the memory pool and reusing model blocks across instances.

Beyond latency, EMS also improves memory efficiency. Local DRAM caching results in an 8x
DRAM overhead where each of the 8 instances stores a full model replica. EMS, in comparison,
requires only 1x DRAM footprint to serve all instances, while maintaining an identical warm start
latency of ~5 seconds. In model switching scenarios, EMS achieves a 100% cache hit rate with an
average switch latency of ~5 seconds, significantly outperforming local DRAM caching, which
yields only a 12.5% hit rate and a latency of ~281 seconds. These results highlight EMS as a highly
effective solution for minimizing both model access latency and memory resource overhead in
large-scale inference environments.

4.5 INTS8 Quantization

To achieve high-throughput, low-latency inference for large-scale MoE models such as DeepSeek-
V3/R1 on the Ascend 910C platform, we have designed and implemented a training-free, hierarchical
INT8 quantization scheme for model weights and activations. This scheme is engineered to maximize
computational efficiency and reduce memory footprint while carefully managing potential accuracy
degradation. The core components of our approach are detailed below:

Mixed-Precision Strategy. Our quantization scheme employs a mixed-precision strategy that
classifies different operators within the model based on a trade-off between their impact on overall
performance (e.g., computational load, memory access) and their sensitivity to numerical precision.
The most computationally intensive operations in the critical execution path, such as large matrix
multiplications in feed-forward networks (FFNs) and attention mechanisms, are quantized to INT8
to leverage the highest throughput. Conversely, sub-modules or specific operations that are more
sensitive to quantization errors but constitute a smaller fraction of the overall memory access
or computational burden (e.g., certain normalization layers or critical gating mechanisms) retain
higher precision using BF16 or FP32. This flexible partitioning of bit-widths ensures that the entire

38

model can execute efficiently within a unified hardware pipeline, while precision bottlenecks in
critical, numerically sensitive pathways are avoided.

Adaptive Scale Search. Effective quantization requires careful alignment of the dynamic range
of floating-point values to the limited range of INT8 integers. For each weight tensor and activation
tensor destined for INT8 quantization, we introduce a lightweight, adaptive scale search process.
This process automatically determines the optimal scaling factor s* that minimizes the quantization
error, effectively aligning the value distributions before and after quantization. The scale search is
formulated as an optimization problem:

st = argmsinL(s), where £(s) = |[|Q(W -s)(s™' - X) = WX]| 3)

Here, W represents the weights, X the activations, and Q(-) denotes the quantization function.
This formulation seeks to find scales s for weights (and s™! for activations) such that the output
of the quantized operation Q(W - s)(s™! - X) is closest to the original floating-point output WX.
This entire scale determination process is performed offline during a post-quantization calibration
step and therefore incurs no additional runtime overhead during inference. This concept involves
transforming X and W with appropriate scales before quantized multiplication.

Outlier Suppression and Structural Transformation. Certain components within large
models, particularly specific expert subnetworks or gating structures in MoE architectures, can
exhibit activation or weight distributions with long tails or significant outliers. These outliers can
disproportionately affect the quantization range, leading to a loss of precision for the majority
of values. To mitigate this, we employ an outlier suppression technique involving structural trans-
formations. Prior to quantization, simple linear transformations (conceptually similar to applying
learned orthogonal basis rotations or absorbing scaling factors into preceding/succeeding layers)
are introduced. These transformations aim to redistribute the extreme values into a more balanced
and quantization-friendly range without altering the underlying mathematical function of the layer.
By reducing the impact of outliers, this method minimizes the risk of large quantization errors and
curtails subsequent error amplification through the network.

Efficient INT8 Matrix Multiplication Kernels. The performance benefits of INT8 quantization
are critically dependent on highly optimized execution kernels. We leverage a mixed-granularity
quantization scheme for matrix multiplications: activations (X) are quantized on a per-token basis
(dynamic range determined per token), while weights (W) are quantized on a per-channel basis
(typically per-output-channel, static range per channel). This approach balances the need to adapt
to rapidly changing activation statistics with the desire to maintain stable weight representations.
This mixed granularity, combined with carefully aligned memory layouts for both weights and
activations, allows for full utilization of the specialized integer matrix multiplication instructions
available on Ascend NPUs. Compared to equivalent BF16 or FP16 implementations, these optimized
INT8 kernels can deliver severalfold increases in inference throughput on the same hardware, while
ensuring that any accuracy degradation remains within application-acceptable tolerances.

Block-Level Clipping and Error Compensation. To further refine accuracy and handle local
variations within large weight tensors, we implement block-level clipping and error compensation.
Weights are statistically analyzed and partitioned into smaller blocks. For each block, a distinct,
tolerable clipping range is established. This range can be determined by optimizing a scaling factor
a for clipping (e.g., Wlip_max = @ - max(Whlock) and Welip min = @ - min(Wpock)) that minimizes the
quantization error for that specific block, for instance, by solving:

arg rrgn ||Block(X; W) — Block(X; Q(W; a))|| (4)

Here, Q(W; @) represents quantizing the weights W within the block using the clipping factor a.
Concurrently, lightweight error compensation terms are strategically inserted into the inference

Serving Large Language Models on Huawei CloudMatrix384 39

computation graph. These terms aim to counteract or partially correct the systematic errors
introduced by quantization at different points in the model, thereby mitigating the cumulative
impact of quantization noise on the final model output. A significant advantage of this method is
that it requires no modifications to the original model training process and does not depend on
additional fine-tuning stages, facilitating rapid deployment and iteration.

In concert, these five strategies form a robust and hierarchical INT8 quantization framework that
enables high-performance inference for massive models like DeepSeek-V3/R1 on Ascend hardware,
carefully balancing computational efficiency with the preservation of model accuracy.

5 Evaluations

In this section, we present a comprehensive performance evaluation for our proposed serving system
CloudMatrix-Infer, previously detailed in §4, when deployed on the CloudMatrix384. We begin by
outlining the common experimental setup used for our evaluation (§5.1). Subsequently, we analyze
several key aspects of performance and efficacy: this includes the overall system performance (§5.2);
the inference accuracy achieved with our INT8 quantization scheme (§5.3); an ablation study that
investigates the specific contributions of different optimization techniques employed (§5.4); and
finally, a look at the performance of critical underlying operators (§5.5).

5.1 Experimental Setup

Our evaluation is conducted on a Huawei CloudMatrix384 supernode, provided by the ModelArts
Lite (Cluster Mode) service in Huawei Cloud. Specifically, we utilize a configuration comprising 256
Ascend 910C NPUs and their associated host Kunpeng CPUs from a single CloudMatrix384. The
serving system consists of an LLM inference engine optimized by Huawei and SiliconFlow? together,
deployed with the requisite Huawei CANN software packages. The elastic memory service (EMS)
in Huawei Cloud, providing distributed caching capabilities as detailed in §4.4, is pre-deployed
across the allocated compute nodes. The entire deployment adheres to our proposed peer-to-peer
serving architecture with PDC disaggregation (§4.1), with the following specific configurations for
each logical cluster:

Decode Cluster: We deploy a single decode instance utilizing 160 Ascend 910C NPUs (across
20 compute nodes, yielding 320 NPU dies). This instance employs an expert parallelism degree of
320 (EP320) for the sparse MoE layers. For other components like MLA and dense FFN layers, a
data parallelism degree of 320 (DP320) is used across the NPU dies. Within these 320 EP ranks, we
deploy one expert instance per rank. The expert configuration comprises 32 copies of the shared
expert, 256 distinct router experts, and an additional 32 redundant router experts to facilitate expert
parallelism load balancing (EPLB).

Prefill Cluster: The prefill cluster consists of 6 prefill instances, each allocated 16 Ascend 910C
NPUs (two compute nodes per instance, yielding 32 NPU dies). In total, the prefill cluster uses
96 NPUs. Each prefill instance employs an expert parallelism degree of 32 (EP32) for sparse MoE
layers. MLA components within prefill instances utilize a hybrid parallelism strategy detailed in
§4.3.1. For expert deployment within each 32-rank prefill instance, we configure 10 experts per
rank, consisting of 1 shared expert, 8 router-selected experts, and 1 redundant router expert for
effective EPLB.

Caching Cluster (EMS): The distributed caching provided by EMS is realized by leveraging
the host CPU DRAM of all physical compute nodes that constitute the prefill and decode clusters.
The Kunpeng CPUs and their associated DRAM on these 32 compute nodes (20 for the decode
cluster + 12 for the prefill cluster) collectively form the UB-driven disaggregated memory pool.

Zhttps://www.siliconflow.com/

https://www.siliconflow.com/

40

EMS utilizes this pool for both Model Caching (§4.4.3) and Context Caching (§4.4.2). Access to this
shared memory pool from all NPUs is facilitated by the CloudMatrix384’s high-speed UB plane.

This experimental configuration serves as the basis for the accuracy and performance evaluation
in subsequent sections. The DeepSeek-R1 model evaluated is the 671B parameter version, which
has been quantized to INT8 (§4.5) for execution on the Ascend 910C NPUs.

5.2 Overall Performance

In this section, we evaluate CloudMatrix-Infer’s overall performance against leading baselines,
measuring both raw throughput and hardware efficiency (tokens/s/TFLOPS), for both prefill and
decode phases. We compare these metrics with publicly available performance data for DeepSeek
serving on NVIDIA H800 GPUs [12] and SGLang on NVIDIA H100 GPUs [53]. Our evaluation
independently assesses the performance of the prefill and decode phases, mirroring the experimental
setups reported in the comparative sources to facilitate a clear analysis.

Prefill Throughput. We begin by examining prefill throughput, a critical factor for efficiently
processing input prompts. Table 3 details these per-accelerator comparisons. Effective MoE model
serving during prefill also significantly depends on robust EPLB, as highlighted by SGLang’s
analysis [53]. The DeepSeek (Profile) data, with its high throughput (7,839 tokens/s per GPU), may
reflect performance under near-ideal expert load balancing. To provide a comparable analytical
baseline against such optimized scenarios, Table 3 includes Perfect EPLB configurations for both
SGLang and CloudMatrix-Infer. These results represent projected performance under an idealized
assumption of perfect load distribution across experts.

Table 3. Overall prefill throughput (per accelerator) for DeepSeek-R1.

Method Batch Input Hardware Throughput Throughput

Size Length TFLOPS (Precision) (tokens/s) per TFLOPS
DeepSeek on H800 (Blog) N/A N/A 1979 (FP8) 4,026 2.03
SGLang on H100 (Default) 16,384 4,096 1979 (FP8) 6,288 3.18
CloudMatrix-Infer (Default) 16,384 4,096 1504 (INT8) 5,655 3.76
DeepSeek on H800 (Profile) 16,384 4,096 1979 (FP8) 7,839 3.96
SGLang on H100 (Perfect EPLB) 16,384 4,096 1979 (EP8) 7,417 3.75
CloudMatrix-Infer (Perfect EPLB) 16,384 4,096 1504 (INT8) 6,688 4.45

In its default configuration, CloudMatrix-Infer processes 5,655 tokens/s per NPU. This yields
a compute efficiency of 3.76 tokens/s per TFLOPS, given the computational capability of 1,504
TFLOPS (INT8) per Ascend 910C NPU. This is significantly more efficient than SGLang’s default
configuration on NVIDIA H100 (3.18 tokens/s per TFLOPS), despite the latter having slightly
higher raw throughput. When tested under an idealized "Perfect EPLB" condition, CloudMatrix-
Infer achieves 6,688 tokens/s per NPU, translating to an efficiency of 4.45 tokens/s per TFLOPS,
surpassing both SGLang’s ideal efficiency on H100 (3.75 tokens/s per TFLOPS) and the DeepSeek
profile on H800 (3.96 tokens/s per TFLOPS). These comparisons underscore the strong potential of
CloudMatrix-Infer, while the gap between our default and ideal results highlights the opportunity
for further improvement in our load-balancing algorithms.

Decode Throughput. Next, we analyze performance during the auto-regressive decode phase,
as detailed in Table 4. We assess absolute decode throughput (tokens/s) targeting a time-per-output-
token (TPOT) SLO of below 50 ms, and also evaluate throughput normalized by the accelerator’s

Serving Large Language Models on Huawei CloudMatrix384 41

computer power (tokens/s per TFLOPS) as an indicator of compute efficiency. Notably, both the
SGLang (Simulated MTP) and CloudMatrix-Infer configurations utilize multi-token prediction
(MTP) with an assumed effective acceptance rate of 70% for a single speculative token.

Table 4. Overall decode throughput (per accelerator) for DeepSeek-R1.

Batch KV Cache Hardware TPOT Throughput Throughput

Method Size Length TFLOPS (ms) (tokens/s) per TFLOPS
DeepSeek (Blog) on H800 N/A 4,989 1979 (FP8) ~50.0 1,850 0.93
DeepSeek (Profile) on H800 128 4,096 1979 (FP8) ~50.2 2,325 1.17
SGLang (Simu. MTP) on H100 128 4,000 1979 (FP8) ~55.6 2,172 1.10
CloudMatrix-Infer 9% 4,096 1504 (INT8) 49.4 1,943 1.29

CloudMatrix-Infer, configured with a batch size of 96 per NPU and a KV cache length of 4,096
tokens, achieves an excellent TPOT of 49.4 ms. In terms of absolute system throughput, CloudMatrix-
Infer yields 1,943 tokens/s per NPU with its batch size of 96. This is higher than the DeepSeek (Blog)
HB800 baseline (1,850 tokens/s per GPU). While numerically lower than DeepSeek (Profile) on H800
(2,325 tokens/s per GPU) and SGLang on H100 (2,172 tokens/s per GPU), these latter systems were
benchmarked with a larger batch size of 128. The throughput per TFLOPS metric offers further
insight into system compute efficiency. CloudMatrix-Infer achieves the highest compute efficiency
(1.29 tokens/s per TFLOPS), which is higher than SGLang on H100 (1.10 tokens/s per TFLOPS),
DeepSeek (Blog) on H800 (0.93 tokens/s per TFLOPS), and DeepSeek (Profile) on H800 (1.17 tokens/s
per TFLOPS). This indicates that our serving solution effectively utilizes the available compute
power of the CloudMatrix384 during decoding.

Table 5. The decode throughput of CloudMatrix-Infer under different TPOT SLOs and prompt/output lengths.

TPOT SLO Prompt Output Batch Achieved TPOT Throughput per NPU

(ms) Length Length Size (ms) (tokens/s)
50 1,024 1,024 128 46.8 2,733
50 2,048 256 112 47.4 2,360
50 4,096 256 96 49.4 1,943
30 4,096 256 24 24.6 974
15 4,096 256 8 14.9 538

We also evaluate the decode throughput of CloudMatrix-Infer under varying TPOT service-level
objectives (SLOs) and different prompt and output lengths, as shown in Table 5. The results show a
clear trend: decode throughput significantly increases with shorter combined prompt and output
lengths. For instance, with prompt and output lengths of 1,024 tokens each, the decode throughput
reached 2,733 tokens/s per NPU. This dropped to 2,360 tokens/s per NPU when the prompt length
increased to 2,048 tokens and the output to 256 tokens. This improvement is attributed to shorter
total lengths reducing the KV cache space required per request, which in turn allows for larger
batch sizes. Moreover, as the TPOT SLO becomes more stringent, from 50 ms to 15 ms, CloudMatrix-
Infer adjusts the batch size accordingly to meet latency targets. Under a relaxed SLO of 50 ms,
CloudMatrix-Infer supports a batch size of 96 and achieves a throughput of 1,943 tokens/s per

42

Table 6. Accuracy comparison of DeepSeek-R1 with INT8 quantization on Ascend 910C, the official DeepSeek-
R1 API [10], and results reported in the DeepSeek-R1 technical report [13] across multiple benchmarks
(Results from benchmarks with testing configurations deemed inconsistent have been excluded.).

Category Benchmark (Metric) DeepSeek-R1 (INT8) DeepSeek-R1 API DeepSeek-R1 Report
MMLU (Pass@1) 90.82 91.05 90.8
MMULU-Pro (EM) 83.91 83.82 84.0
Enlish DROP (3-shot F1) 90.42 91.02 92.2
g TE-Eval (Prompt Strict) 83.55 83.92 83.3
GPQA Diamond (Pass@1) 71.66 71.77 71.5
SlmpleQA (Correct) 30.60 30.69 -
Code LiveCodeBench (Pass@1-COT) 63.80 63.44 65.9
HumanEval (Pass@1-COT) 91.83 91.85 -
AIME 2024 (Pass@1) 78.96 78.12 79.8
Math MATH-500 (Pass@1) 94.46 94.62 -
CNMO 2024 (Pass@1) 77.95 76.70 78.8
MGSM 92.40 92.65 -
CLUEWSC (Test) 94.67 94.98 -
Chinese C-Eval EMm) 82.05 79.92 -
C—SimpleQA (Correct) 74.70 75.43 -
C-MMLU 90.76 90.84 -

NPU while satisfying the latency constraint. As the SLO tightens to 30 ms and 15 ms, the batch
sizes reduce to 24 and 8 respectively, resulting in lower throughputs of 974 and 538 tokens/s per
NPU. These findings demonstrate CloudMatrix-Infer’s ability to meet diverse latency constraints
by dynamically scaling batch sizes, all while maintaining high decoding throughput even under
stringent real-time demands.

5.3 Accuracy

To comprehensively assess the inference accuracy of DeepSeek-R1 when quantized to INT8 and
deployed on CloudMatrix384, hereafter referred to as DeepSeek-R1 (INT8) for brevity, we conduct
extensive tests based on widely used benchmarks. Our evaluation focuses on comparing the
accuracy of the INT8 quantization implemented by SilliconFlow (§4.5) against results from the
official DeepSeek-R1 API [10] and results published in its technical report [13]. Given that the
original DeepSeek-R1 technical report does not fully disclose all testing parameters for each
benchmark, which can lead to variations in direct replication, we adopt a side-by-side evaluation
methodology against the live DeepSeek-R1 API to ensure a fair and direct comparison of practical
performance.

Our evaluation suite is derived from the extensive list in the DeepSeek-R1 technical report and
other widely utilized benchmarks, comprising 16 distinct benchmarks for a multifaceted assessment.
Exclusions include AlpacaEval 2.0 [17] and Arena-Hard [36], due to their reliance on GPT-4 for
evaluation (which is outside our current setup), and CodeForces® because of the lack of readily
available automated evaluation scripts. The selected benchmarks cover a broad range of capabilities:
English (MMLU [23], MMLU-Pro [9], DROP [16], IFEval [58], GPQA Diamond [50], SimpleQA [44]),
Code Generation (LiveCodeBench [31], HumanEval [7]), Mathematics (AIME 2024 [3], MATH-
500 [24], CNMO 2024 [1], MGSM [51]), and Chinese (CLUEWSC [55], C-Eval [25], C-SimpleQA [22],
C-MMLU [35]). We believe this curated set provides a robust basis for evaluating accuracy.

3https://codeforces.com

Serving Large Language Models on Huawei CloudMatrix384 43

[With Microbatch [Without Microbatch B With Microbatch =1 Without Microbatch
& Overall
P
Q
g 2000 MLAProlog == I With Microbatch (Microbatch 0)
3 1500 Aftention Core == == With Microbatch (Microbatch 1)
a OProj =2 ! '
< [Without Microbatch
3 1000 Gating&==
£ Dispatch f——rs
g 500 MoE e
§ 0 Combine T
[=)]

64 96 128 0 200 400 600 800 1000 1200 1400 1600
Batch Size Scaled Mean Time (us) per Layer
(a) Decode throughput. (b) Decode latency breakdown (batch size 96).

Fig. 20. Decode throughput and per-layer latency breakdown with and without the microbatch-based pipeline.
All requests have a 4,096-token KV cache length. In (b), the “Overall” with Microbatch indicates the per-layer
latency after overlapping two microbatches (Microbatch 0 and Microbatch 1).

For consistency in evaluation, prompts for benchmarks such as MMLU, DROP, MGSM, GPQA
Diamond, HumanEval, MATH-500, SimpleQA, and C-SimpleQA are sourced from the simple-evals
framework. Others, including CMMLU, C-Eval, LiveCodeBench, IFEval, and CLUEWSC, utilize the
OpenCompass framework*. Adhering to the methodology in the DeepSeek-R1 technical report,
MMLU-Pro, C-Eval, and CLUEWSC are tested in a zero-shot setting, while other test sets follow their
original protocols. Mathematics competition benchmarks (AIME 2024 and CNMO 2024) undergo 32
repeated test runs each to accurately estimate their pass@1 metrics. For MATH-500, SimpleQA, and
C-SimpleQA benchmarks where official evaluations reportedly utilize various GPT-4 versions, we
employ Qwen2.5-72B-Instruct’ as the grading model for assessing the outputs of both DeepSeek-R1
(INT8) and the DeepSeek-R1 APL. While this choice ensures internal consistency for our study, it
may contribute to variations when comparing our scores to those in the DeepSeek-R1 technical
report, which relies on GPT-4-based grading. Key generation parameters include a temperature of
0.6 and top-p of 0.95, aligning with settings specified in the DeepSeek-R1 technical report [13].

The comparative accuracy results are presented in Table 6. Overall, our DeepSeek-R1 (INT8)
implementation on Ascend 910C demonstrates performance largely comparable to both the official
DeepSeek-R1 API and the metrics reported in the original technical paper. This indicates that
the INT8 quantization applied for deployment on Ascend 910C effectively preserves the model’s
capabilities across a diverse range of tasks.

5.4 Ablation Study

To understand the individual contributions and effectiveness of key optimization techniques em-
ployed in CloudMatrix-Infer, we conduct a series of ablation studies. These studies isolate the impact
of our microbatch-based pipeline strategies for both prefill and decode phases, the Multi-Token
Prediction (MTP) mechanism, and the EMS-based Context Caching.

5.4.1 Microbatch-based Pipeline

This ablation study quantifies the performance impact of the microbatch-based pipeline strategies
by comparing system performance with and without these microbatch optimizations.

Decode Pipeline. We first evaluate our microbatch-based pipeline for the decode phase, pre-
viously detailed in §4.2.3. The ablation compares system performance with and without this

4https://github.com/open-compass/opencompass
Shttps://huggingface.co/Qwen/Qwen2.5-72B-Instruct

[With Microbatch 1 Without Microbatch

8000 Il \With Microbatch 1 Without Microbatch
= Overall
2
[} -
£ 6000 Atin-0 (Pre FA)EE < I With Microbatch (Microbatch 0)
=1 Attn-1 (FA) P = == With Microbatch (Microbatch 1)
2 4000 Atin-2 (Post FA) E= =23 Without Microbatch
%’ Gating =
c DispatchFee—=__
E 2000 e —__
£ Combine EE===r—=
1K 2K 4K 8K 0 5 10 15 20 25 30 35 40 45 50 55
Prompt Length Scaled Mean Time (ms) per Layer
(a) Prefill throughput. (b) Prefill latency breakdown (4K prompt length).

Fig. 21. Prefill throughput and per-layer latency breakdown with and without the microbatch-based pipeline.
All experiments are executed with a batch containing 16K total tokens per NPU. In (b), the “Overall” with
Microbatch indicates the per-layer latency after overlapping Microbatch 0 and Microbatch 1.

microbatch optimization. Figure 20a illustrates the decode throughput across various batch sizes.
We observe that enabling the microbatch-based pipeline improves decode throughput by 5.8%,
9.4%, and 6.9% for batch sizes of 64, 96, and 128, respectively. This gain, while beneficial, is rela-
tively more modest when compared to potential improvements reported for other platforms (e.g.,
SGLang [53] cited 35% on NVIDIA H100 clusters). This difference is primarily attributed to the
inherently lower MoE dispatch and combine communication overheads on the CloudMatrix384
with its high-performance UB plane (as detailed in Section 5.5.1), compared to NVIDIA GPU clusters
typically utilizing RDMA. With smaller MoE communication stalls on the UB plane, the improve-
ment ceiling from communication hiding via microbatching is naturally more constrained for the
CloudMatrix384.

Figure 20b provides a per-layer latency breakdown for decode execution with a batch size
of 96. It reveals that although individual microbatch execution latency for stages like Gating,
Dispatch, and MoE is marginally increased due to decreased per-stream compute resources (e.g.,
AICs from 24 to 16), the microbatch-based pipeline significantly benefits overall performance. This
is achieved by effectively overlapping the attention path (Stream 0) and MoE path (Stream 1) for
different microbatches, leading to an approximate 10% reduction in overall per-layer latency and a
corresponding considerable enhancement in end-to-end decode throughput.

Prefill Pipeline. Next, we examine the impact of our proposed microbatch-based prefill pipeline,
detailed in Section 4.3.2. Figure 21a shows the prefill throughput under various prompt lengths, com-
paring performance with and without this pipeline. We observe that enabling the microbatch-based
pipeline significantly improves prefill throughput by 23% to 31% across the tested configurations.
Moreover, prefill throughput decreases as prompt lengths increase. This trend occurs because the
per-token execution latency of attention computation increases with prompt length.

Figure 21b provides a corresponding per-layer latency breakdown for request execution with
a 4K prompt length. The data reveals that the overall execution latency per layer is reduced by
approximately 24% when the microbatch pipeline is active. This substantial gain is primarily
achieved by offloading lightweight computational tasks associated with communication (e.g.,
DispatchCompute, CombineCompute) to AIVs, and dedicating SDMA engines for bulk data transfers
(e.g., All-to-All for MoE). This strategy allows their execution latency to be effectively overlapped
with the core computations (like ATTN and FFN) performed on the AICs, leading to higher NPU
utilization and reduced end-to-end prefill time.

Serving Large Language Models on Huawei CloudMatrix384 45

N With MTP R Without MTP EEE With MTP = Without MTP

@
g Overall
£ 2000
) MLAProlog =2,
§_ 1500 Attention Core ===
< OProj =
3 1000 Gating ==
e Dispatch ===
g %0 MoE ===
g 0 Combine ===
8§ 16 32 64 96 128 0 200 400 600 800 1000 1200
Batch Size Scaled Mean Time (us) per Layer
(a) Decode throughput. (b) Decode latency breakdown (batch size 96).

Fig. 22. Decode throughput and per-layer latency breakdown with and without MTP. All experiments use an
input sequence length of 4,096 tokens. In (b), “Overall” refers to the per-layer latency after overlapping two
microbatches, and the operator latency represents the latency of a single microbatch.

54.2 MTP

To specifically quantify the performance contribution of the MTP mechanism under typical condi-
tions, we conduct a targeted ablation study. This evaluation focuses on the scenario where MTP
generates a single speculative token per decoding step, using a consistent input sequence length of
4K tokens on the CloudMatrix384. We compare performance with MTP enabled against a baseline
of standard single-token autoregressive decoding (i.e., MTP disabled) under identical workload
parameters.

As shown in Figure 22a, we observe that enabling MTP with a single speculative token improves
decode throughput by 6% to 49% compared to the non-MTP baseline across different batch sizes.
This speedup ratio is observed to be more pronounced for smaller batch sizes. This phenomenon
may occur because at smaller batch sizes, the baseline non-MTP system is further from its peak
efficiency (e.g., due to fixed per-iteration overheads being less amortized). The additional token
accepted via MTP (at the 70% rate) then provides a larger relative throughput gain. As batch sizes
increase, while MTP can still offer an absolute benefit, its relative speedup may diminish as the
baseline system itself becomes more saturated or as MTP’s own overheads become more prominent.

However, this throughput enhancement is accompanied by an increase in the execution latency
per decode layer iteration when MTP is active. As depicted in Figure 22b for a batch size of 96, using
MTP increases the per-layer execution latency by approximately 44% (e.g., from a baseline of 874 ps
to 1,260 ps with MTP). This is primarily because each MTP-enabled LLM decode step processes two
input tokens per request from the last iteration: a base token and a speculative token. This larger
effective batch size per iteration naturally leads to longer execution times for core operations such
as Attention Core, Gating, Dispatch, MoE, and Combine.

Despite this increase in per-iteration latency, the overall throughput improves. The successful
validation of speculative tokens at a 70% acceptance rate means that, on average, 1.7 tokens (1 base
token + 0.7 speculative token) are produced per MTP-enabled iteration. This gain in tokens per
iteration outweighs the approximate 44% longer iteration time, confirming the net positive impact
of our MTP implementation for 4K sequence length workloads on CloudMatrix384.

5.4.3 Context Caching

The EMS-Context Caching mechanism, introduced in §4.4, accelerates the prefill phase by storing
and reusing KV cache blocks from previous requests. This ablation study quantitatively evaluates
the effectiveness of EMS-Context Caching on CloudMatrix384, with a particular focus on how

46

—o— EMSwithUB —A— EMS with VPC ~ —— Without EMS —o— EMSwithUB ~ —A— EMS with VPC ~ —— Without EMS
— 16000 3000
% 25001 B+ O O O o
< 12000
= % 2000
3 E
£ 8000 — 1500
2 O O 0 [
£ ~ 1000
= 4000
= 500
o
& 0w 5 5 5 5 01559 5 5 5 5
12.5% 25% 50% 75% 90% 12.5% 25% 50% 75% 90%
Token Reuse Rate Token Reuse Rate
(a) Prefill throughput. (b) TTFT.

Fig. 23. The overall prefill throughput and TTFT using EMS-Context Caching with different configurations.

the underlying network fabric impacts cache access performance. Specifically, we measure prefill
throughput and time-to-first-token (TTFT) using inputs with a 4K token length and a batch size
containing 16K total tokens per NPU. To evaluate the performance under varying cache hit rates,
we adjust the token reuse rate, which controls the proportion of historical KV prefixes reused.
A central goal of this study is to compare EMS performance under two network configurations:
one utilizing the high-bandwidth UB interconnect, and the other falling back to the slower VPC
network plane for cache access.

Figure 23 illustrates the performance trends as a function of the token reuse rate for these
different EMS configurations. As shown in Figure 23a, there is a strong positive correlation between
throughput and the reuse rate for both network configurations. For EMS with UB, increasing the
reuse rate from 12.5% to 50% resulted in a 1.42X increase in prefill throughput. At a 90% reuse rate,
the throughput improved by 2.28% over the baseline without EMS. This substantial improvement
occurs because a higher reuse rate translates to a larger portion of the input sequence’s KV cache
being loaded directly from the EMS cache rather than being recomputed, significantly reducing the
computational load on prefill NPUs. Furthermore, when comparing the two network configurations,
EMS with UB consistently outperforms EMS with VPC. Using the UB plane improves prefill
throughput by up to 1.52%. This gain is directly attributable to the significantly higher bandwidth
and lower latency of the UB plane, which accelerates the loading of KV cache blocks from the
distributed EMS cache to the NPUs.

Concurrently, TTFT significantly decreases as the token reuse rate increases, as depicted in
Figure 23b. For instance, with EMS on UB, a 50% token reuse rate reduced TTFT by 861 ms (34%)
compared to no context caching, while a 90% reuse rate led to a 1,505 ms (59%) decrease. This
marked reduction in TTFT is a direct consequence of bypassing substantial prefill computation
when a cache hit occurs. The ability to quickly load historical KV cache from EMS, particularly
when accessed via the high-bandwidth UB plane and potentially served from the DRAM tier of
the disaggregated memory pool, translates directly into faster initial token generation. Similarly,
accessing the EMS cache via the UB plane yields consistently lower TTFT compared to the VPC
plane across all reuse rates, underscoring the importance of a high-performance interconnect for
latency-sensitive cache retrieval.

5.5 Performance of Operators
Understanding the performance of fundamental computation and communication operators is key

to diagnosing system bottlenecks and guiding software optimization efforts. In this subsection, we
present a micro-benchmark analysis of critical operators relevant to LLM serving, specifically MoE

Serving Large Language Models on Huawei CloudMatrix384 47

Table 7. Communication operator performance (latency and bandwidth per rank) on NVIDIA H800 (RDMA)
and CloudMatrix384 (UB plane) for Dispatch and Combine operations across different EP degrees.

Operator #EP DeepSeek DeepEP on H800 [56] CANN EP on CM384

Latency (us) Bandwidth (GB/s) Latency (us) Bandwidth (GB/s)

8 163 46 116 71
16 173 43 131 63

. 32 182 41 133 62
Dispatch 186 40 141 58
128 192 39 152 54

256 194 39 152 54

8 318 46 118 131

16 329 44 132 117

Combine %2 350 41 146 105
64 353 41 150 103

128 369 39 150 103

256 360 40 149 103

communication primitives, MLA computations, and general matrix multiplication (GEMM) kernels.
We evaluate their performance on the CloudMatrix384 (per Ascend 910C die) and compare them
against representative performance on NVIDIA H800 GPUs.

5.5.1 Communication Operators

We benchmark key MoE communication operators, specifically Dispatch and Combine, on our
CloudMatrix384 using the CANN implementation. This implementation is detailed in our design of
fused communication operators (§4.2.1). The performance is compared against DeepSeek’s DeepEP
implementation on NVIDIA H800 GPUs [56], as shown in Table 7. The table presents latency and
per-rank achieved bandwidth across various EP degrees (#EP), from 8 to 256 ranks, with a batch of
128 per rank.

For the Dispatch operation, the CANN EP implementation on CloudMatrix384 (CM384) con-
sistently demonstrates lower latencies compared to DeepEP on H800 across all tested EP degrees.
For example, at an EP degree of 8, CM384 achieves a latency of 116 s, while the H800 records
163 ps. This latency advantage for CM384 persists as the EP degree increases, with CM384 showing
152 ps at EP256 versus H800’s 194 ps. In terms of per-rank bandwidth for Dispatch, CM384 exhibits
superior performance, at smaller EP degrees (e.g., 71 GB/s vs. 46 GB/s at EP8). However, under
large EP degrees, we observe a significant decline in the effective bandwidth of CANN EP on Cloud-
Matrix384. This degradation highlights a scalability bottleneck in the current EP implementation,
which we leave as an avenue for future optimization.

The Combine operation reveals an even more pronounced performance advantage for CANN on
CM384. Latencies are significantly lower on CM384 across all EP scales. For instance, at EP8, CM384’s
latency is 118 us compared to H800’s 318 ps. This substantial latency reduction is maintained up to
EP256 (149 pus on CM384 vs. 360 pus on H800). Furthermore, the achieved per-rank bandwidth for
Combine on CM384 is markedly higher than on H800. At EP8, CM384 delivers 131 GB/s per rank,
nearly three times the 46 GB/s achieved on H800. This bandwidth superiority continues across all
tested EP degrees, with CM384 providing a strong 103 GB/s per rank at EP256, while the H800
offers 40 GB/s.

These results underscore the efficiency of the CANN collective communication library and the
high-performance capabilities of the UB plane in CloudMatrix384 for MoE-specific communication

48

Table 8. TFLOPS utilization of MLA operators on NVIDIA H800 and an Ascend 910C die (CloudMatrix384) in
compute-intensive settings (BF16/FP16 precision).

Operator Implementation Precision Achieved TFLOPS Hardware TFLOPS (Peak) Utilization (%)

DeepSeek FlashMLA on H800 ~ BF16/FP16 660 989 66.7
CANN MLA on Ascend 910C die BF16/FP16 246 376 65.4

Table 9. Memory bandwidth utilization of MLA operators on NVIDIA H800 and an Ascend 910C die (Cloud-
Matrix384) in memory-intensive settings.

Operator Implementation Achieved Bandwidth (GB/s) Hardware Bandwidth (GB/s, Peak) Utilization

DeepSeek FlashMLA on H800 3,000 3,350 89.6%
CANN MLA on Ascend 910C die 1,346 1,600 84.1%

patterns. The consistently lower latencies and higher per-rank bandwidth achieved on Cloud-
Matrix384 are crucial for mitigating communication bottlenecks inherent in large-scale expert
parallelism.

5.5.2 MLA Operator

We evaluate the TFLOPS utilization and memory bandwidth utilization of our CANN MLA im-
plementation on the CM384 against DeepSeek’s FlashMLA on an NVIDIA H800, under both
compute-intensive and memory-intensive settings.

Table 8 presents the TFLOPS utilization for MLA operators when the workload is primarily
compute-bound. The DeepSeek FlashMLA on H800 achieves 660 TFLOPS (BF16/FP16) against a
reported hardware peak of 989 TFLOPS, resulting in a utilization of 66.7%. Our CANN MLA on
CloudMatrix384, also operating in BF16/FP16, achieves 246 TFLOPS against a hardware peak of
376 TFLOPS for the NPU configuration, yielding a comparable utilization of 65.4%. This indicates
that while the absolute TFLOPS achieved are different due to hardware capabilities, the efficiency
in utilizing the available compute power for MLA is similar between the two platforms in compute-
intensive scenarios.

In memory-intensive settings, the efficiency of utilizing available memory bandwidth is para-
mount. Table 9 shows this comparison. The DeepSeek FlashMLA on H800 achieves an impressive
3,000 GB/s of memory bandwidth, representing 89.6% utilization of its 3,350 GB/s hardware memory
bandwidth. Our CANN MLA implementation on CloudMatrix384 achieves 1,346 GB/s against a
hardware memory bandwidth of 1,600 GB/s for the NPU configuration used, resulting in a similarly
high utilization of 84.1%.

5.5.3 GEMM Operator

General Matrix Multiplication (GEMM) is a fundamental compute kernel in virtually all deep
learning models. The efficiency of GEMM operations, particularly at lower precisions like INTS, is
critical for achieving high inference throughput. We benchmark the performance of INT8 GEMM
kernels provided by CANN on a single Ascend 910C die (within the CloudMatrix384 system) across
arange of matrix dimensions. The results, detailed in Table 10, showcase achieved TFLOPS, compute
utilization against the die’s peak INT8 hardware TFLOPS, and the sustained memory bandwidth
during these operations. These tests are conducted using common GEMM tiling dimensions (BM X
BN = 128 X 152), with the operations involving INT8 inputs and BF16 outputs.

Serving Large Language Models on Huawei CloudMatrix384 49

Table 10. INT8 GEMM performance and achieved memory bandwidth on an Ascend 910C die (CloudMa-
trix384) across different configurations, using INT8 inputs and BF16 outputs. Tiling: BM X BN = 128 X 152.

Compute Performance Memory BW
(GB/s)

Groups M N K

Achieved Hardware

TFLOPS TFLOPS (INTg) Utiization (%)

4 7168 4096 4096 597 752 79.4 260
4 2048 7168 4096 582 752 77.4 325
4 7168 4096 8192 622 752 82.7 195
4 2048 7168 8192 610 752 81.1 266
8 7168 4096 4096 599 752 79.6 261
8 2048 7168 4096 586 752 77.9 327

As indicated in Table 10, the CANN INT8 GEMM kernels on the Ascend 910C die demonstrate
consistently high compute utilization, ranging from 77.4% to 82.7% of the die’s 752 peak INT8
TFLOPS across various matrix shapes (M, N, K) and group counts. For example, with 4 groups and
dimensions M=7168, N=4096, K=8192, the kernel achieves 622 TFLOPS, corresponding to an 82.7%
utilization. This high efficiency is maintained across different configurations, indicating robust
performance of the INT8 compute units on the Ascend 910C die.

The table also reports the sustained memory bandwidth achieved during these GEMM operations,
which ranges from 195 GB/s to 327 GB/s. These values are substantially below the Ascend 910C
die’s peak memory bandwidth (1,600 GB/s, as noted in the MLA operator analysis, §5.5.2). This
observation, when coupled with the high compute utilization figures, strongly suggests that these
INT8 GEMM operations are predominantly compute-bound rather than memory-bandwidth-bound
for the tested matrix dimensions. Such a characteristic indicates efficient data reuse within the
NPU’s internal cache hierarchy and registers, allowing the compute units to operate at a high
fraction of their peak capability without being consistently starved for data transfers from memory.

6 Discussions on Future Directions

The rapid evolution of Al models and their pervasive application continue to impose increasingly
stringent demands on Al infrastructure. While CloudMatrix384 represents a major architectural
milestone in scaling tightly-coupled AI computation, further evolution is necessary to meet the
needs of emerging workloads. In this section, we discuss potential future directions for both the
CloudMatrix architecture and the LLM serving systems built upon it, aiming to further enhance
scalability, flexibility, efficiency, and performance.

6.1 Future CloudMatrix Evolutions

The supernode concept embodied by CloudMatrix384 can be extended along multiple dimensions
to accommodate future Al workloads.

6.1.1 Unifying VPC and RDMA Planes

As described in § 3.2, CloudMatrix384 currently employs separate network planes for scale-out
(RDMA) and VPC traffic. However, CloudMatrix enables the potential integration of scale-out
communication into the VPC network. In typical Al training and inference workloads, bandwidth-
intensive communication phases such as tensor, expert, and sequence parallelism (TP/EP/SP) are
predominantly contained within the supernode. In contrast, cross-supernode communication, pri-
marily arising from data and pipeline parallelism (DP/PP), typically exhibits much lower bandwidth

50

Il Average Block Size: 8.64 [T Average Block Size: 10.08
I Average Block Size: 9.44 [Average Block Size: 11.28

100%

95%

90%
85%
0,
80% 384 352 320 288 256 224

The Number of NPUs within a Supernode

NPU Allocation Rate

Fig. 24. NPU allocation rates under different supernode scales and tightly-coupled block sizes.

demands. With hierarchical DP communication and communication-hiding techniques, the VPC
network can adequately meet the inter-supernode communication demands of most Al workloads.

Building on this observation, a unified network architecture based on the VPC plane can enable
the construction of large-scale Al clusters at the availability zone (AZ) scale. It accommodates
heterogeneous generations of Al hardware, enables flexible and modular expansion using supern-
odes as the basic unit, and supports seamless interconnection across regions through data center
network (DCN) technologies.

6.1.2 Larger-scale Supernodes

Although CloudMatrix384 provides a substantial scale with 384 NPUs, next-generation Al models
and application scenarios are anticipated to necessitate even larger-scale supernodes. Several key
factors drive this trajectory towards increased scale:

1) Scaling to Match Model Evolution: As LLMs continue to scale in parameter size and
architectural sophistication, the infrastructure required to serve them must evolve accordingly.
Future models are expected to feature significantly larger parameter counts, longer input sequences,
and an increasing number of sparsely activated experts, particularly in MoE designs. These trends
place growing demands on compute, memory, and interconnect bandwidth within each inference
session. Moreover, emerging architectural patterns, such as modular sub-networks for specialized
reasoning, retrieval-augmented generation, or hybrid dense-sparse computation, require tighter
coupling between model components, leading to increased intra-model communication and syn-
chronization. Efficiently supporting these workloads necessitates co-locating compute and memory
within a single, tightly integrated supernode to minimize communication latency and maintain
high throughput. As a result, scaling up supernode capacity is critical not only to meet raw resource
requirements but also to sustain the fine-grained locality and performance characteristics demanded
by next-generation LLMs.

2) Improved Resource Allocation Efficiency: Scaling up supernode size also enhances system-
wide resource utilization in real-world heterogeneous workload conditions. Based on real production
traces, we simulate future NPU request patterns by modeling each Al task as a set of tightly-coupled
blocks, where each block is a contiguous group of NPUs that must be provisioned within a single
supernode to meet intra-job bandwidth and latency constraints. As shown in Figure 24, larger
supernodes consistently achieve higher NPU allocation rates across a broad range of average block
sizes. For instance, at an average block size of 10.08, a 384-NPU supernode achieves over 94%
allocation, while a 224-NPU supernode drops below 91%. This improvement stems from reduced
fragmentation and better statistical multiplexing—larger resource pools offer greater placement

Serving Large Language Models on Huawei CloudMatrix384 51

flexibility for non-uniform job sizes. Conversely, for a fixed supernode size, increasing block size
leads to lower allocation efficiency due to packing difficulty. When the average block size reaches
11.28, the allocation rate of the 224-NPU supernode drops below 85%. These results highlight that
scaling supernode size significantly improves system throughput and efficiency under realistic
workload distributions.

3) Nearly Constant Amortized Network Cost: Scaling up the size of a supernode does not
inherently lead to higher per-NPU network costs. Given the same network architecture, e.g., a 2-tier
Clos-like switching topology, the amortized cost of network infrastructure per NPU remains nearly
constant across different supernode sizes as long as the configuration achieves full switch port
utilization. As shown in Table 11, configurations with 192, 288, or 384 NPUs all achieve 100% switch
utilization with the same per-NPU amortized switch cost. Intermediate configurations, such as 256
or 352 NPUs, suffer from underutilized switches, slightly increasing per-node costs. These results
suggest that scaling supernode size to the upper end of a given switching tier does not introduce
additional cost overhead, making it a cost-effective strategy from a networking perspective.

Table 11. Switch utilization across different supernode scales. Note that each logical switch consists of two
physical switch chips presented in §3.3.3.

Supernode Scale (# of NPUs) # of Nodes # of Switches Switch Utilization

384 48 56 100%
352 44 56 92%
288 36 42 100%
256 32 42 89%
192 24 28 100%

4) Accommodating Increased Resource Heterogeneity: Future Al workloads will require
increasingly diverse hardware support within the same execution context. Alongside NPUs and
CPUs, next-generation supernodes are likely to incorporate specialized accelerators for tasks such
as physics simulation, real-time video processing, lossless data compression, and cryptographic
computation. These units are becoming essential components in end-to-end Al pipelines, particu-
larly for multimodal or domain-specific applications. To be efficiently utilized, such heterogeneous
resources must share the same high-bandwidth, low-latency interconnect fabric and be accessible
as first-class compute peers within the supernode. Supporting this diversity at scale requires both
an expanded supernode size and a more flexible interconnect architecture, further reinforcing
the trend toward larger, more heterogeneous compute domains that can handle tightly coupled,
cross-functional Al workloads.

6.1.3 Physical Disaggregation and Pooling of CPUs

While the current CloudMatrix384 supernode already achieves a degree of resource flexibility
by pooling CPUs and NPUs from its compute nodes (each integrating 4 Kunpeng CPUs and 8
Ascend NPUs), a key future direction for the CloudMatrix architecture involves a more fundamental
physical disaggregation of CPU and NPU resources, as illustrated in Figure 1. This envisions a
supernode constructed from distinct, specialized node types: NPU-centric nodes densely packed
with Al accelerators, and CPU-centric nodes offering substantial general-purpose compute, memory
capacity, and I/O capabilities. These heterogeneous node types would be interconnected via the
high-bandwidth, low-latency UB network plane, enabling granular, flexible, and scalable resource
pooling at the supernode level.

52

The motivation for physical disaggregation arises from the rigidity of conventional CPU-NPU
pairings in fixed node configurations, where static NPU-to-CPU ratios constrain the system’s
ability to match workload demands. For example, some inference workloads require intensive
CPU pre/post-processing or large memory-backed caching, resulting in CPU bottlenecks despite
idle NPUs. Conversely, training workloads might saturate NPUs while leaving CPU resources
underutilized. In such cases, tightly coupled CPU-NPU configurations lead to suboptimal hardware
utilization and inflexible scaling.

Although CloudMatrix384 ’s peer-to-peer UB topology already decouples logical resource as-
signment, enabling flexible CPU-NPU matching across the supernode, physically separating CPU
and NPU resources into dedicated resource pools unlocks further advantages:

1) Independent and Optimized Scaling: Physically separate NPU-centric nodes (e.g., with a
minimal local CPU for basic management but maximized NPU density) and CPU-centric nodes (e.g.,
with many CPU cores, large DRAM capacities, and rich I/O options, serving as the supernode’s
primary CPU and memory resource pool) could be developed. This allows the NPU compute capacity
and the general-purpose CPU/memory capacity of the supernode to be scaled independently and
more economically. Datacenter operators could then compose supernodes with highly variable
NPU-to-CPU-and-memory ratios, precisely tailored to the dominant workloads (e.g., NPU-rich for
training, CPU/memory-rich for data-intensive pre-processing or large-scale EMS caching).

2) Enhanced Resource Utilization and Specialization: Specialized node designs allow for
hardware optimization specific to the primary resource type. NPU nodes could focus on power
delivery and cooling for accelerators, while CPU/memory nodes could optimize for memory
density, I/O bandwidth, or specific CPU instruction sets. This can lead to better overall efficiency
and performance for each resource type compared to a one-size-fits-all hybrid node design.

6.2 Future Serving System Enhancements

As the underlying supernode architecture continues to evolve, the LLM serving system must
co-evolve to fully leverage these capabilities. A key direction is moving beyond coarse-grained
disaggregation (e.g., prefill-decode separation) toward more fine-grained component-level disaggre-
gation and intelligent, adaptive deployment strategies. These approaches aim to improve resource
utilization, boost throughput, and support increasingly heterogeneous workloads and hardware
configurations.

6.2.1 Component-Level Disaggregation

The peer-to-peer serving architecture with prefill-decode-caching disaggregation employed in
CloudMatrix384 has proven effective in separating major phases of LLM inference. However, further
improvements are possible by decomposing model execution into even finer-grained components
that can be managed, deployed, and scaled independently. We highlight two emerging directions:

1) Decode-Attention Disaggregation and Offloading: While prefill instances are compute-
bound and decode instances are often memory-bound, the Adrenaline system [37] shows that
additional performance gains can be achieved by disaggregating memory-intensive attention
computation from the decode path and offloading it to underutilized prefill instances. This approach
improves overall memory bandwidth utilization and enables larger batch sizes on decode instances,
thereby increasing compute efficiency. It relies on low-latency synchronization, careful co-location
of offloaded tasks, and SLO-aware offloading policies. The result is improved throughput without
compromising latency, exemplifying how attention disaggregation can unlock latent capacity
within existing serving deployments.

2) Attention and MoE Disaggregation: Large-scale MoE models present unique challenges
due to sparse expert activation and extreme memory demands. MegaScale-Infer [59] proposes

Serving Large Language Models on Huawei CloudMatrix384 53

disaggregating attention and expert components into separate execution services, enabling different
parallelism strategies and hardware mappings. Attention layers, which process every token, are
deployed using data-parallelism on memory-optimized nodes, while expert FFNs are distributed
via expert parallelism across a dedicated resource pool. This disaggregated execution reduces
contention, improves throughput, and allows independent scaling of attention and expert resources,
which is critical for efficiently serving trillion-parameter MoE models.

Together, these disaggregation techniques represent a shift toward viewing LLMs as collections
of loosely coupled microservices, each with distinct performance profiles. This granularity allows
better mapping to heterogeneous hardware and improves load balancing and scalability across a
supernode.

6.2.2 Hybrid and Adaptive Deployment

Once LLM inference is decomposed into components, which can be considered as fine-grained
microservices, such as attention execution, FFN computation, KV cache management, or MoE expert
gating, the serving system gains significant flexibility to adopt more sophisticated deployment
strategies. These hybrid and adaptive deployment models enable the system to tailor resource
allocation to each component’s unique computational and memory requirements, improving overall
utilization and scalability.

1) Hardware-aware Microservice Placement: Each microservice can be mapped to the most
suitable hardware type based on its performance profile. For instance, attention layers, which are
typically memory bandwidth-bound, should be prioritized on NPUs with high memory throughput;
compute-intensive FFN modules benefit from allocation on NPUs with strong compute capabilities;
and lightweight or latency-tolerant operations, such as KV cache indexing, can be offloaded to
pooled CPUs or lower-cost general-purpose accelerators. This fine-grained matching enables more
efficient use of heterogeneous hardware and reduces cost without compromising performance.

2) Hybrid Microservice Co-location: Disaggregated microservices can also be dynamically co-
located to improve resource utilization across the supernode. For example, memory-bound attention
operations from the decode phase can be offloaded to memory-underutilized prefill instances [37].
Such hybrid co-location strategies help alleviate resource bottlenecks, improve utilization across
phases, and increase effective system throughput, especially under variable or bursty workloads.

3) Adaptive and Independent Scaling of Microservices: A key advantage of microservice
disaggregation is the ability to scale each component independently based on real-time workload
characteristics. For example, during the processing of long-context inputs, the attention microservice
may experience higher load and be scaled accordingly, without necessitating additional FFN or
expert resources. This granularity prevents systemic over-provisioning and allows the system to
elastically adapt to workload dynamics.

To fully exploit these capabilities, the serving infrastructure must incorporate a sophisticated
orchestration layer capable of continuously profiling system load, predicting performance bottle-
necks, and making real-time, SLO-aware scheduling and scaling decisions. This orchestrator serves
as the control plane for the hybrid deployment model, ensuring that performance guarantees are
met even as workloads and resource availability fluctuate.

In summary, hybrid and adaptive deployment strategies, enabled by component-level disaggre-
gation, represent a promising frontier in LLM serving system design. They allow for more precise
resource utilization, seamless load balancing across heterogeneous hardware, and the ability to
meet future demands posed by increasingly complex and diverse model architectures.

54

7 Conclusion

In this paper, we introduce Huawei CloudMatrix, a next-generation Al datacenter architecture
that embodies Huawei’s vision for advanced Al infrastructure. We specifically highlight Huawei
CloudMatrix384, the first production-grade implementation of this innovative architectural concept.
CloudMatrix384 is an Al supernode engineered to efficiently support large-scale Al workloads,
featuring a fully peer-to-peer interconnected hardware design. It integrates 384 Ascend 910C NPUs
and 192 Kunpeng CPUs interconnected via an ultra-high-bandwidth, low-latency Unified Bus
(UB) network. This unique architecture facilitates dynamic resource pooling, streamlined memory
management, and exceptional inter-node communication, effectively addressing the scalability and
efficiency challenges common in traditional datacenter architecture.

Leveraging CloudMatrix384, we propose CloudMatrix-Infer, a comprehensive serving solution
featuring a peer-to-peer serving architecture that disaggregates the inference workflow into dis-
tinct prefill, decode, and caching subsystems. This architecture significantly simplifies scheduling,
enhances load balancing, and optimizes resource utilization by enabling uniform access to a shared
disaggregated memory pool across all NPUs. We further design and implement advanced hardware-
aware techniques, including large-scale expert parallelism (LEP), optimized communication and
MLA operators, microbatch-based pipelining, and INT8 quantization. These techniques collectively
boost MoE and MLA computation throughput, improve caching efficiency, and deliver substantial
gains in overall inference performance.

Our extensive evaluations with the DeepSeek-R1 model demonstrate that CloudMatrix-Infer
achieves remarkable throughput, delivering 6,688 tokens/s per NPU in the prefill stage and 1,943
tokens/s per NPU during decoding, while consistently maintaining a low latency below 50 ms per
output token. These results correspond to compute efficiencies of 4.45 tokens/s/TFLOPS for prefill
and 1.29 tokens/s/TFLOPS for decode, both of which surpass the published efficiencies of leading
frameworks like SGLang on NVIDIA H100 and DeepSeek on H800. Furthermore, CloudMatrix-
Infer effectively manages the throughput-latency trade-off, capable of sustaining a 538 tokens/s
throughput even under a stricter sub-15 ms TPOT constraint. The INT8 quantization strategy
further retains accuracy comparable to DeepSeek’s official API across a wide array of benchmarks.

Looking forward, several exciting directions emerge for further enhancing CloudMatrix384.
Future work includes integrating and unifying the VPC and RDMA network planes for even
more streamlined interconnectivity, scaling to larger supernode configurations, and pursuing
deeper disaggregation and pooling of CPU resources. Additionally, finer-grained component-level
disaggregation and adaptive deployment strategies present promising avenues for achieving even
greater flexibility, efficiency, and scalability in Al datacenter infrastructures.

Collectively, our findings validate Huawei CloudMatrix as a highly effective, scalable, and
performance-optimized platform for deploying large-scale Al workloads, setting a benchmark for
future Al datacenter infrastructures.

References

[1] 2024. Chinese National High School Mathematics Olympiad (CNMO 2024) Problems. https://www.cms.org.cn/Home/
comp/comp/cid/12.html. Accessed: 2025-05-25.

[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy
Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaogiang Zheng. 2016. TensorFlow: A System for Large-Scale Machine Learning. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI °16). USENIX
Association, 265-283.

https://www.cms.org.cn/Home/comp/comp/cid/12.html
https://www.cms.org.cn/Home/comp/comp/cid/12.html

Serving Large Language Models on Huawei CloudMatrix384 55

—
w

]

—_ r——
AN U1 W
—

—
Ne)
—

[10]
[11

—

[12]
[13]

Art of Problem Solving. 2024. American Invitational Mathematics Examination (AIME) 2024 Problems. https:
//artofproblemsolving.com/wiki/index.php/2024_AIME _I_Problems Accessed: 2025-05-25.

Ascend. 2025. Ascend Extension for PyTorch. https://github.com/Ascend/pytorch. Accessed: June 10, 2025.

Ascend. 2025. TensorFlow Adapter For Ascend. https://gitee.com/ascend/tensorflow. Accessed: June 10, 2025.
Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao Liu, Aohan Zeng,
Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. 2024. LongBench: A Bilingual, Multitask Benchmark for Long Context
Understanding. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (ACL °24).
Association for Computational Linguistics, 3119-3137.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards,
Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser,
Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang,
Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer,
Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. arXiv preprint arXiv:2107.03374 (2021). https://arxiv.org/abs/2107.03374
Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham,
Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh, Kensen Shi, Sasha Tsvyashchenko, Joshua
Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke,
Anselm Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin Robinson,
Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph, Alexander Spiridonov, Ryan
Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M. Dai, Thanumalayan Sankaranarayana Pillai,
Marie Pellat, Aitor Lewkowycz, Erica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi
Wang, Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff
Dean, Slav Petrov, and Noah Fiedel. 2023. PaLM: Scaling Language Modeling with Pathways. Journal of Machine
Learning Research 24 (2023), 240:1-240:113. https://jmlr.org/papers/volume24/22-1144/22-1144.pdf

Licheng Cui, Banghua Li, Zechun Dai, Anfu Zhou, Guocheng Lin, Yiming Yang, Zhe Jia, Pu Zhang, and Lin Li. 2024.
MMLU-Pro: A More Robust and Challenging Testbed for Large Language Models. arXiv preprint arXiv:2401.09390 (Jan
2024). https://arxiv.org/abs/2401.09390

DeepSeek. 2025. DeepSeek APIL https://www.deepseek.com/. Accessed: 2025-05-14.

DeepSeek Al 2025. Day 6: DeepSeek-V3/R1 Inference System Overview (Open Source Week). https://github.com/
deepseek-ai/open-infra-index. Online. Open Source Week. Accessed: 2025-5-25.

DeepSeek-Al 2025. Profiling Data in DeepSeek Infra. https://github.com/deepseek-ai/profile-data. Accessed:
2025-05-21.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao,
Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chenggi Deng, Chenyu
Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo
Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li,
J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui
Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou,
Shaoqing Wu, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang,
Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao
Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue
Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi
Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu,
Yonggiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang
You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanping Huang, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun
Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan,

https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://artofproblemsolving.com/wiki/index.php/2024_AIME_I_Problems
https://github.com/Ascend/pytorch
https://gitee.com/ascend/tensorflow
https://arxiv.org/abs/2107.03374
https://jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://arxiv.org/abs/2401.09390
https://www.deepseek.com/
https://github.com/deepseek-ai/open-infra-index
https://github.com/deepseek-ai/open-infra-index
https://github.com/deepseek-ai/profile-data

56

[14]

[15]

[16]

[17]

[18]

[19]

Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. 2025. DeepSeek-R1: Incentivizing Reasoning Capability
in LLMs via Reinforcement Learning. arXiv preprint arXiv:2501.12948 (Jan 2025). https://arxiv.org/abs/2501.12948
DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli Luo, Guangbo Hao, Guanting
Chen, Guowei Li, H. Zhang, Hanwei Xu, Hao Yang, Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li,
Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie Qiu, Junxiao Song,
Kai Dong, Kaige Gao, Kang Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Liyue Zhang, Meng
Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang,
Peiyi Wang, Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin
Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma,
Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Size Zheng, T. Wang, Tian Pei, Tian Yuan, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu
Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiaotao Nie, Xiaowen
Sun, Xiaoxiang Wang, Xin Liu, Xin Xie, Xingkai Yu, Xinnan Song, Xinyi Zhou, Xinyu Yang, Xuan Lu, Xuecheng Su, Y.
Wu, Y. K. Li, Y. X. Wei, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui
Wang, Yi Zheng, Yichao Zhang, Yiliang Xiong, Yilong Zhao, Ying He, Ying Tang, Yishi Piao, Yixin Dong, Yixuan Tan,
Yiyuan Liu, Yongji Wang, Yongqiang Guo, Yuchen Zhu, Yuduan Wang, Yuheng Zou, Yukun Zha, Yunxian Ma, Yuting
Yan, Yuxiang You, Yuxuan Liu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhen Huang, Zhen Zhang, Zhenda Xie,
Zhewen Hao, Zhihong Shao, Zhiniu Wen, Zhipeng Xu, Zhongyu Zhang, Zhuoshu Li, Zihan Wang, Zihui Gu, Zilin Li,
and Ziwei Xie. 2024. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model. arXiv
preprint arXiv:2405.04434 (May 2024). https://arxiv.org/abs/2405.04434

DeepSeek-Al Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chenggi
Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin,
Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang,
Haowei Zhang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiagi Ni,
Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong
Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning
Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R. J. Chen, R. L.
Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu,
Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu,
Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei
An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wengin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen
Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong
Xu, Yanping Huang, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yu
Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma,
Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe
Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma,
Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. 2024. DeepSeek-V3 Technical Report. arXiv preprint
arXiv:2412.19437 (Dec 2024). https://arxiv.org/abs/2412.19437

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. 2019. DROP:
A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT ’19). Association for Computational Linguistics, Minneapolis, USA, 2368-2378. https://aclanthology.
org/N19-1246/

Yann Dubois, Balazs Galambosi, Percy Liang, and Tatsunori B. Hashimoto. 2024. Length-Controlled AlpacaEval: A
Simple Way to Debias Automatic Evaluators. arXiv preprint arXiv:2404.04475 (Apr 2024). https://arxiv.org/abs/2404.
04475

William Fedus, Barret Zoph, and Noam Shazeer. 2022. Switch transformers: Scaling to trillion parameter models with
simple and efficient sparsity. Journal of Machine Learning Research 23, 120 (2022), 1-39.

Jonathan Frankle, Ali Ghodsi, Naveen Rao, Hanlin Tang, Abhinav Venigalla, and Matei Zaharia. 2024. Introducing DBRX:
A New State-of-the-Art Open LLM. https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-1llm.
Accessed: 2025-04-28.

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2405.04434
https://arxiv.org/abs/2412.19437
https://aclanthology.org/N19-1246/
https://aclanthology.org/N19-1246/
https://arxiv.org/abs/2404.04475
https://arxiv.org/abs/2404.04475
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm

Serving Large Language Models on Huawei CloudMatrix384 57

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27
[28]

—

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Bin Gao, Zhuomin He, Puru Sharma, Qingxuan Kang, Djordje Jevdjic, Junbo Deng, Xingkun Yang, Zhou Yu, and
Pengfei Zuo. 2024. Cost-Efficient Large Language Model Serving for Multi-turn Conversations with CachedAttention.
In Proceedings of the 2024 USENIX Annual Technical Conference (USENIX ATC °24). USENIX Association, 111-126.
Google DeepMind. 2025. Gemini 2.5: Our Most Intelligent AI Model. https://blog.google/technology/google-deepmind/
gemini-model-thinking-updates-march-2025/. Accessed: 2025-04-28.

Yancheng He, Shilong Li, Jiaheng Liu, Yingshui Tan, Weixun Wang, Hui Huang, Xingyuan Bu, Hangyu Guo, Chengwei
Hu, Boren Zheng, Zhuoran Lin, and Xue Peng. 2024. Chinese SimpleQA: A Chinese Factuality Evaluation for Large
Language Models. arXiv preprint arXiv:2411.07140 (Nov 2024). https://arxiv.org/abs/2411.07140

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 2020.
Measuring Massive Multitask Language Understanding. arXiv preprint arXiv:2009.03300 (2020). https://arxiv.org/abs/
2009.03300

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and Jacob Steinhardt.
2021. Measuring Mathematical Problem Solving With the MATH Dataset. arXiv preprint arXiv:2103.03874 (Mar 2021).
https://arxiv.org/abs/2103.03874

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu, Chuancheng
Lv, Yikai Zhang, Jiayi Lei, Yao Fu, Maosong Sun, and Junxian He. 2023. C-Eval: A Multi-Level Multi-Discipline
Chinese Evaluation Suite for Foundation Models. In Advances in Neural Information Processing Systems (NeurIPS °23).
https://arxiv.org/abs/2305.08322

Huawei Cloud. 2025. Huawei Cloud Elastic Memory Service (EMS). https://www.huaweicloud.com/product/ems.html.
Accessed: 2025-05-25.

Huawei Cloud. 2025. ModelArts. https://www.huaweicloud.com/eu/product/modelarts.html. Accessed: June 10, 2025.
Ltd. Huawei Technologies Co. 2020. MindSpore: An Open Source Deep Learning Framework. https://www.mindspore.
cn/. Accessed: 2025-05-31.

Huawei Technologies Co., Ltd. 2025. CANN: Compute Architecture for Neural Networks. https://www.hiascend.com/
en/software/cann. Accessed: 2025-05-31.

Robert A Jacobs, Michael I Jordan, Steven] Nowlan, and Geoffrey E Hinton. 1991. Adaptive mixtures of local experts.
Neural Computation 3, 1 (1991), 79-87.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik
Sen, and Ion Stoica. 2024. LiveCodeBench: Holistic and Contamination-Free Evaluation of Large Language Models for
Code. arXiv preprint arXiv:2403.07974 (2024). https://arxiv.org/abs/2403.07974

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon
Antoniak, Téven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
2024. Mixtral of Experts. arXiv preprint arXiv:2401.04088 (Jan. 2024). https://arxiv.org/abs/2401.04088

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford,
Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for Neural Language Models. arXiv preprint arXiv:2001.08361 (Jan
2020). https://arxiv.org/abs/2001.08361

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang, Maxim Krikun, Noam
Shazeer, and Zhifeng Chen. 2020. GShard: Scaling Giant Models with Conditional Computation and Automatic
Sharding. arXiv preprint arXiv:2006.16668 (2020). https://arxiv.org/abs/2006.16668

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy Baldwin. 2024.
CMMLU: Measuring Massive Multitask Language Understanding in Chinese. In Findings of the Association for
Computational Linguistics (ACL "24). Association for Computational Linguistics, Bangkok, Thailand, 11260-11285.
doi:10.18653/v1/2024.findings-acl.671

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gonzalez, and Ion Stoica.
2024. From Crowdsourced Data to High-Quality Benchmarks: Arena-Hard and BenchBuilder Pipeline. arXiv preprint
arXiv:2406.11939 (2024). https://arxiv.org/abs/2406.11939

Yunkai Liang, Zhangyu Chen, Pengfei Zuo, Zhi Zhou, Xu Chen, and Zhou Yu. 2025. Injecting Adrenaline into LLM
Serving: Boosting Resource Utilization and Throughput via Attention Disaggregation. arXiv preprint arXiv:2503.20552
(Mar 2025). https://arxiv.org/abs/2503.20552

Heng Liao, Bingyang Liu, Xianping Chen, Zhigang Guo, Chuanning Cheng, Jianbing Wang, Xiangyu Chen, Peng
Dong, Rui Meng, Wenjie Liu, Zhe Zhou, Ziyang Zhang, Yuhang Gai, Cunle Qian, Yi Xiong, Zhongwu Cheng, Jing
Xia, Yuli Ma, Xi Chen, Wenhua Du, Shizhong Xiao, Chungang Li, Yong Qin, Liudong Xiong, Zhou Yu, Lv Chen, Lei
Chen, Buyun Wang, Pei Wu, Junen Gao, Xiaochu Li, Jian He, Shizhuan Yan, and Bill McColl. 2025. UB-Mesh: a
Hierarchically Localized nD-FullMesh Datacenter Network Architecture. arXiv preprint arXiv:2503.20377 (Mar 2025).
https://arxiv.org/abs/2503.20377

https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2411.07140
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2305.08322
https://www.huaweicloud.com/product/ems.html
https://www.huaweicloud.com/eu/product/modelarts.html
https://www.mindspore.cn/
https://www.mindspore.cn/
https://www.hiascend.com/en/software/cann
https://www.hiascend.com/en/software/cann
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2006.16668
https://doi.org/10.18653/v1/2024.findings-acl.671
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2503.20552
https://arxiv.org/abs/2503.20377

58

[39]
[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

Meta Al 2025. Llama 4: Multimodal Intelligence at Scale. https://ai.meta.com/blog/llama-4-multimodal-intelligence/.
Accessed: 2025-04-28.

NVIDIA Corporation. 2024. CUDA Toolkit. https://developer.nvidia.com/cuda-toolkit. Accessed: June 10, 2025.
NVIDIA Corporation. 2025. NVIDIA Dynamo Open-Source Library Accelerates and Scales Al Reasoning Mod-
els. https://nvidianews.nvidia.com/news/nvidia-dynamo-open-source-library-accelerates-and- scales-ai-reasoning-
models. Accessed: 2025-04-23.

ONNX Community. 2019. ONNX: Open Neural Network Exchange. https://onnx.ai/. Accessed: 2025-05-31.

ONNX Runtime. 2025. CANN Execution Provider. https://onnxruntime.ai/docs/execution-providers/community-
maintained/CANN-ExecutionProvider.html. Accessed: June 10, 2025.

OpenAl 2024. Introducing SimpleQA. https://openai.com/index/introducing-simpleqa/. Accessed: 2025-06-14.
OpenAl 2025. Introducing GPT-4.5. https://openai.com/index/introducing-gpt-4-5/. Accessed: 2025-04-28.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems
(NeurlIPS ’19), Vol. 32. Curran Associates, Inc.

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka Shah, Iiiigo Goiri, Saeed Maleki, and Ricardo Bianchini. 2024.
Splitwise: Efficient Generative LLM Inference Using Phase Splitting. In Proceedings of the 2024 ACM/IEEE 51st Annual
International Symposium on Computer Architecture (ISCA *24). ACM / IEEE, 118-132.

Ruoyu Qin, Zheming Li, Weiran He, Jialei Cui, Feng Ren, Mingxing Zhang, Yongwei Wu, Weimin Zheng, and Xinran
Xu. 2025. Mooncake: Trading More Storage for Less Computation — A KVCache-centric Architecture for Serving LLM
Chatbot. In Proceedings of the 23rd USENIX Conference on File and Storage Technologies (FAST °25). USENIX Association,
155-170.

Qwen Team. 2025. Qwen3: Think Deeper, Act Faster. https://qwenlm.github.io/blog/qwen3/ Accessed: 2025-04-29.
David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael,
and Samuel R Bowman. 2023. GPQA: A Graduate-Level Google-Proof Q&A Benchmark. arXiv preprint arXiv:2311.12022
(2023). https://arxiv.org/abs/2311.12022

Freda Shi, Mirac Suzgun, Markus Freitag, Xuezhi Wang, Suraj Srivats, Soroush Vosoughi, Hyung Won Chung, Yi Tay,
Sebastian Ruder, Denny Zhou, Dipanjan Das, and Jason Wei. 2022. Language Models are Multilingual Chain-of-Thought
Reasoners. arXiv preprint arXiv:2210.03057 (2022). https://arxiv.org/abs/2210.03057

Yehui Tang, Yichun Yin, Yaoyuan Wang, Hang Zhou, Yu Pan, Wei Guo, Ziyang Zhang, Miao Rang, Fangcheng Liu,
Naifu Zhang, Binghan Li, Yonghan Dong, Xiaojun Meng, Yasheng Wang, Dong Li, Yin Li, Dandan Tu, Can Chen,
Youliang Yan, Fisher Yu, Ruiming Tang, Yunhe Wang, Botian Huang, Bo Wang, Boxiao Liu, Changzheng Zhang, Da
Kuang, Fei Liu, Gang Huang, Jiansheng Weli, Jiarui Qin, Jie Ran, Jinpeng Li, Jun Zhao, Liang Dai, Lin Li, Liqun Deng,
Peifeng Qin, Pengyuan Zeng, Qiang Gu, Shaohua Tang, Shengjun Cheng, Tao Gao, Tao Yu, Tianshu Li, Tianyu Bi, Wei
He, Weikai Mao, Wenyong Huang, Wulong Liu, Xiabing Li, Xianzhi Yu, Xueyu Wu, Xu He, Yangkai Du, Yan Xu, Ye Tian,
Yimeng Wu, Yongbing Huang, Yong Tian, Yong Zhu, Yue Li, Yufei Wang, Yuhang Gai, Yujun Li, Yu Luo, Yunsheng Ni,
Yusen Sun, Zelin Chen, Zhe Liu, Zhicheng Liu, Zhipeng Tu, Zilin Ding, and Zongyuan Zhan. 2025. Pangu Ultra MoE:
How to Train Your Big MoE on Ascend NPUs. arXiv preprint arXiv:2505.04519 (2025). https://arxiv.org/abs/2505.04519
The SGLang Team. 2025. Deploying DeepSeek with PD Disaggregation and Large-Scale Expert Parallelism on 96 H100
GPUs. https://Imsys.org/blog/2025-05-05-large-scale-ep/. Accessed: 2025-05-21.

XA 2024. Grok-1: 314B Parameter Mixture-of-Experts Model. https://github.com/xai-org/grok-1 Accessed: 2025-05-25.
Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Yudong Li, Yechen Xu, Kai Sun, Dian Yu, Cong Yu, Yin Tian,
Qianqgian Dong, Weitang Liu, Bo Shi, Yiming Cui, Junyi Li, Jun Zeng, Rongzhao Wang, Weijian Xie, Yanting Li, Yina
Patterson, Zuoyu Tian, Yiwen Zhang, He Zhou, Shaoweihua Liu, Zhe Zhao, Qipeng Zhao, Cong Yue, Xinrui Zhang,
Zhengliang Yang, Kyle Richardson, and Zhenzhong Lan. 2020. CLUE: A Chinese Language Understanding Evaluation
Benchmark. In Proceedings of the 28th International Conference on Computational Linguistics (COLING °20). 4762-4772.
https://aclanthology.org/2020.coling-main.419/

Chenggang Zhao, Shangyan Zhou, Liyue Zhang, Chenggqi Deng, Zhean Xu, Yuxuan Liu, Kuai Yu, Jiashi Li, and Liang
Zhao. 2025. DeepEP: an efficient expert-parallel communication library. https://github.com/deepseek-ai/DeepEP.
Accessed: 2025-5-25.

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu, Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang. 2024. DistServe:
Disaggregating Prefill and Decoding for Goodput-Optimized Large Language Model Serving. In Proceedings of the 18th
USENIX Symposium on Operating Systems Design and Implementation (OSDI "24). USENIX Association, 193-210.
Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou.
2023. Instruction-following evaluation for large language models. arXiv preprint arXiv:2311.07911 (Nov 2023).
https://arxiv.org/abs/2311.07911

https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://developer.nvidia.com/cuda-toolkit
https://nvidianews.nvidia.com/news/nvidia-dynamo-open-source-library-accelerates-and-scales-ai-reasoning-models
https://nvidianews.nvidia.com/news/nvidia-dynamo-open-source-library-accelerates-and-scales-ai-reasoning-models
https://onnx.ai/
https://onnxruntime.ai/docs/execution-providers/community-maintained/CANN-ExecutionProvider.html
https://onnxruntime.ai/docs/execution-providers/community-maintained/CANN-ExecutionProvider.html
https://openai.com/index/introducing-simpleqa/
https://openai.com/index/introducing-gpt-4-5/
https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2210.03057
https://arxiv.org/abs/2505.04519
https://lmsys.org/blog/2025-05-05-large-scale-ep/
https://github.com/xai-org/grok-1
https://aclanthology.org/2020.coling-main.419/
https://github.com/deepseek-ai/DeepEP
https://arxiv.org/abs/2311.07911

Serving Large Language Models on Huawei CloudMatrix384 59

[59] Ruidong Zhu, Ziheng Jiang, Chao Jin, Peng Wu, Cesar A. Stuardo, Dongyang Wang, Xinlei Zhang, Huaping Zhou,
Haoran Wei, Yang Cheng, Jianzhe Xiao, Xinyi Zhang, Lingjun Liu, Haibin Lin, Li-Wen Chang, Jianxi Ye, Xiao Yu,
Xuanzhe Liu, Xin Jin, and Xin Liu. 2025. MegaScale-Infer: Serving Mixture-of-Experts at Scale with Disaggregated
Expert Parallelism. arXiv preprint arXiv:2504.02263 (Apr 2025). https://arxiv.org/abs/2504.02263

https://arxiv.org/abs/2504.02263

	Abstract
	Contents
	1 Introduction
	2 LLM Trends and Their Challenges for Datacenter Infrastructure
	2.1 LLM Trends
	2.2 Challenges for Datacenter Infrastructure

	3 Huawei CloudMatrix
	3.1 Vision for Huawei CloudMatrix
	3.2 CloudMatrix384 Overview: A Fully Peer-to-Peer Hardware Architecture
	3.3 Hardware Components
	3.3.1 Ascend 910C Chip
	3.3.2 Ascend 910C Node
	3.3.3 UB Switch System

	3.4 Software Stack
	3.4.1 CANN for Ascend NPUs
	3.4.2 Infrastructure Software for Cloud Deployment

	3.5 Suitability Analysis for DeepSeek Models
	3.5.1 DeepSeek Models and Their Deployment on NVIDIA H800
	3.5.2 Architectural Synergy between CloudMatrix384 and DeepSeek Models

	4 DeepSeek Serving on Huawei CloudMatrix384
	4.1 Overview: A Peer-to-Peer Serving Architecture with PDC Disaggregation
	4.2 Tightly-Coupled Decode with Large-scale Expert Parallelism
	4.2.1 Fused Communication Operators for LEP
	4.2.2 MLA Optimization
	4.2.3 Microbatch-Based Decode Pipeline
	4.2.4 Multiple-Token Prediction Support

	4.3 Resource-Efficient Prefill with Hybrid Parallelism and Microbatching
	4.3.1 Hybrid Parallelism for MLA Computation
	4.3.2 Microbatch-Based Prefill Pipeline
	4.3.3 Low-interference Transferring between Prefill and Decode

	4.4 UB-Driven Distributed Caching with Unified Memory Access
	4.4.1 Disaggregated Memory Pooling
	4.4.2 Context Caching
	4.4.3 Model Caching

	4.5 INT8 Quantization

	5 Evaluations
	5.1 Experimental Setup
	5.2 Overall Performance
	5.3 Accuracy
	5.4 Ablation Study
	5.4.1 Microbatch-based Pipeline
	5.4.2 MTP
	5.4.3 Context Caching

	5.5 Performance of Operators
	5.5.1 Communication Operators
	5.5.2 MLA Operator
	5.5.3 GEMM Operator

	6 Discussions on Future Directions
	6.1 Future CloudMatrix Evolutions
	6.1.1 Unifying VPC and RDMA Planes
	6.1.2 Larger-scale Supernodes
	6.1.3 Physical Disaggregation and Pooling of CPUs

	6.2 Future Serving System Enhancements
	6.2.1 Component-Level Disaggregation
	6.2.2 Hybrid and Adaptive Deployment

	7 Conclusion
	References

