arXiv:1103.4282v2 [cs.DS 30 Mar 2011

Stratified B-trees and versioning dictionaries.

Andy Twigg*, Andrew Byde*, Grzegorz Mito§*, Tim Moreton*, John Wilkes™ and Tom Wilkie*
*Acunu, TGoogle
firstname@acunu.com

Abstract

A classic versioned data structure in storage and com-
puter science is the copy-on-write (CoW) B-tree — it un-
derlies many of today’s file systems and databases, in-
cluding WAFL, ZFS, Btrfs and more. Unfortunately, it
doesn’t inherit the B-tree’s optimality properties; it has
poor space utilization, cannot offer fast updates, and re-
lies on random IO to scale. Yet, nothing better has
been developed since. We describe the ‘stratified B-tree’,
which beats the CoW B-tree in every way. In particu-
lar, it is the first versioned dictionary to achieve optimal
tradeoffs between space, query and update performance.

1 Introduction

The B-tree was presented in 1972 [1]], and it survives
because it has many desirable properties; in particular,
it uses optimal space, and offers point queries in op-
timal O(logg N) IO In 1986, Driscoll et al. [7]
presented the ‘path-copying’ technique to make pointer-
based internal-memory data structures fully-versioned
(fully-persistent). Applying this technique to the B-tree,
the CoW B-tree was first deployed in the Episode File
System in 1992. Since then, it has been the underlying
data structure in many file systems and databases, for ex-
ample WAFL [10]], ZFS [4], Btrfs [8], and many more.

Unfortunately, the CoW B-tree does not share the
same optimality properties as the B-tree; in particular,
every update may require a walk down the tree (requir-
ing random reads) and then writing out a new path, copy-
ing the previous blocks. Many file systems embed the
CoW B-tree into an append-only log file system, in an
attempt to make the writes sequential. In conjunction
with the garbage cleaning needed for log file systems,
this leads to large space blowups, inefficient caching, and
poor performance. Until recently, no other data structure
has been known that offers an optimal tradeoff between
space, query and update performance.

This paper presents some recent results on new con-
structions for B-trees that go beyond copy-on-write, that

I'We use the standard notation B to denote the block size, and N
the total number of elements inserted

we call ‘stratified B-trees’. They solve two open prob-
lems: Firstly. they offer a fully-versioned B-tree with
optimal space and the same lookup time as the CoW B-
tree. Secondly, they are the first to offer other points on
the Pareto optimal query/update tradeoff curve, and in
particular, our structures offer fully-versioned updates in
o(1) IOs, while using linear space. Experimental results
indicate 100,000s updates/s on a large SATA disk, two
orders of magnitude faster than a CoW B-tree.

Since stratified B-trees subsume CoW B-trees (and in-
deed all other known versioned external-memory dictio-
naries), we believe there is no longer a good reason to use
the latter for versioned data stores. Acunu is developing
a commercial in-kernel implementation of stratified B-
trees, which we hope to release soon.

2 Versioned dictionaries

A versioned dictionary stores keys and their values with
an associated version tree, and supports the following op-
erations:

e update (key, value, version): associate
a value to the key in the specified leaf version

e range_query (start, end, version):
return every key in the range [start,end] together
with the value written in the closest ancestor to the
specified version

e clone (version): create a new version as a
child of the specified versior]

e delete (version): delete a given version, and
free the space used by all keys written there and no
longer accessible by any version.

A versioned dictionary can be thought of as efficiently
implementing the union of many dictionaries: the live
keys at version v are the union of all the keys in ancestor
versions, where if a key appears more than once, its clos-
est ancestor takes precedence. If the structure supports
arbitrary version trees, then we call it (fully-)versioned;

2Sometimes the literature refers to a ‘snapshot” operation — here, a
snapshot is exactly equal to cloning a leaf node.

vi v2

-

Figure 1: A copy-on-write B-tree

-

if it supports only linear version trees, we call it partially-
versioned. We are interested in data structures that have
optimal tradeoffs between space, and the performance of
the operations above.

3 Copy-on-Write B-trees

The basic idea (see Figure [I) is to have a B-tree with
many roots, one for each version. Nodes in this B-tree
are versioned, and updates can only be done in a node
of the same version as the update. When starting an up-
date in version v2, we first ensure that there is a suitable
root associated to v2 (by duplicating the root for v1, the
parent of v2, if necessary), then follow pointers in the
same way that one would in a normal B-tree; every time
anode is encountered whose version is other than v2, it is
copied to make a new node of version v2, and the parent
node’s pointer is updated to point to the new node, before
the update continues down the tree. A lookup proceeds
as in a B-tree, starting from the appropriate root.

Over time, variants of the CoW B-tree have appeared,
notably in ZFS, WAFL, Btrfs, and more. Rodeh [14]
provides a detailed discussion of variations of copy-on-
write (shadowing) techniques, along with their pros and
cons. The CoW B-tree has three major problems:

Space efficiency: each update may cause an entire
new path to be written — to update a 16-byte key/value
pair in a tree of depth 3 with 256K block size, one must
first do 3x256K random reads and then write 768K of
data (see http://bit.1ly/gL7AQ1 which reported
2GB of log data per S0MB of index data).

Slow updates: each update may require a set of ran-
dom reads (reading the old path) and a set of writes. Ran-
dom reads limit prefetching ability (on SSDs, and are
simply terrible on hard drives). Some file systems at-
tempt to make the writes sequential by embedding the
CoW tree in an append-only log, along with some way
of garbage-collecting nodes no longer accessible, thus

avoiding so-called ‘in-place’ updates (see, e.g. ZFSE]
and WAFIE]). This approach has two fundamental prob-
lems: firstly, the excessive space usage inherent in CoW
means that these writes present a lot of future work for
the garbage collector; at 50x space blowup, the garbage
collector has to work 50x harder to keep ahead of the
input stream. Secondly, little is known in theory about
guarantees for garbage collection in log file systems, par-
ticularly when the system does not experience idle time.

Reliance on random IO: Like the B-tree, the CoW
B-tree relies heavily on random IO to scale, both for ran-
dom reads and writes. Over time, the leaves of the tree
tend to be scattered randomly across disk, which causes
problems for efficient garbage collection and for efficient
prefetching.

Therefore, we set out to answer the following open
questions:

e Can we achieve the same query/update bound as the
CoW B-tree, but with linear space?

e Can we achieve much better update bounds if we
relax the query bound, using linear space?

o Can we scale with sequential IO rather than random
10?

In the unversioned case, the first two questions were
answered in the affirmative by Brodal et al.[S]], and the
third by Bender et al. [3]]. In particular, they showed
that a small reduction in query performance could yield
a huge improvement in update cost. Until now, no similar
story was known for the versioned case. The space prob-
lem was tackled by Becker [2]] who developed the mul-
tiversion B-tree (MVBT); however, it only offers slow
updates and is only partially versioned. Lanka et al.
[12] developed two fully-persistent B-tree variants, but
for both variants, either there is a large space blowup, or
range queries may be far from optimal, and hence don’t
advance the state-of-art beyond CoW and MVBT. Table
[] summarises these points; we use N, to count the total
number of keys live (accessible) in version v, as opposed
to N > N,, the total number of elements written in all
versions.

4 Multiversion B-trees

The multi-version B-tree (MVBT) was introduced by
Becker [2]. It offers the same query/update bounds as
the CoW B-tree but only requires asymptotically optimal

3http://blogs.sun.com/bonwick/entry/space_
Maps

*http://blogs.netapp.com/
extensible_netapp/2009/04/
understanding-wafl-performance-the-f-word.html

http://bit.ly/gL7AQ1
http://blogs.sun.com/bonwick/entry/space_maps
http://blogs.sun.com/bonwick/entry/space_maps
http:// blogs.netapp.com/extensible_netapp/2009/04/understanding-wafl-performance-the-f-word.html
http:// blogs.netapp.com/extensible_netapp/2009/04/understanding-wafl-performance-the-f-word.html
http:// blogs.netapp.com/extensible_netapp/2009/04/understanding-wafl-performance-the-f-word.html

Structure Versioning Update Range query (size Z) Space
B-tree [1]] None OO(f(l)(;gB]\ijg rvjji(tiZs O(Z/B) random 10s O(N)
B Vv
O(logg N,) reads
Append-only CoW B-tree [ZFS] Full O(logy, Ny) writes O(Z/B) random10s | O(NBlogg N)
B iVv
MVBT [2] Partial O(lgg(]f)]‘\igtzzads O(Z/B) random 10s O(N)
. . O((log N,)/B) reads i . i
Stratified B-tree[this paper] Full O((log N,)/B) writes O(Z/B) sequential 10s O(N)

Table 1: Comparing the cost of basic operations on versioned dictionaries. /N is the total number of keys in the system,

and N, is the number of keys live at version v.

O(N) space. As previously mentioned, the MVBT only
allows partial versioning — linear version trees; one way
of viewing our stratified B-tree constructions is as a fully-
versioned MVBT that also offers tunable query/update
tradeoffs.

The basic idea underlying the MVBT is to extend the
traditional B-tree with versioned pointers inside nodes
— each pointer additionally stores two integers, describ-
ing the set of (totally-ordered) versions for which the
pointer is live. To query the tree for a specific version
v, we first find the correct root node (with an additional
O(logg |V]) 10s), then at every node, extract the set of
live pointers for v and treat these as an unversioned B-
tree node. Updates are more complex and require an
additional version split operation in addition to the un-
versioned key split operation.

5 Log-structured CoW B-trees

In order to make the random IOs necessary for an update
to a CoW B-tree sequential, a popular approach is to im-
plement it within a Log File System (LFS), e.g., as first
presented by Rosenblum and Ousterhout [[15]. The main
advantage of log file systems is that they offer the po-
tential to transform random writes into large sequential
IOs. The achilles heel of a LFS is cleaning — recovering
invalidated (e.g. overwritten) blocks in order to reclaim
sufficiently large contiguous regions of freespace.

Soules et al. [17] compare the metadata efficiency of
a versioning file system using both CoW B-trees and a
structure (CVFS) based on the MVBT. They find that,
in many cases, the size of the CoW metadata index ex-
ceeds the dataset size. For example, in one trace, the
versioned data occupies 123GB, yet the CoW metadata
requires 152GB while the CVFS metadata requires 4GB,
a saving of 97%.

Analysis. The basic analysis from [[15] is the follow-
ing: assume that during cleaning, we recover N seg-
ments of average utilisation y. Then the write amplifi-

cation p due to the LFS is

 N+uN+(1—pN 2
(1—p)N L—p

The CoW B-tree requires O(logz N,) random reads and
O(logg N,) blocks to be written, so the cost of a write is
O(logg Ny (1 + p)), roughly a factor O(B(1 + p)) > 1
slower than the stratified B-tree. In practice, for a 512KB
block with 128-byte entries, B ~ 4096.

One major difficulty of log file systems is guaranteeing
that the write amplification p will be small. Rosenblum
and Ousterhout [[15] reported that it depends heavily on
the total storage utilisation s. Under uniform rewrites,
greedily choosing segments with lowest utilisation gives
p ~ 6 when s ~ (0.8. Robinson [[13] derived analytic
fluid limits for x4 under the same conditions and showed
that, for s = 0.8,p =~ 5.4. Under access patterns ex-
hibiting locality, a different strategy does better by trying
to force segment utilisations into a bimodal distribution
(recently-written data is likely to be overwritten soon, so
hot segments should be cleaned at a lower utilization than
cold segments).

5.1 Solid State Drives

SSDs appear to offer a new lease of life to the LFS-
structured CoW B-tree. SSDs handle small random reads
very effectively, but perform poorly at random writes (the
recent Intel X25M [11]] can perform 35,000 4KB ran-
dom reads/s, but an order of magnitude fewer writes).
However, they can perform very efficiently for large se-
quential writes. Thus they appear to be well-suited to
the LFS CoW B-tree that performs random reads and
relatively large sequential writes. Stratified B-trees also
only use large sequential writes for updates (and indeed,
no random reads). Therefore, although the CoW B-tree
can perform significantly better for updates on SSDs than
disks, it gains no advantage over the stratified B-tree. As-
suming blocks of size 4KB and 128 byte entries, B = 16,
the CoW B-tree is roughly a factor 16(1 + p) = 96 times
slower than the stratified B-tree.

6 Stratified B-trees

Stratified B-trees dominate CoW B-trees (with or with-
out append-only logs). They can be written without
append-only logs and heuristic-based garbage collectors.
They require asymptotically optimal O(N) space, of-
fer an optimal range of tradeoffs between updates and
queries, and can generally avoid performing random IO.
In particular, one construction offers updates two orders
of magnitude faster than CoW B-trees, with a small slow-
down in point queries. However, for range queries, it can
generally perform a large amount of sequential IO, al-
lowing it to perform substantially better for these types
of queries.

6.1 The Idea

Stratified B-trees are, like B-trees, quite simple to de-
scribe at a high level. The difficulty lies in proving that
they have the desired properties. Here we describe in
outline one of the main stratified B-tree constructions,
known as the Stratified Doubling Array (SDA). Proofs
and details of the algorithms can be found in [6]].

The high-level structure is similar to that of the COLA
of Bender et al. [3] - we store a collection of arrays
of sorted (key-version-value) tuples, arranged into lev-
els, with ‘forward pointers’ between arrays to facilitate
searching. Each array A is tagged with a set of versions
W, so we write (A, W). Arrays in level [are roughly
twice as large as arrays in level [— 1, hence doubling,
and arrays in the same level typically have disjoint sets
of versions associated to them, hence stratified in version
space.

Insertions, promotions and merging. Inserts go first
to an in-memory buffer, then are flushed in sorted order
to the lowest level. When there are multiple arrays in the
same level with intersecting version sets, we merge them
all together. The resulting array may be too large to ex-
ist at the current level, in which case part of it may be
extracted and promoted to the next level. Deletions are
handled by inserting ‘tombstone’ elements that remove
keys at the given version when they are encountered dur-
ing merges.

Density. The notion of density is critical - we say an
array (A, W) has density 0 if, for every version w in W,
at least a fraction J of the elements in A are live at w.
The key to achieving performance is to ensure that den-
sity is not too low, while the key to achieving good space
bounds is not to require it to be too high. For example,
if we insist on density 1, then every array can only con-
tain elements for a single version, which may result in
large space blowup and potentially high update cost in
the worst case. On the other hand if we allow very low
density, then clearly we have space O(N) but there is no

version tree

Kl k2 k3 kd kS Kk kd LS
{vl,v2} vI|v2|v2|vI|v2 vl v0|v| v0|vl v0|v| {v1,v0}
T T T T T T T

newer older
@ merge
Kl K2 k3 k4 k5

1 1
[vi [vo]va]vi [vo]va[vi [vo]va]vi]
T T T T

{L density amplification

kl k2 k3 k4 k5

{v2} <«— V0 entries here are

duplicates

Kk k4 ks
{v1.v0} [vi [vovi]vo[vi Jvo]vi]
T T T

Figure 2: Simplified SDA process

guarantee on lookup or range query performance. Fortu-
nately it is possible to strike a balance between these two
extremes — it turns out that a lower bound of 1/3 works
well, and we can maintain this density balance without
blowing up space or incurring a performance overhead.

Density amplification. The result of merging arrays
together following promotion may be a large array which
is not dense for all versions. For example, it may be
tagged with two versions v, w and have lots of elements
for v but too few for w, all potentially spread randomly
through the array. To restore density we replace the large
array with several smaller arrays each of which is dense
—a process we call ‘density amplification’. Crucially, by
carefully choosing which sets of versions to include in
which array, we are able to bound the amount of work
done during density amplification, and to guarantee that
not too many additional duplicate elements are created.

The basic density amplification process on an array
(A, W) operates by repeatedly searching for sets of ver-
sions that can be extracted together into a new dense sub-
array. In particular we are interested in subtrees — for a
given version v, the subtree W v] is the set of all versions
in W that are descendant from v (and v itself) — and even
more specifically, in cases where the array produced by
extracting such a set of versions would be dense.

Roughly speaking the density amplification process
searches for sets of sibling versions v; (i.e. with the
same parent) whose version subtrees W |[v;] can be amal-
gamated without destroying the density property. Once
such a set U = U;W|[v;] is identified, the corresponding
array is extracted, and the same process applied recur-

sively to the remainder (A, W \ U) (the precise notions
are a bit more involved, see [6]).

Lookups. In the simplest construction, we embed into
each array a B-tree and maintain a Bloom filter on the set
of keys in each array. A lookup for version v involves
querying the Bloom filter for each array tagged with ver-
sion v, then performing a B-tree walk on those arrays
matching the filter. Typically, the internal nodes of the
B-trees can be held in memory so that this involves O(1)
IOs per array.

Range queries. The density property implies that, for
large range queries, simply scanning the arrays with the
appropriate version tags will use an asymptotically opti-
mal number of 10s. For small range queries, we resort
to a more involved ‘local density’ argument to show that,
over a large enough number of range queries, the average
range query cost will also be optimal. More details can
be found in [6].

Fractional cascading. In a more involved version of
the construction, elements from higher levels are sam-
pled in order that lookups in lower levels need only ex-
amine small portions of higher-level arrays. These ‘for-
ward pointers’ are sampled carefully as the arrays are
constructed, and then merged into the lower-level arrays
during promotions. Queries are then performed for a
given version v by searching inside all arrays at level 0
tagged with v, then following the forward pointers to lo-
cations in higher-level arrays.

Static optimality Stratified B-trees offer static opti-
mality: that is, imagine you have a sequence of inserts
and lookups, where element x; of version v is requested
with probability p; ,,. If you knew all the p; ,, in advance,
you could design a data structure optimized for this ac-
cess pattern. By modifying themselves on-the-fly (simi-
larly to splay trees [16])), stratified B-trees allow users to
store lots of versioned data (they have high ingest rates),
yet combined with static optimality and SSDs, offer ex-
tremely efficient (provably optimal) queries for unknown
access patterns.

6.2 Block allocation and low free space

When a new array of size k needs to be written, we try
to allocate it in the first free region of size > k. If this
fails, we use a ‘chunking strategy’: we divide each ar-
ray into contiguous chunks of size ¢ >> B (currently
10MB). During a merge, we read chunks from each in-
put array until we have a chunk formed in memory to
output. When a chunk is no longer needed from the input
chunk arrays, it can be deallocated and the output chunk
written there. This doesn’t guarantee that the the entire
array is sequential on disk, but it is sequential to within
the chunk size, which is sufficient in practice to extract
good performance, and only uses O(1) extra space dur-

ing merges - thus the system degrades gracefully under
low free space conditions.

7 Practicalities

A data structure can be theoretically good, but unless it is
easy to implement efficiently, it won’t be practical. Here
we consider some of the major practical issues that face
B-trees, and describe how, in many cases, the SDA in
fact alleviates them. alleviate some of these problems,
then these are of practical interest.

7.1 Cache-obliviousness and block sizes

Storage devices are complex, and so too is the interaction
with complex memory hierarchies. The basic premise
of cache-oblivious algorithmics [9] is that the traditional
model of assuming a single, fixed block size B is no
longer a good approximation for interacting with stor-
age devices. Stratified B-trees don’t need block-size tun-
ing, unlike B-trees. One major advantage is that they are
naturally good candidates for SSDs, where a large asym-
metry in read/write block sizes makes life very hard for
B-trees. In contrast, the arrays making up the SDA can
be written with extremely large effective block sizes.

7.2 Consistency

We would like the data structure to be consistent — at
any time, the on-disk representation is in a well-defined
and valid state. In particular, we’d like it to always be
the case that, after a crash or power loss, the system can
continue without any additional work (or very little) to
recover from the crash.

Both CoW and SDA implement consistency in a sim-
ilar way: the difference between the new and old data
structure is assembled in such a way that it can be aban-
doned at any time up until a small in-memory change is
made at the end. In the case of CoW it is the root for ver-
sion v: until the table mapping v to root node is updated,
the newly copied nodes are not visible in searches, and
can be recycled in the event of a crash. Likewise for the
SDA arrays are not destroyed until they are no longer in
the search path, thus ensuring consistency.

7.3 Concurrency

With many-core architectures, easily exploiting concur-
rency is crucial to achieving decent performance. Con-
currency in B-trees is a well-studied problem, and is
quite a difficult challenge, particularly in the presence
of multiple writers - Rodeh [14] has a good discussion
about lock-coupling and other techniques.

The SDA can naturally be implemented without locks.
Each embedded B-tree is built bottom-up in a ‘reverse
DFS order’ (i.e. a node is only written once all its chil-
dren have been written), and once a node is written, it
is immutable. If there is no writer, then clearly there is
no contention among the readers. If the B-tree is being
constructed as a merge of 77,75, then there is a parti-
tion key k such that all nodes with key less than k are
immutable. Searches for key < k go to the immutable
subtree T with no contention. Searches for key > k
go to the immutable trees 77, 75 (searching both of them
concurrently). Each merge can thus be handled with a
single writer without locks. In the SDA, there are mul-
tiple merges ongoing concurrently, and each such merge
is handled by a separate writer.a there are often enough
concurrent merges to fully utilise all available cores.

8 Experimental results

We implemented prototypes of the Stratified Doubling
Array and CoW B-tree (using in-place updates) in
OCaml. The machine had 1GB memory available, a
2GHz Athlon 64 processor (although our implementation
was only single-threaded) and a 5S00GB SATA disk. We
used a block size of 32KB; the disk can perform about
100 such IOs/s.

We started with a single root version and inserted ran-
dom 100 byte key-value pairs to random leaf versions,
and periodically performed range queries of size 1000 at
a random version. Every 100,000 insertions, we create a
new version as follows: with probability 1/3 we clone a
random leaf version and w.p. 2/3 we clone a random in-
ternal node of the version tree. The aim is to keep to the
version tree ‘balanced’ in the sense that there are roughly
twice as many internal nodes as leaves.

The figures show results for the CoW (btree), the Strat-
ified Doubling Array (strat-DA) and, for comparison, the
SDA where we disable density amplification; hence there
is a single array at each level after promotions. Figure[3]
shows the insertion performance on the disk. The B-tree
performance degrades rapidly when the index exceeds
internal memory available. Figure] shows range query
performance (elements/s extracted using range queries of
size 1000) - the SDA beats the CoW B-tree by a factor of
more than 10. Interestingly, the CoW B-tree is limited by
random 10 herd’| but the SDA is CPU-bound (OCaml is
single-threaded). Preliminary performance results from a
highly-concurrent in-kernel implementation suggest that
over 500,000 versioned updates/s are possible with 16
cores.

5(100/s*32KB)/(200 bytes/key) = 16384 key/s

9 Conclusions

We believe the stratified B-tree construction outlined
here (and the more detailed construction described in [6])
represents a significant step forward in the story of ver-
sioned data structures. We are currently developing an
industrial-strength (but open-source) implementation in
the Linux kernel, performing more detailed tests and de-
veloping improved techniques for, e.g. deleting stale ver-
sions.

References

[1] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indexes. Acta Informatica,
1(3):173-189, 1972.

[2] Bruno Becker and Stephan Gschwind. An asymptoti-
cally optimal multiversion b-tree. The VLDB Journal,
5(4):264-275, 1996.

[3] Michael A. Bender and Martin Farach-Colton et al.
Cache-oblivious streaming b-trees. In SPAA ’07, pages
81-92, New York, NY, USA, 2007. ACM.

[4] Jeff Bonwick and Matt Ahrens. The zettabyte file system,
2008.

[5] Gerth Stolting Brodal and Rolf Fagerberg. Lower bounds
for external memory dictionaries. In SODA ’03, pages
546-554, Philadelphia, PA, USA, 2003. Society for In-
dustrial and Applied Mathematics.

[6] A. Byde and A. Twigg. Optimal query/update tradeoffs
in versioned dictionaries. http://arxiv.org/abs/
1103.2566l ArXiv e-prints, March 2011.

[7]1 J R Driscoll and N Sarnak. Making data structures persis-
tent. In STOC ’86, pages 109-121, New York, NY, USA,
1986. ACM.

[8] Btrfs file system.
wiki/Btrfs.

http://en.wikipedia.org/

[9] Matteo Frigo and Charles Leiserson. Cache-oblivious al-
gorithms. In FOCS 99, pages 285—, Washington, DC,
USA, 1999. IEEE Computer Society.

[10] Dave Hitz and James Lau. File system design for an nfs
file server appliance, 1994.

[11] Intel x25m g2 ssd data sheet, [ftp://download.
intel.com/newsroom/kits/ssd/pdfs/
X25-M_34nm_DataSheet .pdf, 2011.

[12] Sitaram Lanka and Eric Mays. Fully persistent B+-trees.
SIGMOD Rec., 20(2):426-435, 1991.

[13] John T. Robinson. Analysis of steady-state segment stor-
age utilizations in a log-structured file system with least-
utilized segment cleaning. SIGOPS Oper. Syst. Rev.,
30:29-32, October 1996.

[14] Ohad Rodeh. B-trees, shadowing, and clones. Trans.
Storage, 3:2:1-2:27, February 2008.

http://arxiv.org/abs/1103.2566
http://arxiv.org/abs/1103.2566
http://en.wikipedia.org/wiki/Btrfs
http://en.wikipedia.org/wiki/Btrfs
ftp://download.intel.com/newsroom/kits/ssd/pdfs/X25-M_34nm_DataSheet.pdf
ftp://download.intel.com/newsroom/kits/ssd/pdfs/X25-M_34nm_DataSheet.pdf
ftp://download.intel.com/newsroom/kits/ssd/pdfs/X25-M_34nm_DataSheet.pdf

Insert rate, as a function of dictionary size

T
1
1
1e+06 | H B
n
1)
F]
v 1)
\ :
1
1
: :
100000 |7, \
- i
=
=]
2
5} ¥ Y
I 1
.:f) 10000 -! ?"'
Z A,
= N
!
i
1000 - i~ 4
[\]
SDA N
DA N,
| CoW RS T 1
ave(SDA) MR b
100 | avg(DA) ------ =
[avg(CoW) === - .]

Keys (millions)

Figure 3: insert performance with 1000 versions.

[15] Mendel Rosenblum and John K. Ousterhout. The design
and implementation of a log-structured file system. ACM
Trans. Comput. Syst., 10:26-52, February 1992.

[16] Daniel Dominic Sleator and Robert Endre Tarjan. Self-

adjusting binary search trees. J. ACM, 32:652—-686, July
1985.

[17] Craig A. N. Soules, Garth R. Goodson, John D. Strunk,
and Gregory R. Ganger. Metadata efficiency in version-
ing file systems. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies, pages 43-58,
Berkeley, CA, USA, 2003. USENIX Association.

Range rate, as a function of dictionary size

- — -
L .
e
[
“”
__
~—
DDODDO
©TO0zESS
e
VaWa
\\\ < =
. 1 2l PN I I I
%0 o~ o o =3 o
E % 3 s g =
o (5] o W/\ [=] =
= = = 3 =

le+09

puooas 1ad speay

10

Keys (millions)

Figure 4: range query performance with 1000 versions.

	1 Introduction
	2 Versioned dictionaries
	3 Copy-on-Write B-trees
	4 Multiversion B-trees
	5 Log-structured CoW B-trees
	5.1 Solid State Drives

	6 Stratified B-trees
	6.1 The Idea
	6.2 Block allocation and low free space

	7 Practicalities
	7.1 Cache-obliviousness and block sizes
	7.2 Consistency
	7.3 Concurrency

	8 Experimental results
	9 Conclusions

