Chapter 2

Simple Image File Formats

2.1 Introduction

The purpose of this lecture is to acquaint you with the simplest ideas in image
file format design, and to get you ready for this week’s assignment - which is to
write a program to read, display, and write a file in the PPM rawbits format.

Image file storage is obviously an important issue. A TV resolution greyscale
image has about 1/3 million pixels — so a full color RGB image will contain
3 x1/3 = 1 million bytes of color information. Now, at 1,800 frames (or images)
per minute in a computer animation, we can expect to use up most of a 2
gigabyte disk for each minute of animation we produce! Fortunately, we can do
somewhat better than this using various file compression techniques, but disk
storage space remains a crucial issue. Related to the space issue is the speed of
access issue — that is, the bigger an image file, the longer it takes to read, write
and display.

But, for now let us start with looking at the simplest of formats, before moving
on to compression schemes and other issues.

2.2 PPM file format

The PPM, or Portable Pixmap, format was devised to be an intermediate format
for use in developing file format conversion systems. Most of you know that
there are numerous image file formats, with names like GIF, Targa, RLA, SGI,
PICT, RLE, RLB, etc. Converting images from one format to another is one

2 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

of the common tasks in visualization work, since different software packages
and hardware units require different file formats. If there were IV different file
formats, and we wanted to be able to convert any one of these formats into any
of the other formats, we would have to have N x (N — 1) conversion programs —
or about N2. The PPM idea is that we have one format that any other format
can be converted into and then write N programs to convert all formats into
PPM and then N more programs to convert PPM files into any format. In this
way, we need only 2 x N programs — a huge savings if N is a large number (and
it is!).

The PPM format is not intended to be an archival format, so it does not need
to be too storage efficient. Thus, it is one of the simplest formats. Nevertheless,
it will still serve to illustrate features common to many image file formats.

Most file formats are variants of the organization shown in Figure 2.1. The
file will typically contain some indication of the file type, a block of header or
control information, and the image description data. The header block contains
descriptive information necessary to interpret the data in the image data block.
The image data block is usually an encoding of the pixmap or bitmap that
describes the image. Some formats are fancier, some are extremely complex,
but this is the basic layout. Also, most (but not all) formats have some kind of
identifier — called the magic number — at the start, that identifies the file type.
Often the magic number is not a number at all, but is a string of characters.
But in any case, that is what it is called.

“magic
number” U

header

image
data

Figure 2.1: Typical Image File Layout

In the PPM format, the magic number is either the ASCII character string
"pit wp2M) wP3") P4t "P5" or "P6" depending upon the storage method
used. "P1" and "P4" indicate that the image data is in a bitmap. These files
are called PBM (portable bitmap) files. "P2" and "P5" are used to indicate
greyscale images or PGM (portable greymap) files. "P3" and "P6" are used to
indicate full color PPM (portable pixmap) files. The lower numbers — "P1",
"p2" "P3" — indicate that the image data is stored as ASCII characters; i.e.,

2.2. PPM FILE FORMAT 3

all numbers are stored as character strings. This is a real space waster but has
the advantage that you can read the file in a text editor. The higher numbers
— "P4" "P5" "PE" — indicate that image data is stored in a binary encoding
— affectionately known as Portable Pixmap rawbits format. In our study of the
PPM format, we will look only at "P6" type files.

2.2.1 PPM header block

The header for a PPM file consists of the information shown in Figure 2.2,
stored as ASCII characters in consecutive bytes in the file. The image width
and height determine the length of a scanline, and the number of scanlines. The
maximum color value cannot exceed 255 (8 bits of color information) but may
be less, if less than 8 bits of color information per primary are available. In the
header, all white-space (blanks, carriage returns, newlines, tabs, etc.) is ignored,
so the program that writes the file can freely intersperse spaces and line breaks.
Exceptions to this are that following an end-of-line character (decimal 10 or
hexadecimal 0A) in the PPM header, the character # indicates the start of a
text comment, and another end-of-line character ends the comment. Also, the
maximum color value at the end of the header must be terminated by a single
white-space character (typically an end-of-line).

P6 -- magic number

comment —-- comment lines begin with
another comment —-- any number of comment lines
200 300 -- image width & height

255 -- max color value

Figure 2.2: PPM Rawbits Header Block Layout

The PPM P6 data block begins with the first pixel of the top scanline of the
image (upper lefthand corner), and pixel data is stored in scanline order from
left to right in 3 byte chunks giving the R, G, B values for each pixel, encoded
as binary numbers. There is no separator between scanlines, and none is needed
as the image width given in the header block exactly determines the number of
pixels per scanline. Figure 2.3a shows a red cube on a mid-grey background,
and Figure 2.3b gives the first several lines of a hexadecimal dump (text display)
of the contents of the PPM file describing the image. Each line of this dump
has the hexadecimal byte count on the left, followed by 16 bytes of hexadecimal
information from the file, and ends with the same 16 bytes of information dis-
played in ASCII (non-printing characters are displayed using the character !).
Except for the first line of the dump, which contains the file header information,
the ASCII information is meaningless, since the image data in the file is binary
encoded. A line in the dump containing only a * indicates a sequence of lines
all containing exactly the same information as the line above.

4 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

a) red cube on a midgrey (0.5 0.5 0.5) background

000000 5036 0a33 3030 2032 3030 0a32 3535 0a7f P6!300 200!255! !
000010 T7£7f TE7f TETE TETE TETE TETE TETE TETE LILLLLILIILIT0L]
*

009870 886d 6d92 5959 8a69 6984 7676 817d 7d80 'mm!YY!ii!vv!}}!
009880 TE7f TETf TETE TETE TETE TETE TETE TETE 1I1LILLILLILLLT
*

009bf0 7£80 7e7e 9d41 41b5 0909 b211 11a9 2424 1I17TIAALINII11GS
009c00 9£f3b 3b94 5454 8b68 6886 7272 827b 7b80 !;;!TT!hh!rr!{{!
009c10 7£7f 7E£7f TE£7f TE7E TETE TE7E TETE TEVE rrrrrrrrrrrrrnnd
*

009£70 7E7f TE7f T£82 7979 a72b 2bb9 0000 ba00 ! !!1111yyl++ri111]
009£80 00ba 0000 b901 01b7 0606 b20f Ofaf 1did !!11I1iitiitLnL]
009£90 a532 3297 4d4d 8d62 6286 7272 827a 7ag80 !221MM!bb!rr!zz!
009fa0 TeTe TE7f TETE TETE TETE TETE TETE TETE ~~1111111L11L10]
009fb0 T7E7f TETE TETE TETE TETE TETE TETE TETE 1I1LLILLILLILLLT)
*

00a2f0 T7£7f TETf TETE TETE Tf8a 6969 b0O14 14ba !111111I114i111}
002300 0000 badO 00ba 0000 ba0O 00ba 0000 ba00 !!1IITIIIILITINY
00a310 00ba 0000 ba00 00b9 0505 b60d Odaf 1did !!!!11tItiiiitny
00a320 a62f 2£9d 4141 915b 5b88 6d6d 8279 7980 !//!AA![['mm'yy!
00a330 TeTe TE7f TE7E TETE TETE TETE TETE TETE ~~11101110I11L1T]
002340 T£7f TETE TETE TETE TETE TETE TETE TETE 111LILLIILLIL10)
*

b) several lines in a dump of PPM P6 red-cube image file

Figure 2.3: Example PPM P6 Data

2.3. HOMEWORK NUTS AND BOLTS)

2.3 Homework Nuts and Bolts

2.3.1 OpenGL and PPM

Display of an image using the OpenGL library is done most easily using the
procedure glDrawPixels (), that takes an image pixmap and displays it in the
graphics window. Its calling sequence is

glRasterPos2i (0, 0);
glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, Pixmap);

The call glRasterPos2i(0, 0) assures that the image will be drawn in the
window starting at the lower left corner (pixel 0 on scanline 0). The width
and height parameters to glDrawPixels() specify the width, in pixels, of a
scanline, and the height of the image, in number of scanlines. The GL_RGBA
parameter indicates that the pixels are stored as RGBA quadruples, with color
primaries stored in the order red, green, blue, alpha, and the GL_UNSIGNED_BYTE
parameter indicates that each color primary is stored in a single byte and treated
as an unsigned number between zero and 255. Finally, the parameter Pixmap is
a pointer to an array of integers (unsigned int *Pixmap) that is used to store
the image’s pixmap. Since an unsigned integer is 32 bits long, each element
of the Pixmap array has room for four bytes of information, exactly what is
required to store one pixel.

Please make special note of the following complications:

1. By default, OpenGL wants the image raster stored from the bottom scan-
line of the image to the top scanline, whereas PPM stores the image from
the top scanline to the bottom.

2. Each 32 bit int in the pixmap stores 1 pixel value in the order R, G, B,
a. Fach of R, G, B, and « take 1 byte. « is an opacity value that you
can set to 255 (or 0xff in hexadecimal), which indicates that the color is
fully opaque.

3. PPM stores pixel primaries in R, G, B order, and there is no provision for
an « value.

2.3.2 Logical shifts, and, or

Reading a PPM file and displaying it, requires you to pack the red, green and
blue information for a single pixel into one 32 bit word. When you have to write
the file back out, it is necessary to unpack the red, green and blue components.

6 CHAPTER 2. SIMPLE IMAGE FILE FORMATS

There are several ways to do this. One way is to make each color an array of
four unsigned characters. Another is to make each color a struct, with four
elements, each an unsigned character.

Another way to do this is by making each color an unsigned integer (which is a
32 bit quantity) and shift each of the eight-bit color values into place. However,
to do this properly, you need to know the architecture of your machine. If you
are using a machine with an Intel-like architecture (like all Windows systems),
then the underlying storage is in “Little Endian” order. What this means is that
in a four-byte int, the least significant part of the binary number is stored in
the leftmost byte, and the most significant in the rightmost byte. However, as
the int is extracted from memory, to be treated as a 32-bit integer number, it
is rearranged so that the most significant byte is on the left and the least on the
right. Therefore, if you want your color channels to be arranged in the order (R,
G, B, a) when they are used on the display, then you need to order them in the
order (o, B, G, R) in memory. If you are using a machine with “Big Endian”
storage order, like one of the older PowerPC Macintosh computers, then you
would use the (R, G, B, «) order. The example code below assumes a “Little
Endian” architecture:

int red, green, blue;
unsigned int pixel;

/* packing */
pixel = Oxff << 24 | blue << 16 | green << 8 | red;

/* unpacking */

alpha = (pixel >> 24);

blue = (pixel >> 16) & Oxff;
green = (pixel >> 8) & Oxff;
red = pixel & Oxff;

The operator <<, when used in an arithmetic expression, causes the bits in the
memory cell specified to the left of the << symbol to be shifted to the left by the
number of positions specified to the right of the << symbol. 0’s are shifted into
the rightmost end of the cell to fill vacated positions. Likewise, when used in an
arithmetic expression, >> causes a shift to the right by the specified number of
bits, with 0’s shifted into the leftmost end of the cell. The operator | specifies a
logical or operation between the value specified to its left and the value specified
to its right. Similarly, the operator & specifies a logical and operation between
its left and right operands. Both the logical or and and operations operate bit
by bit between corresponding bit positions in their two operands. A logical or
of two bits yields a 1 if either of the operand bits is a 1, otherwise it yields a 0.
In other words, if either one or the other or both operands are 1 the result is 1.
A logical and of two bits yields a 0 if either of the operand bits is a 0, otherwise

2.3. HOMEWORK NUTS AND BOLTS 7

it returns a 1. In other words, the result is 1 only if the left operand and the
right operand are 1. These operations are diagrammed in Figure 2.4.

OR AND

0]0=0 0&0 =0
0] 1=1 0&1=0
110 =1 1&0 =0
171 =1 1 &1 =1
01100000 01101010
| 00001010 & 00001111

Figure 2.4: Logical or and and Operations

There are many practical uses of these logical operations, but for our purposes,
the most important is that they allow us to do selective operations on groups
of bits (fields) within a byte or word. Logical or allows superposition of fields
within a word, and logical and allows masking off of fields, leaving only the
values in the bit positions that have been logically anded with 1 bits. Figure 2.5
gives a few examples to show how these logical operations work. The examples
use only 8 bits for simplicity, but the same principles hold for a 32 bit quantity.

unsigned char a = 6; a: 00000110
unsigned char b = 10; b: 00001010
unsigned char ¢ = 106; c: 01101010
unsigned char byte; byte: |xxxxxxxx

a) starting values in variables a, b, c, and byte

byte = a << 4; byte: 01100000
byte = (a << 4) | b; byte: 01101010
byte = c & 0x0f; byte: 00001010
byte = (c >> 4) & 0x0f; byte: |00000110

b) examples of shifts, or, and

Figure 2.5: Logical Shift, Or and And Operations in C

2.3.3 Dynamic memory allocation

You will not know how big to make the pixmap storage array until you have
read the PPM Header information to get the image width and height. Once you
have that, in C++ simply do

unsigned int *Pixmap;

8 CHAPTER 2. SIMPLE IMAGE FILE FORMATS
Pixmap = new unsigned int[width * height];
or in traditional C simply do

unsigned int *Pixmap;
Pixmap = (unsigned int *)malloc(width * height * sizeof (int));

to allocate exactly enough space to store the image when it is read in.

Note that Pixmap will just be a big 1D array, not a 2D array nicely arranged by
scanline. Thus, your program will have to figure out where each scanline starts
and ends using image width.

2.3.4 Reading from the image file

Unless you are quite experienced with C++ I/O facilities for handling files, I
recommend that you use the file input/output routines from standard C, rather
than using the stream I/O facilities of C++. To make use of them you will have
to

#include <cstdio>
Once you have opened a binary file for reading via

FILE * infile;
infile = fopen(infilename, "rb");

you can read individual bytes from the file via

int ch;
ch = fgetc(infile);

Once you have opened a binary file for writing via

FILE *outfile;
outfile = fopen(outfilename, "wb");

you can write individual bytes to the file via:

2.3. HOMEWORK NUTS AND BOLTS 9

int ch;
fputc(ch, outfile);

Note, in the code above I have used the second argument "rb" in fopen() and
"wb" in fclose(). The C programming language standard does not recognize
the b character. However, if you are programming in Visual Studio, and you
want to either read data from a binary file or write data to a binary file, you must
include the b character to indicate that the file is binary. When Visual Studio
reads or writes an ASCII formatted file, it treats certain 8-bit configurations
as control characters, which affect file reading or writing. Putting the b in the
fopen() or fclose() tells Visual Studio to accept all 8-bit configurations and
to not check for control characters. You do not have to worry about this in a
standard C implementation, using any of the other C compilers, like the GNU
system.

2.3.5 C command-line interface

The C command-line interface allows you to determine what was typed on the
command line to run your program. It works as follows — declare your main()
procedure like this:

int main (int argc, char *argv[]){

Unix parses the command line and places strings from it into the array argv.
It also sets argc to be the number of strings parsed. If the command line were:

ppmview in.ppm out.ppm

then the argv and argc data structures would be built as shown in Figure 2.6.
Thus, the file name of the input file would be given by argv[1], and the output
file by argv[2]. argv[0] contains the name of the program itself.

10

CHAPTER 2. SIMPLE IMAGE FILE FORMATS

argc 3

Of e——® | p| p|m|v |1 el w [\O
argv 1| e—4——m| i | n| . plp [m ([\O

2| e—4+—m| 0ofu |t plp |m[\O

Figure 2.6: argc and argv data structures in C

