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Abstract

Speculative decoding is widely adopted to reduce latency in large language model
(LLM) inference by leveraging smaller draft models capable of handling diverse
user tasks. However, emerging AI applications, such as LLM-based agents, present
unique workload characteristics: instead of diverse independent requests, agentic
frameworks typically submit repetitive inference requests, such as multi-agent
pipelines performing similar subtasks or self-refinement loops iteratively enhancing
outputs. These workloads result in long and highly predictable sequences, which
current speculative decoding methods do not effectively exploit. To address this
gap, we introduce SuffixDecoding, a novel method that utilizes efficient suffix trees
to cache long token sequences from prompts and previous outputs. By adaptively
speculating more tokens when acceptance likelihood is high and fewer when it
is low, SuffixDecoding effectively exploits opportunities for longer speculations
while conserving computation when those opportunities are limited. Evaluations
on agentic benchmarks, including SWE-Bench and Text-to-SQL, demonstrate that
SuffixDecoding achieves speedups of up to 5.3×, outperforming state-of-the-art
methods – 2.8× faster than model-based approaches like EAGLE-2/3 and 1.9×
faster than model-free approaches such as Token Recycling. SuffixDecoding is
open-sourced at https://github.com/snowflakedb/ArcticInference.

1 Introduction

Large language models (LLMs) are foundational to a new generation of agentic AI applications, such
as automated coding assistants [Wang et al., 2025, Xia et al., 2024a, Yang et al., 2024], multi-agent
workflows [Wang et al., 2024a, Chen et al., 2024a, Zhang et al., 2024b], and retrieval-based search
systems [Zheng et al., 2025, Wang et al., 2024d, Gao et al., 2024b]. Unlike basic chatbots, these
agentic workloads typically issue repetitive and predictable inference requests. For instance, each
agent in a multi-agent system repeatedly perform similar inference tasks, and reasoning loops [Wang
et al., 2023a, Madaan et al., 2023] regenerate similar token sequences to improve their final outputs.
Despite this predictable repetition, existing inference methods often fail to fully exploit recurring
patterns, leaving latency as a significant bottleneck in agent-driven applications.

A popular strategy for mitigating inference latency is speculative decoding [Leviathan et al., 2023,
Chen et al., 2023, Miao et al., 2024, Cai et al., 2024, Lin et al., 2024, Zhang et al., 2024a]. While an
LLM can only generate one token per forward pass, it can verify multiple tokens. Leveraging this
phenomenon, speculative decoding methods use small “draft” models or additional decoding heads
to predict multiple candidate tokens, which the LLM then verifies in parallel.

To efficiently handle the long repetitions common in agent-driven applications, speculative decoding
methods must satisfy two critical requirements. First, they need to generate draft tokens rapidly and
with minimal overhead, enabling maximal exploitation of long speculation lengths. Second, they
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must do so adaptively—only generating more draft tokens when acceptance likelihood is high and
fewer tokens when acceptance likelihood is low, to prevent verification from becoming a bottleneck.

However, existing speculative decoding approaches fall short in meeting these dual requirements.
Model-based methods can use significant GPU time when speculating long sequences, and can incur
memory contention and kernel-level transitions [Chen et al., 2024b, Li et al., 2024] that must be
managed carefully. Conversely, existing model-free approaches, such as prompt-lookup decoding
(PLD) [Saxena, 2023], achieve low overhead and rapid token generation, but typically lack adaptivity.
These methods speculate a fixed number of tokens irrespective of acceptance likelihood, leading to
wasted computational resources on verifying long and improbable draft sequences.
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Figure 1: Overview of SuffixDecoding’s algorithm. Two suffix trees track ongoing inference (top-left)
and previous outputs (bottom-left). SuffixDecoding uses these trees to find matching patterns based
on recently generated tokens. It constructs a speculation tree (middle) by selecting the most likely
continuations, scoring them based on frequency statistics. Finally, the best candidate is verified by
the LLM in a single forward pass (right), with accepted tokens (shown in green) being added to the
output and used for the next round of speculation.

To address these limitations, we introduce SuffixDecoding (illustrated in Fig 1), a novel model-free
speculative decoding method specifically designed for repetitive, agent-driven workloads. SuffixDe-
coding leverages efficient suffix trees to cache long token sequences from prompts and previous out-
puts. Each node represents a token, and paths from the root encode previously observed subsequences.
This structure enables rapid pattern matching: given recently generated tokens, SuffixDecoding effi-
ciently identifies possible continuations based on prior occurrences, generating draft tokens extremely
quickly—on the order of 20 microseconds per token—without incurring any GPU overhead.

At each inference step, SuffixDecoding adaptively limits its number of draft tokens based on the
length of the pattern match, and uses frequency-based statistics captured within the suffix trees to
score and select the best speculation candidate. Longer pattern matches enable confident speculation
of longer token sequences, maximizing its effectiveness on agentic workloads, while shorter pattern
matches trigger conservative speculation to avoid computational waste. Moreover, SuffixDecoding
can seamlessly integrate with existing model-based speculative decoding methods. This flexibility
enables a hybrid approach that leverages suffix-tree-based speculation for repetitive, predictable
agentic workloads, while exploiting the strengths of model-based speculation methods for open-ended
conversational tasks, thus achieving the best of both worlds.

We evaluate SuffixDecoding on two practical agent-driven workloads: SWE-Bench, an LLM-based
software engineering benchmark, and AgenticSQL, a proprietary multi-agent pipeline application
for SQL generation. We compare with state-of-the-art model-based and model-free speculative
decoding methods using Spec-Bench [Xia et al., 2024b], showing up to 2.8× faster decoding than
EAGLE-2/3 [Li et al., 2025], and 1.9× faster decoding than Token Recycling [Luo et al., 2024]. For
SWE-Bench, we also measured the comprehensive, end-to-end task completion time—including
prompt prefilling, token generation, and execution of external actions—and demonstrate speculative
speedups of up to 4.5×. These results highlight that SuffixDecoding substantially reduces latency for
real-world agentic applications, addressing a critical bottleneck in practical inference scenarios.
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2 Background

LLM Inference. LLM inference involves two stages: given a prompt xprompt = (x1, x2, . . . , xm),
the LLM first processes the prompt in parallel (prefill), then sequentially generates new tokens
(decode), with each token xt>m conditioned on previously generated tokens:

xt+1 = Sample(x|x1,...,t).

For example, in greedy sampling, the highest-probability token from the model’s predicted distribution
is selected iteratively until a stopping condition, such as reaching an end-of-text token or maximum
length. Since each token depends on preceding outputs, token generation is inherently sequential,
requiring a separate forward pass per generated token. This sequentiality limits inference throughput
and can underutilize parallel hardware accelerators such as GPUs or TPUs.

Speculative Decoding. Speculative decoding [Leviathan et al., 2023] accelerates inference by
generating multiple candidate tokens quickly using a lightweight model, which can then be verified
in parallel by the primary LLM. The basic method has two core steps:

1. Speculation: A smaller “draft” model rapidly produces speculative tokens xspec =
(xt+1, . . . , xt+n) based on the existing token prefix x<t.

2. Verification: The LLM verifies the draft tokens in parallel, accepting tokens up to the first
discrepancy and discarding the rest.

This approach reduces bottlenecks by shifting computation from sequential generation to parallel
verification. However, the draft model, despite its smaller size, still requires compute resources
and can add orchestration complexity in deployment. This limitation motivates recent model-free
speculative decoding methods, such as Prompt Lookup Decoding [Saxena, 2023], which sources
draft tokens directly from the prompt, and Token Recycling [Luo et al., 2024], which enhances this
approach using an adjacency matrix and tree speculation [Miao et al., 2024].

Agentic AI Algorithms. Agentic applications often structure complex tasks as sequences or
compositions of LLM calls, issuing multiple inference requests per task. These requests tend to
generate long and repetitive token sub-sequences due to this structure. For example:

Self-consistency [Wang et al., 2023a] samples multiple reasoning paths in parallel before selecting a
final answer based on consensus. While each path is independently sampled, they all start from the
same prompt and often share similar reasoning steps or chain-of-thought sequences.

Self-refinement [Madaan et al., 2023], commonly used in coding agents, improves initial outputs by
iteratively identifying and fixing errors. Each iteration typically revises only a small portion of the
text—such as a few lines of code—while preserving the majority of the surrounding content.

Multi-agent workflows [Khot et al., 2023] decompose tasks into modular subtasks performed by
specialized agents (e.g., retrieval, reasoning, synthesis). Because each agent handles a narrowly
scoped function, their outputs can exhibit highly repetitive structures.

These patterns result in a high degree of redundancy across LLM calls, presenting opportunities for
speculative decoding strategies that can exploit long repeated token sequences for greater acceleration.

3 SuffixDecoding

The goal of SuffixDecoding is to enable fast, adaptive speculative decoding over long sequences,
particularly suited for agentic applications where repeated inference calls often contain highly
predictable and overlapping token sequences. In such settings, long stretches of output can be
accurately predicted from prior and ongoing requests.

To fully exploit these opportunities, SuffixDecoding must address two key challenges. First, it must
support fast generation of speculative sequences—including long continuations—without relying
on draft models or expensive token-by-token prediction. Second, it must be adaptive to the current
prediction context: aggressively speculating long continuations only when they are likely to be
accepted, and speculating shorter sequences when uncertain to avoid wasted verification compute.
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To support fast speculation, SuffixDecoding builds a suffix tree [Weiner, 1973] over the tokens in the
current and prior requests, and uses the suffix tree to generate speculative tokens. The root node of
the tree represents the beginning of a suffix of any token sequence stored in the tree, each child of
a node represents a specific token which is a possible continuation from its that node, and the path
from the root to each node represents a distinct subsequence.

For each request, we consider speculating token sequences from (1) the prompt and output of that
request, and (2) the outputs of prior requests. Doing so captures the source of output token repetition
from many agentic algorithms, including self-consistency, self-refinement, and multi-agent pipelines.

SuffixDecoding leverages suffix trees to perform fast pattern matching and find possible continuations
of token sequences. Suppose the prompt and output tokens of an ongoing inference is x1:t. Consider
a suffix xt−p+1:t of length p, which we will refer to as the pattern sequence. We walk the suffix tree
starting from the root node, and at each step taking the child that corresponds to token xt−p+i. If no
such child exists, then the pattern is not found and SuffixDecoding reverts to standard non-speculative
decoding. Otherwise, after p steps, we arrive at a node whose descending paths are the possible
continuations of the pattern sequence.

Although this procedure can quickly find a (potentially large) set of candidate sequences, verifying
all of them in speculative decoding may be cost-prohibitive. Instead, SuffixDecoding builds a much
smaller and more likely speculation tree through a greedy expansion and scoring procedure, and uses
this smaller tree in tree-based speculation. An overall illustration of SuffixDecoding is shown in
Fig. 1, which we detail in the rest of this section.

Suffix Tree Construction. Building the suffix tree and updating it as part of an online inference
service involves two stages. First, the previous inference outputs can be added to the tree in a single
offline processing step (e.g. from historical logs), or online during inference serving after each
inference request completes. Second, the current ongoing prompt and out tokens are added online as
new requests are received and as each new token is generated.

In reality, we found it convenient to maintain two different suffix trees: a global tree for the previously
generated outputs, and a separate per-request tree for the current ongoing inference request. This
circumvents the complexities and overheads due to synchronizing the suffix tree updates from multiple
concurrent requests. The global tree can be constructed offline in O(n) time, while the per-request
tree can be efficiently constructed and updated online [Ukkonen, 1995].

Although suffix trees are memory-efficient at O(n) space, the global tree can still become large
when there are many previous outputs. However, they only require CPU memory, which is typically
plentiful and under-utilized in LLM serving scenarios. For example, AWS p5.48xlarge are often
used for LLM serving and have 2TB of main memory, which is easily enough to support a suffix tree
over millions of historical outputs and billions of tokens.

Speculation Tree Expansion. Given a pattern sequence xt−p+1:t of an ongoing inference x1:t,
SuffixDecoding can quickly find a node Np in the global or per-request suffix tree whose descending
paths are the possible continuations of the pattern sequence. To select a smaller more likely sub-tree
that is of a more practical size for speculative verification, we start with the single node Np and grow
a sub-tree greedily by expanding one leaf node at a time.

In particular, we define:

C(N) =
COUNT(N)∑

M∈CHILDREN(PARENT(N)) COUNT(M)

D(N) =

{
D(PARENT(N))× C(N), if N ̸= Np

1, otherwise
,

where COUNT(N) is the number of occurrences of node N in the reference corpus, which can be
computed when constructing the suffix tree. Starting with the single node Np in our speculation
sub-tree, we consider all children of all of its leaf nodes, and add the node N with the highest D(N).
This process is repeated until the sub-tree reaches a predetermined size limit, MAX_SPEC.

Intuitively, C(N) estimates the probability that TOKEN(N) would be the next observed token in a sub-
sequence TOKEN(Np), . . . , TOKEN(PARENT(N)), and D(N) estimates the probability that TOKEN(N)
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would be ultimately accepted by the speculative tree verification, assuming the output tokens follow
historical patterns. Thus, SuffixDecoding builds the speculation tree by greedily adding leaf nodes
that it believes to be the most likely to be accepted during verification.

Algorithm 1 Speculation Tree Generation
function EXPANDSPECULATIONTREE(N_p, MAX_SPEC)

Input: Suffix tree node Np, MAX_SPEC
Initialize T ← {Np}
while |T | < MAX_SPEC do

N ← argmaxN∈CHILDREN(LEAVES(T )) D(N)
T ← T ∪ {N}

end while
return T

end function
function MATCHPATTERN(S, x1:t, p)

Input: Suffix tree S, sequence x1:t, length p
Initialize Np ← ROOT(S)
for i = 1 to p do

if NO_CHILD(Np, xt−p+i) then
return ∅

end if
Np ← CHILD(Np, xt−p+i)

end for
return Np

end function
function GENERATECANDIDATETREE(S_g, S_r, x1:t, α, P)

Input: Global suffix tree Sg , prompt suffix tree Sr , sequence x1:t, max spec factor α, max pattern size P
Initialize Tbest ← ∅, SCOREbest ← 0
for S in {Sg, Sr} do

for p = 1 to P do
N ← MatchPattern(S, x1:t, p)
T ← ExpandSpeculationTree(N,αp)
if SCORE(T ) > SCOREbest then

Tbest ← T
SCOREbest ← SCORE(T )

end if
end for

end for
return Tbest

end function
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Figure 2: (a) the mean number of accepted to-
kens increases with the length of the pattern match,
which motivates MAX_SPEC = αp. (b) shows that
this choice achieves a better trade-off between ac-
ceptance rate and speculative speedup.

Adaptive Speculation Lengths. While the
procedure above allows SuffixDecoding to
cache and quickly speculate long token se-
quences based on empirical probability esti-
mates, it also needs a mechanism for adaptively
controlling the number of tokens it speculates.
SuffixDecoding achieves this by dynamically ad-
justing MAX_SPEC. Low values mean fewer but
more likely tokens would be chosen for specu-
lation, while higher values mean more but less
likely tokens would be chosen. If too low, then
the speedup from speculation can be limited,
and if too high, then compute may be wasted on
verifying unlikely tokens.

To guide how to adaptively set MAX_SPEC, we
observed that the number of accepted tokens in
practice typically increases with longer pattern
sequence lengths p (Fig. 2a). Thus, we define
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MAX_SPEC adaptively as
MAX_SPEC(p) = αp,

where α is a user-defined max speculation factor. Fig. 2b shows that setting MAX_SPEC adaptively
according to the pattern length results in a better trade-off between acceptance rate and speculative
speedup. In practice, we found that α ∈ [1, 4] works well for agentic applications.

Speculation Tree Scoring. So far, we have discussed how to obtain a speculation tree given a suffix
tree and a pattern length p. However, SuffixDecoding maintains two suffix trees, the global suffix
tree and the per-request suffix tree, each with many choices for p. To obtain just a single speculation
tree, we build speculation trees for both the global suffix tree and the per-request suffix tree, and for a
range of values of p. Then, a single speculation tree is selected according to a scoring function:

SCORE(Tspec) =
∑

N∈Tspec

D(N).

Intuitively, if D(N) estimates the probability that node N in a speculation tree Tspec would be
accepted, then SCORE(Tspec) estimates the expected number of accepted tokens. SuffixDecoding then
selects the Tspec with the highest SCORE as the final speculation tree to be verified. The end-to-end
candidate generation from speculation tree expansion to scoring is described in Alg. 1.

Hybrid Suffix Speculative Decoding. Lastly, we find that SCORE(Tspec) can be used to dynamically
decide between using SuffixDecoding or falling back to a model-based speculation method, which is
useful for practical scenarios when the workload can be mixed between agentic and more diverse
applications. Specifically, for each decoding iteration, we always speculate using SuffixDecoding
first. If SCORE(Tspec) > τ , where τ is a configurable threshold, then SuffixDecoding’s draft tokens
are used. Otherwise, we use a fall-back speculation method, such as EAGLE-3 [Li et al., 2025].

4 Evaluation

4.1 Evaluation Methodology
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Figure 3: AgenticSQL is a multi-agent workflow
consisting of stuctured generation, unstructured
generation, and retrieval-augmented generation
steps across several different LLMs. Useful fea-
tures are extracted from the user question (Classify
and Extract) and supplemented with retrieved con-
text (Enrich). Several text-to-SQL steps propose
solutions to the user question (SQL 1. . . N) in par-
allel with feedback from an error corrector. A last
Combine step synthesizes the proposed SQL can-
didates into a final SQL query and text response.

Baseline Comparisons. We compare with
both model-based and model-free speculative
decoding methods using Spec-Bench [Xia et al.,
2024b]. (1) EAGLE-2 and EAGLE-3 [Li et al.,
2025], state-of-the-art model-based speculators,
(2), Prompt-Lookup Decoding (PLD) [Saxena,
2023], a simple model-free speculator based on
ngram-matching, and (3) Token Recycling [Luo
et al., 2024], a more recent model-free specu-
lator that sources token sequences from both
the prompt and previous outputs. EAGLE-3
and Token Recycling both leverage tree specu-
lation [Miao et al., 2024].

Datasets and Agentic Applications. We con-
structed our evaluation datasets by running two
real agentic applications, tracing the requests
that they sent to their LLMs, and replaying
their requests in Spec-Bench. First, we ran the
OpenHands [Wang et al., 2024c] agent on SWE-
Bench [Jimenez et al., 2024], a benchmark for
resolving real-world GitHub issues. The agent
generates multiple solutions, executes code in a
secured environment, and iteratively refines its
solution based on execution results [Wang et al.,
2024b]. Second, we ran AgenticSQL, a proprietary multi-agent workflow for SQL code generation,
described in Fig. 3. AgenticSQL exhibits both high task diversity (between workflow stages) and
specialization (each stage may only perform a very narrow task).
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Figure 4: Speculative speedups (top) and mean accepted tokens per step (bottom) compared to
vanilla decoding for SuffixDecoding and baseline methods on three benchmarks: Spec-Bench,
AgenticSQL, and SWE-Bench. Experiments use Llama-3.1-8B-Instruct on a single H100 GPU with
batch size 1. Speedup is measured as the ratio of time-per-output-token relative to vanilla decoding.
Suffix (tree) and Hybrid (tree) use SuffixDecoding’s tree speculation algorithm, which constructs a
speculation tree from the suffix tree for parallel verification. Suffix (linear) and Hybrid (linear) use a
simpler linear speculation approach that only allows sequential token chains. The hybrid variants
combine SuffixDecoding with EAGLE-3, dynamically selecting between suffix-based and model-
based speculation based on pattern match confidence. Note that EAGLE-2/3 and Token Recycling
failed to run on several SWE-Bench tasks due to long context lengths (>8192 tokens), indicated by
missing bars. Spec-Bench represents a non-agentic workload and is included for comparison. Further
sub-task breakdowns, including the raw time-per-output-token and mean acceptance lengths, can be
found in Appendix A.1.

End-to-end System Evaluation. We additionally implemented SuffixDecoding in vLLM [Kwon
et al., 2023], a popular inference system used for real-world deployments. By running OpenHands live
on vLLM, we show that SuffixDecoding accelerates end-to-end task completion times, which includes
prefill and code execution time, thereby addressing a crucial bottleneck in agentic applications.

Hardware configuration. We conducted our experiments on a single p5.48xlarge AWS instance
equipped with 8× NVIDIA H100 80G GPUs and 2TB of main memory.

Simulated Ablations. In addition to our main evaluation using real hardware, we also leverage
a simulated verifier for additional experiments in Sec. 4.4 and continued in Appendix A.2. Given
a prompt x1:n and example ground-truth response yn+1:t, we can accurately simulate speculative
verification for greedy sampling by verifying that speculated token xn+i = yn+i.

4.2 Baseline Comparisons

We compare SuffixDecoding with EAGLE-2, EAGLE-3, PLD, and Token Recycling on SWE-
Bench and AgenticSQL. We also run the Spec-Bench standard dataset, which is a more traditional
non-agentic workload. Fig. 4 shows the results. First, on the agentic workloads, SuffixDecoding
outperforms all baselines. In AgenticSQL, SuffixDecoding obtains a mean speedup of 5.3× over
vanilla decoding, a 2.8× improvement over EAGLE-2/3, and 1.9× higher than Token Recycling. In
SWE-Bench, EAGLE-2/3 fail due to their maximum sequence length limitations. SuffixDecoding
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obtains a mean speedup of 2.5× over vanilla decoding, a 1.7× improvement over PLD, the next
best baseline. SuffixDecoding’s superior performance in agentic workloads can be attributed to its
consistently higher mean accepted tokens per decoding step. In AgenticSQL, SuffixDecoding reaches
6.3 mean accepted tokens per step—substantially higher than EAGLE-3 (3.6 tokens) and Token
Recycling (3.2 tokens). In SWE-Bench, SuffixDecoding achieves 7.8 mean accepted tokens per step,
while PLD only accepts 3.2 tokens per step on average.

On high-entropy non-agentic workloads such as Spec-Bench, SuffixDecoding is outperformed by
EAGLE-2/3 and Token Recycling. In this scenario, we use the hybrid approach of SuffixDecoding +
EAGLE-3 to achieve the best of both worlds: we speculate with the faster SuffixDecoding method
whenever possible and fall back to EAGLE-3 when the speculation score is too low. The Hybrid
approach obtains a mean speedup of 2.5× over vanilla decoding, outperforming the 2.4× speedup
from standalone EAGLE-3 and the 2.2× speedup from Token Recycling.

The hybrid approach also performs well in AgenticSQL, achieving a 4.1× speedup in the tree
variant, significantly better than the 1.9× speedup from standalone EAGLE-2/3 and the 2.7× speedup
from Token Recycling. These speedups are achieved thanks to the hybrid approach’s impressive
7.5 mean accepted tokens per step, more than 2× higher than EAGLE-2/3 and Token Recycling.
SuffixDecoding has a slightly lower mean acceptance length of 6.3, but its much lower speculation
cost and higher acceptance rate make it the winning solution in agentic tasks (5.3× average speedup
compared to the 4.1× speedup of the hybrid approach).

“feature_w”: false, “feature_x”:

false, “feature_y”: false, “feature_z”: false}

true, “feature_y”:

true, “feature_z”: false}

false, “feature_z”: false}

Prefix

Spec branch 1

Spec branch 2

Spec branch 3

Spec branch 4

Figure 5: A SuffixDecoding speculation tree containing 66
tokens for the AgenticSQL Extract task.

A peek into a speculation tree.
To gain some intuition into why Suf-
fixDecoding performs so well for cer-
tain tasks, we examine how it builds
a speculation tree for the AgenticSQL
Extract task. The outputs of the Ex-
tract task have many characteristics in
common. First, they are all JSON doc-
uments following the same format and
key names, with keys often appearing
in the same order. Second, many of
the features are discrete values, and in
particular, boolean true/false values. These patterns are recorded in SuffixDecoding’s global suffix
tree and guide its speculation tree construction.

Fig. 5 shows an example of a speculation tree constructed by SuffixDecoding. We observed many
instances of large speculation trees that branch at each boolean true/false value of several consecutive
features. These speculation tree always contains a branch with high acceptance, advancing output
generation by dozens of tokens or more in one step. Although this is one specific example of a
speculation tree, it demonstrates that SuffixDecoding can find complex patterns in previous outputs,
particularly for structured generation tasks, that help accelerate output generation.

4.3 End-to-End SWE-Bench on vLLM

In this section, we show that SuffixDecoding can be efficiently integrated into vLLM, a popular
inference system used in production deployments, and it can effectively accelerate accelerate end-to-
end agentic task completion time. For this experiment, we run OpenHands directly on vLLM with
SuffixDecoding, so the agent is solving each benchmark problem live. We also use the specially-
trained LLM all-hands/openhands-lm-32b-v0.1-ep3, which was fine-tuned for SWE-Bench
and achieves 37.2% on SWE-Bench Verified. Since there are no model-based methods with draft
models trained for this LLM, we compare with vLLM’s native implementation of PLD.

Fig. 6 shows the results. First, we note that decoding time (i.e. output generation) takes a majority
of the time across all SWE-Bench tasks, dominating both prefilling and agentic actions (i.e. code
execution). In this end-to-end scenario, SuffixDecoding outperforms PLD by 1.3–3×, leading to a
1.8–4.5× speculative speedup over vanilla decoding. Since SuffixDecoding exactly preserves the
output distribution of the LLM, it matches the original model’s 37.2% score on SWE-Bench Verified.
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Figure 6: End-to-end task-completion time of the OpenHands agent on SWE-Bench Verified. The
benchmarks are run with a concurrency of 8 tasks running simultaneously. vLLM is deployed on 4
H100 GPUs configured with 4-way tensor parallelism and prefix caching enabled. The results are
broken down by the different code repositories in SWE-Bench.

4.4 Ablation Experiments

In this section, we present a few ablation studies on SuffixDecoding using a simulated verifier on
offline traces. Given a ground-truth prompt-response pair from an LLM, we can verify the draft tokens
proposed by SuffixDecoding by comparing with the ground truth responses. Additional ablation
studies can be found in Appendix A.2.
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Figure 7: Speedup factor and number of speculated
tokens for the tasks in AgenticSQL. SuffixDecod-
ing was run with only the global suffix tree, only
the per-request suffix tree, and both (baseline).

Global vs per-request suffix trees. We study
the impact of the two suffix trees: the global
suffix tree containing previous outputs, and the
per-request suffix tree containing the prompt and
generation of the current ongoing request. To
do so, we ran the tasks in AgenticSQL using
SuffixDecoding (1) with the global suffix tree
only, (2) with the per-request suffix tree only,
and (3) using both trees.

Fig. 7 shows the results. First, we note that with
the exception of the Content Enrichment (En-
rich) and Extract steps, using both suffix trees
performs better than using just one. The small
degradations on the enrich and extract steps sug-
gest that, when both trees are present, SuffixDe-
coding may sometimes choose a speculation tree
from the per-request suffix tree when the global
suffix tree may have been the better choice. Im-
provements to SuffixDecoding’s speculation tree
scoring mechanism may help bridge this gap.

Second, the global tree outperforms the per-
request tree on all tasks except for Combine.
This is because the Combine task heavily re-uses tokens from its context, which are the proposed SQL
solutions from the previous steps in the workflow. Although there is a diversity of task characteristics,
SuffixDecoding is able to achieve high speedups on all of them by combining both suffix trees.
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SuffixDecoding in open-ended scenarios. Although SuffixDecoding is designed for agentic work-
loads with long repeated token sequences, it is also interesting to evaluate it using more open-ended
workloads like WildChat (open-ended chat) [Zhao et al., 2024] and Magicoder (code-oriented
chat) [Wei et al., 2023]. Details on these datasets can be found in Appendix A.2.
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Figure 8: Speedup (left) and acceptance rate (right)
vs global suffix tree size for Magicoder and Wild-
chat (α = 1). The speedup from SuffixDecoding
continues to increase with more previous output
examples, while the acceptance rate holds steady.

In Fig. 8, we show the speedup and acceptance
rate of SuffixDecoding on WildChat and Magi-
coder across a range of suffix tree sizes between
256 and 10,000 output examples. First, we note
a promising pattern: the speedup consistently
improves as the size of the suffix tree grows.
This indicates that SuffixDecoding can learn
useful patterns even in workloads with lower
token repetition, and may be a substitute for
model-based methods when a draft model is not
available.

Second, perhaps surprisingly, the acceptance
rate does not change much even when the suf-
fix tree size varies across almost two orders of
magnitude. We believe this is primarily due
to the effect of the adaptive speculation length
MAX_SPEC = αp. Although less data may mean
less certainty in the speculated tokens, the pattern matches are also shorter, which results in fewer
speculated tokens.

5 Related Works

Speculative decoding. Speculative decoding can improve LLM inference latency without com-
promising the quality of the generated text. Other model-based methods include Medusa Cai et al.
[2024] and SpecInfer Miao et al. [2024], which first introduced tree-based speculation. Medusa uses
multiple decoding heads for parallel candidate generation, while SpecInfer uses multiple draft models
or speculative sampling to generate a tree of candidate tokens. There are also several other model-free
speculation methods like LLMA Yang et al. [2023] and ANPD Ou et al. [2024]. These methods rely
on small reference texts such as the prompt or retrieved contexts, and lack the adaptive speculation
mechanisms of SuffixDecoding. Compared to prior speculative decoding methods, SuffixDecoding is
uniquely designed for the emerging class of agentic LLM applications.

Methods for accelerating LLM agents. Recent works also target the problem of latency in agentic
applications. ALTO [Santhanam et al., 2024] takes a systems-oriented approach to optimize the
latency of multi-agent workflows through more efficient pipelining and scheduling. Dynasor [Fu et al.,
2024] monitors the certainty of agentic reasoning algorithms as they run, and early-terminates reason-
ing paths that are unlikely to improve the final answer. Compared to these systems, SuffixDecoding
takes an orthogonal speculative decoding approach, and they can be used in combination.

6 Conclusion

In this paper, we presented SuffixDecoding, a model-free speculative decoding approach designed
for emerging agentic applications. Using efficient suffix tree data structures, SuffixDecoding ef-
fectively exploits long and repetitive token sequences found in many agentic algorithms, such as
self-consistency, self-refinement, and multi-agent pipelines. Using two practical agentic applications,
OpenHands and AgenticSQL, we showed that SuffixDecoding significantly accelerates their decod-
ing latency and task-completion times, and is also significantly faster than other model-based and
model-free speculative decoding baselines.
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A Technical Appendices and Supplementary Material

A.1 Details for Main Experiments

A.1.1 Experiment setup details

Setup of Spec-Bench experiments (Sec. 4.2). We conducted our Spec-Bench experiments by
running the Spec-Bench codebase from the original repository with the following modifications.
First, we updated the code to work with the latest version of the transformers library, which is
required to run recent open-source LLMs such as meta-llama/Llama-3.1. We also added support
for arbitrary datasets (such as SWE-Bench and AgenticSQL) and implemented SuffixDecoding within
the framework. We ran the experiments on a 8xH100 80GB GPU cluster, with 1TB RAM. We ran
each baseline using one GPU, and a batch size of 1, just like in the original SpecBench code.

Setup of vLLM SWE-Bench experiment (Sec. 4.3). We conducted the end-to-end SWE-
Bench experiment on a 8xH100 80GB GPU cluster, with 1TB RAM. We served the
all-hands/openhands-lm-32b-v0.1-ep3 model locally using vLLM, with a tensor parallelism
degree of 4 and with prefix caching enabled. We used the flashinfer kernels for sampling. We
made some minor modifications to vLLM to record the per-request and per-step statistics of interest
(time-per-token latency, throughput, acceptance length, acceptance rate). We used the same settings
for all baselines. We ran the OpenHands daemon on the same machine, and used the OpenAI API
to interact with the vLLM server. We ran OpenHands with the CodeActAgent Wang et al. [2024b]
with ITERATIVE_EVAL_MODE=true, and a maximum of 100 iterations, as recommended by the
OpenHands authors. We used a maximum of 16 concurrent workers to run the SWE-Bench tasks.

A.1.2 Detailed sub-task results
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SWE-Bench: Mean accepted tokens (tokens/step)

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 6.415 6.546 5.521 7.207 3.772 6.480 7.137 4.635 5.412 5.933 17.140 5.165 7.821
suffix (tree) 6.262 6.221 4.992 7.064 3.708 5.922 6.764 4.452 5.311 5.600 16.876 5.020 7.552
pld 2.831 3.008 2.756 3.080 2.195 2.996 3.223 2.629 2.904 2.669 4.724 2.641 3.168
recycling 3.159 3.058 3.004 3.133 - - 2.978 3.072 2.992 3.046 2.994 - 3.054
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

SWE-Bench: Mean Acceptance Rate

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 0.252 0.255 0.238 0.293 0.167 0.250 0.281 0.204 0.230 0.243 0.554 0.217 0.296
suffix (tree) 0.235 0.230 0.195 0.272 0.153 0.222 0.250 0.183 0.217 0.216 0.539 0.196 0.274
pld 0.191 0.210 0.184 0.215 0.128 0.208 0.231 0.174 0.199 0.175 0.379 0.175 0.225
recycling 0.028 0.027 0.026 0.028 - - 0.025 0.027 0.025 0.026 0.026 - 0.026
vanilla - - - - - - - - - - - - -
suffix-1.0-tree 0.385 0.381 0.348 0.420 0.330 0.388 0.409 0.349 0.375 0.375 0.632 0.373 0.421

SWE-Bench: Time per output token (ms)

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 30.563 21.881 26.013 37.012 22.238 23.828 23.598 27.739 29.313 31.949 25.613 17.072 27.436
suffix (tree) 30.800 22.238 26.278 37.095 22.728 23.998 23.847 28.388 29.451 32.496 25.853 17.199 27.711
pld 41.675 31.029 34.447 47.588 31.549 31.155 31.330 37.386 38.238 41.531 41.877 25.142 37.758
recycling 41.328 31.847 34.155 49.670 - - 33.434 34.304 38.438 39.667 78.153 - 43.774
vanilla 50.080 41.102 43.019 57.069 35.040 39.268 41.213 42.107 45.633 46.061 77.815 32.527 50.074
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

SWE-Bench: Speculation time per generated token (ms)

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
vanilla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
suffix (linear) 0.156 0.122 0.175 0.185 0.198 0.182 0.178 0.203 0.217 0.203 0.125 0.167 0.171
suffix (tree) 0.170 0.135 0.172 0.172 0.191 0.165 0.165 0.235 0.235 0.212 0.138 0.150 0.175
pld 0.191 0.197 0.208 0.176 0.266 0.200 0.191 0.222 0.208 0.228 0.126 0.217 0.191
recycling 9.298 6.023 7.982 13.731 - - 6.607 7.665 8.081 11.748 19.653 - 10.582
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -

SWE-Bench: Speedup over vanilla decoding

System astropy django matplotlib seaborn flask requests xarray pylint pytest scikit-learn sphinx sympy Overall
suffix (linear) 2.213 2.442 2.039 1.951 1.792 1.962 2.210 1.792 1.888 2.356 4.453 2.292 2.452
suffix (tree) 2.158 2.412 1.991 1.985 1.759 1.972 2.190 1.754 1.912 2.296 4.417 2.280 2.433
pld 1.440 1.516 1.425 1.360 1.242 1.399 1.486 1.270 1.326 1.429 2.006 1.483 1.495
recycling 1.427 1.458 1.483 1.264 - - 1.360 1.311 1.290 1.399 1.328 - 1.358
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
eagle3 - - - - - - - - - - - - -
eagle2 - - - - - - - - - - - - -
eagle - - - - - - - - - - - - -
hybrid - - - - - - - - - - - - -
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AgenticSQL: Mean accepted tokens (tokens/step)

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
hybrid (tree) 4.180 14.813 15.081 6.448 3.983 3.932 4.006 7.500
hybrid (linear) 4.008 13.473 15.304 6.362 3.876 3.842 3.913 7.262
suffix (linear) 3.577 11.833 12.395 5.924 3.665 3.005 4.005 6.349
suffix (tree) 3.470 11.724 12.137 5.834 3.633 2.914 3.904 6.236
eagle2 3.156 5.173 3.249 3.534 3.066 3.761 3.057 3.572
recycling 2.915 4.125 3.125 3.138 2.951 2.929 2.994 3.169
eagle3 2.529 3.374 4.198 3.179 2.142 4.622 2.056 3.160
eagle 2.305 4.062 2.877 3.127 2.166 3.295 2.109 2.851
pld 1.427 4.134 1.455 3.914 2.074 1.452 2.151 2.373
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

AgenticSQL: Mean Acceptance Rate

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
vanilla - - - - - - - -
suffix (linear) 0.212 0.628 0.740 0.428 0.318 0.245 0.330 0.415
suffix (tree) 0.189 0.605 0.614 0.397 0.294 0.225 0.298 0.375
hybrid (tree) 0.131 0.642 0.683 0.249 0.138 0.143 0.140 0.304
hybrid (linear) 0.124 0.595 0.750 0.242 0.130 0.139 0.133 0.302
pld 0.061 0.365 0.069 0.355 0.137 0.076 0.144 0.173
eagle 0.052 0.122 0.075 0.085 0.047 0.092 0.044 0.074
eagle2 0.036 0.070 0.037 0.042 0.034 0.046 0.034 0.043
eagle3 0.025 0.040 0.053 0.036 0.019 0.060 0.018 0.036
recycling 0.025 0.041 0.028 0.027 0.025 0.024 0.026 0.028

AgenticSQL: Time per output token (ms)

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
suffix (linear) 9.552 2.687 3.007 6.023 9.559 10.588 9.767 7.306
suffix (tree) 9.594 2.876 3.188 6.164 10.339 10.935 10.090 7.592
hybrid (tree) 11.975 3.491 3.633 7.883 14.329 11.600 14.399 9.604
recycling 10.316 7.314 9.470 9.724 10.981 9.981 10.702 9.782
hybrid (linear) 12.563 3.681 3.762 8.603 14.827 11.639 21.219 10.874
eagle2 16.814 9.210 15.078 13.877 17.967 12.312 17.531 14.677
pld 20.146 7.735 20.321 8.173 14.605 20.546 14.646 15.169
eagle 21.221 11.308 15.760 15.688 23.353 13.396 24.595 17.887
eagle3 23.334 14.729 12.513 16.863 26.997 10.747 27.728 18.966
vanilla 26.578 25.292 25.032 25.406 27.011 25.851 26.307 25.924

AgenticSQL: Speculation time per generated token (ms)

15



System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
vanilla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
suffix (linear) 0.060 0.015 0.015 0.033 0.059 0.058 0.061 0.043
suffix (tree) 0.064 0.017 0.020 0.035 0.064 0.062 0.064 0.047
pld 0.419 0.124 0.422 0.130 0.281 0.434 0.276 0.298
recycling 0.762 0.303 0.399 0.577 0.928 0.260 0.922 0.592
hybrid (tree) 1.728 0.249 0.376 1.112 2.350 0.927 2.372 1.299
hybrid (linear) 1.776 0.256 0.358 1.177 2.387 0.930 4.389 1.604
eagle 3.189 1.693 2.423 2.372 3.423 2.197 3.616 2.700
eagle2 4.118 2.006 3.292 3.308 4.599 2.597 4.509 3.487
eagle3 6.092 3.526 3.021 4.350 7.156 2.543 7.332 4.854

AgenticSQL: Speedup over vanilla decoding

System Classify Extract Enrich Combine SQL1 SQL2 SQL3 Overall
suffix (linear) 3.016 9.854 10.406 4.848 3.205 2.839 3.211 5.345
suffix (tree) 2.998 9.545 10.009 4.765 3.008 2.733 3.133 5.175
hybrid (tree) 2.338 7.672 8.191 3.613 2.057 2.496 2.077 4.068
hybrid (linear) 2.243 7.137 7.965 3.327 1.993 2.483 1.405 3.799
recycling 2.588 3.472 2.672 2.640 2.502 2.604 2.492 2.710
pld 1.330 3.695 1.255 3.298 1.936 1.311 1.905 2.105
eagle2 1.591 2.751 1.673 1.855 1.527 2.119 1.527 1.864
eagle3 1.328 1.720 2.025 1.619 1.108 2.496 1.056 1.623
eagle 1.324 2.246 1.598 1.669 1.229 1.955 1.138 1.595
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Spec-Bench: Mean accepted tokens (tokens/step)

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
hybrid (tree) 6.325 5.418 4.980 5.817 5.080 4.958 4.812 4.610 4.556 5.155 4.550 3.432 5.306 4.684
eagle3 5.975 5.373 5.180 5.745 5.562 4.351 5.009 4.956 4.664 5.299 4.767 2.909 5.093 4.647
hybrid (linear) 5.958 5.249 4.966 5.446 5.121 4.452 4.753 4.607 4.557 5.089 4.520 3.345 5.158 4.553
eagle2 4.766 3.842 3.612 4.242 4.129 3.324 3.630 3.892 3.353 3.736 3.254 2.605 3.383 3.466
eagle 4.149 3.469 3.177 3.724 3.617 2.857 3.239 3.328 2.968 3.311 2.926 2.352 3.082 3.065
recycling 3.044 2.610 2.539 3.128 2.980 2.372 2.352 2.537 2.338 2.697 2.614 2.305 2.417 2.548
suffix (linear) 1.981 1.757 1.454 2.161 1.661 1.878 1.999 1.521 1.252 1.485 1.725 1.705 1.435 1.766
suffix (tree) 1.960 1.754 1.461 2.134 1.638 1.874 1.957 1.504 1.259 1.501 1.703 1.705 1.424 1.750
pld 1.911 1.670 1.387 1.957 1.475 1.461 1.967 1.490 1.206 1.430 1.816 1.362 1.394 1.606
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Spec-Bench: Mean Acceptance Rate

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
suffix (linear) 0.255 0.216 0.162 0.240 0.163 0.152 0.216 0.171 0.116 0.169 0.199 0.216 0.208 0.190
vanilla - - - - - - - - - - - - - -
suffix (tree) 0.244 0.211 0.156 0.232 0.149 0.144 0.203 0.156 0.115 0.165 0.189 0.208 0.194 0.179
pld 0.132 0.097 0.063 0.126 0.071 0.088 0.119 0.076 0.037 0.068 0.103 0.130 0.072 0.099
eagle 0.126 0.099 0.087 0.109 0.105 0.074 0.090 0.093 0.079 0.092 0.077 0.054 0.083 0.083
hybrid (linear) 0.109 0.084 0.072 0.100 0.078 0.074 0.075 0.069 0.062 0.075 0.068 0.044 0.077 0.070
hybrid (tree) 0.107 0.084 0.072 0.101 0.077 0.075 0.074 0.069 0.062 0.076 0.068 0.045 0.077 0.070
eagle3 0.083 0.073 0.070 0.079 0.076 0.056 0.067 0.066 0.061 0.072 0.063 0.032 0.068 0.061
eagle2 0.063 0.047 0.044 0.054 0.052 0.039 0.044 0.048 0.039 0.046 0.038 0.027 0.040 0.041
recycling 0.026 0.020 0.019 0.027 0.025 0.017 0.017 0.020 0.017 0.021 0.020 0.017 0.018 0.020

Spec-Bench: Time per output token (ms)

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
hybrid (linear) 7.218 9.235 8.970 7.974 8.783 11.534 10.576 9.899 10.195 8.698 9.857 14.858 8.806 10.747
hybrid (tree) 7.251 9.588 9.519 8.203 9.194 11.880 11.098 10.543 10.775 9.133 10.214 15.262 9.141 11.153
recycling 9.475 11.528 11.333 9.224 9.749 13.475 12.957 11.489 12.425 10.691 11.373 13.104 12.019 11.947
eagle2 9.721 13.256 12.822 11.157 11.338 14.903 14.012 12.631 14.229 12.461 14.422 19.116 13.992 14.387
eagle 10.201 13.193 13.570 11.485 11.895 16.219 14.222 13.215 14.639 13.022 14.840 19.425 14.280 14.925
suffix (tree) 13.833 16.284 18.670 13.547 16.304 19.839 15.285 18.382 21.339 18.034 15.825 16.595 19.154 16.875
suffix (linear) 13.595 16.245 18.212 13.292 16.447 19.999 15.378 18.061 21.217 18.041 15.925 16.670 18.925 16.936
pld 14.681 17.524 20.469 14.450 19.179 22.693 16.383 19.173 23.300 19.714 15.949 22.214 20.438 19.190
vanilla 24.721 24.903 24.979 24.466 24.992 25.082 25.698 24.475 24.433 24.871 25.114 24.904 24.463 25.076

Spec-Bench: Speculation time per generated token (ms)

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
vanilla 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
suffix (linear) 0.071 0.079 0.099 0.067 0.087 0.097 0.089 0.084 0.101 0.094 0.092 0.076 0.084 0.088
suffix (tree) 0.074 0.080 0.104 0.069 0.091 0.099 0.093 0.088 0.103 0.097 0.096 0.079 0.086 0.091
recycling 0.243 0.318 0.291 0.240 0.255 0.391 0.419 0.304 0.320 0.275 0.321 0.365 0.310 0.340
pld 0.291 0.357 0.421 0.277 0.392 0.480 0.326 0.391 0.492 0.407 0.325 0.466 0.428 0.395
hybrid (linear) 1.369 1.838 2.026 1.510 1.854 2.455 2.152 2.070 2.353 1.925 2.118 3.096 1.949 2.259
eagle 1.698 1.977 2.268 1.877 1.892 2.389 2.034 2.060 2.421 2.166 2.434 2.885 2.351 2.289
hybrid (tree) 1.445 1.935 2.152 1.580 1.947 2.553 2.238 2.196 2.506 2.010 2.200 3.141 2.056 2.344
eagle3 1.913 2.172 2.218 2.001 2.030 2.674 2.419 2.334 2.500 2.160 2.402 4.084 2.237 2.634
eagle2 2.055 2.656 2.714 2.338 2.346 2.962 2.807 2.584 2.997 2.628 3.062 3.826 2.946 2.936

Spec-Bench: Speedup over vanilla decoding

System coding extraction humanities math math_reasoning qa rag reasoning roleplay stem summarization translation writing Overall
hybrid (linear) 3.441 2.795 2.800 3.139 2.866 2.404 2.542 2.496 2.461 2.871 2.573 1.759 2.833 2.500
hybrid (tree) 3.442 2.717 2.644 3.132 2.736 2.611 2.445 2.344 2.330 2.732 2.485 1.713 2.736 2.458
eagle3 3.115 2.634 2.713 2.910 2.888 2.172 2.474 2.446 2.394 2.764 2.520 1.447 2.622 2.367
recycling 2.619 2.234 2.209 2.660 2.577 1.951 2.057 2.150 1.979 2.334 2.218 1.932 2.057 2.169
eagle2 2.548 1.998 1.958 2.215 2.220 1.733 1.877 1.968 1.751 2.007 1.756 1.336 1.791 1.825
eagle 2.427 1.956 1.848 2.142 2.112 1.600 1.841 1.871 1.703 1.922 1.702 1.305 1.753 1.752
suffix (tree) 1.796 1.620 1.350 1.930 1.558 1.785 1.886 1.364 1.149 1.389 1.624 1.627 1.310 1.661
suffix (linear) 1.828 1.630 1.383 1.967 1.544 1.773 1.890 1.389 1.156 1.386 1.618 1.618 1.327 1.659
pld 1.712 1.484 1.231 1.753 1.323 1.326 1.807 1.320 1.055 1.275 1.628 1.219 1.232 1.448
vanilla 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Figure 9: The performance of SuffixDecoding under input distribution shift. SuffixDecoding was
trained on outputs from WildChat, while being evaluated on SpiderSQL. X axis: the number of
SpiderSQL inputs, which are added to the global suffix tree after they are processed. Red line: the
performance of SuffixDecoding if trained on 500 output examples from only SpiderSQL offline.

A.2 Additional Ablation Experiments

In this appendix, we share ablation studies that reveal the impact of several design decisions in
SuffixDecoding. The studies are conducted using the simulated verifier described in Sec. 4.1.

A.2.1 Additional Dataset Details

We performed additional ablation experiments, which used additional datasets described below.

1. WildChat Zhao et al. [2024]. We use instructions from the WildChat dataset, which consists
of real-world interactions between users and the ChatGPT service. WildChat represents the
most diverse and open-domain dataset used in our evaluations.

2. Magicoder Wei et al. [2023]. Specifically, we use instructions from the Magicoder-Evol-
Instruct-110K dataset, which consists of code-related questions and instructions generated
via Self-Instruct Chaudhary [2023], Wang et al. [2023b] and further augmented for difficulty
and diversity Luo et al. [2023] by GPT-4.

3. SpiderSQL. Spider Yu et al. [2018] is a dataset of manually-annotated questions and SQL
responses over 200 different databases with multiple tables, covering 138 different domains.
We use instructions from DAIL-SQL Gao et al. [2024a], which consists of LLM prompts
with instructions to answer questions from Spider using structured SQL code.

A.2.2 Effect of input distribution shift

In real-world LLM serving, the input characteristics of requests may change over time, and may
be out-of-distribution from the output examples that SuffixDecoding was trained on. To evaluate
this scenario, we run SuffixDecoding trained on WildChat outputs, and begin to send it inputs from
SpiderSQL, which represents a very sudden distribution shift.

Fig. 9 shows the results. SuffixDecoding starts from having 4,000 output examples from WildChat,
and begins to receive SpiderSQL inference requests. Without any adaptation, SuffixDecoding still
achieves 1.5× speedup and 8% acceptance rate, but is far from the 2.6× speedup and 20% acceptance
rate it would achieve if it were trained on 500 examples from SpiderSQL instead.

After processing each SpiderSQL inference request, SuffixDecoding can insert its output into its
global suffix tree, which means it can adapt in an online fashion to the new input distribution. As
Fig. 9 shows, the performance of SuffixDecoding improves with the number of SpiderSQL inference
requests processed. Perhaps surprisingly, after observing 500 SpiderSQL and adapting online,
SuffixDecoding’s performance is almost indistinguishable to its performance if it were trained offline
on the 500 SpiderSQL examples alone. This suggests that SuffixDecoding is able to adapt to input
distribution shifts quickly and at no loss in performance.
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A.2.3 Predicting SuffixDecoding Effectiveness

SuffixDecoding tends to perform better on more structured tasks compared to very open-ended ones
(e.g., AgenticSQL vs WildChat). We can measure this "structuredness" using empirical entropy. The
steps are as follows: (1) create a suffix tree from example model outputs (100 examples is typically
enough), (2) calculate the entropy of each node’s output distribution by determining how often each
child node is accessed, and (3) compute a weighted average of this entropy across all nodes. A low
average entropy indicates that output tokens are more predictable based on their prefixes, which
generally suggests that Suffix Decoding will perform better.

Table 1: Measured empirical entropy of our various evaluation datasets.
Dataset Average Entropy

AgenticSQL (Enrich) 0.171
AgenticSQL (Classify) 0.738
AgenticSQL (Extract) 0.0862
AgenticSQL (SQL1) 1.52
AgenticSQL (SQL2) 1.49
AgenticSQL (SQL3) 1.51
AgenticSQL (Combine) 1.49
Spider 2.50
WildChat 3.43
Magicoder 2.95

Table 1 shows the empirical entropy measured on samples from each of our evaluation datasets. We
find that the average entropy is closely related to the intuitive understanding of the "structuredness"
of each dataset. Additionally, it correlates well with the performance of SuffixDecoding on those
datasets. Therefore, practitioners can calculate this value using a small number of output examples to
assess whether SuffixDecoding is appropriate for their specific tasks.
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