
Training Deep Networks with Stochastic Gradient Normalized by Layerwise
Adaptive Second Moments

Boris Ginsburg 1 Patrice Castonguay 1 Oleksii Hrinchuk 1 Oleksii Kuchaiev 1 Ryan Leary 1 Vitaly Lavrukhin 1

Jason Li 1 Huyen Nguyen 1 Yang Zhang 1 Jonathan M. Cohen 1

Abstract
We propose NovoGrad, an adaptive stochastic
gradient descent method with layer-wise gradient
normalization and decoupled weight decay. In
our experiments on neural networks for image
classification, speech recognition, machine trans-
lation, and language modeling, it performs on par
or better than well-tuned SGD with momentum,
Adam, and AdamW. Additionally, NovoGrad (1)
is robust to the choice of learning rate and weight
initialization, (2) works well in a large batch set-
ting, and (3) has half the memory footprint of
Adam.

1. Introduction
The most popular algorithms for training Neural Networks
(NNs) are Stochastic Gradient Descent (SGD) with mo-
mentum (Polyak, 1964; Sutskever et al., 2013) and Adam
(Kingma & Ba, 2015). SGD with momentum is the pre-
ferred algorithm for computer vision, while Adam is more
commonly used for natural language processing (NLP) and
speech problems. Compared to SGD, Adam is perceived
as safer and more robust to weight initialization and learn-
ing rate. However, Adam has certain drawbacks. First, as
noted in the original paper (Kingma & Ba, 2015), the sec-
ond moment can vanish or explode, especially during the
initial phase of training. Also, Adam often leads to solutions
that generalize worse than SGD (Wilson et al., 2017), e.g.
models for image classification trained with Adam have
significantly lower accuracy than when they are trained with
SGD with momentum (Loshchilov & Hutter, 2019).

Our motivation for this work was to build an algorithm
which: (1) performs equally well for image classification,
speech recognition, machine translation, and language mod-
eling, (2) is robust to learning rate (LR) and weight initial-
ization, (3) has strong regularization properties.

1NVIDIA, Santa Clara, USA. Correspondence to:
Boris Ginsburg <bginsburg@nvidia.com>.

Preprint. Under Review.

We started with Adam, and then (1) replaced the element-
wise second moment with the layer-wise moment, (2) com-
puted the first moment using gradients normalized by layer-
wise second moment, (3) decoupled weight decay (WD)
from normalized gradients (similar to AdamW).

The resulting algorithm, NovoGrad, combines SGD’s and
Adam’s strengths. We applied NovoGrad to a variety of
large scale problems — image classification, neural machine
translation, language modeling, and speech recognition —
and found that in all cases, it performs as well or better than
Adam/AdamW and SGD with momentum.

2. Related Work
NovoGrad belongs to the family of Stochastic Normalized
Gradient Descent (SNGD) optimizers (Nesterov, 1984;
Hazan et al., 2015). SNGD uses only the direction of the
stochastic gradient gt to update the weights wt:

wt+1 = wt − λt ·
gt
||gt||

The step size does not depend on the magnitude of that
gradient. Hazan et al. (2015) proved that the direction of the
gradient is sufficient for convergence. Ignoring the gradient
magnitude makes SNGD robust to vanishing and exploding
gradients, but SNGD is still sensitive to ”noisy” gradients,
especially during an initial training phase.

One can improve SNGD stability by gradient averaging.
Adagrad (Duchi et al., 2011), RmsProp (Tieleman & Hin-
ton, 2012), Adam (Kingma & Ba, 2015) – all these SNGD
methods use the some kind of gradient averaging. Adam,
the most popular one, uses moving averages mt,vt,:

mt = β1 ·mt−1 + (1− β1) · gt (1)

vt = β2 · vt−1 + (1− β2) · g2
t (2)

The weights update is computed with the first moment mt

normalized by the second moment vt:

wt+1 = wt − λt ·
mt√
vt + ε

(3)

where ε� 1 is added for numerical stability. To strengthen

ar
X

iv
:1

90
5.

11
28

6v
3

 [
cs

.L
G

]
 6

 F
eb

 2
02

0

NovoGrad - Stochastic Gradient Normalized by Layerwise Adaptive Second Moments

Adam’s robustness to ”noisy” gradients, coefficients β1 and
β2 are usually close to 1 (e.g. β2 > 0.99).

2.1. Layer-wise Gradient Normalization

The other way to improve SNGD robustness was proposed
by Yu et al. (2018), who suggested to combine Adam with
layer-wise gradient normalization. Both moments are

computed with normalized gradients ĝl
t =

gl
t

||gl
t||

, where

gl
t is the gradient for the layer l at step t:

ml
t = β1 ·ml

t−1 + (1− β1) · ĝl
t

vlt = β2 · vlt−1 + (1− β2) · ||ĝl
t||2

A similar idea was used in (Singh et al., 2015) to scale
up small layers gradients, while keeping large gradients
unchanged:

ĝl
t = gl

t · (1 + log(1 +
1

||gl
t||

))

2.2. Improving Adam Generalization

Adaptive methods like Adam generalize worse than SGD
with momentum (Wilson et al., 2017). For example, Keskar
& Socher (2017) proposed to use Adam during the initial
stage only and then switch to SGD. Luo et al. (2019) sug-
gested to improve Adam generalization by limiting the fac-
tor 1√

vt
to a certain range: limiting from above helps to

decrease the training loss while limiting from below helps
to generalize better.

To improve Adam regularization, Loshchilov & Hutter
(2019) proposed AdamW, which decouples the weight
decay d · wt from the gradient and uses it directly in the
weight update:

wt+1 = wt − λt · (
mt√
vt + ε

+ d ·wt)

2.3. Reduction of Adam Memory Footprint

Adam needs to store the second moment, and this doubles
the optimizer memory compared to SGD with momentum.
This affects large models like GPT-2 – 1.5 billion parame-
ters (Radford et al., 2019), Meena – 2.6 billion parameters
(Adiwardana et al., 2020), or Megatron-LM – 8.3 billion
parameters (Shoeybi et al., 2019). Shazeer & Stern (2018)
proposed the AdaFactor algorithm, which replaced the full
second moment with moving averages of the row and col-
umn sums of the squared gradients. For a layer defined by
an n×mmatrix, this would reduce memory fromO(n×m)
to O(n+m).

3. Algorithm
NovoGrad combines three ideas: (1) use layer-wise second
moments, (2) compute first moment with gradients normal-
ized with layer-wise second moments, (3) decouple weight
decay.

Algorithm 1 NovoGrad
Parameters:
Init learning rate λ0, moments β1, β2, weight decay d,
number of steps T
t = 0: weight initialization
w0 ← Init().
t = 1: moment initialization
for each layer l do
vl1 ← ||gl

1||2;

ml
1 ←

gl
1√
vl1

+ d ·wl
1.

end for
while t ≤ T do

compute global learning rate λt ← LR(λ0, t, T)
for each layer l do
gl
t ← ∇lL(wt)
vlt ← β2 · vlt−1 + (1− β2) · ||gl

t||2

ml
t ← β1 ·ml

t−1 + (
gl
t√

vlt + ε
+ d ·wl

t)

wl
t+1 ← wl

t − λt ·ml
t

end for
end while

Let gl
t be the stochastic gradient for layer l at step t. First,

we compute the layer-wise second moment vlt using ||gl
t||:

vlt = β2 · vlt−1 + (1− β2) · ||gl
t||2 (4)

where 0 ≤ β2 ≤ 1. We use much smaller β2 than in Adam,1

The moment vlt is used to normalize the gradient gl
t before

calculating the first moment ml
t.

ml
t = β1 ·ml

t−1 +
gl
t√

vlt + ε
wl

t (5)

Last, we decouple weight decay d ·wt from the stochastic
gradient similarly to AdamW, but we add it to normalized
gradient before computing moment ml

t:
2

ml
t = β1 ·ml

t−1 + (
gl
t√

vlt + ε
+ d ·wl

t) (6)

where 0 < β1 < 1 is the momentum, typically in the same
range as in SGD or Adam [0.9 − 0.95]. The first moment

1The default β2 = 0.25 which we used in all experiments
except Imagenet classification where β2 = 0.98 was used.

2One can also use decoupled weight decay in the weights up-
date, as in AdamW. We didn’t find a significant difference between
these two options.

NovoGrad - Stochastic Gradient Normalized by Layerwise Adaptive Second Moments

can be also computed with an exponential moving average
in Adam-like style:

ml
t = β1 ·ml

t−1 + (1− β1) · (
gl
t√

vlt + ε
+ d ·wl

t)

We use the following moments initialization to remove bias:

vl1 = ||gl
1||2 ; ml

1 =
gl
1

||gl
1||

+ d ·wl
1

Finally, weights are updated the same way as in SGD with
momentum:

wt+1 = wt − λt ·mt

Similar to Adam, one can construct a counter-example for
NovoGrad in the stochastic convex optimization settings
(Wilson et al., 2017). However, the “AMS-Grad” fix (Reddi
et al., 2018) for Adam can also be applied in this case to

make sure that
λt√
vlt

is monotonically decreasing:

vlt = β2 · vlt−1 + (1− β2) · ||gl
t||2

v̂lt = max(v̂lt−1, v
l
t)

ml
t = β1 ·mt−1 + (

gl
t√

v̂lt + ε
+ d ·wl

t)

Notes.

1. If we set β2 = 0, then vlt = ||gl
t||2, and NovoGrad

becomes layer-wise NGD.

2. We use gradient normalization in the first moment com-
putation instead of moment normalization in weights
update to improve the algorithm robustness against
very large ”outliers” gradients.

3. NovoGrad has half the memory footprint of Adam.

3.1. Training with NovoGrad

NovoGrad has initial learning rates different than both SGD
and Adam. In the initial phase, normalized gradients have
larger magnitudes than non-normalized gradients used by
SGD, so NovoGrad uses smaller learning rate than SGD. In
Adam, on the other side, normalization is done by element-
wise second moments, which are significantly smaller than
per-layer second moments used in NovoGrad. So for Novo-
Grad, safe learning rates are somewhere between those of
SGD and Adam, as the gradients are normalized by the
per-layer gradient norm.

4. Experiments
We train four deep models: ResNet-50 (He et al., 2016) —
for ImageNet classification, Transformer-big (Vaswani et al.,

2017) — for WMT 2014 translation, Jasper (Li et al., 2019)
— for LibriSpeech speech recognition, and Transformer-
XL (Dai et al., 2019) — for WikiText-103 word-level lan-
guage modeling, with NovoGrad, SGD with momentum,
and Adam/AdamW. Each model was trained on a single
DGX-1 with 8 NVIDIA V100 GPUs with gradient accumu-
lation used for large batch training. In all the experiments,
NovoGrad performed on par or better than other algorithms.

4.1. Image Classification

We used ResNet-50v2 model (He et al., 2016) for ImageNet
classification task (Russakovsky et al., 2015). We trained
the model with three optimizers: SGD with momentum
(SGD), AdamW, and NovoGrad using the batch of 1024
for 100 epochs. We used quadratic LR decay for SGD
with momentum and cosine decay (Loshchilov & Hutter,
2016) for AdamW and NovoGrad. We could not find any
training recipe for ResNet-50 with AdamW, so we report the
best accuracy we achieved after extensive hyper-parameter
search. We used only standard data augmentation methods:
resize, flip, random crop, and did not employ any additional
training tricks (He et al., 2018). The single-crop validation
accuracy for each algorithm is reported in Table 1.

Table 1: ImageNet: ResNet-50v2 trained with batch 1024,
top-1/top-5 accuracy (%).

Optimizer LR WD Epoch Top-1/Top-5,%

SGD 0.400 0.0001
100 76.38/93.08
200 76.33/92.96

AdamW 0.002 0.120
100 76.36/93.01
200 76.48/92.94

NovoGrad 0.007 0.002
100 76.94/93.41
200 77.74/93.70
300 77.65/93.62

NovoGrad outperformed both AdamW and SGD with the
top-1 accuracy of 76.94% after 100 epochs. SGD and Adam
accuracy remained under 76.5% if we trained for 200 epochs
instead, while NovoGrad accuracy improved to 77.74%.
NovoGrad demonstrated powerful regularization capabili-
ties: training for 100 additional epochs kept top-1=77.65%
without overfitting. Note that this is ”vanilla” ResNet-50,
without sophisticated data augmentation or model tweaking.

4.2. Large Batch Training for Image Classification

Hazan et al. (2015) showed that large batch size is benefi-
cial for SNGD convergence, which motivated us to explore
NovoGrad for large batch training. We trained ResNet-50
v2 with batch sizes of 8K and 32K. To compare with the
previous methods, we train the model for 90 epochs us-

NovoGrad - Stochastic Gradient Normalized by Layerwise Adaptive Second Moments

Table 2: ImageNet, large batch training comparison: ResNet-50v2, top-1 accuracy(%).

Optimizer Reference Bag of Tricks Epochs B=8K B=32K

SGD (Goyal et al., 2017) warmup 90 76.26 72.45
SGD (You et al., 2018) warmup, LARS 90 75.30 75.40
SGD (Codreanu et al., 2017) warmup, multi-step WD 100 76.60 75.31

NovoGrad — 90 76.64 75.78
warmup 90 — 75.99

ing cosine LR decay. To emulate a large batch, we used a
mini-batch of 128 per GPU and accumulated gradients from
several mini-batches before each weight update.

To establish the baseline for NovoGrad training with batch
32K we first used the method similar to proposed in Goyal
et al. (2017): scaling the learning rate linearly with the
batch size and using LR warmup. This method gives top-
1=75.09% and top-5=92.27%. We found that we get better
results when we increase both the learning rate λ and the
weight decay d to improve the regularization (see Table 3).

Table 3: ImageNet, large batch training with NovoGrad:
ResNet-50v2, 90 epochs. top-1/top-5 accuracy (%).

Batch LR WD Top-1/Top-5,%

1K 0.070 0.002 76.86/93.31
8K 0.016 0.006 76.64/93.14
32K 0.026 0.010 75.78/92.54

For comparison, we took three methods, which (1) use fixed
batch size during training and (2) do not modify the original
model. All three methods employ SGD with momentum.
The first method (Goyal et al. (2017)) scales LR linearly
with batch size and uses the LR warmup to stabilize the ini-
tial training phase. The second method (You et al. (2018))
combines warmup with Layer-wise Adaptive Rate Scaling
(LARS) (You et al., 2017). The last method (Codreanu et al.
(2017)) uses warmup and dynamic weight decay (WD).
NovoGrad outperformed other methods without any addi-
tional techniques like LR warmup (Goyal et al., 2017), dy-
namic weight decay, special batch norm, etc. Using warm-
up (500 steps) improves top-1 accuracy to 75.99%.

4.3. Speech Recognition

We conducted experiments with Jasper DR 10x5 (Li et al.
(2019)), a deep convolutional neural acoustic model, on
the LibriSpeech speech recognition task (Panayotov et al.,
2015). Jasper was trained with SGD with momentum (SGD),
Adam and NovoGrad for 400 epochs with a batch of 256,
polynomial LR decay, and Layerwise Adaptive Rate Clip-
ping (LARC). We found that NovoGrad yields lower Word

Error Rates (WER) comparing to SGD, especially for the
long runs. The model and training parameters are described
in Li et al. (2019).

Table 4: Speech Recognition: Jasper-10x5 trained on Lib-
riSpeech for 400 epochs, greedy WER(%).

Optimizer Dev Test
clean other clean other

Adam 5.06 15.76 5.27 15.94
SGD 4.08 13.23 4.22 13.15

NovoGrad 3.71 11.75 3.71 11.85

4.4. Large Batch Training for Speech Recognition

Figure 1: Speech Recognition, large batch training. Jasper-
10x5 trained with NovoGrad on LibriSpeech, WER(%).

We trained Jasper DR 10x5 with batch sizes of 512, 4K, 8K,
16K and 32K on LibriSpeech. In all cases, we trained the
model for 400 epochs. For batch size up to 8K, we scaled
LR linearly with the batch size and used LR warmup. To
scale batch to 16K and 32K we also increased weight decay
(see Table 5). The batch 16K leads to WER comparable
to the baseline. Batch 32K has higher WER due to the
smaller number of training steps (9 weights updates per
epoch). Figure 1 shows WER on dev-clean during training
for different batch sizes.

NovoGrad - Stochastic Gradient Normalized by Layerwise Adaptive Second Moments

Table 5: Speech Recognition, large batch training. Jasper-10x5 trained on LibriSpeech for 400 epochs, WER(%).

Batch LR Warmup WD Dev Test
clean other clean other

512 0.015 - 0.001 3.58 11.30 3.85 11.29
4K 0.03 0.05 0.001 3.66 11.67 3.92 11.68
8K 0.06 0.05 0.001 3.69 11.76 3.96 11.75
16K 0.06 0.05 0.003 3.67 11.03 3.94 11.19
32K 0.06 0.08 0.004 4.01 11.73 4.14 11.89

4.5. Neural Machine Translation

We trained Transformer (Vaswani et al., 2017) on WMT
2014 English-to-German benchmark. For all the exper-
iments, we used a 12-layer Transformer-big model with
185M parameters (dmodel = 1024, dff = 4096, h = 16)
with the vocabulary of 8192 tokens based on joint source-
target byte-pair-encodings (Sennrich et al., 2015). For Adam
and AdamW we used dropout of Pdrop = 0.3 and for Novo-
Grad we used Pdrop = 0.2. We trained all algorithms with
mixed-precision (Micikevicius et al., 2017) for 100K steps
(approximately 150 epochs) with a 4K steps warmup on
batches of up to 490K source and target tokens obtained
via gradient accummulation (Ott et al., 2018) with cosine
learning rate annealing. We did not use checkpoint averag-
ing, all the results are reported for the last checkpoint in the
corresponding run.

Table 6: WMT’14 English-to-German translation,
Transformer-big, batch 490K tokens, 150 epochs, no check-
point averaging. Detokenized SacreBLEU and Tokenized
BLEU on WMT’14 (newstest14).

Optimizer LR WD Sacre/Token-BLEU

Adam 0.0006 - 28.26/28.71
AdamW 0.0006 0.005 28.24/28.72

NovoGrad 0.04 0.0001 28.80/29.35

4.6. Language Modeling

We trained Transformer-XL (Dai et al., 2019), the state-
of-the-art language model on the word-level WikiText–
103 (Merity et al., 2016) benchmark. For all the experi-
ments we used a 16-layer model with 191M parameters
(dmodel = 512, dff = 2048, h = 8, Pdrop = 0.15). All other
hyper-parameters were taken from the original Transformer-
XL paper, the source code was based on a publicly available
implementation. Each configuration was trained for 12 bil-
lion tokens which is approximately 117 epochs and 366K
iterations.

Table 7: Language Modeling. Transformer-XL trained on
WikiText-103 with batch size 256, sequence length 512,
12B tokens. Validation and Test Perplexity(PPL).

Optimizer LR WD Val /Test-PPL

Adam 0.00025 - 23.84/25.40
AdamW 0.00025 0.001 23.64/25.06

NovoGrad 0.01 0 20.53/21.26

NovoGrad significantly outperformed both Adam and
AdamW (Table 7). NovoGrad exhibits a much smaller
gap between training and validation perplexity compared to
Adam (Figure 2). Even longer training for 20B tokens does
not lead to overfitting, as the validation and test perplexities
improve even further.

Figure 2: Language Modeling. Transformer-XL trained
with Adam and NovoGrad on WikiText-103.

5. Conclusion
We propose NovoGrad – an adaptive SGD method with
gradients normalized by the layer-wise second moment and
with decoupled weight decay. We tested NovoGrad on deep
models for image classification, speech recognition, transla-
tion, and language modeling.

NovoGrad - Stochastic Gradient Normalized by Layerwise Adaptive Second Moments

In all experiments, NovoGrad performed equally or better
than SGD and Adam/AdamW. NovoGrad is more robust
to the initial learning rate and weight initialization than
other methods. For example, NovoGrad works well without
LR warm-up, while other methods require it. NovoGrad
performs exceptionally well for large batch training, e.g. it
outperforms other methods for ResNet-50 for all batches
up to 32K. In addition, NovoGrad requires half the memory
compared to Adam.

NovoGrad and all models in this paper are open sourced.

References
Adiwardana, D. D. F., Luong, M.-T., So, D. R., Hall, J.,

Fiedel, N., Thoppilan, R., Yang, Z., Kulshreshtha, A.,
Nemade, G., Lu, Y., and Le, Q. V. Towards a human-like
open-domain chatbot. ArXiv, abs/2001.09977, 2020.

Codreanu, V., Podareanu, D., and Saletore, V. Scale out
for large minibatch sgd: Residual network training on
imagenet-1k with improved accuracy and reduced time
to train. arXiv:1711.04291, 2017.

Dai, Z., Yang, Z., Yang, Y., Cohen, W. W., Carbonell, J.,
Le, Q. V., and Salakhutdinov, R. Transformer-xl: At-
tentive language models beyond a fixed-length context.
arXiv:1901.02860, 2019.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, pp. 21212159,
2011.

Goyal, P., Dollár, P., Girshick, R. B., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and
He, K. Accurate, large minibatch SGD: training imagenet
in 1 hour. arXiv:1706.02677, 2017.

Hazan, E., Levy, K., and Shalev-Shwartz, S. Beyond con-
vexity: Stochastic quasi-convex optimization. In NIPS,
pp. 15851593, 2015.

He, K., Zhang, X., Ren, S., and Sun, J. Identity mappings
in deep residual networks. arXiv:11603.05027, 2016.

He, T., Zhang, Z., Zhang, H., Zhang, Z., Xie, J., and Li, M.
Bag of tricks for image classification with convolutional
neural networks. arXiv:1812.00187, 2018.

Keskar, N. S. and Socher, R. Improving generaliza-
tion performance by switching from adam to SGD.
arXiv:1712.07628, 2017.

Kingma, D. and Ba, J. Adam: A method for stochastic
optimization. In ICLR, 2015.

Li, J., Lavrukhin, V., Ginsburg, B., Leary, R., Kuchaiev,
O., Cohen, J. M., Nguyen, H., and Gaddei, R. T.
Jasper: An end-to-end convolutional neural acoustic
model. arXiv:1904.03288, 2019.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts. ICLR, 2016.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2019.

Luo, L., Xiong, Y., Liu, Y., and Sun, X. Adaptive gradient
methods with dynamic bound of learning rate. In ICLR,
2019.

Merity, S., Xiong, C., Bradbury, J., and Socher, R. Pointer
sentinel mixture models. arXiv:1609.07843, 2016.

Micikevicius, P., Narang, S., Alben, J., Diamos, G. F., Elsen,
E., Garcı́a, D., Ginsburg, B., Houston, M., Kuchaiev, O.,
Venkatesh, G., and Wu, H. Mixed precision training.
ICLR, 2017.

Nesterov, Y. E. Minimization methods for nonsmooth con-
vex and quasiconvex functions. Matekon, 29:519531,
1984.

Ott, M., Edunov, S., Grangier, D., and Auli, M. Scaling neu-
ral machine translation. arXiv preprint arXiv:1806.00187,
2018.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S.
Librispeech: an asr corpus based on public domain audio
books. In ICASSP, pp. 5206–5210. IEEE, 2015.

Polyak, B. Some methods of speeding up the convergence of
iteration methods. In USSR Computational Mathematics
and Mathematical Physics, 1964.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and
Sutskever, I. Language models are unsupervised multitask
learners. OpenAI Blog, 1(8), 2019.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence of
adam and beyond. In ICLR, 2018.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale
Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

Sennrich, R., Haddow, B., and Birch, A. Neural ma-
chine translation of rare words with subword units.
arXiv:1508.07909, 2015.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. arXiv:1804.04235,
2018.

NovoGrad - Stochastic Gradient Normalized by Layerwise Adaptive Second Moments

Shoeybi, M., Patwary, M. A., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-lm: Training multi-
billion parameter language models using model paral-
lelism. ArXiv, abs/1909.08053, 2019.

Singh, B., De, S., Zhang, Y., Goldstein, T., and Taylor, G.
Layer-specific adaptive learning rates for deep networks.
In ICML, 2015.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On
the importance of initialization and momentum in deep
learning. In ICML, 2013.

Tieleman, T. and Hinton, G. Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning,
2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need. arXiv: 1706.03762, 2017.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The marginal value of adaptive gradient methods in
machine learning. In NIPS, 2017.

You, Y., Gitman, I., and Ginsburg, B. Large batch training
of convolutional networks. arXiv:1708.03888, 2017.

You, Y., Zhang, Z., Hsieh, C., and Demmel, J. 100-
epoch imagenet training with alexnet in 24 minutes.
arXiv:1709.05011, 2018.

Yu, A. W., Lin, Q., Salakhutdinov, R., and Carbonell, J.
Block-normalized gradient method: An empirical study
for training deep neural network. arXiv:1707.04822,
2018.

