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1. INTRODUCTION

Hypergraphs are not as common as graphs, but they do arise in many application areas.
For example hypergraphs are used in VLSI design for circuit visualization [10, 18] and
also appear in computational biology [14,17] and social networks [6].

Throughout this paper, unless stated otherwise, we use the terminology of [4, 20]
for hypergraphs. We also assume that the basic definitions from graph theory are
familiar to the reader but for necessary definitions and notations we refer the reader
to textbook [5]. To shorten notation, we often write [k] instead of {1, 2, . . . , k}.

Let X = {x1, x2, . . . , xn} be a finite set, and D = {D1, D2, . . . , Dm} be a family
of subsets of X. The pair H = (X,D) is called a hypergraph with vertex set X also
denoted by V(H) and with edge set D also denoted by D(H). |X| = n is called the
order of the hypergraph and |D| = m is called the size of the hypergraph. The elements
x1, x2, . . . , xn are called the vertices and the sets D1, D2, . . . , Dm are called the edges.
The rank of H, denoted by r(H), is the maximum size of any of the edges of H.
If a hypergraph H has no multiple edges and all its edges are of size r, then H is
called r-uniform hypergraph. From this point of view, a simple graph is a 2-uniform
hypergraph. If, in a hypergraph H, the degree of each of its vertices is equal to k, then
H is called k-regular hypergraph. For 1 ≤ r ≤ n, we define the complete r-uniform
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hypergraph to be the hypergraph Kr
n = (X,D) such that |X| = n and D(Kr

n) =
(

X
r

)

which denotes the set of all r-subsets of X. Thus a complete graph on n vertices
is a complete 2-uniform hypergraph K2

n also denoted by Kn. Also in special case,
Kn

n is a hypergraph with one edge of size n.
In a hypergraph H = (X,D), an alternating sequence x0D1x1D2x2 . . . xt−1Dtxt

of distinct vertices x0, x1, x2, . . ., xt and distinct edges D1, D2, D3, . . ., Dt sat-
isfying xi−1, xi ∈ Di, i = 1, 2, . . . , t, is called a path of length t connecting the
vertices x0 and xt, or, equivalently, (x0, xt)-path. In addition, an alternating sequence
x1D1x2D2x3 . . . xtDtx1 of distinct vertices x1, x2, . . ., xt and distinct edges D1, D2,
D3, . . ., Dt satisfying {xi, xi+1} ⊆ Di, where 1 ≤ i < t and {xt, x1} ⊆ Dt, is called
a cycle of length t.

We refer to a cycle with k edges as a k-cycle, and denote the family of all k-cycles
by Ck. For example, a 2-cycle consists of a pair of vertices and a pair of edges such that
the pair of vertices is a subset of each edge. The girth of a hypergraph H, containing
a cycle, is the minimum length of a cycle in H. In addition, the minimum length
of a cycle in H that contains vertex x is called x-girth of H and is denoted by gx(H).

The coloring of hypergraphs started in 1966 when P. Erdős and A. Hajnal [9]
introduced the notions of coloring and of the chromatic number of a hypergraph and
obtained the first important result about the minimum number of edges in uniform
hypergraphs that are not 2-colorable. For further information see [1, 3, 12,19].

There are two basic colorings of hypergraphs. Let [λ] be the set of colors. A proper
λ-coloring of a hypergraph H = (X,D) is a labeling of its vertices X with the colors
[λ] in such a way that every edge D of size at least two has at least two vertices colored
differently. This proper λ-coloring is called a weak coloring of a hypergraph. The
minimum λ for which there exists a proper λ-coloring is called the (weak) chromatic
number of H and is denoted by χ(H).

A strong λ-coloring of H is a partition of X into λ strong stable sets Si,
i = 1, 2, . . . , λ, such that |D ∩ Si| ≤ 1 holds for every D ∈ D(H) and for every i.
The strong chromatic number γ(H) is the smallest λ for which there exists a strong
λ-coloring of H. Evidently the strong and weak coloring coincide when H is a graph.

There are several operations that produce new graphs from old ones such as
products of graphs and complement of a graph. To produce a new graph with the
same topological properties, we use the operation of subdivision of a graph. This is an
important notion in graph theory, for example, the celebrated theorem of Kuratowski
uses it to characterize planar graphs. In [11], the author introduced fractional power
of a graph by use of k-subdivision. For any k ∈ N, the k-subdivision of graph G,
denoted by G 1

k , is constructed by replacing each edge xy of G with a path of length k.
The aim of this paper is to introduce the subdivision of hypergraphs and study some
of their properties.

1.1. ORGANISATION OF THE PAPER

In the following section, Section 2, we describe the idea of the subdivision of
a hypergraph and give its definition in Subsection 2.1. Then in Subsection 2.2, we
derive exact formulas for the order, size, the degrees of the vertices and the distances
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between the vertices of a subdivision of a hypergraph in terms of the parameters of
the original hypergraph. We also present upper and lower bounds on the diameter
of a subdivision of a hypergraph and calculate x-girth and the girth of these graphs
in terms of the parameters of the original hypergraph. In Section 3, we investigate
the weak and strong colorings of a subdivision of a hypergraph and prove tight lower
and upper bound on the weak and strong chromatic numbers of these hypergraphs.
In addition we suggest some new research problems.

2. SUBDIVISION OF A HYPERGRAPH

In topology, there are various kinds of simplex subdivisions such as edgewise subdivi-
sion [7], jet subdivision [21], chromatic subdivision [13], interval subdivision [16], and
barycentric subdivision [22]. Consider the (n− 1)-dimensional simplex defined by

∆ =
{

(x1, x2, . . . , xn) ∈ Rn : xi ≥ 0,
n∑

i=1
xi = 1

}
.

If we represent an edge of size n with the set of lattice points of ∆, then any topological
subdivision of ∆, give us a subdivision of that edge.

In [8] and [15], the authors introduced a hypergraph related to a simplex as follows:
Let m ≥ 1 be an integer and consider the (n− 1)-dimensional simplex defined by

∆n,m =
{

(x1, x2, . . . , xn) ∈ Rn : xi ≥ 0,
n∑

i=1
xi = m

}
.

Consider Vn,m = Zn ∩∆n,m, the set of all the points in ∆n,m with integer coordinates.
The simplex-lattice hypergraph is a n-uniform hypergraph Hn,m = (Vn,m, En,m) whose
edges are indexed by the elements of Vn,m−1: we have En,m = {u+Vn,1 : u ∈ Vn,m−1},
where u+V := {u+ v : v ∈ V }. For example, Hn,1 = Kn

n and H2,m is a path of size m
or K

1
m
2 . We use this n-uniform hypergraph to defining the sudivision of hypergraph.

2.1. DEFINITIONS

Let n ∈ N and G be a graph. We know that the n-subdivision of graph G is a simple
graph G 1

n , which is constructed by replacing each edge of G with a path of length n.
As with many definitions and problems in graph theory, it seems natural attempt
a generalisation to hypergraphs. To generalize the concept of subdivision of graph, we
need to define the concept of subdivision of an edge of a hypergraph.

As you see, we call Vn,m the set of nonnegative integer solutions of the equation∑n
i=1 xi = m which can be represented by a set of points of Rn. We know that

this equation has
(

m+n−1
n−1

)
nonnegative integer solutions (see Theorem 1.11 in [2]).

For example, Vn,0 = {(0, . . . , 0, 0)} and Vn,1 is the set of unite standard points
e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0 . . . , 0), . . . , and en = (0, 0, . . . , 0, 1).
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Definition 2.1. Let S be a set of points of Rn. S is called a d-equidistant set of Rn

if the distance between any two points of S is equal to d.
Note that the Euclidean distance of any two points of Vn,1 is

√
2 and so Vn,1 is

a
√

2-equidistant set of Rn. In Theorem 2.2 we characterize all maximal
√

2-equidistant
sets of Vn,m. Let u+ αV := {u+ αv : v ∈ V }.
Theorem 2.2. Let n,m ∈ N, n ≥ 2 and S be a

√
2-equidistant subset of Vn,m. Then

(i) |S| ≤ n,
(ii) if |S| = n then S = u+Vn,1 or S = u′−Vn,1, where u = (u1, u2, . . . , un) ∈ Vn,m−1

and u′ = (u′1, u′2, . . . , u′n) is a positive integer solution of
∑n

i=1 xi = m+ 1,
(iii) there are exactly

(
m+n−2

n−1
)
n-sets S of the form S = u+ Vn,1 and

(
m

n−1
)
n-sets S

of the form S = u′ − Vn,1.
Proof. (i) Suppose that X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn) are two nonneg-
ative integer solutions of the equation

∑n
i=1 zi = m. We have

d(X,Y ) =

√√√√
n∑

i=1
(xi − yi)2 =

√
2.

Therefore, there are exactly two indices p, q ∈ [n] such that Y = X + ep − eq, where
ep and eq were introduced before. Now suppose that S = {X1, X2, . . . , Xk} and so
for every i ∈ {2, 3, . . . , k} we have Xi = X1 + epi

− eqi
, where pi, qi ∈ [n]. Because

d(Xi, Xj) = ‖epi
− eqi

− epj
+ eqj

‖ =
√

2,

it follows that pi = pj , qi 6= qj or pi 6= pj , qi = qj . Now one can easily conclude
that there are only two cases for the elements of S: either p2 = p3 = . . . = pk and
qi 6= qj for each two indices i, j ∈ {2, 3, . . . , k} or q2 = q3 = . . . = qk and pi 6= pj for
each two indices i, j ∈ {2, 3, . . . , k}. Therefore, |{p2, p3, . . . , pk, q2, q3, . . . , qk}| ≤ n and
so k ≤ n.

(ii) In the first case (p = p2 = p3 = . . . = pn and qi 6= qj), let u′ = X1 + ep and
in the second case (q = q2 = q3 = . . . = qn and pi 6= pj), let u = X1 − eq. One can
easily check that in the first case S = u′ − Vn,1 and in the second case S = u+ Vn,1.
In addition,

u′ = X1 + ep = X2 + eq2 = X3 + eq3 = . . . = Xn + eqn

which shows that the components of u′ are positive integers and

n

n∑

i=1
u′i =

n∑

i=1

( n∑

j=1
Xi

j

)
+ n = nm+ n.

So
∑n

i=1 u
′
i = m + 1 and u′ is a positive integer solution of the equation

x1 + x2 + . . .+ xn = m+ 1. Similarly

u = X1 − eq = X2 − ep2 = X3 − ep3 = . . . = Xk − epk



Subdivision of hypergraphs and their colorings 275

which shows that the components of u are nonnegative integers and

n

n∑

i=1
ui =

n∑

i=1

( n∑

j=1
Xi

j

)
− n = nm− n.

So
∑n

i=1 ui = m − 1 and u is a nonnegative integer solution of the equation
x1 + x2 + . . .+ xn = m− 1.

(iii) In fact,
(

m+n−2
n−1

)
is the number of nonnegative integer solutions of the

equation
∑n

i=1 xi = m − 1 and
(

m
n−1
)
is the number of positive integer solutions

of the equation
∑n

i=1 xi = m+ 1.

Remark 2.3.
(i) When n = 2, the set of

√
2-equidistant subsets of the form u+ Vn,1 is equal to

the set of
√

2-equidistant subsets of the form u′ − Vn,1.
(ii) Geometrically any maximal

√
2-equidistant subset of the form u+ Vn,1 is a trans-

ferred copy of Vn,1 without rotation.
We can use these maximal

√
2-equidistant sets of the form u + Vn,1 to define

m-subdivision of an edge of size n.
Definition 2.4. Let H be a hypergraph, n,m ∈ N and D be an edge of H of size n.
If we represent the vertices of D with the points of Vn,1 in Rn, then in m-subdivision
of D, we replace D with a copy of Hn,m such that each vertex ei of D is replaced
by the vertex which assigned by m.ei in Vn,m. Precisely, If D = {v1, v2, . . . , vn} then
the vertices of D 1

m are denoted by vx, where x = (x1, x2, . . . , xn) ∈ Vn,m such that
vi = vm·ei

for any i ∈ [n] and

D(D 1
m ) = {Du : u ∈ Vn,m−1},

where
Du = {vx : x ∈ u+ Vn,1}.

Example 2.5. Suppose that D is an edge of size 3 from the hypergraph H. To
define D 1

2 , we represent the vertices of D with {v(1,0,0), v(0,1,0), v(0,0,1)}. Now the set
of vertices of D 1

2 is

V(D 1
2 ) = {v(2,0,0), v(0,2,0), v(0,0,2), v(1,1,0), v(1,0,1), v(0,1,1)}

and we replace D with C(3, 2) = 3 edges as follows (see Figure 1):

D(1,0,0) = {vx : x ∈ (1, 0, 0) + Vn,1} = {v(2,0,0), v(1,1,0), v(1,0,1)},
D(0,1,0) = {vx : x ∈ (0, 1, 0) + Vn,1} = {v(1,1,0), v(0,2,0), v(0,1,1)},
D(0,0,1) = {vx : x ∈ (0, 0, 1) + Vn,1} = {v(1,0,1), v(0,1,1), v(0,0,2)}.

Note that in D 1
2 , we replace the vertices v(1,0,0), v(0,1,0) and v(0,0,1) of D consequently

with the vertices v(2,0,0), v(0,2,0) and v(0,0,2) (we call them the vertices of D in D 1
2 )

and then we add some new vertices between them such that the distance between any
two vertices of D in D 1

2 is two.
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Fig. 1. D and D
1
2

Definition 2.6. Let H be a hypergraph. For any mapping f : D(H) → N, the
f-subdivision of H, denoted by H 1

f , is constructed by replacing each edge D of H
with its f(D)-subdivision. In special case, when f(D) = k for each edge D, we use
H 1

k instead of H 1
f . Additionally, H 1

f is called fully subdivided if f(D) ≥ 2 for each
edge D of H.

Each vertex of H in H 1
f is called a terminal vertex, and each of the remained

vertices of H 1
f is called an internal vertex. In addition, for each D ∈ D(H), the sets of

terminal vertices and internal vertices of D 1
n and H 1

f is denoted by Vt(D
1
n ), Vi(D

1
n ),

Vt(H
1
n ) and Vi(H

1
n ) consequently and D is called the underlying edge of the vertex x,

when x ∈ Vi(D
1
n ). Similarly, each edge of H 1

f is called an internal edge when all of
its vertices are internal, and each of the remained edges of H 1

f is called a terminal
edge. D is called the underlying edge of the edge D′ ∈ D(H 1

f ), when f(D) = k and
D′ ⊆ V(D 1

k ). Easily one can show that

|Vt(D
1
n )| = |D| and |Vi(D

1
n )| =

(
n+ |D| − 1
|D| − 1

)
− |D|.

Example 2.7. Suppose that H is a hypergraph with vertex set V(H) =
{v1, v2, v3, v4, v5, v6} and edge set D(H) = {D1, D2, D3} such that D1 = {v1, v2, v3},
D2 = {v2, v4}, D3 = {v3, v4, v5, v6}. Also assume that f : D(H) → N is a mapping
with the following outputs:

f(D1) = 3, f(D2) = 4, f(D3) = 2.
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Then H 1
f has four edges of size 2, six edges of size 3 and four edges of size 4 as follows

(see Figure 2):

D(2,0,0) = {v(3,0,0), v(2,1,0), v(2,0,1)}, D(0,2,0) = {v(0,3,0), v(1,2,0), v(0,2,1)},
D(0,0,2) = {v(0,0,3), v(1,0,2), v(0,1,2)}, D(1,1,0) = {v(2,1,0), v(1,2,0), v(1,1,1)},
D(1,0,1) = {v(2,0,1), v(1,1,1), v(1,0,2)}, D(0,1,1) = {v(1,1,1), v(0,2,1), v(0,1,2)},
D(3,0) = {v(4,0), v(3,1)}, D(0,3) = {v(0,4), v(1,3)},
D(2,1) = {v(3,1), v(2,2)}, D(1,2) = {v(2,2), v(1,3)},

D(1,0,0,0) = {v(2,0,0,0), v(1,1,0,0), v(1,0,1,0), v(1,0,0,1)},
D(0,1,0,0) = {v(1,1,0,0), v(0,2,0,0), v(0,1,1,0), v(0,1,0,1)},
D(0,0,1,0) = {v(1,0,1,0), v(0,1,1,0), v(0,0,2,0), v(0,0,1,1)},
D(0,0,0,1) = {v(1,0,0,1), v(0,1,0,1), v(0,0,1,1), v(0,0,0,2)}.

Also we have Vt(H
1
f ) = V(H), where

v1 = v(3,0,0), v2 = v(0,3,0) = v(4,0),

v3 = V(0,0,3) = v(2,0,0,0), v4 = v(0,2,0,0) = v(0,4),

v5 = v(0,0,2,0), v6 = v(0,0,0,2).

Fig. 2. H and H 1
f

2.2. PROPERTIES

In this section, we calculate some of the basic parameters of a subdivision of a hyper-
graph in terms of the parameters of the original hypergraph. In the first theorem, we
obtain the order and the size of these hypergraphs.
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Theorem 2.8. Let H be a hypergraph, f be a mapping from D(H) to N and r, k ∈ N.
Then

(i)

n(H 1
f ) =

∑

D∈D

(
f(D) + |D| − 1
|D| − 1

)
−
∑

v∈V
d(v) + n(H),

(ii)

m(H 1
f ) =

∑

D∈D

(
f(D) + |D| − 2
|D| − 1

)
,

(iii)

n(H 1
r ) = m(H)

((r + k − 1
k − 1

)
− k
)

+ n(H) and m(H 1
r ) = m(H)

(
r + k − 2
k − 1

)

when H is k-uniform.

Proof. (i) We know that

|Vt(D
1

f(D) )| = |D| and |Vi(D
1

f(D) )| =
(
f(D) + |D| − 1
|D| − 1

)
− |D|

for each D ∈ D(H). So

n(H 1
f ) = |Vi(H

1
f )|+ |Vt(H

1
f )|

=
∑

D∈D
(|Vi(D

1
f )|) + n(H)

=
∑

D∈D

((
f(D) + |D| − 1
|D| − 1

)
− |D|

)
+ n(H)

=
∑

D∈D

(
f(D) + |D| − 1
|D| − 1

)
−
∑

D∈D
|D|+ n(H)

=
∑

D∈D

(
f(D) + |D| − 1
|D| − 1

)
−

∑

v∈V(H)

d(v) + n(H).

(ii) This part can be derived from the part (iii) of Theorem 2.2.
(iii) One can deduce it from the previous parts.

In Theorem 2.9, we calculate the degrees of the vertices of a subdivision of
a hypergraph.

Theorem 2.9. Let H be a hypergraph, f be a mapping from D(H) to N. Then

(i) the degree of each terminal vertex in H 1
f is equal to its degree in H,

(ii) the degree of each internal vertex vx in H 1
f is equal to the number of non-zero

components of x.
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Proof. (i) Suppose that v is a terminal vertex of the edge D ∈ D(H). In the subhy-
pergraph D

1
f = (V(D

1
f(D) ),D(D

1
f(D) )) there is exactly one edge that contains v. So

d
H

1
f

(v) = dH(v).
(ii) Suppose that the internal vertex vx belongs to the edgeDv = {vx : x ∈ v+Vk,1},

where D is underlying edge of v, |D| = k, f(D) = n and v ∈ Vk,n−1. So there exists
i ∈ [k] such that x = v+ ei and therefore xi = vi + 1 that shows xi ∈ N. Thus, for any
positive component xj of x, we have x = (x− ej) + ej and so x ∈ (x− ej) + Vk,1 in
which x− ej ∈ Vk,n−1. This implies that

d(vx) = |{x− ej + Vk,1 : xj 6= 0}| = |{j ∈ [k] : xj 6= 0}|.
In the next theorem, we find the distance between any two terminal vertices and

internal vertices (with the same underlying edge) of a subdivision of a hypergraph.
In a hypergraph H, let PH(x, y) be the set of all paths between the vertices x and y
and f(P ) :=

∑
D∈P f(D) for each path P of H and each mapping f from D(H) to N.

Also for any D ∈ V(H), let D
1
f be a subhypergraph of H 1

n with vertex set V(D
1

f(D) )
and edge set D(D

1
f(D) ).

Theorem 2.10. Let H be a hypergraph, f be a mapping from D(H) to N and n ∈ N.
Then
(i) d

D
1
f

(vx, vy) = 1
2
∑k

i=1 |xi − yi|, where x = (x1, x2, . . . , xk), y = (y1, y2, . . . , yk),
D ∈ D(H), |D| = k and vx, vy ∈ V(D

1
f ),

(ii) d
D

1
f

(vx, vy) = f(D), where vx, vy ∈ Vt(D
1
f ),

(iii) d
H

1
f

(vx, vy) = min{f(P ) : P ∈ PH(vx, vy)}, where vx, vy ∈ Vt(H
1
f ),

(iv) dH 1
n

(vx, vy) = n · dH(vx, vy) for any two terminal vertices vx and vy.

Proof. (i) We proceed by induction. Since
∑k

i=1 xi =
∑k

i=1 yi = f(D),
∑k

i=1 |xi − yi|
is always even. When

∑k
i=1 |xi − yi| = 0, trivially d

D
1
f

(vx, vy) = 0. Also obviously we
have d

D
1
f

(vx, vy) = 1 when
∑k

i=1 |xi− yi| = 2. Now consider
∑k

i=1 |xi− yi| = 2m ≥ 4.
Because of

∑k
i=1 xi =

∑k
i=1 yi = f(D), there are two indices i and j such that xi > yi

and xj < yj . Now considering the vertex vz such that z = x − ei + ej , we have
d

D
1
f

(vx, vz) = 1 and
∑k

i=1 |zi − yi| = 2m− 2. Therefore, inductively we can conclude
that d

D
1
f

(vz, vy) = m− 1. Hence

d
D

1
f

(vx, vy) ≤ d
D

1
f

(vx, vz) + d
D

1
f

(vy, vz) = m.

To complete the proof, we will show that d
D

1
f

(vx, vy) ≥ m and so d
D

1
f

(vx, vy) = m.
Suppose that P = vx0vx1vx2 . . . vxl−1vxl is a vxvy-path with minimum length l, x0 = x

and xl = y. Therefore,
∑k

i=1 |x
j
i − xj+1

i | = 2 for all j ∈ {0, 1, . . . , l − 1}. Now using
triangle inequality, we get

2l =
l−1∑

j=0

k∑

i=1
|xj

i − xj+1
i | ≥

k∑

i=1
|xi − yi| = 2m.
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So d
D

1
f

(vx, vy) = l ≥ m.
(ii) This part can be derived from (i).
(iii) Suppose that P0 = vx0vx1vx2 . . . vxk−1vxk

is a path between terminal vertices
x = vx0 and y = vxk

in H 1
f with length k. This path contains some terminal and some

internal vertices. Suppose that vx0 , vxi1
, vxi2

, . . . , vxil−1
and vxk

are all of the terminal
vertices of P0 such that i0 = 0 < i1 < i2 < . . . < il−1 < il = k. Therefore, the induced
path of P0 between vxij

and vxij+1
contains only two terminal vertices of Γ. So using

Part (ii), we have

dΓ(vx, vy) = k ≥
l−1∑

j=0
dΓ(vxij

, vxij+1
) =

l∑

j=1
f(Dj),

whereDj is the edge that contains vxij−1
and vxij

and vx, D1, vxi1
, D2, . . . , vxil−1

, Dl, vy

is a path between vx and vy in H. Thus dΓ(vx, vy) ≥ min{f(P ) : P ∈ PH(vx, vy)}.
Similarly, for each path P ∈ PH(vx, vy) there is a path P ′ ∈ PΓ(vx, vy) such that the
length of P ′ is equal to f(P ). Therefore, dΓ(vx, vy) ≤ f(P ) for any path P ∈ PH(vx, vy)
and hence dΓ(vx, vy) = min{f(P ) : P ∈ PH(vx, vy)}.

(iv) This part follows immediately by (iii).

We need the following technical result in the proof of Theorem 2.12.

Lemma 2.11. Let D be the only edge of H = Kn
n, k ∈ N and Γ = H 1

k . Then
∑

vy∈Vt(D
1
k )

dΓ(vx, vy) = (n− 1)k

for every vertex vx ∈ V(Γ).

Proof. Observe that

∑

vy∈Vt(D
1
k )

dΓ(vx, vy) =
∑

vy∈Vt(D
1
k )

1
2

n∑

i=1
|xi − yi|

= 1
2

n∑

i=1

∑

vy∈Vt(D
1
k )

|xi − yi|

= 1
2

n∑

i=1
(k − xi + (n− 1)xi)

= 1
2

(
nk + (n− 2)

n∑

i=1
xi

)
= (n− 1)k.

In the following theorem, we establish tight bounds on the diameter of H 1
n

and an exact formula for its girth in terms of the parameters of H.
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Theorem 2.12. Let H be a hypergraph and n ∈ N. Then
(i) n · diam(H) ≤ diam(H 1

n ) ≤ n · diam(H) + 2n(1− 1
r(H) ),

(ii) gv(H 1
n ) = n · gv(H) for each terminal vertex v,

(iii) g(H 1
n ) = 3 for any n ∈ N \ {1} and any hypergraph H with rank at least three.

Proof. (i) Suppose that x and y are two vertices of H such that dH(x, y) = diam(H).
By the last part of Theorem 2.10, we conclude

dH 1
n

(x, y) = n · dH(x, y) = n · diam(H).

Therefore, diam(H 1
n ) ≥ n · diam(H). Now suppose that dH 1

n
(vx, vy) = diam(H 1

n ),
vx ∈ D1 and vy ∈ D2, where D1, D2 ∈ D(H). Let Pij be a path of minimum length
between vx and vy which contains two terminal vertices xi ∈ Vt(D1) and yj ∈ Vt(D2).
Let S be the sum of the length of the paths Pij , where 1 ≤ i ≤ |D1| and 1 ≤ j ≤ |D2|.
So we get

S = |D2|
|D1|∑

i=1
dH 1

n
(vx, xi) +

|D1|∑

i=1

|D2|∑

j=1
dH 1

n
(xi, yj) + |D1|

|D2|∑

i=1
dH 1

n
(yj , vy)

≤ |D2|(|D1| − 1)n+ |D1||D2|n · diam(H) + |D1|(|D2| − 1)n.

Hence

|D1||D2|diam(H 1
n ) ≤ S ≤ |D2|(|D1| − 1)n+ |D1||D2|n · diam(H) + |D1|(|D2| − 1)n.

Therefore,

diam(H 1
n ) ≤

(
1− 1
|D1|

)
n+ n · diam(H) +

(
1− 1
|D2|

)
n

≤ n · diam(H) + 2n
(

1− 1
r(H)

)
.

(ii) Assume that C = vx0vx1vx2 . . . vxk−1vxk
is the shortest cycle with length k

in H 1
n that contains terminal vertex v = vx0 = vxk

. This cycle contains some terminal
and some internal vertices. Suppose that vx0 , vxi1

, vxi2
, . . . , vxil−1

, vxil
= vxk

are all
of the terminal vertices of C such that i0 = 0 < i1 < i2 < . . . < il−1 < il = k. Therefore
the induced path of C between vxij

and vxij+1
contains only two terminal vertices

of H 1
n . So using Theorem 2.10, we have

k =
l−1∑

j=0
dH 1

n
(vxij

, vxij+1
) =

l−1∑

j=0
n = nl,

where C ′ = vxi0
, D1, vxi1

, D2, . . . , vxil−1
, Dl, vxil

is a cycle in H that contains v. There-
fore, gv(H 1

n ) ≥ n · gv(H). Now suppose that C is a cycle of H of length gv(H) that
contains v. Since trivially C can be extended to a cycle of length n · gv(H) in H 1

n that
contains v, therefore, gv(H 1

n ) ≤ n · gv(H) and so gv(H 1
n ) = n · gv(H).
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(iii) Suppose that D is an edge of size k ≥ 3 in H. Consider three vertices
u1 = v(n−1,1,0,0,...,0), u2 = v(n−1,0,1,0,...,0) and u3 = v(n−2,1,1,0,...,0) and three edges
D1 = D(n−1,0,0,...,0), D2 = D(n−2,0,1,0,...,0) and D3 = D(n−2,1,0,...,0) with underlying
edge D. Clearly C = u1D1u2D2u3D3u1 is a 3-cycle in H 1

n and so g(H 1
n ) = 3.

Note that both bounds in part (i) of Theorem 2.12 are achievable. Suppose
that r, k,m ∈ N, r ≥ 2 and Pr

n is the path with n = k(r − 1) + 1 vertices
x1, x2, . . . , xn and k edges D1, D2, . . . , Dk such that D1 = {x1, x2, . . . , xr} and
Di+1 = {xir−(i−1), xir−i+2, . . . , x(i+1)r−i} whenever 1 ≤ i ≤ k − 1. Then P r

n has
diameter k and (P r

n) 1
m has diameter mk. To achieve the upper bound, consider

complete r-uniform hypergraph Kr
n whenever n ≥ 2r. We know that diam(Kr

n) = 1
whereas

diam((Kr
n) 1

kr ) = kr + 2k(r − 1) = kr + 2kr
(

1− 1
r(Kr

n)

)
,

that is the distance of two central internal vertices x(k,k,...,k) ∈ D
1

kr
1 and

y(k,k,...,k) ∈ D
1

kr
2 with nonadjacent underlying edges D1 and D2.

3. COLORING OF SUBDIVISIONS OF A HYPERGRAPH

Our goal in this section is to discuss and study weak and strong colorings of the
subdivisions of a hypergraph. At first, we consider the weak coloring of a hypergraph.
It was mentioned in [11], when G is a connected graph and n is a positive integer
greater than 1, then at most three colors are enough to achieve a proper coloring
of G 1

n . Precisely,

χ(G 1
n ) =

{
3, n ≡ 1(mod 2) and χ(G) ≥ 3,
2, otherwise.

One can easily prove that any fully subdivided graph is 3-colorable. In fact, for any
graph G and any mapping f : E(G)→ N \ {1}, the set of terminal vertices of G

1
f is

an independent set and so we can properly color them with one color and the set of
internal vertices of G

1
f induces a disjoint union of paths and so we can properly color

them with two colors. Therefore, χ(G
1
f ) ≤ 3.

In Theorem 3.2, we show that the chromatic number of the subdivision of a
hypergraph is equal to the chromatic number of one of its subhypergraphs. Before
that, we prove the following useful lemma.

Lemma 3.1. Let n, k, s ∈ N, n ≥ 3, k ≥ 2 and ct : Vt(G) → {0, 1, . . . , s − 1} be
a partial coloring of the terminal vertices of G = (Kn

n) 1
k . Then ct can be extended

to a proper weak coloring of G such that the color of any internal vertex is 0 or 1.

Proof. We know that Kn
n has one edge D of size n. We define c(vx) = ct(vx) for each

terminal vertex vx of D 1
k . In addition, we assign the color (c(v0) + dG(vu, v0))(mod 2)
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to the internal vertex vu of D 1
k , where v0 = v(k,0,...,0). Easily we can show that this

coloring is proper. Firstly, consider the edge

D(k−1,0,...,0) = {vx : x ∈ (k − 1, 0, . . . , 0) + Vn,1}

that contains v0. In this edge, c(vu) 6= c(v0) for any internal vertex vu ∈ D(k−1,0,...,0) \
{v0}, because dG(vu, v0) = 1. Assume that u + Vn,1 is an edge of G, where
u = (u1, u2, . . . , un) ∈ Vn,k−1 and u 6= (k − 1, 0, . . . , 0). Note that, because k ≥ 2,
any edge of G has at most one terminal vertex. Furthermore, any edge has at least
two internal vertices, because n ≥ 3. Since vu+e1 is the internal vertex of Du and

dG(vu+e1 , v0) = k − u1 − 1 6= k − u1 = dG(vu+ej
, v0)

for any j 6= 1, we deduce that at least two colors appear on this edge of D 1
k .

Theorem 3.2. Let H be a non-empty hypergraph, f be a mapping from D(H) to N
and

D1 = {D ∈ D : f(D) = 1 or |D| = 2}.

Then
χ(H 1

f ) = max{2, χ(H
1
f

1 )},

where H1 is a subhypergraph of H with V(H1) = V(H) and D(H1) = D1.

Proof. Since H
1
f

1 is a subhypergraph of H 1
f , so χ(H

1
f

1 ) ≤ χ(H 1
f ). Now suppose that

χ(H
1
f

1 ) = m and c : V(H
1
f

1 )→ {0, 1, . . . ,m− 1} is a proper coloring of H
1
f

1 . We claim
that this coloring is extendable to a proper coloring of H 1

f by using two colors 0 and 1
for the uncolored vertices of H 1

f , which completes the proof.
Suppose that D is an edge of H with |D| ≥ 3 and f(D) = k ≥ 2. Consider D 1

k .
By Lemma 3.1, we can extend the partial coloring c of the terminal vertices of D 1

k to
a proper coloring cD of D 1

k . Therefore, applying Lemma 3.1 for any edge of D(H)\D1,
leads us to a proper coloring of H 1

f with max{2, χ(H
1
f

1 )} colors.

In the following corollary, we show that three colors are enough to achieve a proper
coloring of any fully subdivided hypergraph.

Corollary 3.3. Let H be a non-empty hypergraph and f be a mapping from D(H)
to N \ {1}. Then χ(H 1

f ) ≤ 3.

Proof. Here we apply Theorem 3.2. Because f(D) ≥ 2 for any edge D ∈ D(H), then
D1 = {D ∈ D : |D| = 2}. Therefore, H1 is a graph and so χ((H1)

1
f ) ≤ 3. Now by

applying Theorem 3.2, we conclude

χ(H 1
f ) = max{2, χ(H

1
f

1 )} ≤ 3.
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Definition 3.4. To contract an edge D of a hypergraph H is to delete the edge and
then identify its vertices. The resulting hypergraph is denoted by H/D. Let D′ be
a subset of D(H). If we contract all edges of D′, then the resulting hypergraph is
denoted by H/D′.

Theorem 3.5. Let H be a non-empty hypergraph, f be a mapping from D(H)
to N \ {1} and H0 be the subhypergraph of H induced by

D0 = {D ∈ D(H) : f(D) ≡ 0(mod 2), |D| = 2}.

Then χ(H 1
f ) = 2 if and only if:

(i) each 2-edge of D(H) \ D0 has at most one vertex in common with any connected
component of H0 and

(ii) χ(H′) ≤ 2, where H′ is constructed from H by removing all edges of size at least
3 and contracting all edges of D0.

Proof. At first, suppose that χ(H 1
f ) = 2 and c : V(H 1

f ) → {0, 1} is a proper weak
2-coloring of H 1

f . If some 2-edge such as D ∈ D(H) \ D0 has two vertices in common
with the component C of H0, then there is a 2-uniform odd cycle in H 1

f which shows
that χ(H 1

f ) ≥ 3, a contradiction. Therefore, condition (i) holds. Now we obtain
a proper weak 2-coloring for H′ by use of c. Because for any D ∈ D0, D

1
f(D) is

a path with even length so the colors of two terminal vertices of D
1

f(D) are the same
and for any 2-edge D ∈ D(H) \ D0, the colors of two terminal vertices of D

1
f(D) are

different. So in contraction of each edge of D0, we identify some of vertices with the
same color. Additionally, to construct H′, we remove all edges of size at least three
from H and so in colorig of H′, we have no condition on the terminal vertices of these
edges. Therefore, if we assign the color c(vx) to the vertex vx of H′ (that is, a terminal
vertex of H 1

f ), the resulting coloring is proper.
Conversely, assume that χ(H′) ≤ 2 and c′ : V(H′) → {0, 1} is a proper weak

2-coloring of H′. To obtain a proper weak 2-coloring c of H 1
f , at first we define

a proper weak 2-coloring c′′ of H
1
f

1 as follows, where H1 was defined in Theorem 3.2:
If in contraction of the edge D, two vertices of D are identified to a vertex vD in H′,
then we define c′′(v) = c′(vD) for any vertex v of D. Also for any other terminal vertex
v of H

1
f

1 we define c′′(v) = c′(v). Therefore, in c′′, if 2 | f(D), two terminal vertices of
D

1
f(D) have the same color and we can color properly the internal vertices of D

1
f(D) by

using alternately the colors for internal vertices and if 2 - f(D), two terminal vertices
of D

1
f(D) have different colors and again we can color properly the internal vertices of

D
1

f(D) by using alternately the colors for internal vertices. Therefore, χ(H
1
f

1 ) ≤ 2 and
by Theorem 3.2, we have χ(H 1

f ) = 2.
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Corollary 3.6. Let H be a non-empty hypergraph and f be a mapping from D(H)
to N \ {1} such that 2 | f(D) for any 2-edge D. Then χ(H 1

f ) = 2.

Corollary 3.7. Let H be a non-empty hypergraph and n ∈ N \ {1}. Then

χ(H 1
n ) =

{
3, 2 - n and χ(H′) ≥ 3,
2, otherwise,

where H′ is constructed from H by removing all edges of size at least 3.

Observe that if r(H) = 2 and H is a graph, then H1 = H and any proper weak
coloring is a proper (graph) coloring. In this case, Corollary 3.7 generalizes the previous
similar result that was published in [11].

Now we study strong chromatic number of fully subdivided hypergraphs. Obviously,
for any hypergraph H, γ(H) ≥ r(H). We show that the strong chromatic number of
H 1

f is equal to r(H) or r(H) + 1 for any full subdivision of H.

Theorem 3.8. Let H be a hypergraph with rank r and f be a mapping from D(H) to
N \ {1}. Then γ(H 1

f ) ≤ r+ 1. Specially γ(H 1
f ) = r when r | f(D) for each D ∈ D(H).

Proof. Suppose that D is an edge of H of size s and f(D) = k and consider the
k-subdivision of D. We find a proper (r + 1)-coloring cD with color set {0, 1, 2, . . . , r}
for D 1

k such that all its terminal vertices have the same color. We assign the color
cD(vx) =

∑s
i=1 ixi (mod r) to the internal vertex vx = v(x1,x2,...,xs) and the color r

to each terminal vertex. Now we show that this coloring is proper. Suppose that
vx = v(x1,x2,...,xs) and vy = v(y1,y2,...,ys) are adjacent vertices of D 1

k . Therefore,
x = u0 + ei and y = u0 + ej , where i 6= j and 1 ≤ i, j ≤ s. Then

cD(x)− cD(y) = i− j (mod r) 6= 0.

Therefore, cD is a proper coloring of D 1
k . Because in this coloring of edges, all

terminal vertices have the same color r, we can define a proper coloring c of H 1
f as

follows. We use the color r for all terminal vertices and the color cD(vx) for each
internal vertex vx of the edge D

1
f(D) .

Now suppose that r | f(D) for every D ∈ D(H). In this case we assign the color
cD(x) =

∑s
i=1 iui (mod r) to each vertex vu = v(u1,u2,...,ur) of D

1
f(D) , where |D| = s.

Since r | f(D), the color of any terminal vertex is 0 and similar to the previous case,
we can show that this coloring is proper. Finally, we can define a proper coloring of H
by merging these colorings of edges.

Corollary 3.9. Let H be a hypergraph with rank r and n ∈ N\{1}. Then γ(H 1
n ) ≤ r+1.

Specially γ(H 1
n ) = r when r | n.
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In Theorem 3.8 and Corollary 3.9, we proved that r(H) + 1 colors are enough for
the strong coloring of any full subdivision of a hypergraph and characterized some of
the subdivisions of a hypergraph H such as H 1

f with strong chromatic number equal
to r(H). Therefore, the following problem arises naturally.
Problem 3.10. Let H be a hypergraph. Characterize all subdivisions f of H with
γ(H 1

f ) = r(H 1
f ).

Also in the following two special cases, we have easier problems:
Problem 3.11. Let H be a hypergraph. Characterize all fully subdivided hypergraph
H 1

f with γ(H 1
f ) = r(H 1

f ).
Problem 3.12. Let H be a hypergraph. Characterize all n ∈ N for which we have
γ(H 1

n ) = r(H 1
n ).

In the next theorem, we obtain sufficient and necessary condition for a fully
subdivided hypergraph of rank three to be strong 3-colorable. In order to prove the
next theorem, we need the following lemma.
Lemma 3.13. Let k ∈ N \ {1} and c : Vt((K3

3) 1
k ) → {1, 2, 3} be a partial coloring

of (K3
3) 1

k .
(i) If 3 | k then c can be extended to a proper strong 3-coloring of (K3

3) 1
k if and only

if the colors of all terminal vertices are the same.
(ii) If 3 - k then c can be extended to a proper strong 3-coloring of (K3

3) 1
k if and only

if the colors of any two terminal vertices are different.
Proof. (i) Assume that 3 | k. At first, suppose that c(vx) = c0 for any terminal vertex
vx of (K3

3) 1
k . To extend this partial coloring to a proper strong 3-coloring c′, we color

the vertex v(x1,x2,x3) with color c0 + x1 + 2x2 (mod 3). So on each edge D(y1,y2,y3) we
have c′(v(y1+1,y2,y3)) = c0 + y1 + 1 + 2y2 (mod 3), c′(v(y1,y2+1,y3)) = c0 + y1 + 2y2 + 2
(mod 3) and c′(v(y1,y2,y3+1)) = c0 + y1 + 2y2 (mod 3) which show that c′ is a proper
strong 3-coloring. In addition, c′(v(k,0,0)) = c0 + k (mod 3) = c0, c′(v(0,k,0)) = c0 + 2k
(mod 3) = c0 and c′(v(0,0,k)) = c0 which show that c′ is an extension of c.
Conversely, suppose that c(v(k,0,0)) = c1, c(v(0,k,0)) = c2, c(v(0,0,k)) = c3 and a proper
strong 3-coloring c′ is an extension of c. Consider the shortest path between terminal
vertices v(k,0,0) and v(0,k,0) whose vertices are

v(k,0,0), v(k−1,1,0), v(k−2,2,0), . . . , v(1,k−1,0), v(0,k,0).

We show that the colors of any two vertices v(k−i,i,0) and v(k−i−2,i+2,0) of this path
are different, where 0 ≤ i ≤ k − 2 and therefore,

c1 = c(v(k,0,0)) = c(v(k−3,3,0)) = . . . = c(v(0,k,0)) = c2.

Suppose that c(v(k−i,i,0)) = c(v(k−i−2,i+2,0)) = a for some i ∈ {0, 1, . . . , k − 2}. Then
c(v(k−i−1,i+1,0)) = b 6= a and so a 6= c(v(k−i−1,i,1)) 6= b and a 6= c(v(k−i−2,i+1,1)) 6= b.
This concludes c(v(k−i−1,i,1)) = c(v(k−i−2,i+1,1)). But v(k−i−1,i,1) and v(k−i−2,i+1,1) are
adjacent and so c′ is not proper, a contradiction (Figure 3). Similarly, c1 = c(v(k,0,0)) =
c(v(0,0,k)) = c3. Therefore, c1 = c2 = c3.
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Fig. 3. H and H 1
f

(ii) Assume that k = 3q + r, where r ∈ {1, 2}. At first, without loss of generality,
suppose that c(v(k,0,0)) = 1, c(v(0,k,0)) = 2 and c(v(0,0,k)) = 0. To extend this partial
coloring to a proper strong 3-coloring c′, we assign the color rx1 + 2rx2 (mod 3) to
the vertex v(x1,x2,x3). So on each edge D(y1,y2,y3) we have

c′(v(y1+1,y2,y3)) = ry1 + r + 2ry2 (mod 3),
c′(v(y1,y2+1,y3)) = ry1 + 2ry2 + 2r (mod 3)

and

c′(v(y1,y2,y3+1)) = ry1 + 2ry2 (mod 3)

which show that c′ is a proper strong 3-coloring. Additionally,

c′(v(k,0,0)) = kr (mod 3) = r2 (mod 3) = 1,
c′(v(0,k,0)) = 2rk (mod 3) = 2r2 = 2 (mod 3)

and

c′(v(0,0,k)) = 0

which show that c′ is an extension of c.
Conversely, suppose that c(v(k,0,0)) = c1, c(v(0,k,0)) = c2, c(v(0,0,k)) = c3 and proper

strong 3-coloring c′ is an extension of c. Consider the shortest path between terminal
vertices v(k,0,0) and v(0,k,0) whose vertices are

v(k,0,0), v(k−1,1,0), v(k−2,2,0), . . . , v(1,k−1,0), v(0,k,0).

As we see, the colors of any two vertices v(k−i,i,0) and v(k−i−2,i+2,0) of this path are
different, where 0 ≤ i ≤ k − 2. Therefore

c1 = c(v(k,0,0)) = c(v(k−3,3,0)) = . . . = c(v(r,k−r,0)) 6= c(v(0,k,0)) = c2.

Similarly c1 6= c3 and c2 6= c3.
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Theorem 3.14. Let H be a hypergraph of rank 3, f be a mapping from D(H) to
N \ {1} and H0 be the subhypergraph of H induced by

D0 = {D ∈ D(H) : f(D) ≡ 0(mod 3), |D| = 3}.

Then γ(H 1
f ) = 3 if and only if the following assertions hold:

(i) each 3-edge of D(H) \ D0 has at most one vertex in common with any connected
component of H0,

(ii) γ(H′) ≤ 3, where H′ is constructed from H by removing all edges of size 2 and
contracting all edges of D0.

Proof. Firstly, suppose that γ(H 1
f ) = 3 and c : V(H 1

f )→ {0, 1, 2} is a proper strong
coloring of H 1

f . Let C be a connected component of H0 and D be a 3-edge of D(H)\D0.
By Lemma 3.13, we know that the colors of all terminal vertices of D

1
f(D) are different.

In addition, Lemma 3.13 shows that the colors of all terminal vertices of C are the
same. So D has at most one vertex in common with C. Now we obtain a proper strong
coloring for H′ by use of c. For any D ∈ D0 , the colors of all terminal vertices of
D

1
f(D) are the same. So in contraction of each edge of D0, we identify some of the

vertices with the same color. In addition, to construct H′, we remove all edges of size
2 from H and so in colorig of (H′) 1

f , we have no condition on the vertices of these
edges. Therefore, if we assign the color c(vx) to the vertex vx of H′ (that is, a terminal
vertex of H 1

f ), the resulting coloring is proper.
Conversely, assume that γ(H′) ≤ 3 and c′ : V(H′) → {0, 1, 2} is a proper strong

coloring of H′. To obtain a proper strong 3-coloring c of H 1
f , at first we define a partial

coloring c′′ of the terminal vertices of H 1
f as follows: If in contraction of the edge D,

all vertices of D are identified to a vertex vD in H′, then we define c′′(v) = c′(vD) for
any vertex v of D. Also for any other terminal vertex v of H 1

f we define c′′(v) = c′(v).
Therefore, in partial coloring c′′, if 3 | f(D), all terminal vertices of D

1
f(D) have the

same color and if 3 - f(D), any two terminal vertices of D
1

f(D) have different colors.
Now for any 3-edge D, we can extend c′′ to a proper strong 3-coloring by Lemma 3.13.

Finally, we consider the internal vertices of the edges of size two. Suppose that
D = {v, u} is an edge of H and f(D) = k ≥ 2. So D

1
f(D) is a k-path between the

terminal vertices v and u. If you consider two cases c′′(v) = c′′(u) and c′′(v) 6= c′′(u),
it is not difficult to extend c′′ to a proper strong 3-coloring of D 1

k . Therefore, we can
define a proper strong 3-coloring of H 1

f by merging these colorings of subdivided edges.
Therefore, γ(H 1

f ) = 3.

Corollary 3.15. Let H be a hypergraph with rank three and n ∈ N \ {1}. Then

γ(H 1
n ) =

{
4, 3 - n and γ(H) ≥ 4,
3, otherwise.

Proof. We consider the following three cases.
Case (i). 3 | n. Applying Corollary 3.9, we deduce that γ(H 1

n ) = 3.
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Case (ii). 3 - n and γ(H) = 3. In this case D0 = ∅ and so H′ is a subhypergraph of H
with rank 3. Therefore, 3 ≤ γ(H′) ≤ γ(H) = 3 and so γ(H′) = 3. Now by Theorem
3.14, we conclude that γ(H 1

n ) = 3.
Case (iii). 3 - n and γ(H) ≥ 4. In this case D0 = ∅ and so H′ is a subhypergraph of
H with rank 3. If γ(H′) = 3, similar to the proof of Theorem 3.14, we can properly
color the internal vertices of each 2-edge and extend any proper 3-coloring of H′ to
a proper 3-coloring of H, a contradiction. Hence γ(H′) ≥ 4. Again by Theorem 3.14,
we conclude that γ(H 1

n ) ≥ 4. In addition, by Corollary 3.9, we have γ(H 1
n ) ≤ 4.

Therefore, γ(H 1
n ) = 4.

Acknowledgements
The author is grateful to the referee for suggestions which improved the paper.
Also the author would like to thank the School of Mathematics, Institute for Research
in Fundamental Sciences (IPM) for support. This research was in part supported
by a grant from IPM (No.93050013).

REFERENCES

[1] G. Agnarsson, M.M. Halldórsson, Strong colorings of hypergraphs, [in:] Approximation
and online algorithms, Lecture Notes in Comput. Sci., vol. 3351, Springer, Berlin, 2005,
253–266.

[2] I. Anderson, A First Course in Discrete Mathematics, Springer Undergraduate Mathe-
matics Series, Springer-Verlag London Ltd., London, 2001.

[3] G. Bacsó, C. Bujtás, Zs. Tuza, V. Voloshin, New challenges in the theory of hypergraph
coloring, [in:] Advances in discrete mathematics and applications: Mysore, 2008, Ra-
manujan Math. Soc. Lect. Notes Ser., vol. 13, Ramanujan Math. Soc., Mysore, 2010,
45–57.

[4] C. Berge, Graphs and Hypergraphs, revised ed., North-Holland Publishing Co., Amster-
dam, 1976, Translated from the French by Edward Minieka, North-Holland Mathematical
Library, vol. 6.

[5] J.A. Bondy, U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics, vol. 244,
Springer, New York, 2008.

[6] M. Brinkmeier, J. Werner, S. Recknagel, Communities in graphs and hypergraphs, [in:]
Proceedings of International Conference on Information and Knowledge Management
(2007), 869–872.

[7] H. Edelsbrunner, D.R. Grayson, Edgewise subdivision of a simplex, ACM Symposium
on Computational Geometry (Miami, FL, 1999), Discrete Comput. Geom. 24 (2000) 4,
707–719.

[8] A. Ene, J. Vondrák, Hardness of submodular cost allocation: lattice matching and a sim-
plex coloring conjecture, Approximation, randomization, and combinatorial optimization,
144–159, Leibniz Int. Proc. Inform., 28, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern,
2014.



290 Moharram N. Iradmusa

[9] P. Erdős, A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad.
Sci. Hungar 17 (1966), 61–99.

[10] T. Eschbach, W. Günther, B. Becker, Orthogonal hypergraph drawing for improved
visibility, J. Graph Algorithms Appl. 10 (2006) 2, 141–157.

[11] M.N. Iradmusa, On colorings of graph fractional powers, Discrete Math. 310 (2010)
10–11, 1551–1556.

[12] A.V. Kostochka, M. Kumbhat, V. Rödl, Coloring uniform hypergraphs with small edge
degrees, [in:] Fete of combinatorics and computer science, Bolyai Soc. Math. Stud. 20
(2010), Janos Bolyai Math. Soc., Budapest, 213–238.

[13] D.N. Kozlov, Chromatic subdivision of a simplicial complex, Homology Homotopy Appl.,
14 (2012) 2, 197–209.

[14] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and
niche graphs, Applications of Combinatorics and Graph Theory to the Biological and
Social Sciences 17 (1989), 221–243.

[15] M. Mirzakhani, J. Vondrák, Sperner’s colorings, hypergraph labeling problems and fair
division, [in:] Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, 873–886, SIAM, Philadelphia, PA, 2015.

[16] F. Mohammadi, V. Welker, Combinatorics and algebra of geometric subdivision opera-
tions, [in:] Computations and combinatorics in commutative algebra, 77–122, Lecture
Notes in Math., 2176, Springer, Cham, 2017.

[17] E. Ramadan, A. Tarafdar, A. Pothen, A hypergraph model for the yeast protein complex
network, [in:] 18th Parallel and Distributed Processing Symposium, 189–190, 2004.

[18] G. Sander, Layout of directed hypergraphs with orthogonal hyperedges, [in:] GD 2004,
LNCS, vol. 3393, 381–386, Springer, Heidelberg, 2004.

[19] Zs. Tuza, V. Voloshin, Problems and results on colorings of mixed hypergraphs,
[in:] Horizons of combinatorics, Bolyai Soc. Math. Stud., vol. 17, Springer, Berlin,
2008, 235–255.

[20] V.I. Voloshin, Introduction to Graph and Hypergraph Theory, Nova Science Publishers,
Inc., New York, 2009.

[21] Y. Xue, T.P.-Y. Yu, T. Duchamp, Jet subdivision schemes on the k-regular complex,
Comput. Aided Geom. Design 23 (2006) 4, 361–396.

[22] R. Zaare-Nahandi, Invariance of the barycentric subdivision of a simplicial complex,
Bull. Iranian Math. Soc. 38 (2012) 2, 423–432.

Moharram N. Iradmusa
m_iradmusa@sbu.ac.ir
Department of Mathematical Sciences
Shahid Beheshti University G.C.
P. O. Box: 19839-63113, Tehran, Iran

Received: September 19, 2019.
Revised: January 14, 2020.
Accepted: January 16, 2020.


