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ABSTRACT

Memory buffer allocation for on-chip memories is a major challenge

in modern machine learning systems that target ML accelerators.

In interactive systems such as mobile phones, it is on the critical

path of launching ML-enabled applications. In data centers, it is

part of complex optimization loops that run many times and are

the limiting factor for the quality of compilation results.

In contrast to the traditional memory allocation problem in lan-

guages such as C++, where allocation requests dynamically arrive

as the application is executing, ML systems typically execute a

static control flow graph that is known in advance. The task of the

memory allocator is to choose buffer locations in device memory

such that the total amount of used memory never exceeds the total

memory available on-device. This is a high dimensional, NP-hard

optimization problem that is challenging to solve.

Today, ML frameworks approach this problem either using ad-

hoc heuristics or solver-based methods. Heuristic solutions work

for simple cases but fail for more complex instances of this problem.

Solver-based solutions can handle these more complex instances,

but are expensive and impractical in scenarios where memory allo-

cation is on the critical path, such as on mobile devices that compile

models on-the-fly. We encountered this problem in the develop-

ment of Google’s Pixel 6 phone, where some important models took

prohibitively long to compile.

We introduce an approach that solves this challenge by com-

bining constraint optimization with domain-specific knowledge to

achieve the best properties of both. We combine a heuristic-based

search with a solver to guide its decision making. Our approach

matches heuristics for simple inputs while being significantly faster

than the best Integer Linear Program (ILP) solver-based approach

for complex inputs. We also show how ML can be used to con-

tinuously improve the search for the long tail of workloads. Our

approach is shipping in two production systems: Google’s Pixel 6

phone and TPUv4. It achieves up to two orders of magnitude allo-

cation time speed-up on real ML workloads compared to a highly-

tuned production ILP approach that it replaces and enables impor-

tant real-world models that could not otherwise be supported.
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1 INTRODUCTION

Machine learning (ML) is a key workload in scenarios ranging from

data centers to mobile devices. Many systems problems need to

be re-evaluated in this context, since ML workloads often have a

different structure than traditional applications. One such area is

memory allocation. ML accelerators often contain large, physically

addressed scratchpad memories in on-chip SRAM that are fully

addressable and shared [31, 64]. To avoid costly off-chip memory

transfers, ML frameworks must maximize the use of this SRAM,

reminiscent of the well-studied memory allocation problem [61].

In a language like C++, memory allocation assigns addresses

for a stream of dynamically allocated buffers while minimizing

fragmentation. ML workloads, on the other hand, often execute

static control flow graphs where the live ranges (logical allocation

and deallocation times) and sizes of buffers are known a priori. This

is a 2D bin-packing problem where one coordinate, logical time, is

fixed (Figure 1). This problem can be challenging, particularly at

high memory utilization. If the allocator fails to find a solution, the

framework must apply techniques such as rematerialization [30] or

sharding [39] to reduce on-chip memory pressure at the expense of

extra computations. Solving the allocation problem is thus critical

for achieving full performance. Existing ML compiler frameworks

handle these on-chip memory allocation problems in two ways:

(1) Heuristics: Some frameworks such as XLA [37], TFLite [1],

or TVM [21] rely on heuristics for memory allocation. For

example, TFLite uses several greedy heuristics [2], XLA’s

memory repacker [8] has a hardcoded heuristic, and a greedy

packing approach has been proposed for TVM [42]. These

heuristics are fast but cannot solve workloads with complex

allocation behavior that are close to the memory limit.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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Figure 1: Representative example of the on-chip memory al-

location problem for ML workloads. Logical start/end times

of buffers are known and the allocator needs to choose a

location (y coordinate) for each buffer. The placement of

the blue buffer results in a suboptimal (left) and an optimal

(right) solution for the same problem.

(2) Solver-based approaches: Past work has used SAT or ILP

solvers to encode the bin packing problem. One example of

this type of strategy is Checkmate [30], which uses the solver

for optimal rematerialization of buffers. These approaches

can handle the more complex workloads that heuristics can-

not solve but are often too slow to run online.

We investigated this problem during the development of Pixel 6.

The compiler for the ML accelerator in Pixel 6’s custom Tensor

System on Chip (SoC) [4] originally relied on a memory allocation

approach that used two strategies: 1) A heuristic similar to previ-

ously deployed and published greedy approaches [2, 38], which is

fast but does not solve the most complex models, and 2) An ILP

solver-based approach that is used if the heuristic fails. Both ap-

proaches are highly tuned and of production quality, and are thus

representative of the state of the art in both areas.

For many workloads where the heuristic failed, the ILP solver

caused issues because it was too slow. On the phone, models are

compiled on-the-fly on the CPUwhen a model is loaded, after which

they can be executed on the phone’s ML accelerator. This may occur

on application startup or at run time, and compilation delays are

therefore user-visible (we discuss the production constraints that

make on-the-fly compilation necessary in Section 2.3). In some

cases, our ILP solver took tens of seconds or even minutes. These

delays prevented the deployment of several real-worldmodels, since

even a moderate delay is too long when it is user-visible.

We hypothesize that the reason for the discrepancy between

the running time of the heuristic and the ILP solver is that greedy

heuristics can exploit domain-specific knowledge for local decisions

but cannot reason globally, while ILP solvers can reason globally

but have no domain-specific knowledge. We therefore introduced a

new approach and allocator, called TelaMalloc, which achieves the

best of both worlds by running heuristics and a solver in parallel.

At every step of allocating buffers, we pick from a set of possible

heuristics. We then update the solver with the decision made by

the chosen heuristic, and use the solver’s output to guide future

decisions. Using this approach, we demonstrate up to two orders

of magnitude allocation time speedup on real-world workloads,

unlocking otherwise unsupported models.

TelaMalloc is in production and ships with Pixel 6. Demonstrat-

ing generality, it is also integrated into the compiler for TPUv4 [31],

where it results in better compilation quality (Section 2.3). We also
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Figure 2: High-level design of the two accelerators that Tela-

Malloc is targeting. The memory managed by TelaMalloc is

shown in orange. By targeting two very different ML accel-

erators, we demonstrate generality of our approach.

propose and evaluate a forward-looking approach on how to further

improve TelaMalloc by using ML techniques to learn decisions au-

tomatically that are difficult to capture using heuristics. Specifically,

we learn a custom backtracking policy that reduces the number of

backtracking steps by up to two orders of magnitude. This allows

the allocator to better handle new corner cases automatically.

We first discuss our production constraints and environment

(Section 2), and provide background on memory allocation for ML

accelerators (Section 3). We then present a high-level overview

of our design (Section 4) followed by the strategies that enable

TelaMalloc to speed up memory allocation (Section 5). We next

show how we use imitation learning to further improve our alloca-

tion strategies (Section 6). We then present a detailed evaluation

(Section 7) and discussion (Section 8) of our approach. We finally

present related work (Section 9) and conclude.

2 BACKGROUND

We now describe the memory allocation problem that TelaMalloc

is solving and how it relates to other problems in ML compilers.

We also discuss our real-world production constraints, as well as

details on the two accelerators targeted by TelaMalloc.

2.1 Target Platforms

The problem we investigate is universal to almost all production

ML compilers. In this paper, we look at two very different scenarios.

Our focus is on the ML accelerator in Pixel 6, but we also integrated

our approach into the TPUv4 compiler that targets data center ML

workloads. Both accelerators have very different hardware designs

(Figure 2), deployment scenarios, and use different compiler stacks.

Pixel 6 Tensor SoC (Inference): Google’s custom Tensor SoC

contains a proprietary tensor processing unit. The accelerator con-

sist of a 2D array of processing elements (PEs). Each PE contains a

scratchpad memory, as well as a number of SIMD units. Each of the

SIMD units contains a local register file and a number of compute

lanes. TelaMalloc manages the scratchpad memories within the PEs

(all PEs execute the same code and thus have identical memory
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allocations). Data can be transferred between scratchpad memo-

ries and off-chip DRAM. More details about this accelerator can be

found in various published works [11, 64, 68].

TPUv4 (Training+Inference): Google’s TPUv4 [31] is an acceler-

ator targeted at large-scale data center deployments. It is deployed

in large-scale pods consisting of 4,096 TPUs. Each TPU contains

two TensorCores and each of these TensorCores contains vector

memory, a vector processing unit, four matrix-multiply units and

two cross-lane units (XLUs). A substantial portion of the overall

chip is spent on a global 128 MB on-chip memory called CMEM,

which is the memory that TelaMalloc manages.

2.2 The Memory Allocation Problem

There exists a large spectrum of ML accelerator designs and ML

compilers. At a high level, most of these compilers 1) take a graph

representation of the model and perform various graph transfor-

mations, 2) divide the graph into smaller units of work (operators),

and 3) map these operators to different units of hardware.

The third portion has seen a substantial amount of research

in recent years [28, 29, 32, 34, 34, 45, 63] and focuses on finding

optimal mappings of operators to processing elements (often with

local scratchpads). We refer to this as the mapping problem: It

encompasses finding the optimal loop tiling, loop ordering, and

mapping of buffers to different levels of a memory hierarchy. It has

been addressed with a wide range of techniques, including large-

scale search techniques such as genetic algorithms [32], constraint

optimization [29] and machine learning [34].

The memory allocation problem we investigate in this paper is

different from the mapping problem. While the mapping problem is

concerned with determining which level of a memory hierarchy to

map each buffer to, the memory allocation problem selects buffer

locations within addressable scratchpad memories that are shared

between multiple buffers with overlapping live ranges.

Many prior works that investigate the mapping problem are able

to ignore the allocation problem due to one of two reasons:

• Non-overlapping operators: Many prior works focused

on mapping one operator (e.g., a DNN layer) at a time. In

this case, the live ranges of all buffers are either assumed to

be the same or highly regular. For example, DNN operations

can often be described as loop nests, which lend themselves

to regular loop-blocking memory allocation patterns where

a tile-sized buffer for the inner loop can be reused for each

tile, or where the live range of an inner loop does not ex-

ceed the outer loop. Examples of this approach include In-

terstellar [63], Timeloop [51], ZigZag [45], Marvel [19], and

CoSA [29]. Memory allocation in this case is trivial (concep-

tually resembling stack allocation).

• Partitioned or banked memory: On some architectures,

operators can be overlapped without sharing memory. For

example, Mind Mappings [28] assumes a banked architec-

ture and assigns buffers at a bank granularity. GAMMA [32]

considers inter-operator parallelism but assumes a pipelined

approach where each accelerator instance runs one opera-

tor at a time. This effectively partitions the global memory

statically and within each partition, the "non-overlapping

operators" case applies.

These assumptions do not hold in many production systems, since

overlapping and cross-layer fusion of operators has been shown to

be crucial for maximizing performance [52]. For example, both ac-

celerators used in this paper compile and execute the entire model

together (rather than one layer at a time) and share on-chip memo-

ries between overlapping operators.

Most of the accelerators studied in the above-cited papers would

encounter the same memory allocation problem for their scratch-

pad memories if the compiler scheduled multiple operators concur-

rently. In this case, solving the mapping problem would result in a

set of buffers with associated live ranges that share the accelerator’s

scratchpad memory, which become the input to the memory allo-

cation problem. Examples of such accelerators include the widely

studied EyeRiss accelerator [24] as well as the Timeloop [51] and

MAESTRO [35] models. A particularly interesting use case are tech-

niques that co-optimize the accelerator and model together [45], for

example to target an FPGA [65]. In those cases, the allocation prob-

lem needs to be solved to inform sizing decisions for scratchpad

memories instantiated in those allocators.

We believe that the techniques developed in this paper apply

beyond machine learning, to any system that has large software-

managed scratchpads and deterministic timing behavior. DSP [12]

is a canonical example of this type of scenario, but it may also

apply to SRAM sizing in HLS [53], BRAM management in time-

multiplexed FPGA overlays [40] or CGRAs [54], memory manage-

ment for scientific computing workloads [57], and memory-trace

oblivious computation [41] where timing-predictable scratchpads

are used to address side-channels.

2.3 Product Requirements & Motivation

We will now describe our motivation, and how the goals and re-

quirements between the two accelerators fundamentally differ.

Pixel 6: Android apps can target the Tensor SoC’s ML accelerator

via NNAPI [5], an API that can be called from anywhere in the

program. NNAPI invokes the compiler, which may happen at load

time but also elsewhere in the program (e.g., an app may download

a model or programmatically generate NNAPI calls).

The compiler runs on the phone’s CPU, takes the model and

any settings provided by the application or system, and maps it

to a schedule of operators with associated buffers. It then invokes

the memory allocator to pack a chosen subset of memory buffers

into PE memory. As long as a suitable packing can be found, the

size or layout of this packing does not matter since the accelerator

is uniform and not shared. However, since compilation delays are

user-visible, this process needs to complete quickly.

Given that models are often static, it is perhaps counter-intuitive

that compilation has to happen on-the-fly and on-device, and that

it cannot be pre-computed offline before shipping the model to

the phone. The reason is that the allocation problem depends not

only on the model but also on the device’s hardware configuration,

earlier compiler passes, and potentially other runtime parameters

(e.g., library settings). Since apps call the compiler on-device via an

application-level API, app/model and hardware/compiler/runtime

may come from different parties and may change over time.

Pre-computing the cross product of them is infeasible. For exam-

ple, shipping a new compiler with pre-computed allocations would
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require the source code of all models the compiler needs to target,

on all hardware configurations. This would require all model/app

developers to share their source code with a central repository,

which is often infeasible. Caching compilation results on-device

does not solve this problem since the prohibitively long compila-

tion time still occurs after every app or configuration change and is

user-visible (note that some models take minutes to compile; this is

too long for a user to wait for an app). Finally, running compilation

at installation time is infeasible as well, since the model is generated

by arbitrary code (e.g., the application may download the model at

run time, after it has been installed [5]).

While only a subset of models take prohibitively long to compile,

some of them are important and could not run without TelaMalloc.

Enabling this long tail is thus our primary motivation.

TPUv4: We integrated TelaMalloc into the open-source XLA com-

piler [37], which is used for TPUv4. Compilation in data centers can

tolerate moderate memory allocation delays, but the XLA compiler

is also used as a JIT compiler for JAX [15] and TensorFlow (where

compilation is time-sensitive). To allocate buffers in SRAM, XLA

repacks buffers many times in its inner loop, so speedups in repack-

ing can add up to substantial savings. There are also autotuners

that run the compiler many times to optimize a model [52].

Most importantly, XLA uses its allocator to opportunistically

put as many access-intensive buffers as possible into SRAM while

heuristically maximizing their utility. Corresponding kernels fetch

data from there instead of HBM, executing faster. TelaMalloc suc-

ceeds at packing more buffers into the same memory within the

time limit, resulting in end-to-end program speedups without sub-

stantially increasing compilation time (Section 7.4).

2.4 Real-World Impact of Compilation Delays

The primary goal of TelaMalloc on Pixel 6 is to address rare, exces-

sive compilation-delays that would have been user-visible (e.g., the

application stalls for several seconds).

A specific example is camera apps that apply filters or visual

effects. These apps commonly allow a user to select between a set

of filters, each of which may be a different model. Selecting a filter

may cause it to be downloaded and compiled. If it takes several

seconds before a filter is ready-to-use, the photo the user wants

to take may already be gone. Further, compilation delays make it

difficult to rapidly browse through and try out different filters.

We emphasize that our goal is not to improve compile time by a

marginal amount but to address the long tail of compilation times.

In practice, even a small fraction of failing models is unacceptable

(particularly since many apps have multiple models). We are there-

fore concerned with moving this number as close to zero as possible.

As we will show later in this paper, this motivates an ML-driven

approach to target the very tail-end of this distribution.

3 PROBLEM FORMULATION & BASELINES

We now discuss the memory allocation problem that we are solving

in more detail. In its most basic form, the allocator takes a set of

buffers 𝐵 ∈ N3 (Start, End, Size) and a memory limit 𝑀 . These

buffers represent tensors associated with one or more operators in

an ML model’s dataflow graph that need to be allocated in on-chip

SRAM. The allocator produces a mapping 𝐵 ↦→ Address, where:

Figure 3: Showing live memory under a best-fit allocator

(TensorFlow’s BFC allocator), a domain-specific heuristic,

and a solver-based approach. Only the solver is able to stay

under a hypothetical memory limit shown as a horizontal

line (lower part of the graph omitted for clarity).

1) Address is an integer representing the start/lowest address of

the buffer, 2) no two buffers overlap, and 3) the highest address

of the buffer never exceeds 𝑀 . Note that Start and End do not

refer to wall clock time but to logical time used during compilation,

which is stable regardless of the physical running time. Size is

usually in bytes or some other discrete unit of allocation. We also

study an extension of this problem where each buffer also has an

alignment and the constraint that Address needs to be a multiple

of B’s alignment (Section 5.5). This is required on many real-world

systems to enable efficient execution.

We will use Figure 1 as a running example. Here, we have 10

buffers with fixed start and end times whose locations in memory

need to be selected. Depending on where we place block (7) relative

to blocks (1) and (2), the buffers either fit into the available shared

memory or not. Of course, most real-world example have a much

larger number of buffers, typically in the thousands.

While this problem needs to be solved by all ML compilers that

support overlapping operators, it is particularly challenging on

mobile devices due to the aforementioned timing constraints. We

found that memory allocation can account for a significant por-

tion of the compilation time. For example, we observed that the

previously used ILP solver accounted for 68% of compilation time

for one real-world model. As such, speeding up memory allocation

was crucial for us to support important models on Pixel 6.

While our baselines are proprietary, they are highly tuned and

similar approaches are taken by academic work and open-source

compilers such as XLA and TVM. We therefore believe our results

to be representative of the state-of-the-art. We will now explain

our baselines in more detail.

3.1 Static Memory Allocation Heuristics

The simplest approach to the ML memory buffer allocation prob-

lem is to use a conventional memory allocator [26, 36] and allocate

buffers in start time order (ignoring the end time of the buffer).

For example, Tensorflow’s BFC Allocator [7] uses a simple best-fit

allocation scheme similar to dlmalloc [36]. This approach works

well if memory is abundant but fails if the memory budget is tight.

A more effective way to solve the problem is to use greedy heuris-

tics [38] that take the end time into account to pick locations one

buffer at time, while ensuring that it does not overlap with any

previously allocated buffers. These approaches can significantly

outperform a timing-unaware allocator but still cannot solve the
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up and the heuristic keeps track of a łskylinež of already

placed blocks. Out of all unplaced candidates, the heuristic

picks the best block (according to a scoring metric) that fits

into one of the gaps in the current row. This process is re-

peated until the row is full. The heuristic then moves to the

next-higher row and repeats.

most complex cases. For example, Figure 3 shows a comparison

between the memory required using the BFC allocator compared

to a more advanced greedy heuristic and the best possible solution

found by an ILP solver. The heuristic substantially outperforms

the BFC allocator, but only the ILP solver is able to fit the model if

the memory limit is tight (which is common, since earlier compiler

stages often try to pack as many buffers into SRAM as possible).

Our baseline heuristic is an example of this type of policy. It

defines the contention of a time slot as the sum of the size of all

buffers that are live at that time and defines the contention of a

buffer as the maximum contention of any time slot for which the

buffer is live. During the allocation process, the heuristic keeps track

of the łskylinež of buffers allocated so far, which is the maximum

address in use for each time slot (Figure 4). The policy considers

buffers with the highest contention first and places them at the next

available location according to the skyline. If multiple buffers have

the same contention, the heuristic uses alignment, the value of size

× lifetime2 and the lifetime (in that order) to break ties.

Buffers are thus placed bottom-up, like blocks in a game of Tetris.

In the example from Figure 1, blocks (1), (2) and (8) have the highest

contention. (8) would thus be placed first, followed by (2) and then

(4), since the highest-contention buffer at that point, (1), cannot be

placed on the second row from the bottom due to overlap with (2).

There are various alternative heuristics that take a similar ap-

proach of picking a block to place next. For example, we could

place the largest blocks first, or the blocks with the most restrictive

alignment (Lee and Pisarchyk performed an exploration of this

space [38]). However, no heuristic works for all cases. The best

heuristic depends on the specific workload and may vary across the

different steps of solving the problem. The challenge is that once a

heuristic has made a wrong decision that prevents it from solving

the problem, it has no way to recover. Thus, heuristics do not per-

form well for difficult problems that need the ability to backtrack

and explore different parts of the search space.

3.2 Solver-Based Approaches

If the greedy heuristic fails, the allocator falls back to an ILP ap-

proach (Figure 5). The ILP formulation is a fairly conventional

implementation of 2D bin packing [14]. We introduce variables

to encode the location of the lower end of each buffer. Since start
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Variables:

(1) ∀𝑖 ∈ Buffers.pos𝑖 ∈ N
(2) ∀(𝑖, 𝑗) ∈ OverlappingBuffers.𝐵𝑖,𝑗 ∈ {0, 1}

(3) ∀(𝑖, 𝑗) ∈ OverlappingBuffers.𝐵̃𝑖,𝑗 ∈ {0, 1}

Constraints:

(1) ∀𝑖 ∈ Buffers.pos𝑖 + SIZE𝑖 ≤ 𝑀

(2) ∀𝑖, 𝑗 ∈ OverlappingBuffers.𝐵𝑖,𝑗 + 𝐵̃𝑖,𝑗 = 1

(3) ∀𝑖, 𝑗 ∈ OverlappingBuffers.pos𝑖 + size𝑖 − 𝐵𝑖,𝑗 ×𝑀 < pos 𝑗

(4) ∀𝑖, 𝑗 ∈ OverlappingBuffers.pos 𝑗 + size 𝑗 − 𝐵̃𝑖,𝑗 ×𝑀 < pos𝑖

Figure 5: The ILP Formulation encodes the position of each

buffer as a variable and adds constraints to ensure no two

buffers overlap. 𝑀 is the maximum memory size. Note that

variables 2-3 and constraints 2-4 implement a logical ORpre-

venting any two buffers from overlapping.

and end time are fixed, we can statically determine which buffers

overlap in the time dimension. For each of these overlapping pairs

(OverlappingBuffers), we add constraints (2-4) to encode that they

must not overlap in the space dimension. For two buffers 𝑖 and 𝑗 ,

this can be written as (pos𝑖 + size𝑖 < pos 𝑗 ) OR (pos 𝑗 + size 𝑗 < pos𝑖 ).

We encode logical OR in standard ILP fashion as boolean variables

𝐵𝑖, 𝑗 and 𝐵̃𝑖, 𝑗 , as well as two equations, one for each side of the OR

(𝐵𝑖, 𝑗 selects which branch can be false).

This approach has similarities to other solver-based approaches

that divide up resources, such as CheckMate [30] and bin pack-

ing algorithms for cluster scheduling such as TetriSched [60]. An-

other connection is place & route for chip design, which commonly

uses solvers as well [25]. While the details vary between these ap-

proaches, one commonality is that the number of integer variables

grows quadratically with the number of potentially overlapping

buffers. This makes the problem challenging for the ILP solver,

since integer variables are what makes the problem NP-hard and

creates a large search space. While the ILP solver can efficiently

explore this search space and find solutions to problems that the

heuristic cannot solve, it may take a long time because it cannot

exploit domain-specific insights for the memory allocation problem

that a heuristic can incorporate.

4 TELAMALLOC OVERVIEW

In this work, we take an approach that represents a middle ground

between heuristics and solver-based approaches. We model the

allocation problem as a search space. At every step, we pick one

buffer to place next, pick its location, and then ensure that the

problem was not made unsolvable by this decision.

To make these choices, we consider a number of heuristics at

every step (each of which may choose a different buffer). We then

use a constraint programming (CP) solver to guide the traversal of

this space, backtracking when the solver indicates that a particu-

lar choice made the problem infeasible. This allows us to identify
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Figure 6: Overview of the Telamon approach.

early when a decision made the problem unsolvable where a greedy

heuristic might place a large number of additional blocks before

eventually failing. The intuition is that this allows TelaMalloc to

exploit domain-specific information. ILP/CSP is not a natural en-

coding for 2D-bin-packing and we hypothesize that the solver is

less efficient in exploring this search space ś e.g., a rectangle may

clearly not fit into a particular gap, but the solver only sees a set of

non-obvious equations (Figure 5).

For our interactions with the CP solver, we build on and ex-

tend an (as-so-far unpublished) framework called Telamon. This

framework is a wrapper around a CP-SAT solver [3], but instead

of asking the solver to produce a solution to the entire constraint

problem, Telamon provides a callback into a search heuristic that

can make one variable assignment choice at a time. This heuristic

can query the CP solver to guide its search, by asking for valid

ranges of values for each variable and reading out the constraints

that made a particular assignment unsatisfiable. Once the heuristic

has made a decision, the CP solver’s state is updated. If the problem

is now unsolvable, Telamon backtracks accordingly and explores a

different part of the search space. It thus provides an abstraction

that separates policy (the search heuristic) from the mechanics of

managing the CP solver state and backtracking.

5 DESIGN & IMPLEMENTATION

We now describe the implementation of TelaMalloc. We build on the

Telamon framework described in Section 4 and follow the high-level

structure described there.

5.1 Problem Encoding

We first encode the allocation problem for the CP solver. We chose

the following formulation, which is equivalent to the ILP encoding

in Section 3.2.

Choices:

(1) ∀𝑋 ∈ Buffers.pos (𝑋 )
(2) ∀(𝑋,𝑌 ) ∈ OverlappingBuffers.𝐵 (𝑋,𝑌 )

Constraints:

(1) ∀𝑋 ∈ Buffers.pos (𝑋 ) + size (𝑋 ) ≤ 𝑀

(2) ∀(𝑋,𝑌 ) ∈ OverlappingBuffers.𝐵 (𝑋,𝑌 ) ⊕ 𝐵 (𝑌,𝑋 )
(3) ∀(𝑋,𝑌 ) ∈ OverlappingBuffers.

(pos (𝑋 ) + size (𝑋 ) − pos (𝑌 ) ≤ 0) ∨ 𝐵 (𝑌,𝑋 )

The main difference to the ILP encoding is that the logical XOR can

be encoded directly rather than requiring multiple ILP constraints.

It is therefore reasonable to ask whether encoding the problem as a

CP problem alone is already advantageous over the ILP formula-

tion. However, we found no conclusive evidence in either direction

(Figure 13), which is perhaps unsurprising since the problems are

very similar and the solver that we are using (CP-SAT) is the same

that underpins the ILP baseline.

To improve over the solver, we combine it with a policy that

can exploit domain-specific knowledge. At every step, we choose

Minor
backtrack

Major
backtrack

Backtrack reason

Decision level

0

1

2

3

Figure 7: The search tree explored by the policy in conjunc-

tion with the CP solver. At every step, the policy chooses

between a set of heuristics.

between a set of heuristics that pick a block to place next and make

a decision where to place it. We call these blocks candidates. This

effectively models a search tree where every node (or decision point)

represents a state (i.e., a particular set of already placed blocks and

their locations). The depth of the node is called the decision level of

the decision point. Figure 7 visualizes this setup.

Similar to the heuristic from Section 3.1, our approach keeps

a skyline of the blocks placed so far and picks blocks to place on

top of this skyline (Figure 8a). At every step, the policy considers

all unplaced blocks and picks a block to place next, which is then

placed on top of the skyline in a łTetrisž fashion (łfallingž from the

top). Three heuristics are used to pick the next block:

(1) The block with the longest lifetime (end-start time).

(2) The block with the largest size.

(3) The block with the largest łareaž (i.e., size × lifetime).

TelaMalloc tries these three heuristics at every step in order. For

example, it will try the longest allocation first (since it likely affects

the most constraints) and follow that part of the search tree. If this

fails and backtracks, we try the largest allocation, until we have

exhausted all options in that part of the tree as well and need to

backtrack again. By running the solver at every step, we can quickly

skip parts of the search tree that are infeasible.

However, we found that this still does not solve many problems

in time, even when given a generous time budget. While the solver

allows us to backtrack early, the heuristics often get stuck in local

optima. We therefore build on this approach and enhance it in

different ways that leverage both domain knowledge about the

allocation problem and the ability to query the solver to make

better heuristic decisions.

5.2 Solver-Guided Placement

The CP-SAT solver calculates the range of valid values for each

pos(𝑋 ) variable at every step. Instead of using the skyline approach,

we can therefore ask the solver to find the lowest valid location

that a buffer can be placed (Figure 8b).

We found that this strategy is necessary for the solver to not get

stuck in a local optimum (which would lead to more backtracking
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Figure 8: TelaMalloc Placement Strategies.

in the best case and being unable to find a solution in the worst

case). For example, imagine that in Figure 1, TelaMalloc has placed

blocks (8), (2), (7) and (4), similar to the right version of the example.

Without solver-based placement, it would not be possible to place

blocks (5) and (6) anymore. With this optimization, (5) and (6)

can be correctly placed łunderneathž the already placed block (7).

Using the solver to determine the minimum position significantly

improved search time but alone was still insufficient for the most

complex models.

5.3 Contention-Based Grouping

Many models have execution phases of high and low memory con-

tention (the amount of live memory at a given time). Intuitively,

TelaMalloc has more flexibility to place blocks when contention is

low. We exploit this property by identifying phases of high con-

tention and placing blocks in these phases first.

We perform a pre-processing pass where we identify phases

of high contention that are separated by a trough in contention

between them. In the example from Figure 1, there are three such

phases: one ranging from the start of block (2) to the end of block

(1), one ranging from the start of block (5) to the end of block (4)

and one encompassing the duration of block (9).

We first identify all time steps that have no overlap between the

blocks that are live before this time step and after. In this case, we

can divide the problem into two subproblems that can be solved

independently. Within each subproblem, we then use the algorithm

in Figure 9 to identify phases of high contention that are separated

by a trough. We start with a particular contention threshold (e.g.,

100% of total capacity), identify contiguous time ranges that match

or exceed this threshold, and group any previously unassigned

blocks that overlap with such a time range into a phase. We then

lower the threshold and repeat the process to identify phases with

progressively lower contention. This results in a list of phases with

associated blocks, in decreasing order of contention.

Phases are now used in the search as follows: At every step,

instead of picking the globally largest (or longest-lived, etc.) block,

we now first select these blocks only within the same phase as the

previous block. Only if this fails (either because there are no more

such blocks or because of returning from a backtrack) do we try

blocks from other phases (in order).

5.4 Smart Backtracking

We define two types of backtracks: minor and major (Figure 7). Mi-

nor backtracks occur whenwe place a candidate and the CP problem

becomes immediately unsatisfiable. In that case, we backtrack one
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1 phases = []

2 for percent in [100, 90, 80, 70, 60, 50, 40, 30, 20]:

3 threshold = percent * total_memory / 100

4 in_high_cont_range = (contention[0] >= threshold)

5 current_range_start = 0

6 for t in [0, max_time + 1]:

7 if contention[t] >= threshold:

8 if !in_high_cont_range:

9 in_high_cont_range = true

10 current_range_start = t

11 else if in_high_cont_range:

12 in_high_cont_range = false

13 p = new Region(current_range_start, t-1)

14 phases.append(p)

15 for b in blocks:

16 if p.overlaps(b) and b.phase = None:

17 b.phase = p

Figure 9: Algorithm used to divide blocks into phases.

step and try the next candidate. Major backtracks occur when all

the candidates at a given decision point have been exhausted. While

our initial implementation backtracked a fixed number of steps in

this case (e.g., 1-2), a better approach is to rely on the solver to help

decide how far to backtrack.

When the CP solver reports a failure, it also reports conflicting

variable assignments. This tells us which block placements caused

the problem. When a major backtrack occurs, we use this infor-

mation to backtrack to the second-to-last conflicting placement

(instead of a fixed number of steps). This avoids getting stuck in

parts of the search space that are unlikely to lead to a solution. In

Section 6, we will show how to further improve this approach by

applying learning to this data.

We also discovered another optimization that can help the search

significantly. During a major backtrack, we take the set of candi-

dates at the current decision point and prepend it to the set of

candidates at the point we are backtracking to. Intuitively, this tells

the heuristic that these blocks are important (because they caused

a failure), so they should be considered earlier than they would

have been otherwise. This avoids cases where the solver got stuck

by ignoring blocks that were important but not among the largest

or longest-lived blocks. In order to prevent the candidate set from

growing unboundedly, we limit the number of candidates at a given

level and drop any further candidates.

Finally, we added a heuristic to identify when the search is stuck

within a particular part of the search space. For every backtrack

point, we record the number of backtracks that occurred within the

subtree rooted at this point. Once this number exceeds a constant

(e.g., 100), we backtrack to the lowest such point and continue there.

5.5 Encoding Alignment

Some of themodels we looked at required the ability to constrain the

alignment of some buffers (e.g., to be 32B-aligned). This is required

to support certain vector operations. We extended the CP encoding

to capture this directly. Given a fixed alignment of 𝐴(𝑋 ) ≥ 1 for

buffer 𝑋 , we assume that pos(𝑋 ) encodes the position in multiples
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of 𝐴. We then change the constraints accordingly. Since 𝐴 is fixed

(but may differ for different blocks), this is a trivial extension and

does not affect runtime meaningfully.

(1) ∀𝑋 ∈ Buffers.𝐴(𝑋 ) × pos (𝑋 ) + size (𝑋 ) ≤ 𝑀

(2) ∀(𝑋,𝑌 ) ∈ OverlappingBuffers.
(𝐴(𝑋 ) × pos (𝑋 ) + size (𝑋 ) −𝐴(𝑌 ) × pos (𝑌 ) ≤ 0) ∨ 𝐵 (𝑌,𝑋 )

5.6 Compiler Integration

As mentioned in Section 2.3, TelaMalloc is integrated into two

production ML compilers. They represent very different use cases,

demonstrating generality of our approach:

• Pixel 6: TelaMalloc is integrated into the production com-

piler. It replaces the previously used ILP approach that gets

triggered when the heuristic fails. The frontend of the com-

piler is TensorFlow Lite [1] and Android NNAPI [5].

• TPUv4: TelaMalloc is integrated into the XLA compiler

framework, the main production (and open-source) com-

piler framework of TensorFlow. XLA targets CPUs, GPUs

and other accelerators such as TPUs. TelaMalloc is called

repeatedly in the memory repacker [8], which is given a

set of memory buffers that have been assigned to on-chip

memory and tries to pack them as densely as possible. The

repacker is triggered when the compiler runs out of SRAM.

No compiler-specific modifications were required and the version

of TelaMalloc that is used in both cases is identical.

6 LEARNING ALLOCATION STRATEGIES

As we will show in Section 7, TelaMalloc successfully handles most

of our real-world models and outperforms the ILP solver. It ships

with Pixel 6. In practice, there remains a small number of models

that cannot be handled by any of the allocators, including Tela-

Malloc. In this section, we present forward-looking research on

enabling TelaMalloc to handle these cases by learning from previous

examples to gradually and automatically increase the set of sup-

ported models over time. Note that this approach is not currently

shipping and only makes a difference for the long tail of workloads

(often complex, large models). Supporting this long tail automati-

cally is important since the set of workloads continually grows and

evolves, and a single input that takes an excessive amount of time

can disrupt the user experience.

6.1 Challenges of Machine Learning

Our approach falls into the broad category of ML for Systems [44].

Instead of our hardcoded, domain-specific logic that decides how

to explore the search space, we train a model that allows the search

policy to learn from new examples. There are several practical

challenges associated with this approach:

Performance Overheads: At a high level, TelaMalloc explores a

search space. Prior works have applied ML to search problems by

running a model at every step to select a set of candidates to explore

(e.g., [47]). This is infeasible for us from a performance perspective.

One of the benefits of our heuristic-based search is that it is very

fast to execute (≈100us per step). In contrast, these MLmodels often

take milliseconds, which would cancel out TelaMalloc’s savings.

This is particularly problematic since most inputs do not actually

require the ML approach (except for the long tail).

We address this problem in two ways. First, instead of learning

an entire search policy, ML is only used during major backtracks

and predicts where to backtrack to. Major backtracks are much

rarer than regular steps, particularly for inputs that do not benefit

from the ML approach. Further, major backtracks (by definition)

occur when the search is łstuckž, and the execution of a model

therefore has a potentially larger pay-off in those cases. Finally,

we use simple models (gradient boosted trees), which are much

cheaper than (e.g.,) neural networks.

Offline vs. Online Learning: Many ML approaches employ con-

tinuous learning strategies. However, our memory allocator needs

to behave consistently after it has shipped. This is an important

guarantee that is often required for production code and can be

a major impediment for applying ML in systems, since it affects

regression testing and verification. We are therefore not targeting

an online strategy and instead learn a single, static backtracking

model that is then łbaked intož TelaMalloc and does not change.

6.2 Learning Approach

We are learning the following problem: Given a memory allocation

problem and a particular node in the search tree (i.e., a set of already

placed blocks and their locations), determine how far we should

backtrack in order to solve the problem as quickly as possible.

The first challenge is how to formulate this problem. When we

encounter a major backtrack, there may be thousands of blocks that

have already been placed and each of these decisions is theoretically

a point that we could backtrack to. It is challenging to design a

model that can reliably select between thousands of possible targets,

in particular since these selections need to be very precise (e.g.,

backtracking one level too far can make the problem unsolvable).

This is even more challenging if that model needs to be cheap.

We therefore reframe our problem to reduce the number of pos-

sible backtrack targets. Instead of allowing the model to select any

possible decision point, we determine a set of candidate backtrack

targets and let the model only choose between those points. This

set contains all decisions associated with the backtrack reason that

caused the CP solver to fail (Section 5.4). We ignore the last such

backtrack target since this point is the one that would have been

associated with a minor backtrack. Furthermore, for each range of

decision levels 0-4, 5-8, 9-16, 17-32,. . . (ranges exponentially increas-

ing) for which we do not have a backtrack target in the candidate

set already, we add the decision point at the top of that range as

an additional candidate. This is to prevent the search from getting

stuck if all backtrack reasons are in the same part of the tree.

Given a set of backtrack points, themodel now has to learnwhich

of them to backtrack to. We use an imitation learning approach.

In imitation learning, we use an expensive method (e.g., a solver)

as an oracle to find a łperfectž solution offline and then use that

solution as a label when training a model. Imitation learning has

been successfully used for systems problems such as caching [43].

Here, we use the ILP approach from Section 3.2 as the oracle.

6.3 Producing Labels for Imitation Learning

Given a particular state of the search, we use the ILP solver to find

the deepest point on the current path that is still solvable. We can

do so by encoding our problem as ILP and fixing all pos variables
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Figure 10: Picking best and minimum backtrack points.

that correspond to blocks that have already been placed. We then

run the ILP solver to check whether there is a solution. If there is

not, we backtrack one step and try again, until we find a state that

succeeds (an optimization of this strategy would be to use binary

search). For higher efficiency, we cache results for decision points

that we have already visited. Once finished, we know how far we

would need to backtrack to be in the łsolvablež part of the search

tree again ś the first potential backtrack target that is at or above

the point we identified using the ILP solver (Figure 10).

However, directly training a model against this label would drop

useful information: Just because a point is solvable does not mean

that it is the best backtrack target. Only the reverse is true: If we

don’t backtrack at least this far, we won’t be in a solvable part of

the tree. We therefore call this the minimum backtrack target. But

what is the best backtrack target? Once the search has terminated,

we can calculate the intersection of the decision points that were

part of the current path through the search tree when we made

the decision, and the decision points that were part of the solution

that was eventually returned. We know that backtracking to any

of these points would have gotten us to the solution more quickly.

We call the deepest such point the best backtrack target. For each

major backtrack, we therefore record this point as well.

6.4 Model Design & Feature Engineering

We now have labels to indicate how far we should backtrack in each

case. We considered three types of models to learn this information:

• Categorical models: These models take the features of

𝑁 possible backtrack targets and predict a category 𝐶 ∈

1, . . . , 𝑁 to indicate which target to choose. However, this

approach is problematic if the number of backtrack points

varies and requires very large amounts of training data when

𝑁 is large (we have commonly seen 𝑁 around 20-30).

• Regression models: These models predict a continuous

number that indicates how far to backtrack. Since backtrack-

ing needs to be precise (i.e., one off in either direction can

lead to a large error), this approach is not suitable either.

• Ranking models: Given a set of candidates, rank them in

order. There are different ranking models, ranging from pair-

wise approaches that compare two candidates against one

another, to pointwise approaches.

Given these considerations, we chose a ranking approach. We im-

plement a simple pointwise ranking: We produce a score for each

candidate and train a gradient boosted tree model to predict this

score. The score of a point at decision level 𝑥 is computed as follows,

Features
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Backtrack to

ILP’s suggestion 
with probability p Minimum

backtrack point

Best backtrack 
point

Model Training

TelaMalloc

Learned backtracking

Randomized 
TelaMalloc Run

Backtrack!

ILP Solver

Figure 11: Training process. We use the ILP solver to gener-

ate examples of good backtracking decisions and then use

imitation learning to learn them.

given the best (𝐵) and minimum (𝑀) backtrack targets:

𝑆𝑐𝑜𝑟𝑒 (𝑥) =

{

0 if x < B or x > M

10 − 5 ∗ 𝑥−𝐵
𝑀−𝐵+1 otherwise

The score function was empirically chosen, linearly decreasing

scores further away from the best backtrack point while giving all

valid backtrack points a score ≫ 0. This encourages the model to

pick a point between the best backtrack target and the minimum

backtrack target (with the best target having the highest score) and

discourages the model to pick anything outside this range since

those are the decisions that make it likely that solutions are missed.

We train the model using the following features:

• Size, lifetime and contention of the block at that point (nor-

malized to total memory size and time interval).

• The decision level when the block was placed.

• How often did this block appear in the backtracking reason

of a major backtrack?

• How often have we backtracked to this point?

• How often have we backtracked anywhere within the tree

rooted at this point?

• Is this block in the same region as the current point we are

backtracking from? (see Section 5.3)

• What is the total number of backtracks so far?

6.5 Implementation & Training Strategy

We build on a gradient boosted tree implementation called Yg-

gdrasil [9]. We configure it to learn a regression from our features

to the score. To produce training data, we add a special mode to

TelaMalloc that runs an ILP solver in addition to the normal search

(Figure 11). Note that this alone would not give us a representative

training set, since the search would always take the same path

through the tree as guided by the ILP solver. We therefore add ran-

domness: At every major backtrack, we use the regular backtrack

approach or the ILP approach with 50% probability. This causes the

search to take different paths, leading to different training data. For

further variation, we also vary the maximum memory.

After collecting the training data offline, we train the model and

integrate it into the C++ implementation of TelaMalloc where it

does not change anymore. On a major backtrack, we collect the

features for each backtrack target and pass them to the model as a

batch, which enables efficient execution. The model then produces

a set of scores. We weight these scores according to their depth

in the tree (to discourage particularly far backtracks that have a
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Table 1: Microbenchmark results

Benchmark Total Time (ms) Time/Step (ms)
non-overlapping-1K 12 ± 0 0.01 ± 0.00
non-overlapping-10K 1,260 ± 38 0.13 ± 0.00
full-overlap-100 142 ± 1 1.42 ± 0.02
full-overlap-1K 100,758 ± 3,237 100.76 ± 3.24

higher likelihood of making the problem unsolvable) and pick the

highest-scoring target if it is above a certain threshold.

If no score is above that threshold, we fall back to a strategy that

tries all unplaced buffers until one fits (and performs a minor back-

track otherwise). The reason is that an overly aggressive backtrack

has the potential to cause a lot more damage than not backtracking

far enough. Falling back to the default heuristic is therefore better

than picking a point resulting from noise in the model.

The model reduces the number of backtracks dramatically for a

subset of inputs that was previously not handled well (Section 7.3).

7 EVALUATION

We evaluate TelaMalloc’s performance compared to the state-of-

the-art ILP-based solution. TelaMalloc runs on-device for Pixel 6

and on server CPUs for XLA. We therefore evaluate TelaMalloc

both on Pixel 6 devices as well as a 6-core Intel Xeon E5-1650 CPU

running at 3.60GHz with 64 GB of DRAM and Linux kernel version

5.17.11. We use a mix of microbenchmarks and real-world models

to cover a representative set of workloads.

To scale our evaluation, we collected a set of on-device allocator

inputs that we can run on regular servers or desktops. These traces

are identical to those running on actual Pixel 6 hardware and we

validated that allocation speedups observed on a desktop CPU

translate to on-device speedups (Figure 12). Unless otherwise noted,

we give each model 110% of the minimum required memory.

7.1 Microbenchmarks

We are first interested in chacterizing TelaMalloc’s general per-

formance and scalability. We drive the allocator using synthetic

inputs that require no backtracking but stress different parts of the

allocator and can therefore characterize TelaMalloc independently

of the search efficiency (these experiments are TelaMalloc-specific

and do not apply to any of the other baselines):

• non-overlapping-N: N blocks that do not overlap in time,

with sufficient memory capacity. This tests the case where

the CP solver has no work to do.

• full-overlap-N: N blocks that fully overlap, with enough

memory to accommodate all of them.

Table 1 shows that in the absence of overlapping blocks, steps in

TelaMalloc’s search are very fast (≈10-100us for common problem

sizes). Once blocks overlap, the number of constraints the CP solver

needs to track grows quadratically, which affects the execution

time: 100 blocks result in 10,000 constraints, which causes each

step to take more than 1ms (100ms once we reach 1,000 blocks).

This degree of overlap does not occur in practice, but it shows

fundamental limitations of our (and other solver-based) approaches

when there are many overlapping blocks.

We also collected a pprof [6] profile from a representative run,

to understand where time is spent. We found that upwards of 87%

of time is spent in the solver and 9% in TelaMalloc’s block selection

Table 2: Heuristic execution time (on workstation) and its

minimum required amount ofmemory compared to the the-

oretical minimum achieved by the ILP solver. The heuristic

runs much faster than solver-based approches (Figure 12).

Benchmark Minimum Required Memory Time (ms)
FPN Model 1.00× 1.3
ConvNet2D 1.03× 8.0
Inception-ResNet 1.05× 3.2
Face Detection 1.12× 8.8
OpenPose 1.11× 75.9
StereoNet 1.43× 26.7
Segmentation 1.09× 1.4
ResNet-152 1.24× 0.6
Saliency Model 1.05× 7.4
Image Model 1 1.08× 34.3
Image Model 2 1.08× 43.3

heuristics. This shows that we are mostly solver-bound and are not

introducing unexpected overheads in the rest of the allocator. Fur-

thermore, TelaMalloc’s code and memory overheads are negligible

compared to the ILP solver, which is complex and large.

7.2 Pixel 6 Benchmarks and Evaluation

We now evaluate the allocator against real-world benchmarks from

Pixel 6. This represents a mix of public standard models and pro-

prietary models. We take a representative subset of these inputs

and evaluate them in detail to demonstrate TelaMalloc’s trade-offs,

and then perform a large-scale evaluation to show how TelaMalloc

enables the long tail of models. In each case, we are optimizing for

on-the-fly allocation performance.

Figure 12 shows the results of this evaluation. We primarily

compare TelaMalloc against the ILP-based allocator that we are

replacing. We run the on-device benchmarks 30 times and take the

10 best runs, which is very favorable to the ILP solver due to its

large variance. We also run the same models on our workstation

(10 times) and see consistent results (Figure 13). Running on the

workstation also allows us to compare against a baseline that only

uses TelaMalloc’s CP encoding (without the heuristic-driven search)

and measure the impact of ML-driven backtracking.

We see that TelaMalloc leads to a median speedup of ≈ 4.7×

across the benchmarks, but that the improvements for some mod-

els are 1-2 orders of magnitude (the most important result, since

large speedups enable otherwise unsupported models). We also see

that the ML backtracking approach further helps a small subset of

models. We will explore this long tail in the next section.

We see a large amount of variation for the ILP solver, as shown

in Figure 13. We even observed a case where the ILP solver ran for

more than nine hours without result, effectively failing to solve the

problem. The size of the target memory plays an important role.

For example, if given the exact amount of memory required, the

problem becomes easier for the solver and completes more quickly

than in reality, where the available memory is close to the required

amount but not identical. We thus benchmark our workloads with

1.1× the amount of required memory rather than the minimum.

While we use these benchmarks primarily as a comparison point

between TelaMalloc and the ILP baseline, an interesting question is

when benchmarks can be solved by the baseline heuristic alone. We

therefore evaluated the heuristic on this data set to identify 1) the

minimum amount of memory relative to the optimum packing at
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Figure 12: Allocation time relative to TelaMalloc (top) and absolute allocation time (bottom) for a subset of real-world Pixel 6

workloads. Proprietary models are anonymized. Large numbers are cut off in the bottom graph.

Figure 13: The same workloads running on a workstation, with additional CP-SAT and ML comparisons.

which we saw the heuristic succeed, and 2) the heuristic’s running

time (Table 2). Note that 1.0× represents the peak memory usage

that solver-based allocators would achieve if given enough time.

As expected, the heuristic is oftentimes orders of magnitude faster

than both the ILP and TelaMalloc approaches (Figure 12), and our

compiler thus still tries the heuristic before using TelaMalloc.

We note that 1) since earlier compiler stages and model devel-

opers try to fit as many buffers into SRAM as possible, inputs are

often close to the limit and 2) there is inherent noise in all three

allocators that causes the running time to vary dramatically based

on small changes to the input size. For example, we reran Image

Model 1+2 ś the two models that were most challenging for the

ILP solver while being solvable by the heuristic ś at 1.07× memory

capacity, slightly below the heuristic’s minimum. We found the

results to be very similar, with the ILP solver varying widely in the

tens of seconds range and TelaMalloc completing in < 1s. This indi-

cates that there is nothing łspecialž about the threshold where the

heuristic stops working and instead, there is some inherent noise

that causes the running time to vary dramatically based on small

changes to the input size. This is consistent with our observation

that a single misplaced block can cause a large slow-down, and

changing the memory size by ±1 byte can cause one constraint to

evaluate differently and set the solver on a different path.

Finally, we compare against several additional heuristics. We

implement this experiment by replacing block selection mechanism

with simpler strategies. This serves the dual purpose of compar-

ing to prior work (e.g., [2, 38]), as well as an ablation study. We

implemented four strategies: 1) select the block with maximum

size, 2) with maximum area, 3) with maximum lifetime and 4) the

block that can be placed at the lowest position. We place blocks

one at a time at their lowest possible positions and go to the last

valid point when a backtrack occurs. The first three strategies cor-

respond to the different heuristics that we combine in TelaMalloc.

The first strategy also corresponds to [38] but without the problem

of reusing buffers across tensors. The last strategy corresponds to

the best-fit strategy from [58]. We evaluate these strategies and

TelaMalloc on a collection of 1,192 inputs (596 inputs from vari-

ous sources at different memory sizes). We run experiments in a

distributed dataflow pipeline [18] for scale-out. Timing numbers

in this case are not meaningful since machines are heavily shared.

We thus focus on the number of steps performed by the algorithm,

including those due to backtracking. Experiments are configured to

fail after 500,000 steps. Figure 14 shows that TelaMalloc has 27-37×

fewer configurations that fail reaching the maximum number of

steps than other strategies and that it requires a geomean of 1.36 to

1.80 fewer steps to complete on configurations that succeed.

7.3 Machine Learning Approach

To evaluate our ML approach, we collected training data using

the method from Section 6.5, covering the 11 benchmarks above.

We varied the memory size between runs and generated a total

of 301,321 training samples and trained a forest of 100 decision

trees (we found this to provide a good trade-off between prediction

performance and execution time). Running the model takes about 2

us per candidate (Figure 16), which is fast enough since the model

is only invoked on backtracks.

Recall that ML does not benefit most inputs but is intended to

address the long tail of workloads that still have excessive com-

pilation times with TelaMalloc. Inputs where TelaMalloc fails are

often those with large numbers of backtracks and the benefit of the

ML approach lies in reducing this number (Figure 15). We explore

this on our dataset of 1,192 input configurations. As before, we run

configurations in a distributed dataflow pipeline (backtrack counts

are timing-independent). We use a model only trained on the bench-

marks in Figure 13, demonstrating its ability to generalize. Note
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(a) Number of failing inputs (b) Number of steps (geomean)

Figure 14: Comparison of block selection strategies

(a) Number of backtracks (b) Execution Time

Figure 15: Effect of ML on different portions of SRGAN, one

of the models in the very long tail.

that this experiment uses a new/experimental version of TelaMalloc

and is thus not directly comparable to the other experiments.

Out of our 1,192 inputs, 117 were models where TelaMalloc

backtracked more than 1,000 times, which indicates corner cases

where TelaMalloc alone does not perform well. Out of these 117

benchmarks, ML improved 102. This includes 56 inputs that timed

out and now succeed, and 34 inputs where the number of backtracks

was reduced by 10× or more. Some inputs also got worse ś the most

important case is when backtracking skips the important part of the

search space and therefore terminates without finding a solution

(4 out of 1,192 cases) or increases backtracks by more than 10× (9

cases). This suggests to not only deploy the ML approach but allow

falling back to the default strategy. Overall, this experiment shows

the ability of the ML approach to address the long tail of failing

models, reducing the number of these models by 2/3.

Finally, we analyze how the model makes decisions. We rank

our input features by mean increase in error (RMSE), which shows

how much impact each feature has on the prediction (Figure 17).

The analysis matches our intuition: Lifetime and the amount of

contention are very important, as well as the decision level the

model would be backtracking to and the number of backtracks so

far. Features such as the region are less critical, possibly since they

are already being taken into account by the heuristic.

7.4 TPUv4 Workloads

We integrated TelaMalloc into XLA’s TPUv4 compiler. Recall that

the benefit in this case is not only the allocation speed but also

the ability to opportunistically pack more buffers into SRAM (Sec-

tion 2.3). The TelaMalloc-based repacking step is used in the inner

loop of the SRAM allocation algorithm where it runs up to 50 times.

XLA is also used by TensorFlow and JAX as a JIT compiler. Compile

times are thus important as well.

Figure 16: Model running time.

Figure 17: Importance of different features.

Figure 18: Execution-time Speedup of the compiled pro-

grams using TelaMalloc on TPUv4 compared to the best-fit

algorithm using Tensorflow/XLA.

Figure 18 shows the performance improvement of the compiled

programs that use TelaMalloc as the repacker as opposed to the best-

fit algorithm, using Tensorflow/XLA. Note that this shows actual

program speedup rather than allocator speedup presented in the

previous sections. TelaMalloc achieved up to 7% better performance

than the best-fit algorithm. Note that not all of the ML models

that use XLA are memory-bound, so the impact of better memory

repacking can be somewhat muted. The compilation time using

TelaMalloc was within noise of the best-fit algorithm, showing

that TelaMalloc can be incorporated into the compilation pipeline

without significant regressions in compilation time.

8 DISCUSSION

8.1 Workload Analysis

We will now connect insights from our evaluation to specific work-

load characteristics. We look at one specific benchmark, Open-

Pose [16]. This benchmark is challenging for the ILP solver but is

successfully solved by TelaMalloc. Figure 19 visualizes the memory

allocation pattern associated with this input ś the workload has one

phase of high contention at the beginning, followed by fluctuations

between high and low contention phases. The latter is exploited by

contention-based grouping, which can take advantage of the fact

that these phases can be solved one at a time, mostly in isolation ś

and separately from the first, more complicated phase.

The first phase is the one that is most difficult to solve, since it

has many instances of the pattern that we saw in Figure 1: The place-

ment of a single block often determines whether or not other blocks

need to be ordered above or below it. Exploring this NP-complete

search space effectively while leveraging the solver is TelaMalloc’s
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Figure 19: Memory Allocation Problem of OpenPose.

key strength since it can take advantage of the domain-specific

knowledge to try long-lived and large blocks in high-contention

regions first (instead of treating all blocks the same).

8.2 From Research to Deployment

TelaMalloc started as an industrial research project that was subse-

quently adopted into a product. We believe there are some useful

learnings. We attribute most of the project’s success to the fact that

1) The problem we solved was driven by a real product requirement

that changed previous assumptions (the importance of allocation

time vs. allocation quality), 2) We collected real device traces early

and used them throughout the project to drive our approach and

experimentation, 3) We built on existing ideas and infrastructure

where possible, particularly Telamon and Yggdrasil, which allowed

us to focus on the novel research issues, and 4) We were able to

iterate quickly by creating an offline setup to gather representa-

tive results without a real device and tune the approach; this then

enabled a smooth adoption. We believe all of these factors can be

realized in academia-industry collaborations as well.

8.3 Generalization of Ideas

While we investigated memory allocation, we believe that our ap-

proach extends to other areas.Many problems explore search spaces,

including hardware design space exploration [20, 62] and floor plan-

ning [47]. Many such tasks can be expressed as ILP programs but

are too complex to be solved by the ILP solver alone (e.g., schedul-

ing/mapping problems [50, 60] or device placement [46]). Combin-

ing domain-specific heuristics and solvers can result in the best of

both worlds. However, crafting a good heuristic by hand can be

prohibitively expensive ś our ML approach suggests that heuristics

may be learned using cheap and simple models.

We believe that our ML approach may generalize as well. A large

portion of work in ML for Systems [44] has focused on training

powerful end-to-end models such as neural networks to solve an

entire problem using an approach such as reinforcement learning

(RL). In contrast, our approach isolates an individual piece of the

problem and trains a model for it using imitation learning from

known solutions. By focusing on a limited task, backtracking, we

keep the models simple and cheap to execute.

Our learning approach could plausibly be extended beyond back-

tracking. For example, we could have a single, shallow decision tree

that executes at every step of the search and identifies whether to

run a more expensive model that considers different blocks, or run

a more expensive heuristic. Such a decision tree may execute in

tens of CPU cycles and could plausibly run at every step.

Table 3: Categorizing related work.

Problem Approaches
Mapping Gradient-based [28], Solvers [29], ML [34], Genetic

Algorithms [32], Exhaustive Search [45]
Rematerialization Heuristics [22], Solvers [30]
Accelerator Optimization Search [59, 66], ML [56, 62, 67], CP [55]
Device Placement ILP [27], ML [46]
Allocation Heuristics [38]

9 RELATED WORK

Heuristic and solver-based techniques arewidely used inML compil-

ers. Many prior works focus on the mapping problem (Section 2.2),

while the allocation problem has seen significantly less attention.

We summarize methods that have been applied to this and related

problems in Table 3. Specifically, Lee and Pisarchyk performed an

exploration of ML memory allocation heuristics [38], similar to our

baseline heuristic (Section 7.2). A related problem is rematerializa-

tion, which has seen solver-based solutions as well [30].

In addition to work optimizing models running on accelerators,

there has been work on optimizing DNN accelerators themselves.

These approaches include search-based methods [59, 66], learn-

ing [56, 62, 67], and constraint optimization [55].

A related problems tomemory allocation is device placement [46],

which has seen a large amount of attention. Similar to our prob-

lem, device placement has been addressed with ILP solvers [27].

Prior work has also applied ML techniques to this problem [46].

One difference between our problem and these other areas is the

requirement to execute memory allocation on-the-fly, leading to

shorter timescales unsuitable for large neural networks.

On-chip memory management for ML accelerators has similar-

ities to scratchpad-based embedded systems for DSP. There are

also parallels to register allocation. However, the large number of

buffers and memory size make the ML problem more complex.

The approach of pruning an optimization space using heuristics

was previously explored by Beaugnon et al. [13] in the context

of choosing GPU kernels. There has also been emerging work on

integrating ML into solvers [17, 48], but those approaches do not

exploit domain-specific heuristics like TelaMalloc. Nowatzki et al.

show an approach [49] that has conceptual similarities by alter-

nating/overlapping solver and heuristic phases, but for a different

problem. TelaMalloc integrates heuristics and solver more closely by

using heuristics to inform individual solver steps (and vice-versa).

This paper falls into the ML for ML compilers area [10, 23, 33, 69]

and could be integrated with other such methods.

10 CONCLUSION

We demonstrate a new method for solving the memory allocation

problem on machine learning accelerators. Our approach combines

heuristics with a solver-based approach to explore a complex search

space more efficiently. Our approach shows up to two orders of

magnitude speedup for several important models and enables on-

the-fly compilation of these models that would otherwise have been

impossible. It ships in Pixel 6 and the compiler of TPUv4.
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