arXiv:1811.03165v1 [cs.CR] 7 Nov 2018

Shining Light on Shadow Stacks

Nathan Burow
Purdue University

Abstract

Control-Flow Hijacking attacks are the dominant attack
vector to compromise systems. Control-Flow Integrity (CFI)
solutions mitigate these attacks on the forward edge, i.e., in-
direct calls through function pointers and virtual calls. Pro-
tecting the backward edge is left to stack canaries, which are
easily bypassed through information leaks. Shadow Stacks
are a fully precise mechanism for protecting backwards edges,
and should be deployed with CFI mitigations.

We present a comprehensive analysis of all possible shadow
stack mechanisms along three axes: performance, compati-
bility, and security. Based on our study, we propose a new
shadow stack design called Shadesmar that leverages a ded-
icated register, resulting in low performance overhead, and
minimal memory overhead. We present case studies of Shades-
mar on Phoronix and Apache to demonstrate the feasibility of
dedicating a general purpose register to a security monitor on
modern architectures, and Shadesmar’s deployability.

Isolating the shadow stack is critical for security, and re-
quires in process isolation of a segment of the virtual address
space. We achieve this isolation by repurposing two new Intel
x86 extensions for memory protection (MPX), and page table
control (MPK). Building on our isolation efforts with MPX
and MPK, we present the design requirements for a dedicated
hardware mechanism to support intra-process memory isola-
tion, and show how such a mechanism can empower the next
wave of highly precise software security mitigations that rely
on partially isolated information in a process.

1. Introduction

Arbitrary code execution exploits give an attacker fine-grained
control over a system. Such exploits leverage software bugs
to corrupt code pointers to hijack the control-flow of an ap-
plication. Code pointers can be divided into two categories:
backward edge, i.e., return addresses or forward edge pointers,
such as function pointers or virtual table pointers. Control-
Flow Integrity (CFI) [10, 13] protects forward edges, and is
being deployed by Google [9] to protect Chrome and An-
droid, and Microsoft [8] to protect Windows 10 and Edge.
CFI assumes that backward edges are protected. However,
stack canaries [19] are the strongest deployed backward edge
protection, and are easily bypassed.

Control-flow hijacking attacks that target backward edges,
e.g., ROP, are a significant problem in practice, and will only
increase in frequency. In the last year, Google’s Project Zero
has published exploits against Android libraries, trusted execu-
tion environments, and Windows device drivers [1, 2, 3, 4, 5].

Xinping Zhang
Purdue University

Mathias Payer
EPFL

These exploits use arbitrary write primitives to overwrite re-
turn addresses, leading to privilege execution in the form
of arbitrary execution in user space or root privileges. The
widespread adoption of CFI increases the difficulty for attacks
on forward edge code pointers. Consequently, attackers will
increasingly focus on the easier target, backward edges.

C / C++ applications are fundamentally vulnerable to ROP
style attacks for two reasons: (i) the languages provide neither
memory nor type safety, and (ii) the implementation of the
call-return abstraction relies on storing values in writeable
memory. In the absence of memory or type safety, an attacker
may corrupt any memory location that is writeable. Consider,
for the sake of exposition, x86_64 machine code where the
call-return abstraction is implemented by pushing the address
of the next instruction in the caller function, i.e., the return
address, onto the stack; the callee function then pops this
address off the stack and sets the instruction pointer to that
value to perform a return. As C / C++ are memory unsafe,
attackers may modify return addresses on the stack to arbitrary
values and perform code-reuse attacks such as ROP.

Mitigating ROP attacks requires guaranteeing the integrity
of the return address used to reset the instruction pointer after
a function executes. There are four principle attempts to do
this: (i) stack canaries, (ii) back edge CFI, (iii) safe stacks,
and (iv) shadow stacks. Stack Canaries [19] protect against
sequential overwrites of a return address through, e.g., buffer
overflows by inserting a magic value onto the stack after the
return address, which is then checked before returns. However,
canaries are not effective against arbitrary writes where, e.g.,
an attacker controls a pointer and can precisely overwrite
memory. CFI computes a valid set of targets for indirect
control-flow transfers, for returns this means any potential call
site of the function. As shown by Control-Flow Bending [15],
this is too imprecise to prevent control-flow hijacking attacks
in the general case. Safe Stacks [33], move potentially unsafe
stack variables to a separate stack, thereby protecting return
addresses. However, Safe Stacks offer limited compatibility
with unprotected code, so are unlikely to be deployed.

Shadow stacks [20, 17, 21] enforce stack integrity, pro-
tecting against stack pivot attacks and overwriting return ad-
dresses. Shadow stacks store the return address in a separate,
isolated region of memory that is not accessible by the attacker.
Upon returning, the integrity of the program return address is
checked against the protected copy on the shadow stack. By
protecting return addresses, shadow stacks enforce a one to
one mapping between calls and returns, thereby preventing

ROP. Two shadow stack designs have been proposed: com-
pact shadow stacks [17], which rely on a separate shadow
stack pointer, and parallel shadow stacks [20], which place
the shadow stack at a constant offset to the original stack.
These existing shadow stack designs suffer from a combina-
tion of poor performance, high memory overhead, and diffi-
culty supporting C and C++ programming paradigms such as
multi-threading and exception handling.

To improve the state of shadow stack design, we conduct
a detailed survey of the design space. Our design study in-
cludes two novel designs, and considers five shadow stack
mechanisms in total. We fully explore the trade-offs of these
designs in terms of performance, compatibility, and security.
We consider the impact of high level design decisions on
runtime, memory overhead, and support for threading, stack
unwinding, and unprotected code. Further, we propose novel
optimizations for shadow stack implementations.

Beyond the design of the shadow stacks, we analyze the
options for guaranteeing their integrity, including existing
software solutions and two new ISA extensions. Unlike CFI,
which relies on immutable metadata stored on read-only pages,
shadow stacks, and other security mechanisms, require muta-
ble metadata that must be integrity protected. Integrity pro-
tection is accomplished by isolating an area of the address
space within a process, preventing attackers from modifying it.
We discuss the limitations of existing hardware mechanisms
for intra-process isolation, and propose a new primitive better
suited for use by software security mechanisms.

Based on our design study, we propose Shadesmar, a new
compact shadow stack mechanism that leverages a dedicated
register for the shadow stack pointer and our optimizations for
comparing the program and shadow return addresses. Protect-
ing Phoronix and Apache highlights Shadesmar’s deployabil-
ity. We hope that our thorough evaluation on both common
benchmarks and real world software will lead to the adop-
tion and deployment of shadow stacks in practice, closing a
significant loop-hole in modern software’s protection against
code-reuse attacks. Shadesmar will be open sourced upon
acceptance to aid deployment of shadow stacks.

We present the following contributions: (i) Comprehensive
evaluation of the shadow stack design space along the axes
of performance, compatibility, and security; (ii) Performance
evaluation of each shadow stack design, including sources
of overhead, and our optimizations for x86; (iii) Compara-
tive study of new ISA features that can be used to create
integrity protected memory regions for any runtime mitigation,
and a proposal for an intra-process isolation mechanism; (iv)
Shadesmar a register-based compact performant, secure, and
deployable shadow stack scheme and its evaluation.

2. Background

To enable security analysis of shadow stacks, we first establish
our attacker model. Using this attacker model, we then discuss
common attacks on the stack, e.g., ROP, which overwrite

Call Stack ROP Payload
i Return Address Return Address
foo() Local Data
Local Data &(system)
L &(“/bin/sh”)
Return Address &(pop rdi; ret)
bar()

Local Data Local Data

Figure 1: ROP lllustration

return addresses for interested readers. Knowledgeable readers
may wish to move directly to our discussion of the shadow
stack design space in Section 3.

2.1. Attacker Model

As is standard for defenses that aim to mitigate exploits, e.g.,
CFI and Shadow Stacks, rather than the underlying corrup-
tions, e.g., memory or type safety, we assume an attacker with
arbitrary memory read and write primitives. The attacker uses
these arbitrary reads and writes to inject her payload, and
then corrupts a code pointer to hijack the program’s execution,
executing her payload and exploiting the application. The
adversary is constrained only by standard defenses: DEP [18]
and ASLR [50]. We disable stack canaries [19] as they are
strictly weaker than Shadow Stacks.

For the final step of the attack, corrupting a code pointer,
we assume that the attacker only targets backward edges, i.e.,
return addresses of functions. Protection for forward edges is
an orthogonal problem, covered by defenses such as CFI [10,
13]. Attacking forward edge control flow is therefor out of
scope for this paper. Also out of scope are data-only attacks,
i.e., attacks that do not corrupt code pointers.

2.2. Attacks on the Stack

Attacks against stack integrity began with Aleph One’s sem-
inal work on stack smashing [40]. To this day, control-flow
information on the stack remains an active battle ground in
software security [49]. Code reuse attacks such as ROP and
Stack Pivots are the latest iteration of this threat.

ROP [47] is a style of code-reuse attack that hijacks applica-
tion control flow by overwriting return addresses on the stack.
When the function returns, control is redirected to the attacker
chosen address. Absent any hardening, return addresses on
the stack can be modified to target any executable byte in the
program. If a non-executable byte is targeted, attempting to
execute that byte will lead to a fault, terminating the program.
In practice, attackers target so called “gadgets”, which are
sequences of executable bytes ending in a return instruction
that perform some useful computation for the attacker. The
attacker’s payload consists of a sequence of addresses of such
gadgets that combined perform the desired computation, e.g.,
open a shell, or, in most real-world attacks map a memory

Direct Mapping

— 8MB

Shadow
) | s
8MB{ Stack Stack

— constant

Indirect Mapping

Shadow | Grows on
Stack demand

8MB { Stack Stack

Figure 2: Shadow Stack Designs — Mapping Options

page as executable and writable and memcpy target shellcode
to that page before executing the injected shellcode.

Figure 1 illustrates a payload that executes system() to
spawn a shell. When function bar () returns, the first gadget is
executed. Returning to the first gadget moves the stack pointer
to & ("/bin/sh"), which is then popd into rdi, and moving
the stack pointer to & (system). Consequently, the return in
the first gadget calls system (“/bin/sh”), opening a shell.

Stack Pivots are an emerging attack technique wherein the
adversary controls the stack pointer, i.e., rsp on x86 architec-
tures. Consequently, instead of having to selectively overwrite
data on the stack, the attacker can move the stack frame to a
region of memory she entirely controls, thereby making, e.g.,
ROP attacks significantly easier. This technique has also been
used to bypass ASLR [29, 48]. While stack pivoting changes
how the payload is delivered, code-reuse attacks utilizing it
must still overwrite a code pointer. Consequently, for the pur-
poses of shadow stacks and back edge defenses in general,
stack pivoting is just a payload delivery variant of ROP.

3. Shadow Stack Design Space

For any shadow stack mechanism to be adopted in practice,
it must be highly performant, compatible with existing code,
and provide meaningful security. We analyze the performance
of each shadow stack mechanism that we identify in terms of
runtime, memory, and code size overhead qualitatively in this
section, and quantitatively in our evaluation. Compatibility for
shadow stacks means supporting C and C++ paradigms such
as multi-threading and stack unwinding, as well as interfacing
well with unprotected code. Security is dictated both by how
a shadow stack mechanism validates the return address, and
by any orthogonal technique the mechanism uses to guarantee
the integrity of the shadow stack. See Section 5 for details on
such integrity mechanisms.

Shadow stack mechanisms are defined by how they map
from the program stack to the shadow stack, illustrated in
Figure 2. This includes the type of mapping, as well as how
the mapping is encoded in the protected binary. We analyze
five such mechanisms using the two types of shadow stack
identified by the literature: compact [17] and parallel [20]. For
compact shadow stacks we identify three ways to encode the
mapping in the binary, and two such ways for parallel shadow

stacks. Each of these mechanisms has unique performance and
compatibility characteristics. All shadow stack mechanisms
must adopt a policy on validating the return address. Tradition-
ally, this has been to compare the shadow and program return
addresses and only proceed if they match. We examine the
security impact of utilizing the shadow return address with-
out a comparison and find it increases performance without
impacting security.

3.1. Shadow Stack Mechanisms

Direct mappings schemes for parallel shadow stacks use the
location of the return address on the program stack to directly
find the corresponding entry on the shadow stack. The parallel
shadow stack is as large as the program stack, and a simple
offset maps from the program stack to the shadow stack. Con-
sequently, the direct mapping trades memory overhead — twice
the stack memory usage, for performance — a very simple
shadow stack look up.

Indirect mapping schemes for compact shadow stacks main-
tain a shadow stack pointer, equivalent to the stack pointer
used for the program stack. The shadow stack pointer points
to the last entry on the shadow stack, exactly as the stack
pointer does for the program stack. Maintaining a shadow
stack pointer allows a compact shadow stack to allocate sig-
nificantly less memory, as only room for the return address is
required, instead of duplicating the program stack. Therefor,
indirect mappings trade performance overhead — from using
the shadow stack pointer, for reduced memory overhead — by
only requiring a compact shadow stack.

In addition to the performance versus memory overhead
trade-off, parallel and compact shadow stacks have different
compatibility implications. If calls and returns were always
perfectly matched, there would be no difference. However, the
set jmp / longjmp functionality of C, which allows jumping
multiple stack frames back up the stack, and the equivalent
stack unwinding capability used by C++ for exception han-
dling, both break the assumption of perfectly matched calls
and returns. The direct shadow stack paradigm naturally han-
dles these, as C / C++ adjust the stack accordingly, and then it
uses the adjusted stack to find the appropriate shadow stack
entry. The indirect shadow stack scheme on the other hand
must know how many stack frames the program stack has

. . Compatibility
Mapping Encoding Performance | Memory Threading | Stack Unwinding | Unprotected Code
Global Variable Slow Low X v v
Compact Segment Medium Low v v v
Register Fast Low v v <
Constant Offset Fast High X v v
Parallel - - -
Register Offset Medium High <> v v

Table 1: Summary of Performance Overhead, Memory Overhead, and Compatibility trade-offs between shadow stack mecha-
nisms. v/'— supported; X— not supported; <> — implementation dependent

been unwound to appropriately adjust its shadow stack pointer.
Consequently, stack unwinding leads to additional overhead
for indirect shadow stack mapping schemes, while having no
affect on direct mapping schemes.

For each shadow stack mapping scheme, there are multiple
possible mechanisms with different implications for perfor-
mance and compatibility. In particular, we introduce the use
of a register for the shadow stack pointer for compact shadow
stacks, or the offset for parallel shadow stacks. Now that all 64
bit architectures have at least 16 general purpose registers, it is
possible to dedicate a general purpose register to the shadow
stack mechanism, unlike in 2001 when the original shadow
stack proposal was made [17] and only eight general purpose
registers were available on x86. We find that using a dedicated
register allows compact shadow stack mappings to be as per-
formant as parallel shadow stacks, and allows parallel shadow
stacks to increase their compatibility with multi-threading
while also being more secure.

A summary of our shadow stack mechanisms and their trade-
offs for each design is shown in Table 1. Each row in the table
represents a shadow stack mechanism that we evaluate. The
table reports qualitative differences between them, we refer to
the evaluation in Section 7.1 for quantitative measurements.

3.1.1. Parallel Shadow Stack Mechanisms Parallel shadow
stack mechanisms effectively use the stack pointer as the
shadow stack pointer. The existing mechanism [20] places
shadow stack entries at a constant offset from the program
stack. This is very efficient, requiring no extra registers
or memory access, and no instrumentation to maintain the
shadow stack pointer. This performance benefit is offset by
higher memory overhead, compatibility problems, and lower
security. All parallel shadow stacks suffer from higher mem-
ory overhead, as they fundamentally require the program stack
to be duplicated. The compatibility concerns arise from requir-
ing a constant offset, which is limited to 32 bits for immediate
operands in x86, from the program to the shadow stack from
all threads, severely constraining the address space layout for
programs with many threads, such as browsers. Hard-coding
the offset in the binary is also a security hazard, as recovering
the offset leaks the address of the shadow stack to adversaries.

To mitigate the compatibility and security concerns, we
propose a new parallel shadow stack mechanism. Our parallel
shadow stack mechanism encodes the offset in a dedicated

register, see Figure 3, allowing the offset to the shadow stack
to be determined at runtime. Further, the offset may vary from
thread to thread as registers are thread local, and the offset
can be set when the thread is created. This register is only
updated once, when the offset is determined for the thread, and
therefor adds no per function call overhead (unlike shadow
stack pointers for compact shadow stacks).

3.1.2. Compact Shadow Stack Mechanisms For compact
shadow stack mechanisms, the key question is where to store
the shadow stack pointer. This decision will not impact the
memory overhead of the implementation, but does have per-
formance and compatibility ramifications. The shadow stack
pointer will be dereferenced twice in every function: once in
the prologue to push the correct return address, and once in
the epilogue to pop the shadow return address. Consequently,
the speed of accessing the shadow stack pointer is critical for
the performance of shadow stacks that are indirectly mapped.
There are three locations to store a variable: in memory, in a
segment, or in a register. We discuss and evaluate the perfor-
mance and compatibility trade-offs of all three, and x86 code
for each is shown in Figure 4.

Using a memory location, e.g., a global variable is the
simplest solution, and we present it as a straw man. Accessing
memory is orders of magnitude slower than accessing a value
stored in a register. Even with caching, this effect is noticeable,
see Figure 7. This slow down is aggravated by the need for an
additional move instruction to load the location of the global
variable into a register to access it — x86 does not support
64 bit immediate values. Further, changing memory access
patterns can affect cache behavior, with unpredictable effects
on the program’s performance. An additional problem for this
scheme is that the memory must be thread local to support
multi-threaded programs. Consequently, a scheme that has
better performance characteristics and is inherently thread
local is desirable.

Segment registers, used by existing shadow stack mecha-
nisms [17] to store the location of the shadow stack base, are
an architectural feature left over from when physical mem-
ory was larger than the virtual address space. Segment reg-
isters are faster to access than memory, and are inherently
thread local. Consequently, they improve performance sig-
nificantly over using a memory location to store the shadow
stack pointer, while also improving compatibility by support-

mov rax, [rsp]
mov [rsp+CONSTANT], rax

mov rax,
mov [rsp+rl5], rax

[rsp]

(a) Constant Offset

(b) Offset in Register

Figure 3: Direct Mapping Shadow Stack Prologues. The epilogues execute the inverse.

1| mov r10, rcx
mov r1l, rdx

3| mov rax, [rsp]
mov rdx , GLOBAL

5| mov rex , [rdx] 1| mov rax, [rsp]
mov [rex], rax mov rl0, gs:[0]
mov [rex], rsp simov [r10], rax I{mov rax, [rsp]
add [rdx], 16 mov [r10+8], mov [rl15], rax

9| mov rcx, rl0 s|add rl0, 16 simov [r15+8], rsp
mov rdx, rll mov gs:[0], rl10 lea r15, [r15+16]

(a) Global Variable (b) Segment (c) Register

Figure 4: Indirect Mapping Shadow Stack Prologues. Note - Epilogues are the inverse.

ing multi-threading. We point the segment register at the base
of the shadow stack, and store the shadow stack pointer there.
Accessing the shadow stack is thus double indirect, through
the segment register and then the shadow stack pointer.

We propose a new compact shadow stack mechanism that
uses a general purpose register to store the shadow stack
pointer. General purpose registers provide the fastest possible
option for storing the shadow stack pointer. The disadvantage
of using a general purpose register is that it must be reserved
for the shadow stack pointer, reducing by one the number of
registers available for the compiler to use, and thereby increas-
ing register pressure. Increased register pressure can reduce
performance if it leads to additional register spills to the stack.
Despite this potential overhead, our evaluation finds that this
is the fastest shadow stack encoding, see Figure 7.

3.2. Return Address Validation

Shadow stack mechanisms can ensure a valid return address in
two ways: by either comparing the program and shadow return
addresses, or by using the shadow return address. Comparing
the shadow and program return addresses detects corruptions
of the program return address immediately, and can halt ex-
ecution. Immediate detection is useful during testing and
debugging as it helps isolate the bug. In deployment, however,
preventing control-flow hijacking attacks only requires that
the corrupt program return address not be used. Checking the
program return address is equivalent to a low entropy stack
canary, possibly detecting sequential buffer overflows. Con-
sequently, the shadow stack mechanism can simply use the
return address on the shadow stack. Doing so fully mitigates
control-flow hijacking attacks as the attacker controlled return
address is not used and avoids the overhead of comparing the
return addresses. Either policy provides the same security: an
attacker cannot control the target address of a function return.

4. Shadow Stack Implementations

Each of the shadow stack mechanisms we evaluate is imple-
mented as a backend compiler pass in LLVM 7.0.0, and shares
some common implementation details. In particular, each
shadow stack mechanism must instrument calls and returns
to update its shadow stack and validate the return address be-
fore using it to transfer control. We show that the best way
to accomplish this is to instrument function prologues and
epilogues. Our implementations further include a small run-
time library to set up the shadow stacks, and support stack
unwinding for compact shadow stack schemes. Additionally,
we introduce novel peep hole optimizations for x86 epilogues.

4.1. Instrumented Locations

Shadow stack mechanisms can instrument function calls ei-
ther at the location of the call instruction or in the function
prologue on the callee side. This instrumentation is respon-
sible for pushing the return address to the shadow stack, and
updating the shadow stack pointer for compact shadow stacks.
Returns must be instrumented to pop from the shadow stack
and validate the program return address in the function epi-
logue before the control-flow transfer to mitigate control-flow
hijacking attacks. Code that can unwind stack frames, such
as longjmp and C++’s exception handling mechanism, which
uses libunwind, must also be instrumented to maintain the
shadow stack pointer for compact shadow stacks. Failing to
handle stack unwinding correctly can lead to false positives as
the shadow and program stack are out of sync.

The elegant solution for instrumenting calls is to place the
protection in the function prologue. In this way, the function is
protected, not particular call sites. The compiler does not have
to distinguish between calls to protected and unprotected func-
tions as it would if call sites were instrumented instead. The
distinction must be made if call sites are instrumented to keep
the shadow stack in sync for compact shadow stack where calls

pop rl0

holds shadow RA

;assuming rll
sl xor r1l, rl10
popcnt rll, rll

s| shl r1l1, 48

or rl1l1, rl10

;will fault if rl11 != 0
jmp rll

pop rl0

;r11 holds shadow RA
sf xor r1l1, rl10

popcnt rll, rl1l

; will
mov rllb,
70 jmp rl10

fault if rl1l != 0
[Last_Byte_of_Page+rll]

(a) Fault Epilogue

(b) LBP Epilogue

Figure 5: Shadow Stack Epilogue Optimizations

and returns must be perfectly matched. Instrumenting function
prologues and epilogues maintains this symmetry naturally, as
each will be executed for every function call. The only down
side is that the return address is passed into the function on
the stack. This allows a window of a single instruction where
the attacker can modify the return address before we read it
and store it on the shadow stack, effectively resulting in a
time of check to time of use (TOCTTOU) opportunity. Given
the extremely precise timing required, we do not believe this
potential vulnerability to be exploitable. Further, resolving
the TOCTTOU window requires instrumenting call sites, and
thus distinguishing between protected and unprotected code,
and so introduces a dependency on whole program analysis.
We leave implementing shadow stacks as a whole program
analysis as future work.

Our prologue and epilogue rely on the stack pointer to find
the return address, and are therefor agnostic to optimizations
that delete the stack frame base pointer. Once our epilogue
has popped the return address, we do not read it again from
memory, thereby preventing TOCTTOU attacks that modify
the return address in memory between the time it is read for
the shadow stack check and the time it is used by the return
instruction. One consequence of this is that ret instructions
become pop and jmp instructions. This single transformation
accounts for approximately half of the shadow stack overhead,
see Figure 8. Hardware solutions that avoid this overhead are
discussed in Section 6.

Stack unwinding mechanisms such as longjmp and C++
exceptions require additional instrumentation for compact
shadow stacks. parallel shadow stacks are unaffected as they
do not require adjustment to track stack frames, i.e., they do
not maintain a shadow stack pointer. For compact shadow
stacks, we must be able to unwind to the correct point on the
shadow stack as well. Simply matching return addresses does
not suffice for this, as the same return address can show up
multiple times in the call stack due to, e.g., recursive calls.
To deal with this, our compact shadow stack implementations
also push the stack pointer, i.e., rsp. The stack pointer and
return address uniquely identify the stack frame to unwind to,
allowing our mechanisms to support stack unwinding.

For the shadow stack mechanisms that use a register to
encode the shadow stack mapping, ensuring compatibility with
unprotected code constrains our selection of register. A callee

saved register must be used, so that any unprotected code that
is called will restore the shadow stack pointer, but only if it
is clobbered, which helps performance. Our implementations
use r15 in practice.

4.2. Runtime Support

Our runtime library is responsible for allocating the shadow
stack, and hooking set jmp and 1ongjmp. We add a new func-
tion in the pre_init array that initializes the shadow stack
for the main program thread. This function also initializes the
shadow stack pointer for compact shadow stack mappings. In
particular, for segment encodings it invokes the system call
to assign the shadow stack to the segment register. Setjmp
and longjmp are redirected to versions that are aware of our
shadow stacks. These patched versions required less than 20
lines of assembly to modify.

For compact shadow stack mappings to support multi-
threading and libunwind, we preload a small support library.
It intercepts calls to pthread_create and pthread_exit to
set up and tear down shadow stacks for additional threads. We
use a patched version of libunwind, to which we added 20
lines of code for compatibility with our shadow stacks. These
changes are minimal, and easily deployable by having, e.g.,
two version of the library on the system and a compiler flag to
chose which one is linked in. If shadow stacks are universally
used to harden libraries, no such additional support would be
required. Consequently, we believe compact shadow stacks
are readily deployable.

4.3. Shadow Stack Epilogue Optimizations

Traditionally, shadow stacks have relied on compare instruc-
tions to validate the shadow return address and program
return address are equivalent. However, the compare and
jump paradigm is relatively expensive, potentially leading to
pipeline stalls even with branch prediction. Consequently, as
an optimization, we explore two different methods to optimize
this validation. Our optimizations rely on the insight that a
full comparison is not required, only an equality test.

To replace the compare instruction of traditional shadow
stack epilogues, we propose an xor of the program return
address and shadow return address. This will result in 0 bits
anywhere the two are identical, and 1s elsewhere. x86 has
an instruction, popcnt, that returns the number of bits set to

mov eax, O Read Write
°| Xxor ecx, ecx
xor edx, edx

4| wrpkru

6| ;protection is turned off
;write to shadow stack

mov eax, 8
XOr ecx, ecx
xor edx, edx
12| wrpkru

Read Only

1(

Figure 6: MPK Page Permission Toggling

1. Consequently, if the popcnt of the xor of the program
return address and shadow return address is 0, then the two
are equivalent.

We leverage the MMU to compare the popcnt to zero as
a side effect by creating a protection fault. We propose two
different ways to do so: fault and last byte in page (LBP), see
the code in Figure 5. For fault, we note that the maximum
value of the popcnt is 64, therefor fitting in six bits. By
shifting this value left 48 and oring it into the return address,
we create a general purpose fault for a non-canonical address
form if its value is not zero, by setting one of the high order
16 bits to one in user space. This scheme abuses the fact that
the high order 16 bits are currently unused, and may break if
those bits are utilized in future processors. Alternately, the
LBP scheme creates two pages in memory, the first of which is
mapped read write, the second of which has no permissions.
We then attempt to read from the first page at the address of the
last valid byte, plus the popcnt value. If the popcnt value is
zero, we read the last byte of the valid page, otherwise we read
from the guard page, causing the MPU to return a fault. The
trade-off between the two is that the fault scheme requires
serialization in the processor, while the LBP scheme requires a
memory access and the Memory Protection Unit (MPU). We
show the performance of both schemes in Figure 9.

5. Hardware Integrity Mechanisms

Once a shadow stack design has been chosen, the shadow stack
mechanism must guarantee the integrity of the shadow stack.
How to guarantee the integrity of a protected region of memory
is a problem faced not only by shadow stacks, but also by all
mitigations that rely on writable runtime metadata. Integrity
guarantees are best provided by hardware solutions, though
software solutions exist and are covered here. Hardware solu-
tions for integrity protecting part of the address space within a
process should be evaluated on two metrics: their performance,
and the number of supported concurrent code regions.
Existing hardware mechanisms take two different ap-
proaches to encoding access privileges to provide integrity
protection: (i) in each thread’s register file, providing per
thread (thread centric) integrity, and (ii) in the individual in-
structions, so that access privileges are the same across all

threads and depend only on the executed instruction (code
centric). Note that thread centric solutions require additional
instructions to change the register file, consequently, code
centric solutions are (potentially) more performant as they
operate in a single step, checking an instruction’s permissions,
instead of first toggling bits in the register file and then check-
ing permissions. For code centric mechanisms, the ability to
execute the instruction grants the necessary permissions while
for thread centric mechanisms, the state of the register file
determines the policy.

Assuming code integrity and a control-flow hijacking de-
fense such as CFI, we prefer code centric solutions for their
potential performance and flexibility. Unfortunately, no ex-
isting code centric solution is fully satisfactory in that they
have excessive code size increases, lack performance, and are
not as flexible as required, i.e., split memory into only two
regions. Consequently, we call for a new ISA extension that
is hardware-based for performance, supports multiple secure
regions to be general purpose (e.g., to support multiple con-
current security monitors, each with its own protected region),
and requires minimal code changes. We show how our pro-
posed mechanism is a code centric adaptation of the state of
the art thread centric mechanism, and thus is fully practical.

5.1. Thread Centric Solutions

Thread centric solutions operate by changing the permissions
on the pages of the protected memory region. Adding write
permissions elevates the thread’s privileges, thereby creating a
privileged region that is able to modify the protected memory
region, i.e., the shadow stack. Removing the write permissions
ends the privileged region. The traditional mechanism for
doing this is the mprotect system call. Using mprotect
is prohibitively expensive as it not only requires a context
switch into the kernel, but a full page table walk to change the
permissions on the indicated pages. In addition, mprotect
enables write capabilities for all concurrent threads and not
just for the thread writing the privileged data.

For hardware enforced privilege based mechanism, seg-
mentation registers used to provide privilege based isolation
for x86, where the segmentation register served to give an
instruction access privileges to the protected region. For 64
bit architectures however, x86 no longer provides a hardware-
enforced isolation mechanism with segmentation registers.

A new Intel ISA extension, Memory Protection Keys (MPK)
aims to address this by providing a single, unprivileged instruc-
tion that can change the permissions of a group of pages on a
per-thread basis. MPK works by assigning every page to one
of sixteen keys. The new wrpkru instruction can then change
the permissions for all the pages associated with a given key.
A thread is associated a given key with which it can access all
pages protected with that key. This approach elegantly solves
the TOCTTOU problem of mprotect and allows per-thread
protected regions.

The assembly to enforce privileged code regions using MPK

is shown in Figure 6. Note that the wrpkru instructions re-
quires edx and ecx to be set to 0. Intel did not disclose why
the two registers are required to be 0, it may be for future
extension of the wrpkru instruction to allow a full API to be
developed. The System V calling convention, used by Linux,
uses these registers to pass the third and fourth arguments to a
function respectively. Consequently, for functions which take
more than two arguments, it is necessary to preserve the origi-
nal values of these registers, which is accomplished by moving
their values to caller save registers, and then restoring them af-
ter the wrpkru instruction. Surprisingly, this scheme is slower
than MPX which must instrument almost every memory write
in the program, see Figure 10 for full results.

5.2. Code Centric Solutions

The most common code centric solution is information hiding,
where a pointer to the protected region gives any instruction
access privileges. Information hiding is attractive because it
adds no additional overhead; however, it is the weakest option
as the many attacks against ASLR and other information hid-
ing schemes attest [31, 30, 27, 38, 24]. In essence, a memory
leak, side channel, or simply an implementation bug may allow
attackers to bypass randomization defenses. Consequently, we
consider information hiding to provide minimal security for
the shadow stack, and recommend against it.

Software Fault Isolation (SFI) [46, 35, 54] is a secure soft-
ware solution for isolating intra-process address regions. Even
the best SFI implementations [46] from industry still have 7%
overhead just for the isolation, significantly more than is ac-
ceptable in total for a deployed security monitor. Additionally,
the x86 ISA supports an address override prefix that limits
addressable memory to 32 bits. This can be used to crudely
separate the program’s address space in a 4GB region for the
process to access, leaving all other memory for the security
monitor. 4GB of memory is insufficient for many modern
applications however. Consequently, a more flexible hardware
mechanism is required.

The Intel ISA extension Memory Protection Extension
(MPX) provides a hardware mechanism that can be used to
implement segmentation [14] in a flexible manner, though
it can only split memory into two regions. MPX provides a
bounds checking mechanism, with four new 128 bit registers
to store the bounds, and two new primitives to perform the
upper and lower bounds checks. MPX segmentation schemes
divide writes into two categories, those that are privileged
to write into the protected region, and all others. All non-
privileged writes in the code are instrumented with a bounds
check to ensure that they do not touch the privileged region.
This approach is surprisingly performant, see Figure 10.

5.3. Privileged Move

Intel’s MPK comes closest of all existing hardware mecha-
nisms to meeting our requirements — it is a hardware based
mechanism so should be performant, and supports 16 code

regions within a process. However, while faster than rewrit-
ing page tables, MPK is still too expensive to execute for
every function call, see Figure 10. Further, security monitors
do not require a thread centric protection scheme. Rather, a
code centric scheme with a single privileged move instruction
would suffice. This instruction could take a one byte imme-
diate specifying the region of memory it is allowed to write
to. Unprivileged moves would be limited by default to the un-
protected code region, allowing minimal changes. Privileged
moves which encode their access permissions should be faster
than toggling a thread control register as MPK does. Further,
its implementation should be largely similar, relying on the
same four bits in the page table that MPK does, and with the
same checks. The difference being that instead of referencing
a thread local state for permissions, the permissions would be
encoded in the instruction proper.

Such a privileged move instruction would make an entire
class of security policies that rely runtime metadata practical.
Currently, protecting metadata at runtime is the bottleneck
for many of these policies, covering areas as diverse as type
safety [32], use after free protection [34], and partial memory
safety for function pointers [33]. This hardware primitive
would allow for the creation of flexible security policies in
software that can change and adapt, such as shadow stacks.
With the availability of such a primitive, the policies would be
secure in practice, and make them deployable in adversarial
environments, instead of only being useful for testing as they
cannot withstand direct attacks.

Protection schemes that rely on new ISA extensions are
unlikely to be immediately adopted by the wider community.
However, analyzing them can show which hardware schemes
are useful, hopefully paving the way for eventual broad de-
ployment as happened with the DEP and the NX bit.

6. Discussion

Orthogonal to the main design, optimization, and protection
points above there are interesting details around dealing with
unprotected code, existing compiler optimizations with ramifi-
cations for shadow stacks, and forthcoming hardware exten-
sions that we include here for completeness.

Unprotected Code. Unprotected code weakens the guar-
antees of shadow stack schemes, as they cannot prevent a
control-flow hijacking attack in the unprotected region. Both
parallel and compact shadow stack can be fully compatible
with unprotected code regions. Parallel shadow stacks are
completely oblivious to unprotected code as they do not re-
quire a shadow stack pointer. Compact shadow stack schemes
fully support unprotected code as long as the shadow stack
pointer is not clobbered. In particular, the register implemen-
tation of the compact shadow stack scheme is exposed to this.
The register implementation can handle calls into unprotected
code that return directly to protected code, as the register used
is callee saved and thus restored before protected code runs
again. However, if the unprotected region calls into protected

code due to, e.g., a call back function to a sorting routine, the
shadow stack pointer may have been clobbered causing the
call back function to fail. Note that we anticipate that all code
on a system is protected in practice.

Tail Call Optimizations. Tail calls allow call return pairs
to be omitted by the compiler, when, for example, a function
returns the value of another function call, or for recursive calls.
In these cases, the same program return address can be used
for the tail called function. However, new stack frames are
required for the case where the call being optimized is the last
instruction in an arbitrary function. The optimization simply
saves instructions by omitting a call return pair by jumping
directly to the callee, which can then use one return to exit
itself and the caller. As a function can be both tail called and
called normally, the full function prologue is executed even
when the function has been tail called. To keep the shadow
stack in sync, we execute the normal shadow stack epilogue
before tail calls, though we omit the jump through the return
address in these cases. Consequently, fault epilogues fall
back to LBP for tail calls, as there is no jmp to modify.

Mobile Architectures. Beyond x86, ARM is in wide use
for mobile and embedded devices. ARM uses the 1ink reg-
ister to store the return address for the current function, only
pushing the return address to the stack when additional func-
tions are called. Consequently, shadow stacks can instrument
function prologues without a potential TOCTTOU window.
Our analysis of the design space applies to other architectures
while our epilogue optimizations are x86 specific because of
the popcnt instruction. Of course, this instruction can be re-
placed with shift and or instructions. We leave the evaluation
of an ARM implementation as future work.

Intel Control Enforcement Technology. Intel has re-
leased a preview document for a proposed new ISA exten-
sion called Control Enforcement Technology (CET) [6]. CET
provides hardware support for shadow stacks, and checks
on forward edge indirect control-flow transfers. CET modi-
fies call instructions to push the return address to a hardware
protected shadow stack as well as the program stack, and re-
turn instructions to compare the program and shadow return
addresses, raising a fault if they are not equal. While this
technology has great promise, no release date has been made
public so it is unclear when / if it will become available. In
the meantime, software solutions for hardening programs are
required. Orthogonally, other architectures and legacy systems
equally require protection.

7. Evaluation

We evaluate the five different shadow stack implementations
from Table 1, and we examine the impact of our proposed
epilogue optimizations. Orthogonally, we evaluate the cost
of providing deterministic integrity protection for the shadow
stack. Based on this evaluation, we recommend a shadow stack
mechanism, Shadesmar, for broad use. To show Shadesmar’s
practicality, we present two case studies: Phoronix and the

parallel - c.o.
parallel - register [N
40 - compact - g.v. |

compact - segment N
30 - compact - register I

Percentage Overhead

Figure 7: Design Comparison

Jump RA
25" Create Shadow Stack I
20 Shadow RA [i
Comparison EE

Percentage Overhead

Figure 8: Overhead Breakdown for a Compact Register Con-
figuration

Apache web server. The Phoronix benchmarks are common
use cases for widely used, real-world applications, and Apache
is the most popular web server. Consequently, these case
studies show Shadesmar is ready for deployment. All of our
evaluation is done on an Intel(R) Xeon(R) Bronze 3106 CPU
at 1.7GHz, with 48GB memory, running Debian-9.3.0. We
compile software at O2 and for SPEC CPU2006 we use the
default configuration with three reportable runs on the ref
dataset.

7.1. Shadow Stack Evaluation

For each of the five different shadow stack designs, we first
evaluate their performance on SPEC CPU2006. For the exist-
ing shadow stack designs identified in Section 3, we ported the
implementations to LLVM 7.0.0 to control for performance

30
Comparison
5 Fault [B
20 LBP _
Shadow-RA N

Percentage Overhead

0 .
PP IV ILEALOIE D RS ¥ S

\@\o@%’ f,fo& s S ef&@fb o &@j@%@ ,ﬁ&\%@&% S

SO S A SR TR S SN AN

N Y V:@Q S B

&>
XN
» AR bbb,(\\p

® 9 RS

Figure 9: Epilogue Micro-Optimizations

Information Hiding N
MPK
MPX

Percentage Overhead

Figure 10: Integrity Protection Overhead

effects from compiler improvements. For these experiments,
we used the traditional cmp-based epilogue, and information
hiding to protect the shadow stack. The results are in Figure 7.
Note that the parallel shadow stack constant offset implemen-
tation and the compact shadow stack register implementation
are within measurement noise of each other at 5.78% over-
head and 5.33% respectively. This removes the performance
justification for parallel shadow stacks greater memory use, if
a dedicated register is used for the shadow stack pointer. The
compact and parallel shadow stacks have effectively the same
code size impact as well, 15.57% and 14.88% respectively.
Consequently, we recommend compact shadow stacks.

Figure 9 shows the overheads for the compact shadow stack
register implementation with our different epilogue optimiza-
tions. The traditional cmp-based epilogue has 5.33% overhead,
25% more than our optimized epilogues at 4.31% for the
fault epilogue, and 4.44% for the LBP epilogue. Further, the
cmp epilogue has significant outliers on perlbench, povray, and
Xalancbmk. Consequently, we believe our epilogue optimiza-
tions are highly effective as they not only reduce overhead
but also reduce its variation. As the fault-based epilogue
is faster (albeit marginally) and does not require additional
changes to the address space, we recommend it for vulner-
ability discovery settings, e.g., software testing and fuzzing.
Using the shadow return address without any comparison as
discussed in Section 3.2 results in 3.65% overhead, and is our
recommendation for deployment.

We break down the sources of overhead within the compact
shadow stack register implementation in Figure 8. Chang-
ing the ret instruction to a pop; jmp sequence has 1.97%
overhead (the overhead is likely due to the loss of the CPU’s
return value prediction). Maintaining the shadow stack but
leaving the normal return instruction has 1.85% overhead. If
the epilogue jumps through the shadow stack return address,
there is 3.65% overhead, effectively the sum of the return
instruction transformation and maintaining the shadow stack,
as expected. Our experiment highlights an opportunity for
architectural improvement: moving the return stack buffer to
the shadow stack would recover most of the overhead and, due
to the compact design and fixed layout of the shadow stack,
could simplify the management of that buffer and possibly

10

improve performance.

Our last experiment on SPEC CPU2006 evaluates the over-
head of our three different shadow stack integrity mechanisms.
For these experiments, we used a compact shadow stack with
the register implementation and the fault-based epilogue.
The results are in Figure 10. As expected, the information
hiding scheme is the fastest with 4.31% overhead. The MPX-
based, code centric, isolation scheme was the next fastest with
12.12% overhead on average. The MPK thread centric, iso-
lation scheme had 61.18% overhead. Our finding is in line
with [51] which finds that adding a permission switch to a
direct call increases the number of cycles for the call from
8 to 69. Consequently, we conclude that MPK is serializing
execution, and was not intended for hot path use. MPX has
a code size increase of 41.67% vs 21.24% for MPK. Neither
the MPX nor MPK overhead numbers are acceptable for a
deployed mechanism, highlighting the need for our proposed
privi leged move instruciton, as per Section 5.3.

7.2. Shadesmar Case Studies

We recommend Shadesmar: a compact, register based shadow
stack that directly uses the shadow RA, and relies on infor-
mation hiding to protect the shadow stack for immediate de-
ployment based on our SPEC CPU2006 analysis. Note that
information hiding still significantly raises the bar for attack-
ers by requiring an information leak, and a write to a region
of memory with only one pointer into it (the shadow stack
pointer) to bypass Shadesmar. Shadesmar exclusively keeps
the shadow stack pointer in a register, making leaking the
location of the shadow stack difficult.

To demonstrate the usefulness of Shadesmar for real soft-
ware, we run benchmarks from the Phoronix test suite for
typical desktop user experiences, and benchmark the through-
put of the Apache webserver for server deployments. For
all case studies, Shadesmar has minimal performance impact

Benchmark Overhead | Deviation
sqlite 8.94% 0.22%
flac 1.19% 0.85%
MP3 1.47% 0.28%
wavpack 0.35% 0.15%
crafty 0.84% 0.15%
hmmer 0.28% 0.42%
LZMA 0.84% 0.29%
apache -2.05% 0.40%
minion-graceful 1.18% 0.16%
minion-quasigroup 3.39% 0.13%

Table 2: Phoronix Benchmark Results

. . Simultaneous Connections
File Size] 7 3
70K - HTML | 6.21% | 0.63% | -0.40%
1.4M - Image | 1.13% | 0.45% | -0.31%

Table 3: Apache Throughput Reduction

while greatly increasing security by removing backward edge
control-flow transfers from the attack surface. In particular,
this shows that on modern 64 bit architectures with 16 general
purpose registers, dedicating one general purpose register to a
security mechanism is acceptable in practice.

Phoronix. We run ten benchmarks from Phoronix with
workloads including databases, audio encoding, data compres-
sion, chess, protein sequencing, and their version of Apache.
These workloads are representative of common workloads for
user space computation. The results are in Table 2. For eight
of the ten benchmarks, the overhead is less than 2%; for five
benchmarks overhead is within 1%; and it is within measure-
ment noise of zero for two benchmarks. Consequently, we
believe that Shadesmar is performant enough to be deployed
in desktop computing environments, and that users would not
notice any slow down.

Apache. To evaluate Shadesmar in server settings, we
benchmarked the throughput of Apache with Shadesmar in-
strumentation. For this experiment, we used two different files,
a 70KB HTML file and a 1.4MB image file, representative
of the average size of webpages in 2016 [7]. The overhead
drops with the number of connections, and file size, and is
non-existent for eight concurrent connections, as shown in
Table 3. This demonstrates that Shadesmar has no impact on
the performance of 10 bound applications like servers.

8. Related Work

Code-Reuse Attack Surface. Code-reuse attacks as an attack
vector began with the original ROP attack [47]. Since then,
the research community has worked to fully understand the
scope of this attack vector. Follow on work established that
any indirect control-flow transfer could be used for code-reuse
attacks, not just returns [16, 11]. JIT-ROP [48] showed how
just in time compiled code, like JavaScript, can be abused for
code-reuse attacks. Counterfeit Object Oriented Programming
(COOP) [45] specialized code reuse attacks for C++ programs,
while PIROP [29] shows how to perform ROP in the face of
ASLR. Control Jujustu [25] and Control Flow Bending [15]
showed that CFI defenses cannot prevent code-reuse attacks
in general. Newton [53] provides a framework for analyzing
code-reuse defenses’ security.

Control-Flow Integrity. CFI [10] mitigates forward edge
code-reuse attacks. CFI mechanisms work by using static anal-
ysis to create an over approximation of the control-flow graph
(CFG), and then enforce at runtime that all transitions must be
within the statically computed CFG. After the initial proposal,
follow on research has removed the need for whole program
analysis [36, 37], and specialized CFI to use additional infor-
mation in C++ programs when protecting virtual calls [55, 12].
To improve the precision of the CFG construction underlying
CFI, more advanced static analysis techniques have been pro-
posed [26]. Alternately, dynamic analysis-based approaches
that leverage execution history [52], or analyze execution his-
tory on a separate core [22] significantly increase the precision

11

of CFI, and thereby the security it provides. See [13] for a
survey of CFI techniques.

Alternatives to CFI for forward edge protection have been
proposed. Code Pointer Integrity (CPI) [33] isolates and pro-
tects code pointers, thereby keeping them from being cor-
rupted. CPI included a proposal for Safe Stacks which rely on
a precise escape analysis for stack variables, and other inter-
procedural analysis to divide the stack into two new stacks: a
safe stack with the return address, and variables that cannot
be accessed through pointers, and an unsafe stack. Safe stacks
have significant compatibility problems, particularly with un-
protected code and without full program analysis the conser-
vative analysis ends up allocating a large number of unsafe
stack frames, resulting in unnecessary overhead. CFIXX [14]
provides object type integrity by protecting the virtual table
pointers of C++ objects, thereby precisely protecting virtual
dispatch.

Shadow Stacks. Prior work on shadow stacks is split be-
tween binary translation solutions [42, 23, 21, 28, 43] and
compiler-based solutions [17, 20, 44, 41, 39]. The binary so-
lutions employ static binary rewriting to add trampolines to
the shadow stack instrumentation, and may enforce additional
policies such as CFI, or utilize Intel’s Process Trace (PT) fea-
ture and an additional core to analyze the process trace [28].
The compiler-based solutions come in three flavors: those
that only attempt to prevent stack pivots [44, 41], an attempt
to remove all ROP gadgets from the binary [39], and finally
full shadow stacks [17, 20], which offer the strongest secu-
rity. Shadesmar builds on full shadow stacks and introduces a
dedicated shadow stack register to improve performance for
compact shadow stacks, and compatibility by fully supporting
stack unwinding. We also introduce hardware mechanisms to
integrity protect the shadow stack.

9. Conclusion

With the increasing deployment of CFI to protect against
forward-edge attacks, backward-edge defenses are required to
fully mitigate control-flow hijack attacks. We conduct a qual-
itative and quantitative study of the design space of shadow
stacks along performance, compatibility, and security dimen-
sions and propose Shadesmar, a register-based, performant,
secure, and deployable shadow stack mechanism that is com-
patible with all required C/C++ paradigms. Our case studies
on Apache, where we had no performance impact for real
work loads, and Phoronix where we had less than 2% over-
head for 8 of the 10 benchmarks show Shadesmar’s deploy-
ability. Orthogonally, we show that no existing HW mech-
anisms is usable in practice for intra-process address space
isolation, and propose a new code-centric mechanism to fit
this need for general security monitors that require mutable
metadata. Our evaluation shows that Shadesmar is practical,
prevents backward-edge attacks, and, together with CFI, will
stop control-flow hijacking.

References

(1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]

[9]
(10]

(11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

(26]

(27]

https://googleprojectzero.blogspot.com/2017/12/
apacolypse-now-exploiting-windows—10-in_18.html.
://googleprojectzero.blogspot.com/2016/09/
return-to-libstagefright-exploiting.html.
https://googleprojectzero.blogspot.com/2017/07/
trust-issues—-exploiting-trustzone-tees.html.
https://googleprojectzero.blogspot.com/2017/02/
attacking-windows-nvidia-driver.html.
https://googleprojectzero.blogspot.com/2017/02/
lifting-hyper-visor-bypassing-samsungs.html.
https://software.intel.com/sites/
ult/files/managed/4d/2a/
control-flow-enforcement-technology-preview.pdf.
https://www.keycdn.com/support/
the-growth-of-web-page-size/.

Control flow guard (windows). https://msdn.microsoft.com/
en-us/library/windows/desktop/mt637065 (v=vs.85) .aspx,
2016.

Control flow integrity. http://clang.llvm.org/docs/
ControlFlowIntegrity.html, 2016.

Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-
flow integrity. In CCS ’05, 2005.

Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-
oriented programming: a new class of code-reuse attack. In CCS ’11,
2011.

Dimitar Bounov, Rami Kici, and Sorin Lerner. Protecting c++ dy-
namic dispatch through vtable interleaving. In Annual Network and
Distributed System Security Symposium (NDSS), 2016.

Nathan Burow, Scott A Carr, Joseph Nash, Per Larsen, Michael Franz,
Stefan Brunthaler, and Mathias Payer. Control-flow integrity: Precision,
security, and performance. CSUR, 2017.

Nathan Burow, Derrick McKee, Scott A. Carr, and Mathias Payer.
Cfixx: Object type integrity for c++ virtual dispatch. In NDSS’18,
2018.

Nicolas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and
Thomas R. Gross. Control-flow bending: On the effectiveness of
control-flow integrity. In SEC’15, 2015.

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza
Sadeghi, Hovav Shacham, and Marcel Winandy. Return-oriented
programming without returns. In CCS ’10, 2010.

Tzi-cker Chiueh and Fu-Hau Hsu. Rad: A compile-time solution to
buffer overflow attacks. In ICDCS’01, 2001.

Microsoft Corporation. A detailed description of the data execution
prevention (dep) feature in windows xp service pack 2, windows xp
tablet pc edition 2005, and windows server 2003. https://support.
microsoft.com/en-us/kb/875352, 2013.

Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke,
Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather
Hinton. Stackguard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In SEC "98, 1998.

Thurston HY Dang, Petros Maniatis, and David Wagner. The per-
formance cost of shadow stacks and stack canaries. In AsiaCCS 15,
2015.

Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. Ropdefender:
A detection tool to defend against return-oriented programming attacks.
In AsiaCCS ’11, 2011.

Ren Ding, Chenxiong Qian, Chengyu Song, Bill Harris, Taesoo Kim,
and Wenke Lee. Efficient protection of path-sensitive control security.
In CCS ’17,2017.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and
George C Necula. Xfi: Software guards for system address spaces. In
0SDI’06, 2006.

Isaac Evans, Sam Fingeret, Julidn Gonzélez, Ulziibayar Otgonbaatar,
Tiffany Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Ri-
nard, and Hamed Okhravi. Missing the point (er): On the effectiveness
of code pointer integrity. In SP 15, 2015.

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Mar-
tin Rinard, Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control
jujutsu: On the weaknesses of fine-grained control flow integrity. In
CCS 15, 2015.

Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. Boosting
the precision of virtual call integrity protection with partial pointer
analysis for c++. In ISSTA "17, 2017.

Robert Gawlik, Benjamin Kollenda, Philipp Koppe, Behrad Garmany,
and Thorsten Holz. Enabling client-side crash-resistance to overcome
diversification and information hiding. In NDSS ’16, 2016.

12

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]
[50]
[51]

[52]

[53]

[54]

[55]

Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control
flows using intel processor trace. In ASPLOS 17, 2017.

E. Goktas, B. Kollenda, P. Koppe, E. Bosman, G. Portokalidis, T. Holz,
H. Bos, and C. Giuffrida. Position-independent code reuse: On the
effectiveness of aslr in the absence of information disclosure. In
EuroSP’18, 2018.

Enes Goktas, Robert Gawlik, and Benjamin Kollenda. Undermining
information hiding (and what to do about it). In SEC ’16, 2016.

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano
S};ufzf(r)lii? Aslr on the line: Practical cache attacks on the mmu. NDSS
Yuseok Jeon, Priyam Biswas, Scott A. Carr, Byoungyoung Lee, and
Mathias Payer. Hextype: Efficient detection of type confusion errors
for c++. In CCS ’17,2017.

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Can-
dea, R. Sekar, and Dawn Song. Code-pointer integrity. In OSDI 14,
2014.

Byoungyoung Lee, Chengyu Song, Yeongjin Jang, Tielei Wang, Taesoo
Kim, Long Lu, and Wenke Lee. Preventing use-after-free with dangling
pointers nullification. In NDSS ’15, 2015.

Stephen McCamant and Greg Morrisett. Evaluating sfi for a cisc
architecture. In SEC ’06, 2006.

Ben Niu and Gang Tan. Modular control-flow integrity. In PLDI 14,
2014.

Ben Niu and Gang Tan. Per-input control-flow integrity. In CCS ’15,
2015.

Angelos Oikonomopoulos, Elias Athanasopoulos, Herbert Bos, and
Cristiano Giuffrida. Poking holes in information hiding. In SEC ’16,
2016.

Kaan Onarlioglu, Leyla Bilge, Andrea Lanzi, Davide Balzarotti, and
Engin Kirda. G-free: defeating return-oriented programming through
gadget-less binaries. In ACSAC ’10, 2010.

Aleph One. Smashing the stack for fun and profit. Phrack magazine,
1996.

Aravind Prakash and Heng Yin. Defeating rop through denial of stack
pivot. In ACSAC ’15, 2015.

Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against
stack based buffer overflow attacks. In ATC ’03, 2003.

Rui Qiao, Mingwei Zhang, and R Sekar. A principled approach for rop
defense. In ACSAC ’15, 2015.

Anh Quach, Matthew Cole, and Aravind Prakash. Supplementing
modern software defenses with stack-pointer sanity. In ACSAC 17,
2017.

Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in c++
applications. In SP ’15, 2015.

David Sehr, Robert Muth, Cliff Biffle, Victor Khimenko, Egor Pasko,
Karl Schimpf, Bennet Yee, and Brad Chen. Adapting software fault
isolation to contemporary cpu architectures. In SEC "10, 2010.
Hovav Shacham. The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86). In CCS ’07, 2007.
Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, and Ahmad-Reza Sadeghi. Just-in-time code
reuse: On the effectiveness of fine-grained address space layout ran-
domization. In SP ’13, 2013.

Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok:
Eternal war in memory. In SP ’13,2013.

PaX Team. Pax address space layout randomization (aslr). 2003.
Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, and Peter
Druschel. Erim: Secure and efficient in-process isolation with memory
protection keys. arXiv preprint arXiv:1801.06822, 2018.

Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
Practical context-sensitive cfi. In CCS 15, 2015.

Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis,
Xi Chen, Herbert Bos, and Cristiano Giuffrdia. The dynamics of
innocent flesh on the bone: Code reuse ten years later. In CCS '17,
2017.

Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert
Muth, Tavis Ormandy, Shiki Okasaka, Neha Narula, and Nicholas
Fullagar. Native client: A sandbox for portable, untrusted x86 native
code. In SP ’09, 2009.

Chao Zhang, Scott A Carr, Tongxin Li, Yu Ding, Chengyu Song,
Mathias Payer, and Dawn Song. Vtrust: Regaining trust on virtual
calls. In Symposium on Network and Distributed System Security
(NDSS), 2016.

https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html
https://googleprojectzero.blogspot.com/2017/12/apacolypse-now-exploiting-windows-10-in_18.html
://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
://googleprojectzero.blogspot.com/2016/09/return-to-libstagefright-exploiting.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/07/trust-issues-exploiting-trustzone-tees.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/attacking-windows-nvidia-driver.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://googleprojectzero.blogspot.com/2017/02/lifting-hyper-visor-bypassing-samsungs.html
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://www.keycdn.com/support/the-growth-of-web-page-size/
https://www.keycdn.com/support/the-growth-of-web-page-size/
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/mt637065(v=vs.85).aspx
http://clang.llvm.org/docs/ControlFlowIntegrity.html
http://clang.llvm.org/docs/ControlFlowIntegrity.html
https://support.microsoft.com/en-us/kb/875352
https://support.microsoft.com/en-us/kb/875352

	1 Introduction
	2 Background
	2.1 Attacker Model
	2.2 Attacks on the Stack

	3 Shadow Stack Design Space
	3.1 Shadow Stack Mechanisms
	3.1.1 Parallel Shadow Stack Mechanisms
	3.1.2 Compact Shadow Stack Mechanisms

	3.2 Return Address Validation

	4 Shadow Stack Implementations
	4.1 Instrumented Locations
	4.2 Runtime Support
	4.3 Shadow Stack Epilogue Optimizations

	5 Hardware Integrity Mechanisms
	5.1 Thread Centric Solutions
	5.2 Code Centric Solutions
	5.3 Privileged Move

	6 Discussion
	7 Evaluation
	7.1 Shadow Stack Evaluation
	7.2 Shadesmar Case Studies

	8 Related Work
	9 Conclusion

