
Simple and Space-Efficient

Minimal Perfect Hash Functions ⋆

Fabiano C. Botelho1, Rasmus Pagh2 and Nivio Ziviani1

1 Dept. of Computer Science, Federal Univ. of Minas Gerais, Belo Horizonte, Brazil
{fbotelho,nivio}@dcc.ufmg.br

2 Computational Logic and Algorithms Group, IT Univ. of Copenhagen, Denmark
pagh@itu.dk

Abstract. A perfect hash function (PHF) h : U → [0, m − 1] for a
key set S is a function that maps the keys of S to unique values. The
minimum amount of space to represent a PHF for a given set S is known
to be approximately 1.44n2/m bits, where n = |S|. In this paper we
present new algorithms for construction and evaluation of PHFs of a
given set (for m = n and m = 1.23n), with the following properties:

1. Evaluation of a PHF requires constant time.

2. The algorithms are simple to describe and implement, and run in
linear time.

3. The amount of space needed to represent the PHFs is around a
factor 2 from the information theoretical minimum.

No previously known algorithm has these properties. To our knowledge,
any algorithm in the literature with the third property either:

– Requires exponential time for construction and evaluation, or

– Uses near-optimal space only asymptotically, for extremely large n.

Thus, our main contribution is a scheme that gives low space usage for
realistic values of n. The main technical ingredient is a new way of basing
PHFs on random hypergraphs. Previously, this approach has been used
to design simple PHFs with superlinear space usage3.

⋆ This work was supported in part by GERINDO Project–grant MCT/CNPq/CT-
INFO 552.087/02-5, and CNPq Grants 30.5237/02-0 (Nivio Ziviani) and
142786/2006-3 (Fabiano C. Botelho)

3 This version of the paper is identical to the one published in the WADS 2007 proceed-
ings. Unfortunately, it does not give reference and credit to the paper The Bloomier
Filter: An Efficient Data Structure for Static Support Lookup Tables, by Chazelle et
al., Proceedings of SODA 2004. They present a way of constructing PHFs that is
equivalent to ours. It is explained as a modification of the “Bloomier Filter” data
structure at the end of Section 3.3, but they do not make explicit that a PHF is
constructed. Thus, the simple construction of a PHF described must be attributed
to Chazelle et al. The new contribution of this paper is to analyze and optimize the
constant of the space usage considering implementation aspects as well as a way of
constructing MPHFs from that PHFs.

1 Introduction

Perfect hashing is a space-efficient way of associating unique identifiers with the
elements of a static set S. We will refer to the elements of S as keys. A perfect

hash function (PHF) maps S ⊆ U to unique values in the range [0, m − 1]. We
let n = |S| and u = |U | — note that we must have m ≥ n. A minimal perfect

hash function (MPHF) is a PHF with m = n. For simplicity of exposition, we
consider in this paper the case log u ≪ n. This allows us to ignore terms in the
space usage that depend on u.

In this paper we present a simple, efficient, near space-optimal, and practical
family F of algorithms for generating PHFs and MPHFs. The algorithms in F
use r-uniform random hypergraphs given by function values of r hash functions
on the keys of S. An r-uniform hypergraph is the generalization of a standard
undirected graph where each edge connects r ≥ 2 vertices. The idea of basing
perfect hashing on random hypergraphs is not new, see e.g. [14], but we will
proceed differently to achieve a space usage of O(n) bits rather than O(n log n)
bits. (As in previous constructions based on hypergraphs we assume that the
hash functions used are uniformly random and have independent function values.
However, we argue that our scheme can also be realized using explicitly defined
hash functions using small space.) Evaluation time for all schemes considered
is constant. For r = 2 we obtain a space usage of (3 + ǫ)n bits for a MPHF,
for any constant ǫ > 0. For r = 3 we obtain a space usage of less than 2.7n
bits for a MPHF. This is within a factor of 2 from the information theoretical
lower bound of approximately 1.4427n bits. More compact, and even simpler,
representations can be achieved for larger m. For example, for m = 1.23n we
can get a space usage of 1.95n bits. This is slightly more than two times the
information theoretical lower bound of around 0.89n bits. The bounds for r = 3
assume a conjecture about the emergence of a 2-core in a random 3-partite
hypergraph, whereas the bounds for r = 2 are fully proved. Choosing r > 3 does
not give any improvement of these results.

We will argue that our method is far more practical than previous methods
with proven space complexity, both because of its simplicity, and because the
constant factor of the space complexity is more than 6 times lower than its closest
competitor, for plausible problem sizes. We verify the practicality experimentally,
using heuristic hash functions, and slightly more space than in the mentioned
theoretical bounds.

2 Related Work

In this section we review some of the most important theoretical and practi-
cal results on perfect hashing. Czech, Havas and Majewski [4] provide a more
comprehensive survey.

2.1 Theoretical Results

Fredman and Komlós [9] proved that at least n log e+log log u−O(logn) bits are
required to represent a MPHF (in the worst case over all sets of size n), provided
that u ≥ nα for some α > 2. Logarithms are in base 2. Note that the two last
terms are negligible under the assumption log u ≪ n. In general, for m > n the
space required to represent a PHF is around (1 + (m/n− 1) ln(1− n/m))n log e
bits. A simpler proof of this was later given by Radhakrishnan [18].

Mehlhorn [15] showed that the Fredman-Komlós bound is almost tight by
providing an algorithm that constructs a MPHF that can be represented with
at most n log e + log log u + O(log n) bits. However, his algorithm is far from
practice because its construction and evaluation time is exponential in n.

Schmidt and Siegel [19] proposed the first algorithm for constructing a MPHF
with constant evaluation time and description size O(n + log log u) bits. Their
algorithm, as well as all other algorithms we will consider, is for the Word RAM

model of computation [10]. In this model an element of the universe U fits into
one machine word, and arithmetic operations and memory accesses have unit
cost. From a practical point of view, the algorithm of Schmidt and Siegel is
not attractive. The scheme is complicated to implement and the constant of the
space bound is large: For a set of n keys, at least 29n bits are used, which means a
space usage similar in practice to the best schemes using O(n log n) bits. Though
it seems that [19] aims to describe its algorithmic ideas in the clearest possible
way, not trying to optimize the constant, it appears hard to improve the space
usage significantly.

More recently, Hagerup and Tholey [11] have come up with the best theo-
retical result we know of. The MPHF obtained can be evaluated in O(1) time
and stored in n log e + log log u + O(n(log log n)2/ log n + log log log u) bits. The
construction time is O(n+log log u) using O(n) words of space. Again, the terms
involving u are negligible. In spite of its theoretical importance, the Hagerup and
Tholey [11] algorithm is also not practical, as it emphasizes asymptotic space
complexity only. (It is also very complicated to implement, but we will not go
into that.) For n < 2150 the scheme is not well-defined, as it relies on splitting the
key set into buckets of size n̂ ≤ log n/(21 log log n). If we fix this by letting the
bucket size be at least 1, then buckets of size one will be used for n < 2300, which
means that the space usage will be at least (3 log log n+log 7)n bits. For a set of
a billion keys, this is more than 17 bits per element. Thus, the Hagerup-Tholey
MPHF is not space efficient in practical situations. While we believe that their
algorithm has been optimized for simplicity of exposition, rather than constant
factors, it seems difficult to significantly reduce the space usage based on their
approach.

2.2 Practical Results

We now describe some of the main “practical” results that our work is based on.
They are characterized by simplicity and (provably) low constant factors.

The first two results assume uniform random hash functions to be available
for free. Czech et al [14] proposed a family of algorithms to construct MPHFs
based on r-uniform hypergraphs (i.e., with edges of size r). The resulting func-
tions can be evaluated in O(1) time and stored in O(n log n) bits. Botelho, Ko-
hayakawa and Ziviani [3] improved the space requirement of one instance of the
family considering r = 2, but the space requirement is still O(n log n) bits. In
both cases, the MPHF can be generated in expected O(n) time. It was found
experimentally in [3] that their construction procedure works well in practice.

Pagh [16] proposed an algorithm for constructing MPHFs of the form h(x) =
(f(x) + d[g(x)]) mod n, where f and g are randomly chosen from a family of
universal hash functions, and d is a vector of “displacement values” that are used
to resolve collisions that are caused by the function f . The scheme is simple and
evaluation of the functions very fast, but the space usage is (2 + ǫ)n log n bits,
which is suboptimal. Dietzfelbinger and Hagerup [5] improved [16], reducing
from the space usage to (1 + ǫ)n log n bits, still using simple hash functions.
Woelfel [20] has shown how to decrease the space usage further, to O(n log log n)
bits asymptotically, still with a quite simple algorithm. However, there is no
empirical evidence on the practicality of this scheme.

2.3 Heuristics

Fox et al. [7, 8] presented several algorithms for constructing MPHFs that in
experiments require between 2 and 8 bits per key to be stored. However, it is
shown in [4, Section 6.7] that their algorithms have exponential running times in
expectation. Also, there is no warranty that the number of bits per key to store
the function will be fixed as n increases. The work by Lefebvre and Hoppe [13] has
the same problem. They have designed a PHF method to specifically represent
sparse spatial data and the resulting functions requires more than 3 bits per key
to be stored.

3 A Family of Minimal Perfect Hashing Methods

In this section we present our family F of algorithms for constructing near space-
optimal MPHFs. The basic idea is as follows. The first step, referred to as the
Mapping Step, maps the key set S to a set of n = |S| edges forming an acyclic
r-partite hypergraph Gr = (V, E), where |E(Gr)| = n, |V (Gr)| = m and r ≥ 2.
Note that each key in S is associated with an edge in E(Gr). Also in the Mapping
Step, we order the edges of Gr into a list L such that each edge ei contains a
vertex that is not incident to any edge that comes after ei in L. The next step,
referred to as the Assigning Step, associates uniquely each edge with one of its
r vertices. Here, “uniquely” means that no two edges may be assigned to the
same vertex. Thus, the Assigning Step finds a PHF for S with range V (Gr).
If we desire a PHF with a smaller range (n < |V (Gr)|), we subsequently map
the assigned vertices of V (Gr) to [0, n − 1]. This mapping is produced by the

Ranking Step, which creates a data structure that allows us to compute the rank

of any assigned vertex of V (Gr) in constant time.
For the analysis, we assume that we have at our disposal r hash functions

hi : U → [im
r

, (i + 1)m
r

− 1], 0 ≤ i < r, which are independent and uni-
formly distributed function values. (This is the “uniform hashing” assumption,
see Section 6 for justification.) The r functions and the set S define, in a nat-
ural way, a random r−partite hypergraph. We define Gr = Gr(h0, h1 . . . , hr−1)
as the hypergraph with vertex set V (Gr) = [0, m − 1] and edge set E(Gr) =
{{h0(x), h1(x), . . . , hr−1(x)} | x ∈ S}. For the Mapping Step to work, we need Gr

to be simple and acyclic, i.e., Gr should not have multiple edges and cycles. This
is handled by choosing r new hash functions in the event that the Mapping Step
fails. The PHF p : S → V (Gr) produced by the Assigning Step has the form

p(x) = hi(x), where i = (g(h0(x)) + g(h1(x)) + · · · + g(hr−1(x))) mod r . (1)

The function g : V (Gr) → {0, 1, . . . , r} is a labeling of the vertices of V (Gr). We
will show how to choose the labeling such that p is 1-1 on S, given that Gr is
acyclic. In addition, g(y) 6= r if and only if y is an assigned vertex, i.e., exactly
when y ∈ p(S). This means that we get a MPHF for S as follows:

h(x) = rank(p(x)) (2)

where rank : V (Gr) → [0, n − 1] is a function defined as:

rank(u) = |{v ∈ V (Gr) | v < u ∧ g(v) 6= r}|. (3)

The Ranking Step produces a data structure that allows us to compute the rank
function in constant time.

Figure 1 presents a pseudo code for our family of minimal perfect hashing
algorithms. If we omit the third step we will build PHFs with m = |V (Gr)|
instead. We now describe each step in detail.

procedure Generate (S , r , g , rankTable)
Mapping (S , Gr , L) ;
Assigning (Gr , L , g) ;
Ranking (g , rankTable) ;

Fig. 1. Main steps of the family of algorithms

3.1 Mapping Step

The Mapping Step takes the key set S as input, where |S| = n, and creates an
acyclic random hypergraph Gr and a list of edges L. We say that a hypergraph

is acyclic if it is the empty graph, or if we can remove an edge with a node of
degree 1 such that (inductively) the resulting graph is acyclic. This means that
we can order the edges of Gr into a list L = e1, . . . , en such that any edge ei

contains a vertex that is not incident to any edge ej, for j > i. The list L is
obtained during a test which determines whether Gr is acyclic, which runs in
time O(n) (see e.g. [14]).

Let Pra denote the probability that Gr is acyclic. We want to ensure that
this is the case with constant probability, i.e., Pra = Ω(1). Define c by m = cn.
For r = 2, we can use the techniques presented in [12] to show that Pra =
√

1 − (2/c)2. For example, when c = 2.09 we have Pra = 0.29. This is very close
to 0.294 that is the value we got experimentally by generating 1, 000 random
bipartite 2-graphs with n = 107 keys (edges). For r > 2, it seems to be technically
difficult to obtain a rigorous bound on Pra. However, the heuristic argument
presented in [4, Theorem 6.5] also holds for our r−partite random hypergraphs.
Their argument suggests that if c = c(r) is given by

c(r) =







2 + ε, ε > 0 for r = 2

r
(

minx>0

{

x
(1−e−x)r−1

})−1

for r > 2,
(4)

then the acyclic random r-graphs dominate the space of random r-graphs. The
value c(3) ≈ 1.23 is a minimum value for Eq. (4). This implies that the acyclic
r-partite hypergraphs with the smallest number of vertices happen when r = 3.
In this case, we have got experimentally Pra ≈ 1 by generating 1, 000 3-partite
random hypergraphs with n = 107 keys (hyperedges).

It is interesting to remark that the problems of generating acyclic r-partite
hypergraphs for r = 2 and for r > 2 have different natures. For r = 2, the
probability Pra varies continuously with the constant c. But for r > 2, there is a
phase transition. That is, there is a value c(r) such that if c ≤ c(r) then Pra tends
to 0 when n tends to ∞ and if c > c(r) then Pra tends to 1. This phenomenon
has also been reported by Majewski et al [14] for general hypergraphs.

3.2 Assigning Step

The Assigning Step constructs the labeling g : V (Gr) → {0, 1, . . . , r} of the
vertices of Gr. To assign values to the vertices of Gr we traverse the edges in
the reverse order en, . . . , e1 to ensure that each edge has at least one vertex that
is traversed for the first time. The assignment is created as follows. Let Visited

be a boolean vector of size m that indicates whether a vertex has been visited.
We first initialize g[i] = r (i.e., each vertex is unassigned) and Visited [i] = false ,
0 ≤ i ≤ m− 1. Then, for each edge e ∈ L from tail to head, we look for the first
vertex u belonging to e not yet visited. Let j, 0 ≤ j ≤ r − 1 be the index of u in
e. Then, we set g[u] = (j −

∑

v∈e∧Visited [v]=true g[v]) mod r. Whenever we pass

through a vertex u from e, if it has not yet been visited, we set Visited [u] = true.
As each edge is handled once, the Assigning Step also runs in linear time.

3.3 Ranking Step

The Ranking Step obtains MPHFs from the PHFs presented in Section 3.2. It
receives the labeling g as input and produces the rankTable as output. It is
possible to build a data structure that allows the computation in constant time
of function rank presented in Eq. (3) by using o(m) additional bits of space. This
is a well-studied primitive in succinct data structures (see e.g. [17]).

Implementation. We now describe a practical variant that uses ǫ m additional
bits of space, where ǫ can be chosen as any positive number, to compute the data
structure rankTable in linear time. Conceptually, the scheme is very simple: store
explicitly the rank of every kth index in a rankTable, where k = ⌊log(m)/ǫ⌋. In
the implementation we let the parameter k to be set by the users so that they
can trade off space for evaluation time and vice-versa. In the experiments we
set k to 256 in order to spend less space to store the resulting MPHFs. This
means that we store in the rankTable the number of assigned vertices before
every 256th entry in the labeling g.

Evaluation. To compute rank(u), where u is given by Eq. (1), we look up in
the rankTable the rank of the largest precomputed index v ≤ u, and count the
number of assigned vertices from position v to u − 1. To do this in time O(1/ǫ)
we use a lookup table that allows us to count the number of assigned vertices in
Ω(log m) bits in constant time. Such a lookup table takes mΩ(1) bits of space.

In the experiments, we have used a lookup table that allows us to count the
number of assigned vertices in 8 bits in constant time. Therefore, to compute
the number of assigned vertices in 256 bits we need 32 lookups. Such a lookup
table fits entirely in the cache because it takes 28 bytes of space.

We use the implementation just described because the smallest hypergraphs
are obtained when r = 3 (see Section 3.1). Therefore, the most compact and
efficient functions are generated when r = 2 and r = 3. That is why we have
chosen these two instances of the family to be discussed in the following sections.

4 The 2-Uniform Hypergraph Instance

The use of 2-graphs allows us to generate the PHFs of Eq.(1) that give values
in the range [0, m − 1], where m = (2 + ε)n for ε > 0 (see Section 3.1). The
significant values in the labeling g for a PHF are {0, 1}, because we do not need
to represent information to calculate the ranking (i.e., r = 2). Then, we can
use just one bit to represent the value assigned to each vertex. Therefore, the
resulting PHF requires m bits to be stored. For ε = 0.09, the resulting PHFs are
stored in approximately 2.09n bits.

To generate the MPHFs of Eq. (2) we need to include the ranking informa-
tion. Thus, we must use the value r = 2 to represent unassigned vertices and now
two bits are required to encode each value assigned to the vertices. Then, the
resulting MPHFs require (2 + ǫ)m bits to be stored (remember that the ranking

information requires ǫm bits), which corresponds to (2 + ǫ)(2 + ε)n bits for any
ǫ > 0 and ε > 0. For ǫ = 0.125 and ε = 0.09 the resulting functions are stored
in approximately 4.44n bits.

4.1 Improving the space

The range of significant values assigned to the vertices is clearly [0,2]. Hence
we need log(3) bits to encode the value assigned to each vertex. Theoretically
we use arithmetic coding as block of values. Therefore, we can compress the
resulting MPHF to use (log(3) + ǫ)(2 + ε)n bits of storage space by using a
simple packing technique. In practice, we can pack the values assigned to every
group of 5 vertices into one byte because each assigned value comes from a range
of size 3 and 35 = 243 < 256. Thus, if ǫ = 0.125 and ε = 0.09, then the resulting
functions are stored in approximately 3.6n bits.

We now sketch another way of improving the space to just over 3 bits per
key, adding a little complication to the scheme. Use m = (2 + ǫ/2)n for ǫ > 0.
Now store separately the set of assigned vertices, such that rank operations are
efficiently supported using (ǫ/2)n bits of extra space. Finally, store for each
assigned vertex v the bit g(v) (must be 0 or 1). The correct bit can be found
using rank on the set of assigned vertices. Thus, we need n bits to store g(v).
Therefore, the total space is (3 + ǫ)n.

5 The 3-Uniform Hypergraph Instance

The use of 3−graphs allows us to generate more compact PHFs and MPHFs at
the expense of one more hash function h2. An acyclic random 3−graph is gen-
erated with probability Ω(1) for m ≥ c(3)n, where c(3) ≈ 1.23 is the minimum
value for c(r) (see Section 3.1). Therefore, we will be able to generate the PHFs
of Eq. (1) so that they will produce values in the range [0, (1.23 + ε)n − 1] for
any ε ≥ 0. The values assigned to the vertices are drawn from {0, 1, 2, 3} and,
consequently, each value requires 2 bits to be represented. Thus, the resulting
PHFs require 2(1.23+ ε)n bits to be stored, which corresponds to 2.46n bits for
ε = 0.

We can generate the MPHFs of Eq. (2) from the PHFs that take into account
the special value r = 3. The resulting MPHFs require (2+ǫ)(1.23+ε)n bits to be
stored for any ǫ > 0 and ε ≥ 0, once the ranking information must be included.
If ǫ = 0.125 and ε = 0, then the resulting functions are stored in approximately
2.62n bits.

5.1 Improving the space

For PHFs that map to the range [0, (1.23+ε)n−1] we can get still more compact
functions. This comes from the fact that the only significant values assigned
to the vertices that are used to compute Eq. (1) are {0, 1, 2}. Then, we can
apply the packing technique presented in Section 4.1 to get PHFs that require

log(3)(1.23 + ε)n bits to be stored, which is approximately 1.95n bits for ε = 0.
For this we must replace the special value r = 3 to 0.

6 The Full Randomness Assumption

The full randomness assumption is not feasible because each hash function hi :
U → [im

r
, (i + 1)m

r
− 1] for 0 ≤ i < r would require at least n log m

r
bits to be

stored, exceeding the space for the PHFs. From a theoretical perspective, the
full randomness assumption is not too harmful, as we can use the “split and
share” approach of Dietzfelbinger and Weidling [6]. The additional space usage
is then a lower order term of O(n1−Ω(1)). Specifically, the algorithm would split
S into O(n1−δ) buckets of size nδ, where δ < 1/3, say, and create a perfect
hash function for each bucket using a pool of O(r) simple hash functions of size
O(n2δ), where each acts like truly random functions on each bucket, with high
probability. From this pool, we can find r suitable functions for each bucket, with
high probability. Putting everything together to form a perfect hash function for
S can be done using an offset table of size O(n1−δ).

Implementation. In practice, limited randomness is often as good as total
randomness [19]. For our experiments we choose hi from a family H of universal
hash functions proposed by Alon, Dietzfelbinger, Miltersen and Petrank [1], and
we verify experimentally that the schemes behave well (see Section 7). We use a
function h′ from H so that the functions hi are computed in parallel. For that,
we impose some upper bound L on the lengths of the keys in S. The function
h′ has the following form: h′(x) = Ax, where x ∈ S ⊆ {0, 1}L and A is a γ × L
matrix in which the elements are randomly chosen from {0, 1}. The output is a
bit string of an a priori defined size γ. Each hash function hi is computed by
hi(x) = h′(x)[a, b] mod (m

r
) + i(m

r
), where a = βi, b = a + β − 1 and β is the

number of bits used from h′ for computing each hi. In [2] it is shown a tabulation
idea that can be used to efficiently implement h′ and, consequently, the functions
hi. The storage space required for the hash functions hi corresponds to the one
required for h′, which is γ × L bits.

7 Experimental Results

In this section we evaluate the performance of our algorithms. We compare them
with the main practical minimal perfect hashing algorithms we found in the
literature. They are: Botelho, Kohayakawa and Ziviani [3] (referred to as BKZ),
Fox, Chen and Heath [7] (referred to as FCH), Majewski, Wormald, Havas and
Czech [14] (referred to as MWHC), and Pagh [16] (referred to as PAGH). For the
MWHC algorithm we used the version based on 3-graphs. We did not consider
the one that uses 2-graphs because it is shown in [3] that the BKZ algorithm
outperforms it. We used the linear hash functions presented in Section 6 for all
the algorithms.

The algorithms were implemented in the C language and are available at
http://cmph.sf.net under the GNU Lesser General Public License (LGPL).
The experiments were carried out on a computer running the Linux operating
system, version 2.6, with a 3.2 gigahertz Intel Xeon Processor with a 2 megabytes
L2 cache and 1 gigabyte of main memory. Each experiment was run for 100 trials.
For the experiments we used two collections: (i) a set of randomly generated
4 bytes long IP addresses, and (ii) a set of 64 bytes long (on average) URLs
collected from the Web.

To compare the algorithms we used the following metrics: (i) The amount
of time to generate MPHFs, referred to as Generation Time. (ii) The space
requirement for the description of the resulting MPHFs to be used at retrieval
time, referred to as Storage Space. (iii) The amount of time required by a MPHF
for each retrieval, referred to as Evaluation Time. For all the experiments we used
n = 3, 541, 615 keys for the two collections. The reason to choose a small value
for n is because the FCH algorithm has exponential time on n for the generation
phase, and the times explode even for number of keys a little over.

We now compare our algorithms for constructing MPHFs with the other
algorithms considering generation time and storage space. Table 1 shows that
our algorithm for r = 3 and the MWHC algorithm are faster than the others to
generate MPHFs. The storage space requirements for our algorithms with r = 2,
r = 3 and the FCH algorithm are 3.6, 2.62 and 3.66 bits per key, respectively. For
the BKZ, MWHC and PAGH algorithms they are log n, 1.23 logn and 2.03 logn
bits per key, respectively.

Algorithms Generation Time (sec) Storage Space

URLs IPs Bits/Key Size (MB)

Our
r = 2 19.49 ± 3.750 18.37 ± 4.416 3.60 1.52

r = 3 9.80 ± 0.007 8.74 ± 0.005 2.62 1.11

BKZ 16.85 ± 1.85 15.50 ± 1.19 21.76 9.19

FCH 5901.9 ± 1489.6 4981.7 ± 2825.4 3.66 1.55

MWHC 10.63 ± 0.09 9.36 ± 0.02 26.76 11.30

PAGH 52.55 ± 2.66 47.58 ± 2.14 44.16 18.65

Table 1. Comparison of the algorithms for constructing MPHFs considering generation
time and storage space, and using n = 3, 541, 615 for the two collections

Now we compare the algorithms considering evaluation time. Table 2 shows
the evaluation time for a random permutation of the n keys. Although the num-
ber of memory probes at retrieval time of the MPHF generated by the PAGH
algorithm is optimal [16] (it performs only 1 memory probe), it is important to
note in this experiment that the evaluation time is smaller for the FCH and our
algorithms because the generated functions fit entirely in the L2 cache of the
machine (see the storage space size for our algorithms and the FCH algorithm in

Table 1). Therefore, the more compact a MPHF is, the more efficient it is if its
description fits in the cache. For example, for sets of size up to 6.5 million keys
of any type the resulting functions generated by our algorithms will entirely fit
in a 2 megabyte L2 cache. In a conversely situation where the functions do not
fit in the cache, the MPHFs generated by the PAGH algorithm are the most
efficient (because of lack of space we will not show this experiment).

Algorithms Our BKZ FCH MWHC PAGH
r = 2 r = 3

Evaluation IPs 1.35 1.36 1.45 1.01 1.46 1.43
Time (sec) URLs 2.63 2.73 2.81 2.14 2.85 2.78

Table 2. Comparison of the algorithms considering evaluation time and using the
collections IPs and URLs with n = 3, 541, 615

Now, we compare the PHFs and MPHFs generated by our family of algo-
rithms considering generation time, storage space and evaluation time. Table 3
shows that the generation times for PHFs and MPHFs are almost the same,
being the algorithms for r = 3 more than twice faster because the probability
to obtain an acyclic 3-graph for c(3) = 1.23 tends to one while the probability
for a 2-graph where c(2) = 2.09 tends to 0.29 (see Section 3.1). For PHFs with
m = 1.23n instead of MPHFs with m = n, then the space storage requirement
drops from 2.62 to 1.95 bits per key. The PHFs with m = 2.09n and m = 1.23n
are the fastest ones at evaluation time because no ranking or packing information
needs to be computed.

r Packed m
Generation Time (sec) Eval. Time (sec) Storage Space

IPs URLs IPs URLs Bits/Key Size (MB)

2 no 2.09n 18.32 ± 3.352 19.41 ± 3.736 0.68 1.83 2.09 0.88
2 yes n 18.37 ± 4.416 19.49 ± 3.750 1.35 2.63 3.60 1.52
3 no 1.23n 8.72 ± 0.009 9.73 ± 0.009 0.96 2.16 2.46 1.04
3 yes 1.23n 8.75 ± 0.007 9.95 ± 0.009 0.94 2.14 1.95 0.82
3 no n 8.74 ± 0.005 9.80 ± 0.007 1.36 2.73 2.62 1.11

Table 3. Comparison of the PHFs and MPHFs generated by our algorithms, consid-
ering generation time, evaluation time and storage space metrics using n = 3, 541, 615
for the two collections. For packed schemes see Sections 4.1 and 5.1

8 Conclusions

We have presented an efficient family of algorithms to generate near space-
optimal PHPs and MPHFs. The algorithms are simpler and has much lower
constant factors than existing theoretical results for n < 2300. In addition, it
outperforms the main practical general purpose algorithms found in the litera-
ture considering generation time and storage space as metrics.

Acknowledgment. We thank Djamal Belazzougui for suggesting arithmetic
coding to generate more compact functions and Yoshiharu Kohayakawa for help-
ing us with acyclic r-partite random r-graphs.

References

1. N. Alon, M. Dietzfelbinger, P.B. Miltersen, E. Petrank, and G. Tardos. Linear
hash functions. Journal of the ACM, 46(5):667–683, 1999.

2. N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multipli-
cation and construction of perfect hash functions. Algorithmica, 16(4-5):434–449,
1996.

3. F.C. Botelho, Y. Kohayakawa, and N. Ziviani. A practical minimal perfect hashing
method. In Proc. of the 4th International Workshop on Efficient and Experimental
Algorithms (WEA’05), pages 488–500. Springer LNCS vol. 3503, 2005.

4. Z.J. Czech, G. Havas, and B.S. Majewski. Fundamental study perfect hashing.
Theoretical Computer Science, 182:1–143, 1997.

5. M. Dietzfelbinger and T. Hagerup. Simple minimal perfect hashing in less space.
In Proc. of the 9th European Symposium on Algorithms (ESA’01), pages 109–120.
Springer LNCS vol. 2161, 2001.

6. M. Dietzfelbinger and C. Weidling. Balanced allocation and dictionaries with
tightly packed constant size bins. In Proc. of 32nd International Colloquium on
Automata, Languages and Programming (ICALP), pages 166–178, 2005.

7. E.A. Fox, Q.F. Chen, and L.S. Heath. A faster algorithm for constructing minimal
perfect hash functions. In Proc. of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 266–
273, 1992.

8. E.A. Fox, L. S. Heath, Q. Chen, and A.M. Daoud. Practical minimal perfect hash
functions for large databases. Communications of the ACM, 35(1):105–121, 1992.

9. M. L. Fredman and J. Komlós. On the size of separating systems and families
of perfect hashing functions. SIAM Journal on Algebraic and Discrete Methods,
5:61–68, 1984.

10. M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, July 1984.

11. T. Hagerup and T. Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Proc. of the 18th Symposium on Theoretical Aspects of Computer Science
(STACS’01), pages 317–326. Springer LNCS vol. 2010, 2001.

12. S. Janson. Poisson convergence and poisson processes with applications to random
graphs. Stochastic Processes and their Applications, 26:1–30, 1987.

13. S. Lefebvre and H. Hoppe. Perfect spatial hashing. ACM Transactions on Graphics,
25(3):579–588, 2006.

14. B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of perfect
hashing methods. The Computer Journal, 39(6):547–554, 1996.

15. K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. Springer-
Verlag, 1984.

16. R. Pagh. Hash and displace: Efficient evaluation of minimal perfect hash functions.
In Workshop on Algorithms and Data Structures (WADS’99), pages 49–54, 1999.

17. R. Pagh. Low redundancy in static dictionaries with constant query time. SIAM
Journal on Computing, 31(2):353–363, 2001.

18. J. Radhakrishnan. Improved bounds for covering complete uniform hypergraphs.
Information Processing Letters, 41:203–207, 1992.

19. J. P. Schmidt and A. Siegel. The spatial complexity of oblivious k-probe hash
functions. SIAM Journal on Computing, 19(5):775–786, October 1990.

20. Philipp Woelfel. Maintaining external memory efficient hash tables. In Proc. of the
10th International Workshop on Randomization and Computation (RANDOM’06),
pages 508–519. Springer LNCS vol. 4110, 2006.

