
Taming Win32 Threads
with Static Analysis

Jason Yang

Program Analysis Group
Center for Software Excellence (CSE)

Microsoft Corporation

CSE Program Analysis Group

• Technologies

– PREfix, SAL, ESP, EspX, EspC, …

• Defect detection tools

– Buffer overrun, Null deref, SQL injection,
programmable specification checker,
concurrency, …

http://www.microsoft.com/windows/cse/pa_home.mspx

http://www.microsoft.com/windows/cse/pa_home.mspx

The Esp Analysis Platform

Analysis Engine and Libraries (Path Refutation, Alias Analysis …)

CFG; Error Reporting and Suppression; Pattern Matching (OPAL)IR

Analysis

Clients/Specs

C/C++/SAL

Front End

MSIL
TSQL

JavaScript

SecurityConcurrency Typestate

Locking Problems

• Insufficient lock protection

• Lock order violation

• Forgetting to release

• Ownership violation

• No-suspend guarantee violation

• UI thread blocking due to SendMessage

• And more …

Win32 Multithreading:
Plenty of Challenges

• Rich set of lock primitives
– Critical Section, Mutex, Event, Semaphore, …

• “Free-style” acquire/release
– Not syntactically scoped

• Implicit blocking semantics
– SendMessage, LoaderLock, …

• How to ensure the intended locking discipline?
– Who guards what, who needs to acquire, lock order, …

Central Issue: Locking Disciplines

• Essential for avoiding threading errors

• Surprisingly hard to enforce in practice

– “We have a set of locking conventions to follow”

– “They are informally documented”

– “We don’t have a way to check against the
violations”

Checking Concurrency Properties via
Sequential Analysis

• Insight: Developers mostly reason about
concurrent code “sequentially” following
locking disciplines

• Approach: Mimic developer’s reasoning

– Track locking behavior via sequential analysis

– Simulate interleaving effects afterwards

EspC Concurrency Toolset

• Global lock analysis – Global EspC

• Concurrency annotation – Concurrency SAL

• Local lock analysis – EspC

• Lock annotation inference – CSALInfer

Global EspC

• Global lock analyzer
– Deadlock detection
– Code mining

• Based on ESP
– Inter-procedural analysis with function summaries
– Path-sensitive, context-sensitive
– Selective merge on dataflow facts
– Symbolic simulation for path feasibility

• “Understands” Win32 threading semantics
– Use OPAL specification to capture Win32 locking APIs

10

Phase 1: Lock Sequence Computation

Unlock(a)

Lock(b)

Lock(c)

Unlock(b)

Lock(a)

{a}

{a,b}{a,b}

{b} {a,b,c}

{a,c} {}

• Start from root functions

• Track lock sequences at each
program point

• Do not merge if lock sequences
are different

• Identify locks syntactically based
on their types

Phase 2: Defect Detection

• Deadlock detection

– Cyclic locking  deadlock!

• Race detection

– Insufficient locking  race condition!

• Lock misuse patterns

– E.g., exit while holding a lock  orphaned lock!

Concurrency SAL

• Extension to SAL
– Covers concurrency properties

• Example lock annotations
– Lock/data protection relation:

__guarded_by(cs) int balance;

– Caller/callee locking responsibility:
__requires_lock_held(cs) void Deposit (int amount);

– Locking side effect:
__acquires_lock(cs) void Enter();__releases_lock(cs) void Leave();

– Lock acquisition order:
__lock_level_order(TunnelLockLevel, ChannelLockLevel);

– Threading context:
__no_competing_thread void Init();

CSALInfer

• Concurrency SAL inference engine
• Statistics-based inference for in-scope locks

– Tracks lock statistics for accessing shared variables

– Computes “dominant lock” for shared variable

• Constraint-based inference for out-of-scope locks
– Generates constraints based on locking events

– Translates constraints to propositional formula

– Solves constraints via SAT solving

• Heuristics-based inference
– Looks for strong evidence along a path

EspC

• Local static lock analyzer

– Understands lock annotations

– Check violations of Concurrency SAL

• Runs on developer’s desktop

– PREfast plugin

Subset of EspC Warnings

• 26100: EspC: race condition. Variable ‘VarExpr’ should be protected by
‘LockExpr’.

• 26110: EspC: caller failing to hold ‘LockExpr’ before calling
‘FunctionName’.

• 26111: EspC: caller failing to release ‘LockExpr’ before calling
‘FunctionName’.

• 26112: EspC: caller cannot hold any lock before calling ‘FuncName’.
• 26115: EspC: failing to release ‘LockExpr’ in ‘FunctionName’.
• 26116: EspC: failing to acquire or to hold ‘LockExpr’ in ‘FunctionName’.
• 26117: EspC: releasing unheld lock ‘LockExpr’ in ‘FunctionName’.
• 26140: EspC: error in Concurrency SAL annotation.

15

Summary

• Covers a variety of concurrency issues
– Deadlocks

– Race conditions

– Win32 locking errors

– Atomicity violations

• Tackles from different angles
– Global analysis: Global EspC

– Annotations: Concurrency SAL

– Local analysis: EspC

– Annotation inference: CSALInfer

