
© Copyright SELA Software & Education Labs Ltd. | 14-18 Baruch Hirsch St Bnei Brak, 51202 Israel | www.selagroup.com

Sasha Goldshtein blog.sashag.net
CTO, Sela Group @goldshtn

Setting Up a Production Monitoring
and Diagnostic Environment

https://s.sashag.net/prodsdd

Agenda

Performance monitoring
Performance counters and alerts
ETW, WPR, WPA, PerfView
Production debugging
IntelliTrace
Dump files and dump analysis
“Automatic” debugging
CLRMD and CLRMDExt

Performance
Counters

Performance Counters
A set of numeric data exposed by Windows or
by individual applications

Organized into Categories, Instances, and Counters
Example: Process(Outlook.exe)\Private Bytes

Accessed using System.Diagnostics:
PerformanceCounter,
PerformanceCounterCategory
Can expose your own counters as well

Tools: perfmon.exe, logman.exe, lodctr.exe

Introduction
to ETW

Our focus in this
course

Performance Monitoring Spectrum

Performance metrics
and simulations

Development-time
profiling

Performance/load
tests

Production-time
performance
investigations

Continuous low-
overhead

monitoring

Problems with Traditional Profilers

Invasiveness
• Often requires restart or code injection

Overhead
• 2x slowdowns are not unheard of

Trace size
• Often not applicable for continuous monitoring for hours/days on end

Licensing costs
• Production mode or remote profiling mode not always available

Event Tracing for Windows
High-performance facility for emitting 100K+
log events per second with rich payloads and
stack trace support
Used widely across Windows, .NET, drivers,
services, third party components

ETW Participants
A provider generates ETW events
A controller starts and stops ETW collection
A consumer logs, analyzes, or processes ETW
events

Providers
Providers

Providers
Providers

Providers
Consumers

Providers
Controllers

Event tracing sessions

events

Log files
events

real-time

logged
events

buffers

Sample ETW Scenarios
Profile an app in
sampling mode

Perform wait-
time analysis

Log disk
accesses

including stacks

Log GC and JIT
events

Log memory
allocation
statistics

(.NET/C++)

Custom
application
event log

Trace
Capturing and
Analysis

ETW Tools
xperf.exe: Command-line tool for ETW
capturing and processing
wpr.exe: Command-line and GUI for end users
wpa.exe: Visual trace analysis tool
PerfView.exe: Visual tool for capturing and
recording ETW events from managed providers
and the CLR
logman.exe, tracerpt.exe: Built-in Windows
tools for trace recording and formatting

Production Use
All ETW tools are suitable for production use
Some things to watch out for:

Choose event providers carefully to minimize the
performance impact on the system
Capture to a circular log file to avoid running out of
disk space
Set triggers to stop collection (and keep all preceding
events) when a critical event occurs

Capturing a Trace
Xperf

xperf -on DiagEasy
...
xperf -d diag.etl

WPR

What’s In A Trace?
A trace is a huge list of
events
Events have multiple
columns (payload)
Useless without
additional processing

Trace Analysis with WPA

List of
graphs

Graph
display

Ungrouped
columnsGrouped

columns Grouping
bar

PerfView
ETW collection and analysis tool tailored for
.NET applications (but not only)
Can be used as a sampling profiler
Can be used as an allocation profiler
Can be used for heap snapshot analysis

Collecting Data with PerfView
CLI

PerfView run app.exe

GUI

Option Meaning

/MaxCollectSec:N Stop collection
after N seconds

/StartOnPerfCounter
/StopOnPerfCounter

Start/stop
collection based
on performance

counter

/Providers=…
/OnlyProviders=…

Restrict to specific
set of providers

/CircularMB:N
Circular logging
N megabytes of
newest events

PerfView Collection Options

Profiling wall-
clock time

Allocation
profiling

File/registry
accesses

CPU sampling
profiling

PerfView Reports
PerfView has built-in support for CPU utilization,
GC and JIT information, disk and file I/O, and a
bunch of additional reports

CPU Stacks
Grouping
options Filtering options

Call stack tree

In-trace activity
highlighter

Lab

CPU Profiling with PerfView
Continuous ETW Monitoring

Programmatic
ETW Analysis

Automatic ETW Analysis
The TraceEvent library provides ETW analysis
API

Understands kernel and CLR events
Supports call stacks (incl. managed)
Can start ETW sessions and/or process log files

Example Analysis Scenarios
Monitor the system
for CLR exceptions w/
stacks
ExceptionTraceData

Get a profiling trace
and look for
regressions
TraceLog
SampledProfileTraceData
TraceCallStack

Trace Analysis Example
var traceLog = TraceLog.OpenOrConvert("trace.etl");
var process = traceLog.Processes.LastProcessWithName(...);
var symbolReader = new SymbolReader(Console.Out, symPath);

foreach (var exc in
process.EventsInProcess.ByEventType<ExceptionTraceData>())

{
Console.WriteLine(exc.ExceptionType);
Console.WriteLine(exc.ExceptionMessage);
var stack = exc.CallStack();
while (stack != null)
{

Console.WriteLine(stack.CodeAddress.Method.FullMethodName);
stack = stack.Caller;

}
}

Trace Session Example
var session = new TraceEventSession("ObserveGCs");
session.EnableProvider(ClrTraceEventParser.ProviderGuid,

TraceEventLevel.Verbose,
(ulong)ClrTraceEventParser.Keywords.GC);

// Allocation tick every 100KB
var alloc =

session.Source.Clr.Observe<GCAllocationTickTraceData>();
alloc.Subscribe(ad => Console.WriteLine(ad.AllocationAmount));

var gc = session.Source.Clr.Observe<GCHeapStatsTraceData>();
gc.Subscribe(cd => Console.WriteLine(cd.GenerationSize2));

session.Source.Process();

IntelliTrace

IntelliTrace
IntelliTrace is a Visual Studio feature that
improves developer productivity during
debugging
“Historical Debugging”
Tracks events and method call information at
runtime
Records stack trace, local variables, and custom
information for each event

IntelliTrace Experiences

F5 Debugging

Live debugging from
Visual Studio, unit tests,
and other developer
experiences

Production Debugging

Collection on
production systems for
later analysis on a
development machine

IntelliTrace Collection Modes

Low impact

• Interesting runtime
events are collected

• Low overhead if
collecting low-
frequency events

High impact

• Every method call is
collected

• Up to 10x potential
slowdown

• Configure for specific
modules only to
reduce impact

Events

• WCF, ADO.NET, file
access, registry access,
ASP.NET, and myriads
of other events

• Can customize with
your own events

What Exactly Is Collected?
Parameters and return values
Reference type locals

For each referenced object, whether or not it was
there, but not its contents

void ReadTweets(string account)
{

var tweets = GetTweets(account);
int count = 3;
for (int i = 0; i < count; ++i)

DisplayTweet(tweets[i]);
}

Collecting IntelliTrace Logs
Visual Studio saves .itrace files from each run

IntelliTrace stand-alone collector
IntelliTraceSC.exe launch /cp:plan.xml app.exe

PowerShell cmdlets for ASP.NET/SharePoint
Start-IntelliTraceCollection "MyAppPool" plan.xml C:\

Microsoft Test Manager
Azure Cloud Services

Extending IntelliTrace Events
Add your events to the collection plan XML

IntelliTrace can generate an event from any method
in your code or framework code
Custom parameter formatting is available

<DiagnosticEventSpecification enabled="true">
<CategoryId>gc</CategoryId>
<SettingsName>Full collection</SettingsName>

...
<Bindings>
<Binding>

...
<TypeName>System.GC</TypeName>
<MethodName>Collect</MethodName>
<ShortDescription>
Garbage collection forced by the app

</ShortDescription>
...
</DiagnosticEventSpecification>

Lab

Collecting IntelliTrace Logs

Debugging
Symbols

Debugging Symbols
Debugging symbols (.pdb files) link runtime
memory addresses to function names, source
file names and line numbers

Without native symbols, it’s impossible to debug
Without managed symbols, it’s harder but not
impossible

Debugging symbols make reverse engineering
easier

Symbols in C++
All useful debug information is
not available without symbols:
• Function names
• Parameter types and values
• Source file and line numbers

Full (private) symbols include
all the above information.
Stripped (private) symbols do
not include:
• Parameter information
• Source information

Symbols in C#

In C#, the only thing we
really need symbols for is

source information

Generating Symbols
On by default in Debug and Release
configurations

In C++, make sure both the compiler and the linker
are configured to generate debug information

Shipping symbols to customer machines:
Native code symbols make reverse engineering easier
Can generate stripped symbols for native code (see
PDBCopy.exe utility or /pdbstripped:<file>
linker switch for C++)
Managed symbols are not worse than a decompiler

Symbols for Microsoft Binaries
We use Microsoft binaries all the time

Microsoft Visual C++ Runtime
MFC, ATL
Common Language Runtime (CLR)
.NET Framework classes
Windows itself
Microsoft-provided drivers

Many of them call our code or are called by it
Without Microsoft symbols, some parts of your call
stack might not be resolved properly

Symbols for Microsoft Binaries
Microsoft has a public symbol server with PDB
files for Microsoft binaries

http://msdl.microsoft.com/download/symbols
No need to download symbols manually

But it’s possible, for offline scenarios
Configure _NT_SYMBOL_PATH environment
variable

And/or configure individual debuggers

setx _NT_SYMBOL_PATH srv*C:\symbols*http://msdl.microsoft.com/download/symbols

Troubleshooting Symbol Loading
The symchk.exe utility (Debugging Tools for
Windows) can download specific symbols

Reports any missing symbols, blocked network call,
and other reasons
Can use in offline scenarios – generate a manifest
and download based on that:
http://s.sashag.net/19S01wF

In WinDbg, use !sym noisy and .reload to
inspect symbol load failures
Critical to get symbols right before starting any
debugging work!

Example of Mismatched Symbols

From Visual Studio
Modules window

> symchk.exe /v LeakAndCorrupt.exe /s <symbol path>
...
PdbSignature {5C0DA4BD-C7C6-4F90-BD4D-F11599FCC169}
...
SYMCHK: LeakAndCorrupt.exe FAILED - LeakAndCorrupt.pdb

mismatched or not found
...
SYMCHK: FAILED files = 1
SYMCHK: PASSED + IGNORED files = 0

Symchk Diagnostics

PDB Signatures
Even if you compile the exact same source on
the exact same system, the PDB contains a
unique signature that changes every time you
build:

Downloading Symbol Packages
Windows symbols are available as a package
online

http://msdn.microsoft.com/en-us/windows/hardware/gg463028

Make sure the service pack matches
Hotfixes might require manual patching with
symchk.exe

.NET Framework symbols ship separately
http://referencesource.microsoft.com/netframework.aspx

Hotfixes still problematic, CLR versions change all the
time (check QFE version on PDB and DLL files)

Maintaining a Symbol Store
It’s possible to maintain a private symbol store
Use symstore.exe from Debugging Tools for
Windows

> symstore add /r /f C:\MyApp\bin*.pdb /s \\symsrv\syms /t
"MyApp" /v "Build 48" /c "Manual add"

> setx _NT_SYMBOL_PATH srv*C:\Symbols*\\symsrv\syms

Source Servers
Similarly to debugging symbol servers, there are
also source servers
Support stepping through code in the debugger

Even if the code is not locally available
Microsoft provides a source server for most of the
.NET Framework assemblies

It’s also possible to set up a private source server
using a set of tools shipping with the Debugging
Tools for Windows

Dump Files

Dump Files
A user dump is a snapshot of a running process

Called a user minidump in modern terms
A kernel dump is a snapshot of the entire system
Dump files are useful for post-mortem
diagnostics and for production debugging

Anytime you can’t attach and start live debugging, a
dump might help

Dump File Sizes
A dump can contain lots of information
You can choose which data to include, and this
affects what you can do with the dump later
Example sizes for a 4GB ASP.NET process that
has some unmanaged components:

Minidump with full memory – 4.2GB
Minidump with no extras – 4MB
Minidump with CLR heap only – 1.5GB
(https://github.com/goldshtn/minidumper)

Make sure to compress dumps before moving

Limitations of Dump Files
A dump file is a static snapshot
You can’t debug a dump, just analyze it
Sometimes a repro is required (or more than
one repro)
Sometimes several dumps must be compared

Taxonomy of Dumps
Crash dumps are dumps generated when an
application crashes

Do not rely on a human to determine the precise
moment when to capture a dump

Hang dumps are dumps generated on-demand
at a specific moment in time

Often used to diagnose hangs or infinite loops
Usually (but not always) require a human to trigger

These are just names; the contents of the dump
files are the same!

Windows Task Manager
Task Manager, right-
click and choose
“Create Dump File”
Dump file goes in
%LOCALAPPDATA%\
Temp

Procdump
Sysinternals utility for creating crash / hang
dumps
Can use process reflection (Windows 7+) to
minimize process suspension time
Examples:
Procdump app.exe app.dmp
Procdump -h app.exe hang.dmp
Procdump -e app.exe crash.dmp
Procdump -c 90 app.exe excessive_cpu.dmp
Procdump -r -ma app.exe app.dmp

DebugDiag
Microsoft tool for
monitoring and dump
generation

Very suitable for
ASP.NET
Dump analysis
component included

Post-Mortem Debuggers
Configured in the registry:

For unmanaged applications and managed as of CLR
4.0: HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\AeDebug
For managed applications before CLR 4.0:
HKLM\SOFTWARE\Microsoft\.NETFramework
Note that there are two registry keys you’d need to
set on Windows x64 (the 64-bit one, and the
Wow6432Node)
See http://tinyurl.com/AutoDumps

Windows Error Reporting
WER registry key allows customization of dump
file type and location

LocalDumps registry key can configure generation
of local dumps (see http://tinyurl.com/localdumps)
Can be application-specific, not system-wide

Opening Dump Files
Visual Studio 2010+ supports managed dump
analysis

Requires CLR 4.0+ in the target process
Threads, stacks, variables, memory contents

Visual Studio 2013+ supports managed memory
analysis based on dump files

Object statistics, retention information (roots)

Visual Studio Dump Analysis

Loaded modules,
versions, paths

Basic dump details,
including whether the

heap is available

Action pane

Visual Studio Memory Analysis

Lab

Generating WER Dump Files
Visual Studio Dump Analysis
Visual Studio Memory Analysis

CLRMD

.NET Debugging APIs

Specific methods and classes in clr.dll

Mscordacwks.dll

IXCLRDataAccess

ISOSDac

Mscoree.dll

ICorDebug IMetadataImport

SymReaderSymWriter

ISymWrapper.dllCLRMD

SO
S

M
db

g

ManagedNative

Debugging Automation Challenges
Traditional debugging and dump analysis is
done by hand
Automation often achieved by running WinDbg
commands and parsing their text output
Debugging APIs very intricate and often
undocumented (e.g. the IXCLRDataAccess APIs
that SOS uses)

Introducing CLRMD
ClrMD is a .NET library for analyzing dump files
and running processes

Distributed through NuGet
(Microsoft.Diagnostics.Runtime assembly)
Open source on GitHub

Enables a huge variety of scenarios, including:
Automatic processing of many dump files
Continuous monitoring and inspection of production
processes (threads, stacks, locks, heaps)
Locating specific objects and values in memory
without suspending, debugging, or capturing dumps

Basic Types

DataTarget

ClrRuntime ClrRuntime

ClrHeap ClrThread

ClrType ClrType ClrThread

Connecting to a Target
Live attach: passive, non-invasive, full
Open dump file

DataTarget target = DataTarget.LoadCrashDump(@"dump.dmp");
target.AppendSymbolPath(
"srv*C:\symbols*http://msdl.microsoft.com/download/symbols");

string dacLocation = target.ClrVersions[0].TryDownloadDac();
ClrRuntime runtime = target.CreateRuntime(dacLocation);

Basic Exception Analysis
foreach (var thread in runtime.Threads)
{

var e = thread.CurrentException;
if (e != null)
{

Console.WriteLine("Thread {0}", thread.ManagedThreadId);
Console.WriteLine("\t{0} - {1}", e.Type.Name, e.Message);

foreach (var frame in e.StackTrace)
Console.WriteLine("\t" + frame.DisplayString);

}
}

Lab

CLRMD Dump Analyzer
CLRMD Stack Dumper

Inspecting The Heap
Enumerate all heap
objects and statistics
Find specific objects
Inspect GC
information (roots,
finalization queues,
etc.)

ClrHeap
EnumerateObjects
GetObjectType
EnumerateRoots

ClrType
GetSize
EnumerateRefsOfObject
GetFieldValue

Wait Information
Threads have a list of
blocking objects,
which have owner
threads
Wait analysis and
deadlock detection is
made possible

ClrThread
BlockingObjects

BlockingObject
Reason
Object
HasSingleOwner
Owner/Owners
Waiters

Dynamic Heap Queries
CLRMDExt is a library with some nice CLRMD
extensions, including ClrObject that provides
dynamic querying capabilities

var obj = (from o in heap.EnumerateObjects()
let t = heap.GetObjectType(o)
where t.Name == "MyApp.Player"
select new ClrObject(heap, t, o, false)

).First();

string details = o.m_name + " " + o.m_address.m_city;
bool lastWon = o.m_games[o.m_games.m_Length - 1].m_won;

Lab

Running Heap Queries

© Copyright SELA Software & Education Labs Ltd. | 14-18 Baruch Hirsch St Bnei Brak, 51202 Israel | www.selagroup.com

Sasha Goldshtein blog.sashag.net
CTO, Sela Group @goldshtn

Thank You!

