SMARTINDEX: Learning to Index Caches to Improve
Performance

Kevin Weston, Farabi Mahmud, Vahid Janfaza, Abdullah Muzahid, Member, IEEE

Abstract—Modern computers rely heavily on caches to achieve higher performance. Unfortunately, a cache indexing scheme can often
cause an uneven distribution of addresses across cache sets resulting in many evictions of useful cache blocks. To address this issue,
we propose SMARTINDEX, a self-optimized indexing scheme that leverages machine learning to actively learn the memory access
pattern and dynamically adjust indexes to evenly distribute the cache lines across all sets in the cache, thereby reducing cache misses.
Experimental results on a set of 26 memory-intensive applications show that for non-uniform applications, SMARTINDEX can reduce the
misses per kilo instructions (MPKI) of a direct mapped cache by up to 39%, translating into an IPC speedup of 7.23% compared to the
conventional power-of-two indexing scheme. Our experiments also show that SMARTINDEX can work with any cache associativity.

Index Terms—Cache, Machine learning, Indexing, Conflict miss.

1 INTRODUCTION

1.1 Motivation and Challenges

Cache memory is designed to hold frequently used mem-
ory references for fast accessing, bridging the gap between
processor speed and main memory latency. A well-designed
cache should have lower miss rate and latency. Intuitively,
conflict misses are caused by the poor indexing scheme in which
addresses with incompatible access patterns are mapped to the same
set. The conventional power-of-two modulo function, while being
easy to implement, is susceptible to cache conflicts when the
memory addresses get unevenly distributed across different
sets. Even more, sophisticated indexing scheme in modern
caches often leads to many conflict misses in memory intensive
applications [8], [10], [18]. An ideal indexing function for the
cache should evenly distribute the memory references across
all cache sets. We aim at finding such a function using Machine
Learning (ML). Although there are existing works that use ML
for improving cache performance [4], [6], [7], [12], [14], [15],
[17], this is the first work to do it for cache indexing. It entails
several challenges:

- Deterministic Index: A naive design approach would be to
replace the index function with an ML model which takes a
memory address and few other features (such as instruction,
execution context, etc.) and produces the set index bits. How-
ever, such a design would make indexing non-deterministic
i.e., the same address may result in a different set index when
the features change. Such a non-deterministic index will make
cache implementation complex and error-prone.

- Simplicity vs. Flexibility: Index calculation is in the critical
path of cache accesses. Therefore, the indexing function should
be simple to calculate. At the same time, it should be flexible
enough for the ML model to tune.

- Lack of Training Labels: It is difficult to determine the train-
ing labels for input addresses, since there is no effective way
to determine the optimal index for each individual address.
Additionally, since the behavior of different programs can vary
wildly from one another, an identical memory address of two
different programs may have two different optimal indices.
Therefore, we need a feedback mechanism for the ML model.

1.2 Our Solution

We propose SMARTINDEX, the first cache indexing scheme that
uses an ML model to learn and infer optimal cache mapping
of memory addresses. It models cache indexing as a function

f(addr,t) = index, where f(.) is a simple function consisting
of boolean operations on the inputs, index is the set index for
an address addr and t is a parameter tuned (through learning
and inference) by an ML model. This formulation addresses
the first two challenges in Section 1.1. Due to this formulation,
the goal of the ML model boils down to optimizing ¢ to reduce
conflict misses. Finally, to address the lack of training labels (i.e.,
the third challenge), we choose a Deep Reinforcement Learning
(DRL) model as our choice of ML for SMARTINDEX. DRL does
not require any labeled data. Instead, it optimizes ¢ based on the
feedback (e.g., whether the conflict misses are reducing). Com-
bining these components, SMARTINDEX works in the following
way. During an execution, SMARTINDEX collects addresses’
frequency and cache-related statistics at regular intervals. The
frequency numbers provide insight into the memory access
pattern of the program during the interval. The cache statistics,
including usage, number of replacements, etc. represent the
cache state at that time. From these two pieces of information,
the DRL model determines the optimal ¢ for the next interval.
During the next interval, indices are calculated using f(.) and
the inferred ¢. DRL model receives positive or negative feed-
back on its choice of ¢ based on whether the cache misses are
reduced in that interval. Thus, DRL eventually predicts optimal
address mapping for every interval.
In summary, we make the following contributions:

o We propose SMARTINDEYX, the first ML-based cache index-
ing scheme that can work with any cache of any general-
purpose computing systems. SMARTINDEX can learn and
predict the optimal cache mapping during the execution of
a program.

o We formulate cache indexing as an optimization problem
for a tunable parameter ¢. We demonstrate how a DRL
model can optimize ¢ to provide optimal cache index bits.

o We show an efficient hardware for SMARTINDEX.

o We evaluate the efficacy of SMARTINDEX with 26 memory-
intensive applications from the SPEC 2006 and SPEC 2017
benchmark suites. For non-uniform applications, our re-
sults indicate that SMARTINDEX can reduce the MPKI of
a direct mapped cache by up to 39%, translating into an
IPC improvement of 7.23% compared to the conventional
power-of-two modulo index. Compared to prior schemes
such as prime modulo [8] and CEASER [10], it improves
the IPC by 3.1% and 5.0%, respectively. The results hold
for higher associative caches as well.



2 BACKGROUND

Prior work in this area can be divided into 2 categories [11].
Techniques in the first group focus on optimizing the hash
function to achieve a more even access distribution across
cache sets. Our work falls into this category. Techniques in the
second group try to increase the number of possible locations
to allocate a cache block by using extra hardware or extending
the concept of cache associativity.

Optimizing the Hashing Function: Research in this category
proposes more advanced hashing functions to replace the
conventional power-of-two modulo indexing. These complex
hashing functions have been used at the last level cache in some
commercial processors such as the Intel i7-2600, Intel Xeon E5-
2640 v2, UltraSPARC T2 [5], [8]. In some cases, these complex
hashing functions may require more area and power [5]. Prime
modulo indexing scheme uses the prime number nearest to
the number of cache sets as the modulus [8]. For example,
if the number of sets is 2048, the index of an address a is
computed as a mod 2039, since 2039 is the prime number that
is closest to 2048. This hash function has been shown to be
better than the conventional power-of-two modulo hashing [8].
CEASER [10] randomly changes the cache mapping during
program’s execution to prevent conflict-based cache attacks.
Physical addresses going to the shared cache are encrypted
before being used to index into the cache. The encrypted key
is changed periodically to avoid the eviction patterns to be
learned by adversaries.

Increasing the Number of Possible Locations: Skewed-
associative cache uses a different hash function for each cache
way to achieve a higher utilization rate and lower miss rate [2],
[13]. Zcache extends skewed cache to supports conventional re-
placement policies [11]. On a cache hit, zcache operates similar
to skewed cache. On a miss, zcache first walks the tag array to
identify a set of eviction candidates, then uses the replacement
policy to select the optimal one.

3 MAIN IDEA: SMARTINDEX
3.1 Overview

Cache indices are calculated using an index function
fladdr,t) = Isqar ® Mi, where Iyqq- is the index calculated
for the address addr using a modulo operation (i.e., Ioaar =
addr % Number of cache sets) and M, is a bit mask chosen
using a tunable parameter t. SMARTINDEX augments each cache
set with a counter called Access Counter (AC). This counter
keeps track of the number of set accesses during an interval
(e.g., every one million cache accesses). AC of a cache set is
incremented during each access to that set and cleared after
an interval elapses. At the end of an interval, ACs of all cache
sets are aggregated and supplied to a DRL model as an input.
This is shown in Figure 1. The model predicts some value for ¢.
The new value of ¢ is used to calculate cache indices starting in
the next interval. SMARTINDEX also keeps track of cache misses
during an interval. If the a particular choice of ¢ results in a
lesser number of cache misses at the end of an interval (where
the particular ¢ is used), the DRL model receives positive
feedback. Otherwise, the model receives negative feedback.
Based on the feedback, the DRL model is updated so that it can
predict a better choice of ¢. As this process continues, the DRL
model keeps learning and eventually, will predict the optimal ¢
for each interval, thereby reducing the number of cache misses.

3.2 Tunable Bitmask Formulation

SMARTINDEX predicts a tunable parameter ¢ which in turn
chooses a bitmask M;. By changing t, SMARTINDEX can effec-

Access

Counters
Cache l

Seto [ [ [ T}
t
m—(tunable)

| """ J DRUModel
Set,.
Retrain|

L
Index e
Address Function ‘\'\

Way, .. Wayy,

Collect cache misses at ~ keward R

a fixed interval

Fig. 1: Overview of how SMARTINDEX learns cache indexing.

tively change the index function. M; comprises of bits taken
from the address addr. Let us consider a 2MB direct mapped
cache with 64-bit address space and 6-bit offset. Since the total
number of sets is 2'°, we need 15-bit index. That means the
bitmask size is also 15. Since the offset is 6 bits long, the
total number of bits that are available to choose from for the
bitmask is 43, from bit 21st to 63rd. Thus, the total number of
possible bitmasks is (7). Such a vast search space may slow
down the training time significantly and negatively affect the
scalability of SMARTINDEX. Thus, we make two modifications
to limit the search space. First, we only consider up to the 47
least significant bits, with the intuition that higher-order bits
rarely change, and hence, will not be useful in the address
redistribution. As a result, the number of available bits to select
is limited to 26, from bit 21st to bit 46th. Secondly, instead of
selecting each bit to form the bitmask, SMARTINDEX selects a
sequence of consecutive bits, whose length is equal to the index
bit size. For example, if the index is 15 bits long, then the first
sequence is from bit 21st to 35th, the second sequence is from
bit 22nd to 36th, and so on. The last possible sequence is from
bit 32nd to 46th. This results in 12 sequences in total. We then
reverse these sequences to get another set of 12 sequences and
add an all-zero sequence, which means no XOR-hashing. This is
the default configuration used at the beginning of the execution.
These modifications reduce the possible combinations to 25.
Thus, t can be any integer value from 0 to 24. Each choice of ¢
represents a particular bit sequence. This sequence is extracted
from the address addr to form the bitmask M;.

Example: Let us consider an address addr = OXAODF21F1.
For our example 2MB direct mapped cache with 6-bit offset,
Ioqar = 0x7C87. Suppose, SMARTINDEX predicts ¢ = 1, which
chooses the sequence of bits from 22nd to 36th from addr to
form the bitmask. As a result, M; = 0x60A0. Hence, the set
index f(addr = 0zAODF21F1,¢ = 1) = 0x1C27.

3.3 Learning Formulation

To predict the optimal value of ¢, SMARTINDEX uses a DRL
model, more specifically the Deep Q Learning (DQN) [3]. We
formulate the cache indexing as a Markov Decision Process
where the next state solely depends on the present state. Let
us assume that the cache is in a specific state. The DQN model
predicts the best possible ¢, moving the cache to the next state.
The reward is then computed based on the miss rate of the new
indices. Using this reward, the Q-value of the action is updated
and the neural network model of DON is retrained. We define
the state, action, and reward as follows.

The State is defined as the access distribution of the cache at
a given time. This cache state is represented by a vector, whose
each element shows the standardized deviation of one set ac-
cess against the overall mean cache access. The state vector size
is equal to the number of cache sets. The Reward is computed as
the negation of the cache miss rate of that interval. For example,
if SMARTINDEX applies ¢t = ¢; for interval 7 and observes a miss
rate of 0.72%, then the reward r; is -0.72. Intuitively, the higher



the miss rate, the lower the reward. The Action is defined based
on the values possible for t. For example, in the case of a 2MB
cache with 6-bit offset (Section 3.2), t is an integer from 0 to 24.
Hence, there will be 25 actions - one for each value of ¢. Finally,
to speed up the learning speed, SMARTINDEX is integrated
with two improvements: experience replay and iterative target
update [9].

interval i+1 interval i+2

interval i interval i+3

,_{ Adjust index function }».{ ‘

| i,| Getmodel prediction, | :
retrain model

Get model prediction,
retrain model

statistics

Record cache access }»

Record cache access
statistics

Record cache access
statistics

Fig. 2: Timeline of prediction and training for SMARTINDEX.

Figure 2 shows the general timeline of SMARTINDEX. At the
beginning, SMARTINDEX starts with the traditional power-of-
two modulo indexing for the cache. After NV accesses to the
cache (e.g., N could be 1 Million), SMARTINDEX collects the
per-set ACs and use them as input to the model. These counters
inform the model of the access distribution of the first interval.
The model processes the input and predicts ¢ for the third
interval. When the system finishes the third interval, it evaluates
the effectiveness of the prediction and computes the reward
accordingly. This reward is used to retrain the model. Note that
the first predicted ¢ is applied on the third interval. In return,
the reward of the third interval is used to retrain for the first
prediction. This is because the model prediction is computed in
the background while the system is passing the second interval.
This strategy helps SMARTINDEX incur near-zero latency for
the model. In general, for interval i, SMARTINDEX applies the ¢
predicted at interval ¢ —2. At the end of interval ¢, SMARTINDEX
computes the reward and collects the access distribution of i.
The access distribution is used to predict ¢ for interval 7 + 2.
Meanwhile, the reward is used to retrain for the prediction done
at interval 7 — 2. As a result, the model gradually learns from
experience the optimal indices for each execution interval.

When a new mapping due to a new ¢ is applied to the cache
at the beginning of an interval, existing valid cache blocks need
to be moved to their new locations to keep them consistent with
the new mapping. This transition must be handled carefully in
order to avoid excessive data movement. We use the gradual
remapping scheme proposed in CEASER [10].

4 |IMPLEMENTATION
4.1 The DRL Module

A DRL module contains a neural network which can be imple-
mented as a Multi-Level Perceptron (MLP). Tarsa et al. [16] have
shown that an existing microcontroller in modern processors
can handle all computations of an MLP in a reasonable time.
Therefore, the cache controller would communicate with this
microcontroller for inference and training. The microcontroller
will handle three types of operations: storing samples, training,
and inference. At the end of each interval, the cache controller
issues an inference command to get the new mapping. In this
case, the controller reads the ACs and sends the current state
(input) to the microcontroller. The model’s predicted ¢ is then
sent back and written to a register in the cache controller. When
the reward is calculated at the end of an interval, the cache
controller issues a store samples request and sends the reward
and next state to the module. The microcontroller forms a new
sample from the current state, next state, prediction and reward

3

and saves it to the replay buffer. DRL model picks samples from
this buffer randomly and trains itself.

addr | Tag | Modulo Index | Offset |

0 (default)[ adar(46.32] audr{45..311+ + aadqzzv.ss% adddm"ﬁllr
\ ' I

DRL
Module

o] ¢

©

Fig. 3: Hardware implementation of SMARTINDEX.

4.2 Cache Index Resolution Logic

Since the index computation is different than the original, we
need a redesigned index resolution logic. The DRL prediction
is an integer t which is decoded to some bit sequence and
stored in a register. These bits are used as selection bits for
the MUXs (Figure 3). The MUXs select appropriate bits and
form the bitmask M;. M; is XORed with the modulo index
to calculate the actual set index. We use the Synopsys Design
Compiler NXT to analyze the hardware cost of SMARTINDEX
and compare it with the prime modulo indexing scheme, as
shown in Table 1. We used 28nm technology. The prime modulo
cannot run any faster than 1.20 GHz. Even at this frequency,
it takes 2 cycles to compute the index. This is equivalent to
a 5-cycle extra latency in LLC access time for our 3.0 GHz
simulated hardware. Compared to prime modulo, SMARTIN-
DEX is 5X faster in latency while consuming 40% less power
and occupying 18% less area. Since the model training and
inference are off the critical path, as discussed in Section 3.3,
this index computation latency is the only perceivable latency
for SMARTINDEX and will be used in our experiments.

Method Max Freq. Latency at Total Area
(GHz) 3.0 GHz (cycles) | Power (mW)
[ Prime[8] ] 1.20 I 5 I 0.544 [ 852 ]
|[ SMARTINDEX | 3.0 | 1 | 0.326 | 697 |

TABLE 1: Hardware cost of SMARTINDEX and Prime Modulo.

5 EVALUATION
5.1 Experimental Setup

‘ ‘ Parameter ‘ Value ‘ ‘

1-core @ 3.0 GHz

L1 cache (I/D) | 32KB, 2-way, 2-cycle latency

L2 Cache 128KB, 4-way, 8-cycle latency

LLC 2MB, direct-mapped, 24-cycle latency (baseline)
2MB, 2-way, 26-cycle latency

2MB, 4-way, 26-cycle latency

2MB, 8-way, 26-cycle latency

2MB, 16-way, 32-cycle latency
tRP=tRCD=tCAS=20

Processor

DRAM

TABLE 2: Parameters of the overall simulated hardware. LLC
latency numbers are obtained from CACTI 7.0.

SMARTINDEX is implemented in the LLC using the Champ-
Sim simulator [1]. We use the SPEC 2006 and SPEC 2017 bench-
marks, excluding the failed traces and those that have the MPKI
less than 1 under the direct-mapped LLC baseline. We catego-
rize the benchmark applications into two groups based on their
per-set eviction distribution. An uneven eviction distribution
indicates that the cache is experiencing a pathological access
pattern. Assume eo, e, €2, ...,e, are the number of evictions
of the cache sets sy, s1, 2, ..., Sn, and € is the mean eviction
count across all sets. If the ratio stdev(e;)/€ of the program is
greater than 0.5, it is classified as non-uniform. Table 3 presents
the complete classification of all applications in this work.



Apps \ stdev(e;) /€ |
| T-way [ 2-way | 4-way [ 8-way [ 16-way ||
401.bzip2 1.417 1.133 0.705 0.184 0.114
403.gcc 1.668 1.377 0.997 0.482 0.170
410.bwaves 0.041 | 0.021 | 0.016 | 0.009 0.006
429.mcf 0.508 | 0.271 0.161 0.114 0.080
436.cactusADM 0.299 0.202 0.142 0.084 0.065
437 leslie3d 0.198 0.088 0.055 0.044 0.036
445.gobmk 2419 | 0392 | 0.116 | 0.053 0.031
450.s0plex 0436 | 0245 | 0.175 | 0.100 0.077
456.hmmer 1.626 1.417 1.076 0.445 0.244
459.GemsFDTD 0.055 0.035 0.021 0.011 0.007
470.Ibm 0.056 | 0.022 | 0.018 | 0.014 0.013
471.omnetpp 0395 | 0267 | 0.187 | 0.131 0.091
473.astar 0.499 0.338 0.238 0.184 0.154
481.wrf 0.150 0.073 0.036 0.022 0.014
482.sphinx3 0964 | 0.665 | 0450 | 0.316 0.138
602.gce_s 0293 | 0.169 | 0.114 | 0.064 0.037
605.mcf_s 0.759 0.480 0.267 0.146 0.090
607.cactuBSSN_s | 0.490 0.122 0.025 0.016 0.013
619.1bm_s 0.045 | 0.022 | 0.018 | 0.015 0.014
620.omnetpp_s 0.643 | 0292 | 0.187 | 0.127 0.091
621.wrf_s 0.302 0.162 0.121 0.095 0.061
623.xalancbmk_s | 9.301 8.470 0.288 0.145 0.093
627.cam4_s 0382 | 0.092 | 0.057 | 0.032 0.023
628.pop2_s 1.208 | 0.458 | 0.148 | 0.049 0.030
649.fotonik3d_s 0.355 0.028 0.007 0.005 0.004
657.xz_s 0.747 0.390 0.213 0.142 0.090

TABLE 3: LLC eviction uniformity of all applications. As the
associativity increases, the uniformity ratio decreases, since the
evictions are more evenly distributed.

For each application, the DQN model is trained for 250
episodes. Each episode is one execution of the program. Table 2
shows the system and LLC configurations. We compared our
solution with CEASER [10], prime modulo [8] and the simple
XOR-hash [8] schemes. For CEASER, we use the LLC latency
of 2 cycles as reported in the paper. For XOR-hash, we use
zero latency. For prime modulo and SMARTINDEX, we use the
result from our analysis in Section 4.2. We conduct a sensitivity
test and find that an interval size of 1 million cache accesses
strikes the optimal balance between the system performance
and runtime overhead.

8 ceaser HEEEE
prime D
6 xor-hash ==
4 smart-index mm— |
2 El .|
o ]
rereer IJ]I I IJj
O - SN N\ N
i 08 o (W F S T
NG I AV P NP O S <&
S 60 o 0 S
L @’19 >

(a) IPC Speedup over power- of 2 indexing scheme (%)

40
30
20

ceaser EEEEE

prime £ |
xor-hash C—3

smart-index SEEEE -|

w; F#FH]IEIFPWI[]F.&Ig

)

> & @ R & O
R iR @9‘1{94@ QOO& R Qi‘\@kg@‘@ (\é} QO&Q)QOQ éoqi\' &m
ST W W 6P F R &
of R &@ ® o

(b) MPKI reduction over power—of—Z indexing scheme (%)

Fig. 4: Performance comparison between SMARTINDEX and
other techniques for applications with non-uniform cache evic-
tions on direct-mapped cache.

5.2 Results

Figure 4 shows the performance results of SMARTINDEX com-
pared to other techniques when applied on a direct-mapped
cache. Specifically, SMARTINDEX can reduce the MPKI by
11.52% on average. This reduction amount translates to an IPC
increase of up to 7.23%, seen in 401.bzip2. Compared to other
techniques, SMARTINDEX outperforms by a huge margin in
every application. CEASER gives the worst performance since
the cache remapping is performed randomly. Prime modulo
indexing gives a considerable MPKI reduction, but its com-
plex hardware implementation negated all the potential perfor-

4

mance benefit. XOR-hash does not have extra latency. But since
it does not give significant MPKI reduction as well, the IPC
overall impact of this scheme is minimal. Figure 5 shows the
performance of different techniques on different cache associa-
tivities. In general, SMARTINDEX outperforms other techniques
in every associativity. Our solution gives a significant speedup
for direct-mapped and 2-way associative caches. The perfor-
mance improvement decreases when the associativity increases,
since the cache evictions are more evenly spread, resulting in
less cache conflicts.

T T 15
ceaser —

1 10F prime 23 |
1 5| smart-index HEEEE
_ 1 o}
1 s}
| | 10

&S O @ o /q, e @ @ @

(a) IPC Speedup (%). (b) MPKI reductlon (%).

Fig. 5: Performance comparison between indexing techniques
on different cache associativity for non-uniform applications. 1-
way is direct mapped cache. 8/16-way columns are empty since
there is no non-uniform application (Table 3).

6 CONCLUSION

We propose SMARTINDEX, an adaptive cache index that lever-
ages machine learning to minimize the number of cache conflict
misses. Our simulation results show that applying SMARTIN-
DEX can help reduce the MPKI of a direct mapped cache by up
to 39%, translating into an IPC speedup of 7.23% compared to
the conventional power-of-two indexing scheme.

REFERENCES

[1] CRC-2.(2017) The 2nd cache replacement championship. [Online].
Available: http:/ /crc2.ece.tamu.edu

[2] X.Ding, D.S. Nikolopoulos, S. Jiang, and X. Zhang, “Mesa: reduc-
ing cache conlflicts by integrating static and run-time methods,” in
ISPASS, 2006.

[B] L. Graésser and W. L. Keng, Foundations of Deep Reinforcement
Learning: Theory and Practice in Python. Addison-Wesley, 2018.

[4] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz, J. Chang,
C. Kozyrakis, and P. Ranganathan, “Learning memory access
patterns,” in ICML 2018.

[5] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Systematic reverse en-
gineering of cache slice selection in intel processors,” in Euromicro
Conference on Digital System Design, 2015.

[6] D. Jiménez and E. Teran, “Multiperspective reuse prediction,” in
MICRO 2017.

[7] S.Khan, Y. Tian, and D. Jiménez, “Sampling dead block prediction
for last-level caches,” in MICRO 2010.

[8] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, Usmg prime
numbers for cache indexing to eliminate conflict misses,” in HPCA
2004.

[9] V. Mnih, K. Kavukcuoglu, and D. Silver, “Human-level control
through deep reinforcement learning,” in Nature, vol. 518, 2015.

[10] M. K. Qureshi, “Ceaser: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in MICRO 2018.

[11] D. Sanchez and C. Kozyrakis, “The zcache: Decoupling ways and
associativity,” in MICRO 2010.

[12] S. Sethumurugan, J. Yin, and J. Sartori, “Designing a cost-effective
cache replacement policy using machine learning,” in HPCA 2021.

[13] A. Seznec, “A case for two-way skewed-associative caches,” ACM
SIGARCH Computer Architecture News, 1993.

[14] Z. Shi, X. Huang, A. Jain, and C. Lin, “Applylng deep learning to
the cache replacement problem,” in MICRO 2019.

[15] Z. Shi, A. Jain, K. Swersky, M. Hashemi, P. Ranganathan and
C. Lin, “A hierarchical neural model of data prefetching,” in
ASPLOS 2021.

[16] S. J. Tarsa, R. B. R. Chowdhury, J. Sebot, G. Chinya, J. Gaur,
K. Sankaranarayanan C.-K. Lin, R. Chappell, R. Singhal, and
H. Wang, “Post-silicon cpu adaptatlon madlz: practical using ma-
chine learning,” in ISCA 2019.

[17] E. Teran, Z. Wang, and D. Jiménez, “Perceptron learning for reuse
prediction,” in MICRO 2016.

[18] C. Zhang, “Balanced cache: Reducing conflict misses of direct-
mapped caches,” in ISCA 2006.



