Suffix trees

Ben Langmead

(==
4
JOHNS HOPKINS

WHITING SCHOOL
of ENGINEERING

You are free to use these slides. If you do, please sign the
guestbook (www.langmead-lab.org/teaching-materials), or email
me (ben.langmead@gmail.com) and tell me briefly how you're
using them. For original Keynote files, email me.

http://www.langmead-lab.org/teaching-materials/
http://www.langmead-lab.org/teaching-materials/
mailto:ben.langmead@gmail.com
mailto:ben.langmead@gmail.com

Suffix trie: making it smaller

T = abaaba$ /Q\$
b

I ldea 1: Coalesce non-branching paths
95 (i) \. ? into a single edge with a string label

Ao 4T
ivi b /A
SRR .
s

Reduces # nodes, edges,
¢ guarantees internal nodes have >1 child

Suffix tree

T = abaaba$
a/CSa\$\'
R
ba \“$ aba$

Is the total size O(m) now?

With respect to m:
How many leaves? m
How many non-leaf nodes? =m-1

< 2m -1 nodes total, or O(m) nodes

No: total length of edge
labels is quadratic in m

Suffix tree

T = abaaba$ Idea 2: Store T itself in addition to the tree. Convert tree’s
edge labels to (offset, length) pairs with respect to T.

/Q\ T = abaaba$
(1, 2)
S (1 2) & (1)
) I
\“ abas (3, 4)

$ aba$ \ 61 (3, 4)
aba$. & 34 &

N
0\

Space required for suffix tree is now O(m)

Suffix tree: leaves hold offsets

T = abaaba$

T = abaaba$

- —
— / < 7
A~)
- -
D "~
~
—~

Suffix tree: labels

T = abaaba$

6

Again, each node’s label equals the
concatenated edge labels from the root to
the node. These aren't stored explicitly.

"~ Label =“pa"

(3,4)

(6, 1)
/
4

\

1

<« Label ="aaba$s”

Suffix tree: labels

T = abaaba$
(O’ 1& 7

Because edges can have string labels, we
must distinguish two notions of “depth”

* Node depth: how many edges we must
follow from the root to reach the node

» Label depth: total length of edge labels
for edges on path from root to node

Suffix tree: space caveat

T = abaaba$

Minor point:

We say the space taken by the edge labels is
O(m), because we keep 2 integers per edge and
there are O(m) edges

To store one such integer, we need enough bits
to distinguish m positions in T, i.e. ceil(loga m)
bits. We usually ignore this factor, since 64 bits is
plenty for all practical purposes.

Similar argument for the pointers / references
used to distinguish tree nodes.

Suffix tree: building

Naive method 1: build a suffix trie, then
coalesce non-branching paths and relabel
edges

Naive method 2: build a single-edge tree
representing only the longest suffix, then
augment to include the 2nd-longest, then
augment to include 3rd-longest, etc

Both are O(m?) time, but first uses
O(m?2) space while second uses O(m)

Naive method 2 is described in Gusfield 5.4

2)
5
1) (3,4)
3 |
2

Suffix tree: implementation

class SuffixTree(object):

class Node(object):
def __init_ (, lab):
.lab = lab
out = {}

def __init_ (, S):
" Make suffix tree, without suffix links, from s in quadratic time
and linear space """

s += '§’
.root = .Node()
.root.out[s[@9]] = .Node(s)

for i in xrange(l, len(s)):

cur = .root
j =i
while j < len(s):
if s[j] in cur.out:
child = cur.out[s[j]]
lab = child.lab

k = j+1
while k-j < len(lab) and s[k] == lab[k-3j]:
k += 1

if k-j == len(lab):
cur = child
j=k
else:
cExist, cNew = lab[k-j], s[k]

mid = .Node(lab[:k-j])
mid.out[cNew] = .Node(s[k:])

mid.out[cExist] = child
child.lab = lab[k-j:]

cur.out[s[j]] = mid
else:

cur.out[s[j]] = .Node(s[j:])

O(m?) time, O(m) space

Make 2-node tree for longest suffix

Add rest of suffixes from
long to short, adding 1
or 2 nodes for each

Most complex case:

Suffix tree: implementation

(still in class SuffixTree)

def followPath(, S):

""" Follow path given by s. If we fall off tree, return None. If we
finish mid-edge, return (node, offset) where 'node' is child and
'offset' is label offset. If we finish on a node, return (node,
None). """

cur = .root

i=20

while i < len(s):

¢ = s[i] followPath: Given a string, walk down

if c not in cur.out:

return (None, None) corresponding path. Return a special

child = Fur.out[s[i]]
120 1 Shitd-dab value if we fall off, or a description of

while j-i < len(lab) and j < len(s) and s[j] == lab[j-i]: Where we end up OtherWise.

j+=1
if j-i == len(lab):
cur = child
i=3j
elif j == len(s):
return (child, j-i)

else:
return (,)
return (cur,) A
def hassubstring(scll, o) N Has substring? Return true iff
Return true iff s appears as a substring
node, off = o1l followpath(s) followpPath didn't fall off.

return node is not

def hasSuffix(, S):
" Return true iff s is a suffix """

de, off = .followPath(s) .
1t rode is o-tonratn(s Has suffix? Return true iff

if opeiann Tal followPath didn't fall off and we
return '$"' in node.out ended JUSt above d ”$”.

else:

return node.lab[off] == '§' L

Suffix tree: implementation

Python example here: http://nbviewer.ipython.org/6665861

http://nbviewer.ipython.org/6665861
http://nbviewer.ipython.org/6665861

Suffix tree: actual growth

suffix trie nodes

o
o
. o 2m
Built suffix trees for the first 2 |- actual
500 prefixes of the lambda ——m
phage virus genome S
S -
Black curve shows # nodes
increasing with prefix length Qo
8 37
c
3
Compare with suffix trie: £ o |
« ¥
S
N
" 123 K o —
g nodes | | | | | |
i 100 200 300 400 500

‘ w w w w w Length prefix over which suffix tree was built

0 100 200 300 400 500

Length prefix over which suffix trie was built

Suffix tree: building

Method of choice: Ukkonen’s algorithm

Ukkonen, Esko. "On-line construction of suffix trees."
Algorithmica 14.3 (1995): 249-260.

O(m) time and space

Has online property: if T arrives one character at a time, algorithm
efficiently updates suffix tree upon each arrival

We won't cover it here; see Gusfield Ch. 6 for details

Suffix tree

How do we check whether a string S'is a
substring of T?

Essentially same procedure as for 6

suffix trie, except we have to deal with
coalesced edges

S =Dbaa
Yes, it's a
substring

Suffix tree

How do we check whether a string S'is a
suffix of T7

Essentially same procedure as for

suffix trie, except we have to deal with
coalesced edges

Suffix tree

How do we count the number of times
a string S occurs as a substring of T?

Same procedure as for suffix trie

Suffix tree: applications

With suffix tree of T, we can find all matches of Pto T. Let k = # matches.
E.g.,P=ab, T=abaaba$

Step 1: walk down ab path

O(n)

If we “fall off” there are no matches

Step 2: visit all leaf nodes below

Report each leaf offset as match offset

O(n + k) time

abaaba
ab ab

Suffix tree application: find long common substrings

Helicobacter_pylori_strain_J99

1.60406 -

1.4e+06 +

1.2a+06 -

18+06 »

800000 »

600000 |

400000

200000

Dots are maximal unique
matches (MUMs), a kind of
long substring shared by
two sequences

Red = match was
between like strands,
green = different
strands

1 | L 1 1 L 1 |

0

200000 400000 600000 800000 1e4+06 12e+06 1.4e406 1.6e+06
Helicobacter_pylon_26695

Axes show different strains of Helicobacter pylori, a bacterium
found in the stomach and associated with gastric ulcers

Suffix tree application: find longest common substring

To find the longest common substring (LCS) of X and Y, make a new

string X#Y$ where 7 and §$ are both terminal symbols. Build a suffix
tree for X#Y'$.

X: Xabxa a X [#babxba$ \b $
Y = babxba
X#Y$ = xabxa#babxbas$ vy &y 5] &y |»

abx

#babxba$ /bx \$ a \ba$

Consider leaves: 4 1 0 ’ 0 @

offsets in [0, 4] are #babxba$ ba$ #babxba$ bxa#babxba$ bxba$ | L #babxba$ \ba$
suffixes of X, offsets in

1 7 3 0 6 10 2 8
[6, 11] are suffixes of Y

Traverse the tree and annotate each node according to whether leaves
below it include suffixes of X, Y or both

The deepest node annotated with both X and Y has LCS as its label.
O(| X |+ | Y|) time and space.

Suffix tree application: generalized suffix trees

This is one example of many applications where it is useful to build a
suffix tree over many strings at once

Such a tree is called a generalized suffix tree. These are introduced in
Gusfield 6.4.

XY

a X {#babxba$ \b \ $

abx
#babxba$ /bx \$ a \ba$ % X
: NP ORE (Y) &Y
a#babxba$ pa$ #babxba$ \bxa#babxba$ bxba$ \$ a#tbabxba$ \ba$

1 7 3 0 6 10 2 8

Suffix trees in the real world: MUMmMmer

FASTA file containing “reference” (“text”) .
FASTA file containing

ALU string

e 006 mummer — langmead@igm1l:~ — bash — 12Qx31
Bens-MacBook-Pro:mummer langmead$ cat alu50.fa
>Alu
GCGCGGTGGCTCACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGG

Bens-MacBook-Pro:mummer langmead$ $HOME/software/MUMmer3.23/mummer -maxmatch $HOME/fasta/hgl9/chrl.fa alu50.fa
reading input file "/Users/langmead/fasta/hgl9/chrl.fa" of length 249250621

construct suffix tree for sequence of length 249250621

(maximum reference length is 536870908)
s
B
I

Indexing
phase: ~2
minutes

(maximum query length is 4294967295)
process 2492506 characters per dot
CONSTRUCTIONTIME /Users/langmead/software/MUMmer3.23/mummer /Users/langmead/fasta/hgl9/chrl.fa 125.30
reading input file "alu50.fa" of length 50
matching query-file "alu50.fa"
against subject-file "/Users/langmead/fasta/hg19/chrl.fa"

> Alu
61769671 1 22
, 219929011 1 22
Matching 162396657 1 22
109737840 1 22
phase: 82615090 1 22
32983678 1 22
very fast 84730371 1 22
248036256 1 22
150558745 1 22
11127213 1 22
236885661 1 22
31639677 1 22
16027333 1 22
21577225 1 22
26327837 1 22

243352583 22

Suffix trees in the real world: MUMmMmer

MUMmer v3.32 time and memory scaling when indexing increasingly larger
fractions of human chromosome 1

Peak memory usage (megabytes)

1500 2000 2500 3000 3500

1000

500
I

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

Time (seconds)

40 60 80 100 120 140

20

I I I I I
0.2 0.4 0.6 0.8 1.0

Fraction of human chromosome 1 indexed

For whole chromosome 1, took 2m:14s and used 3.94 GB memory

Suffix trees in the real world: MUMmMmer

Attempt to build index for whole human genome reference:

mummer: suffix tree construction failed: textlen=3101804822
larger than maximal textlen=536870908

We can predict it would have taken about 47 GB of memory

Suffix trees in the real world: the constant factor

While O(m) is desirable, the constant in front of the m limits wider use
of suffix trees in practice

Constant factor varies depending on implementation:

Estimate of MUMmer’s constant factor = 3.94 GB / 250 million nt
=~ 15.75 bytes per node

Literature reports implementations achieving as little as 8.5
bytes per node, but no implementation used in practice that |
know of is better than = 12.5 bytes per node

Kurtz, Stefan. "Reducing the space requirement of suffix trees." Software Practice
and Experience 29.13 (1999): 1149-1171.

Suffix tree: summary

GTTATAGCTGATCGCGGCGTAGCGG%
: : GTTATAGCTGATCGCGGCGTAGCGG

Organizes all suffixes into an TTATAGCTGATCGCGGCGTAGCGGS$
mcredlblyuseful,ﬂeX|bIedata TATAGCTGATCGCGGCGTAGCGGS
structure, in O(m) time and space ATAGCTGATCGCGGCGTAGCGGS

TAGCTGATCGCGGCGTAGCGG%
: : AGCTGATCGCGGCGTAGCGAG
Analvemethod (e.g.sufﬁxtrle) CCTGATCGCGGCGTAGCGG S
could easily be quadratic or worse CTGATCGCGGCGTAGCGGS
TGATCGCGGCGTAGCGGS

Used in practice for whole genome alignment, GATCGCGGCGTAGCGGS
ATCGCGGCGTAGCGAG

repeat identification, etc TCGCGGCGTAGCG
O CGCGGCGTAGCG

LT D GCGGCGTAGCG

O O @ O CGGCGTAGCG

“4,1) 6,2 (8,18)|(13,1) (3,1)[{(12,14)\(2,24) \(9,17) (10,16) /(7,1) \(1, 1) (16,1) 25,1)
5 O 0O AN DO O Ol GGCGTAGLG
7 11
GCGTAGCAQG

(5,21)((12,14) (8,18)\(23,3) (14,12)(19,7)\(16, 1) (4,22) \(6,2) (8,18)((15,1) [(20,6)\(2,24) (17,9) \(25,1)

G

G

G

G

G

G
CGTAGCGG
. (17,,1) (8(23,3) n (1(16, n . . G T A G C G G
G

G

G

G

G

G

14 22 4 19 16 T A G C G
CIREI N (lm AGCG

GCG
CG

Actual memory footprint (bytes per node) is G
quite high, limiting usefulness

A A A A A A A A A A A AAAAHA

m chars

m(m+1)/2
chars

