
46  September 2008  ACM QUEUE rants: feedback@acmqueue.com

software
 transactional transactional

 memory

why is it
 only a

 research
 toy? 



ACM QUEUE  September 2008  47  more queue: www.acmqueue.com
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The overhead posed by STM may likely overshadow its promise.

TM (transactional memory)1 is a concurrency control paradigm that provides atomic 
and isolated execution for regions of code. TM is considered by many researchers to be 
one of the most promising solutions to address the problem of programming multicore 
processors. Its most appealing feature is that most programmers only need to reason 
locally about shared data accesses, mark the code region to be executed transaction-
ally, and let the underlying system ensure the correct concurrent execution. This model 
promises to provide the scalability of fi ne-grain locking, while avoiding common pitfalls 
of lock composition such as deadlock. In this article we explore the performance of a 
highly optimized STM and observe that the overall performance of TM is signifi cantly 
worse at low levels of parallelism, which is likely to limit the adoption of this program-
ming paradigm.

Different implementations of transactional memory systems make tradeoffs that 
impact both performance and programmability. Larus and Rajwar2 present an overview 
of design tradeoffs for implementations of transactional memory systems. Here are some 
of the design choices:
• STM (software-only TM)3,4,5,6,7,8,9 is the focus of this article. While offering fl exibility 
and no hardware cost, it leads to overhead in excess of most users’ tolerance.
• HTM (hardware-only TM)10,11,12,13,14,15,16 suffers from two major impediments: high 
implementation and verifi cation costs lead to design risks too large to justify on a niche 
programming model; and hardware capacity constraints lead to signifi cant performance 
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degradation when overfl ow occurs, and proposals for 
managing overfl ows (for example, signatures17) incur false 
positives that add complexity to the programming model. 
Therefore, from an industrial perspective, HTM designs 
have to provide more benefi ts for the cost on a more 
diverse set of workloads (with varying transactional char-
acteristics) for hardware designers to consider implemen-
tation. (Reuse of hardware for other purposes can also 
justify its inclusion, as may be the case for Sun’s imple-
mentation of Scout Threading in the Rock processor.18)  

• Hybrid systems19,20,21,22 are the most likely platform 
for the eventual adoption of TM by a wide audience, 
although the exact mix of hardware and software support 
remains unclear. A special case of the hybrid system is the 
hardware-accelerated STM. In this scenario, the trans-
actional semantics are provided by STM, and hardware 
primitives are used only to speed up critical performance 
bottlenecks in the STM system. Such systems could offer 
an attractive solution if the cost of hardware primitives is 
modest and may be further amortized by other uses. 

Independent of these implementation decisions, there 
are transactional semantics issues that break the ideal 
transactional programming model for which the commu-
nity had hoped. TM introduces a variety of programming 
issues that are not present in lock-based mutual exclu-
sion. For example, semantics are muddled by: 
• Interaction with nontransactional codes, includ-
ing access to shared data from outside of a transaction 
(tolerating weak atomicity) and the use of locks inside a 
transaction (breaking isolation to make locking opera-
tions visible outside transactions). 
• Exceptions and serializability—how to handle excep-
tions and propagate consistent exception information 
from within a transactional context, and how to guaran-
tee that transactional execution respects a correct order-
ing of operations. 

• Interaction with code that cannot be transactionalized, 
as a result of either communication with other threads or 
a requirement barring speculation. 
• Livelock, or the system guarantee that all transactions 
make progress even in the presence of confl icts. 

In addition to the intrinsic semantic issues, there are 
also implementation-specifi c optimizations motivated 
by high transactional overheads, such as programmer 
annotations for excluding private data. Furthermore, 
the nondeterminism introduced by aborting transac-
tions complicates debugging—transactional code may be 
executed and aborted on confl icts, which makes it dif-
fi cult for the programmer to fi nd deterministic paths with 
repeatable behavior. Both of these dilute the productivity 
argument for transactions, especially software-only TM 
implementations.

Given all these issues, we conclude that TM has not 
yet matured to the point where it presents a compel-
ling value proposition that will trigger its widespread 
adoption. While TM can be a useful tool in the parallel 
programmer’s portfolio, it is not going to solve the paral-
lel programming dilemma by itself. There is evidence that 
it helps with building certain concurrent data structures, 
such as hash tables and binary trees. In addition, there are 
anecdotal claims that it helps with workloads; however, 
despite several years of active research and publication in 
the area, we are disappointed to fi nd no mentions in the 
research literature of large-scale applications that make 
use of TM. The STAMP23 (Stanford Transactional Appli-
cations for Multiprocessing) and Lonestar24 benchmark 
suites are promising starts but have a long way to go to be 
representative of full applications.

We base these conclusions on our work over the past 
two years building a state-of-the-art STM runtime system 
and compiler framework, the freely available IBM STM.25 
Here, we describe this experience, starting with a discus-
sion of STM algorithms and design decisions. We then 
compare the performance of this STM with two other 
state-of-the-art implementations (the Intel STM26 and the 
Sun TL2 STM27), as well as dissect the operations executed 
by the IBM STM and provide a detailed analysis of the 
performance hotspots of the STM. 

SOFTWARE TRANSACTIONAL MEMORY
STM implements all the transactional semantics in 
software. That includes confl ict detection, guaranteeing 
the consistency of transactional reads, preservation of 
atomicity and isolation (preventing other threads from 
observing speculative writes before the transaction suc-
ceeds), and confl ict resolution (transaction arbitration). 
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The pseudocode for the main operations executed by a 
typical STM is illustrated in fi gure 1. It shows two STM 
algorithms: one that performs full validation and one 
that uses a global version number (the additional state-
ments marked with the gv# comment).

The advantage of STM for system programmers is that 
it offers fl exibility in implementing different mecha-
nisms and policies for these operations. For end users, 
the advantage of STM is that it offers an environment 
to transactionalize (i.e., port to TM) their applications 
without incurring extra hardware cost or waiting for such 
hardware to be developed.

On the other hand, STM entails nontrivial drawbacks 
with respect to performance and programming semantics:

Overheads. In general, STM results in higher sequen-
tial overheads than traditional shared-memory program-
ming or HTM. This is the result of the software expansion 
of loads and stores to shared mutable locations inside 
transactions to tens of additional instructions that consti-
tute the STM implementation (for example, the STM_READ
code in fi gure 1). Depending on the transactional char-
acteristics of a workload, these overheads can become 
a high hurdle for STM to achieve performance. The 

sequential overheads (that is, confl ict-free overheads that 
are incurred regardless of the actions of other concurrent 
threads) must be overcome by the concurrency-enabling 
characteristics of transactional memory.

Semantics. To avoid incurring high STM overheads, 
nontransactional accesses (i.e., loads and stores occurring 
outside transactions) are typically not expanded. This has 
the effect of weakening—and hence complicating—the 
semantics of transactions, which may require the pro-
grammer to be more careful than when strong transac-
tional semantics are supported. The following are some of 
the weakened guarantees that are usually associated with 
such STMs: 
• Weak atomicity. Typically, the STM runtime libraries 
cannot detect confl icts between transactions and non-
transactional accesses. Thus, the semantics of atomicity 
are weakened to allow undetected confl icts with non-
transactional accesses (referred to as weak atomicity28), 
or equivalently put the burden on the programmer to 
guarantee that no such confl icts can possibly take place. 
• Privatization. Some STM designs prohibit the seamless 
privatization of memory locations (that is, the transition 
from being accessed transactionally to being accessed 

1FIGUR
E

STM Operations

Pseudo-code for STM begin
STM_BEGIN()
    read global version number /* gv# */

Pseudo-code for STM validate
STM_VALIDATE()
    read global version number     /* gv# */
    if global version number changed /* gv# */
      for each read set entry
         if metadata changed return FALSE
 return TRUE

Pseudo-code for STM read barrier
STM_READ(A)
    if already written goto written path
    read metadata of A
    if metadata is locked goto confl ict path
    log A and its metadata in the read set
    read value at A
    if ! STM_VALIDATE() goto confl ict path
    return val

Pseudo-code for STM end
STM_END()
    lock metadata for write set
    if already locked goto confl ict path
    if ! STM_VALIDATE() goto confl ict path
    /* Success guaranteed */
    increment global version number /* gv# */
    execute writes
    update/unlock metadata for write set
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privately—or nontransactionally in general, by using 
locks). For some STM designs, once a location is accessed 
transactionally, it must continue to be accessed that way. 
Sometimes, the programmer can ease the transition by 
guaranteeing that the fi rst access to the privatized loca-
tion—such as after the location is no longer accessible by 
other threads—is transactional. 

• Memory reclamation. Some STM designs prohibit the 
seamless reclamation of the memory locations accessed 
transactionally for arbitrary reuse, such as using malloc 
and free. With such STM designs, memory allocation and 
deallocation for locations accessed transactionally are 
handled differently than for other locations. 
• Legacy binaries. STM needs to observe all memory 
activities of the transactional regions to ensure atomicity 
and isolation. STM designs that achieve this observation 
by code instrumentation generally cannot support trans-
actions calling legacy codes that are not instrumented (for 
example, third-party libraries) without seriously limiting 
concurrency, such as by serializing transactions. 

EVALUATION
Throughout this section we use the following set of 
benchmarks: 
• b+tree is an implementation of database indexing 
operations on a b-tree data structure for which the data 
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is stored only on the tree leaves (a b+ tree). This imple-
mentation uses coarse-grained transactions for every tree 
operation. Each b+ tree operation starts from the tree root 
and descends to the leaves. A leaf update may trigger a 
structural modification to rebalance the tree. A rebalanc-
ing operation often involves recursive ascent over the 
child-parent edges. In the worst case, the rebalancing 
operation modifies the entire tree. Our workload inserts 
2,048 items in a b+ tree of order 20. For this code we have 
only a transactional version that is not manually instru-
mented; therefore, experimental results are presented 
only in configurations where we can use our compiler to 
provide instrumentation. 
• delaunay implements the Delaunay Mesh Refinement 
algorithm described in Kulkarni et al.29 The code produces 
a guaranteed quality Delaunay mesh. This is a Delaunay 
triangulation with the additional constraint that no angle 
in the mesh be less than 30 degrees. The benchmark 
takes as input an unrefined Delaunay triangulation and 
produces a new triangulation that satisfies this constraint. 
In the TM implementation of the algorithm, multiple 
threads choose their elements from a work queue and 
refine the cavities as separate transactions. 
• genome, kmeans, and vacation are part of the STAMP 
benchmark suite30 version 0.9.4. For a detailed description 
of these benchmarks, see STAMP.31 

Baseline performance. Figure 2 presents a performance 
comparison of three STMs: IBM,32,33 Intel,34 and Sun TL2.35 
The runs are on a quad-core, two-way hyperthreaded 
Intel Xeon 2.3-GHz box running Linux Fedora Core 6. In 

these runs, we used the manually instrumented versions 
of the codes, which aggressively minimize the number 
of barriers for the IBM and TL2 STMs. Since we do not 
have access to low-level APIs for the Intel STM, its curves 
are from codes instrumented by the Intel STM compiler, 
which incurs additional barrier overheads as a result of 
compiler instrumentation.36 The graphs are scalability 
curves with respect to the serial, nontransactionalized 
version. Therefore, a value of 1 on the y-axis represents 
performance equal to the serial version. 

The performance of these STMs is mostly on par, with 
the IBM STM showing better scalability on delaunay and 
TL2 obtaining better scalability on genome. The overall 
performance obtained is very low, however: on kmeans 
the IBM STM barely attains single-threaded performance 
at four threads, while on vacation none of the STMs actu-
ally overcomes the overhead of transactional memory 
even with eight threads.

Compiler instrumentation. The compiler is a neces-
sary component of an STM-based programming environ-
ment that is to be adopted by mass programmers. Its 
basic role is to eliminate the need for programmers to 
manually instrument memory references to STM read 
and write barriers. While offering convenience, compiler 
instrumentation does add another layer of overheads to 
the STM system by introducing redundant barriers, often 
resulting from the conservativeness of compiler analysis, 
as observed in Yoo.37
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Figure 3 provides another baseline: the overhead of 
compiler instrumentation. The performance is measured 
on a 16-way POWER5 running AIX 5.3. For the STMXLC 
curve, we use the uninstrumented versions of the codes 
and annotate transactional regions and functions using 
the language extensions provided by the compiler.38

Compiler over-instrumentation is more pronounced 
in traditional, unmanaged languages such as C and 
C++, where a typical compiler instrumentation without 
interprocedural analysis may end up instrumenting every 
memory reference in the transactional region (except 
for stack accesses). For 
example, our compiler 
instrumentation more 
than doubled the number 
of dynamic read barriers 
in delaunay, genome, and 
kmeans. Interprocedural 
analysis can help improve 
the tightness of compiler 
instrumentation for some 
cases but is generally 
limited by the accuracy of 
global analysis.

STM operations perfor-
mance. Given this baseline, 
we now analyze in detail 
which operations in the 
STM cause the overhead. 
For this purpose, we use a 
cycle-accurate simulator of 
the PowerPC architecture 
that provides hooks for 
instrumentation. The STM 
operations and subop-
erations are instrumented 
with these simulator 
hooks. The reason for this 

environment is that we want to capture the overheads 
at the instruction level and eliminate any other nonde-
terminism introduced by real hardware. The simulator 
eliminates all other bookkeeping operations introduced 
by instrumentation and provides an accurate breakdown 
of the STM overheads.

We study the performance of two STM algorithms: one 
that fully validates (fv) the read set after each transac-
tional read and one that uses a global version number 
(gv#) to avoid the full validation, while maintaining the 
correctness of the operations. The fv algorithm provides 
more concurrency at a much higher price. The gv# is 
deemed as one of the best tradeoffs for STM implementa-
tions.

Figure 4 presents the single-threaded overhead of 
these algorithms over sequential runs, illustrating again 
the substantial slowdowns that the algorithms induce. 
Figure 5 breaks down these overheads into the various 
STM components. For both algorithms, the overhead of 
transactional reads dominates because of the frequency 
of read operations relative to all other operations. The 
effectiveness of the global version number in reducing 
overheads is shown in the lower read overhead of gv#.
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Figure 6 gives a fine-grained breakdown of the over-
heads of the transactional read operation. As expected, 
the overhead of validating the read set dominates trans-
actional read time in the fv configuration. For both algo-
rithms, the isync operations (necessary for ordering the 
metadata read and data read, as well as the data read and 
validation) form a substantial component. In applications 
that perform writes before reads in the same transaction 
(delaunay, kmeans), the time spent checking whether a 
location has been written by prior transactional writes 
in the same transaction forms a significant component 
of the total time. Interestingly, reading the data itself 
is a negligible amount of the total time, indicating the 
hurdles that must be overcome for the performance of 
these algorithms to be compelling.

Figure 7 gives a similar breakdown of the transactional 
commit operation. As before, the fv configuration suffers 
from having to validate the read set. Other dominant 
overheads for both configurations are those of having to 
acquire the metadata for the write set (which involves a 
sequence of load-linked/store-conditional operations) and 

the sync operations that 
are necessary for ordering 
the metadata acquires, 
data writes, and metadata 
releases. Once again, the 
data writes themselves 
form a small component of 
the total time.

Overhead optimiza-
tions. There have been 
many proposals on 
reducing STM overheads 
through compiler or 
runtime techniques. Most 
of these techniques are 
complementary to hard-
ware acceleration for STM.
• Redundant barrier 
elimination. One technique 
is to eliminate barriers 
to thread-local objects 
through escape analysis. 
Such analysis is typically 
quite effective in identify-
ing thread-local accesses 
that are close to the object 
allocation site. It can elimi-
nate both read and write 
barriers but is often more 

effective on write barriers. For example, we observe that 
an intraprocedural escape analysis can eliminate 40 to 50 
percent of write barriers in vacation, genome, and b+tree. 
Its impact on performance is more limited, however: 
from negligible to 12 percent. To target redundant read 
barriers, a whole-program analysis called Not-Accessed-
In-Transaction39 eliminates some barriers to read-only 
objects in transactions.
• Barrier strength reduction. These optimizations do not 
eliminate barriers but identify at runtime special locations 
that require only lightweight barrier processing, such as 
dynamic tracking of thread-local objects40,41 and runtime 
filtering of stack references and duplicate references.42

• Code generation optimizations. One common tech-
nique is to inline the fast path of barriers. It has the 
potential benefit of reducing function-call overhead, 
increasing ILP, and exposing reuse of common sub-bar-
rier operations. In our experiments, compiler inlining 
achieved less than 2 percent overall improvement across 
our benchmark suite.

fv gv#fv gv#fv gv#fv gv#fv gv#

other
read
end
free
malloc
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• Commit sequence optimizations. Eliminating unneces-
sary global version number updates43 improves the overall 
performance of several micro-benchmarks by up to 14 
percent. 

Such optimizations have a positive impact on STM 
performance. The results presented here, however, 
indicate how much further innovation is needed for the 
performance of STM systems to become generally appeal-
ing to users.

RELATED WORK
The fi rst STM system was 
proposed by Shavit and 
Touitou44 and is based on 
object ownership. The 
protocol is static, which is 
a signifi cant shortcoming 
that has been overcome 
by subsequently proposed 
STM systems.45 Confl ict 
detection is simplifi ed 
signifi cantly by the static 
nature because confl icts 
can be ruled out already 
when ownership records 
are acquired (at transaction 
start).

DSTM46 is the fi rst 
dynamic STM system; the 
design follows a per-object 
runtime organization 
(locator object). Variables 
(objects) in the applica-
tion heap refer to a locator 
object. Unlike in a design 
with ownership records 
(for example, Harris and 
Fraser47), the locator does 

not store a version number but refers to the most recently 
committed version of the object. A particularity of the 
DSTM design is that objects must be explicitly opened (in 
read-only or read-write mode) before transactional access; 
also, DSTM allows for early release. The authors argue that 
both mechanisms facilitate the reduction of confl icts.

The design principles of the RSTM48 (Rochester STM) 
system are similar to DSTM in that it associates transac-
tional metadata with objects. Unlike DSTM, however, the 
system does not require the dynamic allocation of trans-
actional data but colocates it with the nontransactional 
data. This scheme has two benefi ts: fi rst, it facilitates 
spatial access locality and hence fosters execution perfor-
mance and transaction throughput; second, the dynamic 
memory management of transactional data (usually done 
through a garbage collector) is not necessary, and hence 
this scheme is amenable to use in environments where 
memory management is explicit.

Recent work has explored algorithmic optimizations 
and/or alternative implementations of the basic STM 
algorithms described in this article. Riegel et al. propose 
the use of realtime clocks to enhance the scalability of 
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STMs that use a global version number.49 JudoSTM50 and 
RingSTM51 reduce the number of atomic operations that 
must be performed when committing a transaction at 
the cost of serializing commit and/or incurring spurious 
aborts because of imprecise conflict detection. Several 
proposals have been made for STM systems that operate 
via dynamic binary rewriting in order to allow the usage 
of STM on legacy binaries.52, 53, 54

Yoo et al.55 analyze the overhead in the execution 
of Intel’s STM.56,57 They identify four major sources of 
overhead: over-instrumentation, false sharing, amorti-
zation costs, and privatization-safety costs. False shar-
ing, privatization-safety, and over-instrumentation are 
implementation artifacts that can be eliminated by using 
either finer-granularity bookkeeping, more refined analy-
sis, or user annotations. Amortization costs are inherent 
overheads in STM that, as we demonstrated here, are not 
likely to be eliminated.

A large amount of research effort has been spent in 
analyzing the operations in TM systems. Recent soft-
ware optimizations have managed to accelerate STM 

performance by 2 to 15 
percent. We believe such 
analysis is a good practice 
that should be extended 
to every piece of system 
software, especially open 
source. However, the gains 
are only a minor dent in 
the overheads we observed, 
indicating the challenge 
that lies before the com-
munity in making STM 
performance compelling.

CONCLUSION
Based on our results, we 
believe that the road ahead 
for STM is quite challeng-
ing. Lowering the overhead 
of STM to a point where it 
is generally appealing is a 
difficult task, and signifi-
cantly better results have 
to be demonstrated. If we 
could stress a single direc-
tion for further research, 
it is the elimination of 
dynamically unnecessary 
read and write barriers—

possibly the single most powerful lever toward further 
reduction of STM overheads. Given the difficulty of simi-
lar problems explored by the research community such as 
alias analysis, escape analysis, and so on, this may be an 
uphill battle. Because the argument for TM hinges upon 
its simplicity and productivity benefits, we are deeply 
skeptical of any proposed solutions to performance prob-
lems that require extra work by the programmer. 

We observed that the TM programming model itself, 
whether implemented in hardware or software, intro-
duces complexities that limit the expected productivity 
gains, thus reducing the current incentive for migration 
to transactional programming and the justification at 
present for anything more than a small amount of hard-
ware support. Q
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