
Temporally Bounding TSO for
Fence-Free Asymmetric Synchronization

Adam Morrison
Computer Science Department

Technion—Israel Institute of Technology

Yehuda Afek
Blavatnik School of Computer Science

Tel Aviv University

Abstract
This paper introduces a temporally bounded total store or-
dering (TBTSO) memory model, and shows that it enables
nonblocking fence-free solutions to asymmetric synchroniza-
tion problems, such as those arising in memory reclamation
and biased locking.

TBTSO strengthens the TSO memory model by bound-
ing the time it takes a store to drain from the store buffer into
memory. This bound enables devising fence-free algorithms
for asymmetric problems, which require a performance-
critical fast path to synchronize with an infrequently exe-
cuted slow path. We demonstrate this by constructing (1)
a fence-free version of the hazard pointers memory recla-
mation scheme, and (2) a fence-free biased lock algorithm
which is compatible with unmanaged environments as it
does not rely on safe points or similar mechanisms.

We further argue that TBTSO can be implemented in
hardware with modest modifications to existing TSO archi-
tectures. However, our design makes assumptions about pro-
prietary implementation details of commercial hardware; it
thus best serves as a starting point for a discussion on the fea-
sibility of hardware TBTSO implementation. We also show
how minimal OS support enables the adaptation of TBTSO
algorithms to x86 systems.

Categories and Subject Descriptors C.1.4 [Computer Sys-
tems Organization]: Processor Architectures—Parallel Ar-
chitectures; D.1.3 [Programming Techniques]: Concurrent
Programming

Keywords TSO; bounded TSO; hazard pointers; biased
locks; memory fences

Copyright c© Owner/Authors, 2015. This is the authors’ version of the work. It is
posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in ASPLOS ’15, March 14–18, 2015, Istanbul,
Turkey, http://dx.doi.org/10.1145/2694344.2694374.
ASPLOS ’15, March 14–18, 2015, Istanbul, Turkey..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694374

1. Introduction

Modern multicore architectures implement relaxed mem-
ory consistency models, which—unlike sequential consis-
tency [21]—allow memory operations to execute out of (pro-
gram) order. Preventing such reordering, which is crucial for
maintaining correctness of synchronization code, requires is-
suing costly memory fence instructions [18].

We focus on the total store ordering (TSO) memory
model followed by the x86 and SPARC architectures [1, 34],
which only allows store/load reordering—i.e., reordering of
a store with a later load from a different address. Unfor-
tunately, such a store/load sequence forms the core of the
flag principle [18], a common synchronization idiom used
in algorithms for mutual exclusion [12, 31], memory recla-
mation [19, 28], and biased locking [33, 40] to name a few.
These performance-critical codes must thus issue expensive
memory fences that hurt their performance. However, sev-
eral of these codes are asymmetric—they involve synchro-
nization between performance-critical fast path code and in-
frequently executed slow path code [11, 28, 33], and only the
memory fences on the fast path affect overall performance.

In this paper, we introduce temporally bounded TSO
(TBTSO)—a strengthening of the TSO memory model that
enables asymmetric synchronization with a fence-free fast
path and a nonblocking slow path which can make progress
even when the fast path code gets scheduled out. TBTSO
facilitates this by guaranteeing a bound ∆ on the amount
of time it takes a store instruction to become globally visi-
ble in memory—i.e., to propagate to memory from the ab-
stract store buffer [1, 34] that models store/load reordering
in TSO. (TSO store/load reordering occurs when a store re-
mains buffered in the store buffer while a later load from a
different address is satisfied from memory.)

1.1 Fence-free asymmetric synchronization

We demonstrate how TBTSO facilitates nonblocking fence-
free asymmetric synchronization by developing a fence-free
version of the flag principle for TBTSO (§ 3) and applying it
to two important problems.

Safe memory reclamation (§ 4) The safe memory reclama-
tion (SMR) problem [28] arises in concurrent data struc-
tures (particularly nonblocking [17] ones) implemented
with C/C++, in which multiple operations (e.g., hash ta-
ble lookup and delete [27, 38]) access the data structure
concurrently. The SMR problem occurs because a thread
removing an object O from a data structure cannot imme-
diately reclaim O’s memory, since other threads might be
reading from the data structure and internally holding a ref-
erence to O. Therefore, memory reclamation of an object
(slow path) must synchronize with the threads concurrently
reading from the data structure (fast path).

We build on hazard pointers [28], a nonblocking SMR
technique in which each thread maintains a set of hazard
pointers pointing to objects it may access. After pointing a
hazard pointer at an object O, a thread verifies that O has
not been removed from the data structure before accessing
O for the first time. In standard hazard pointers, this requires
issuing a memory fence to order the write of the hazard
pointer before the read from the data structure.

TBTSO enables removing this fence. Instead, it is safe to
reclaim O’s memory if no hazard pointer visibly points to it
once ∆ time units pass since O is removed from the data
structure—even when hazard pointers are written without
the subsequent fence. The reason is that any thread holding a
reference to O either wrote its hazard pointer at least ∆ time
units ago, and so its write is globally visible, or it has not yet
performed the write and so its (future) validation check will
fail since the removal is now globally visible. The hazard
pointers method reclaims memory periodically [28], and so
∆ time units naturally pass between these periods and no
additional waiting is introduced.

Evaluating fence-free hazard pointers (FFHP) on Intel
x86 processors shows that they eliminate all overhead as-
sociated with hazard pointers, obtaining read-only perfor-
mance matching that of RCU [26], a reclamation method
which imposes no fast path overhead but, unlike FFHP, does
not guarantee bounded memory consumption by removed
objects.
Biased locking (§ 5) Prior work has shown that many locks
in multi-threaded programs are uncontended, and moreover
are acquired mostly (or only) by the same thread [20, 30,
33]. This observation lead to the development of biased
lock algorithms, in which lock acquisition by a designated
owner thread is cheap—does not use atomic operations—
but acquisition by other threads is even more expensive
than in standard locks. Existing biased locks either issue
fences in the owner acquisition code [30] or block non-
owners until the owner reaches a safe point outside the
critical section [33].

We construct (owner) fence-free biased locks using our
TBTSO flag principle. We further adapt the echo method [29]
to make non-owner lock acquisition speed comparable to
standard locks, assuming the owner acquires the lock fre-

quently. Because our lock does not rely on blocking safe
points, it (1) can be used in C/C++ programs, which do not
naturally define safe points, and (2) enables non-owner ac-
quisition even if the owner is scheduled out or delayed.

Our evaluation shows that the fence-free biased lock
(FFBL) outperforms pthread locks and performs compa-
rably to safe point based biased locks [33] except for when
the owner is delayed outside of the critical section, in which
case our FFBL greatly outperform the biased locks.

1.2 Implementing TBTSO

The implementability of TBTSO is an intriguing question.
Existing TSO processors do not guarantee bounded time un-
til store visibility, because they do not fairly arbitrate [36]
the hardware resources (memory units, buses, etc.) involved
in propagating stores to memory. In practice, however, stores
become visible after only a short delay. Therefore, we pro-
pose a hardware design (§ 6) in which the processor bails out
a store that remains buffered for a long time by quiescing the
system (this can be done with existing mechanisms [39]).

Unfortunately, we cannot prove the feasibility of this de-
sign or calculate a worst-case ∆ bound, as that entails reason-
ing about all possible internal interactions that can delay the
propagation of a store—many of which are proprietary and
undocumented. We thus outline the design and justify—at a
high-level—why we believe it is feasible. We also estimate,
by extrapolating from measurements on x86 hardware, that
this TBTSO design can achieve sub-millisecond ∆ bounds.
We hope this paper starts a discussion on the implementabil-
ity of TBTSO and the achievable bounds.

We additionally show that TBTSO algorithms can be
adapted to existing x86 systems, provided minimal changes
are made in the OS (§ 6). While such adapted TBTSO al-
gorithms experience coarser ∆ bounds (1–10 ms) and incur
extra work in the slow path, our evaluation shows they per-
form well.

2. Temporally bounded TSO (TBTSO[∆])
Here we define TBTSO[∆], a strengthening of TSO in which
a store can remain buffered in a store buffer at most ∆ time
units. We define TBTSO[∆] operationally, via an abstract
machine whose executions explain observable TBTSO[∆]
behaviors. That is, an execution on a real TBTSO[∆] ma-
chine produces the same read values and final memory state
as some execution of the abstract TBTSO[∆] machine.

Technically, the TBTSO[∆] machine extends Sewell et
al.’s x86-TSO abstract machine [34] with a notion of global
time. We impose the store buffering bound using this global
time by admitting only executions in which the bound holds.
Below we describe the TBTSO[∆] machine informally; the
reader can refer to Sewell et al.’s work [34] for the full x86-
TSO definitions from which the formal TBTSO[∆] machine
can be derived.
Abstract machine The machine consists of a set of threads,
each corresponding to an in-order stream of instructions, that

interact through a memory subsystem. The memory subsys-
tem contains one FIFO store buffer for each thread and is
protected by a global fair lock. The memory subsystem lock
is used to model atomic read-modify-write operations as be-
ing performed by a thread holding the lock. (For simplic-
ity, we use atomic operations directly throughout this paper.)
The machine also has a global clock (initially 0) readable by
the threads.

The execution of the machine proceeds in time units.
In each time unit the global clock increases by one. Then,
at most one of the following actions can be executed for
each thread T if it is valid to do so under the rules below.
(This does not mean that a valid action must be executed
for T —a scheduler decides the actions in each time unit.
Thus, despite the presence of a global clock, the execution is
asynchronous.)

The following actions are possible only when the memory
subsystem lock is unlocked or held by thread T :

1. The memory subsystem can dequeue T ’s oldest entry
from T ’s store buffer and write it to memory.

2. T may read: If T reads from an address for which a
matching write exists in its store buffer, the read returns
the newest corresponding value stored in the buffer. Oth-
erwise, the read returns the value from memory.

3. T may acquire the memory lock if it does not hold it.

4. T may release the memory lock if it holds the lock and
its store buffer is empty (if T wishes to release the lock
when its store buffer is not empty, the memory subsystem
must first empty T ’s store buffer with #1 actions).

The following are allowed at any time:

5. T can execute a fence if its store buffer is empty (simi-
larly to #4, the memory subsystem must act to empty T ’s
store buffer first).

6. T may write, enqueuing an entry to its store buffer.

7. T may read the global clock.

Bounding store buffering time In the TBTSO[∆] model
(where ∆ ≥ 1), we consider only the abstract machine ex-
ecutions in which the following property holds:

A write enqueued to a thread’s store buffer (action #6)
at global time t0 is written to memory (action #1) at
global time t1 ≤ t0 +∆.

3. TBTSO flag principle
Fence use in TSO often occurs when applying the flag prin-
ciple [18]. The flag principle says that when two threads,
T0 and T1, each “raise a flag”—writing to a variable in
memory—and then “look” at the other’s flag by reading it
from memory, then at least one will see the other’s flag
raised [18]. Of course, correctly ordering “raising the flag”

to be globally visible before “looking at the other flag” re-
quires a memory fence on TSO (and TBTSO):

T0 T1
flag0 := 1 flag1 := 1

Flag fence fence

principle if (flag1) if (flag0)

print "saw T1" print "saw T0"

This section shows a TBTSO variant of the flag principle
that is asymmetric: it removes the fence from T0’s code and
shifts the responsibility of maintaining correct ordering of
T0’s reads and writes to T1, which does so using the TBTSO
∆ bound. We subsequently apply this asymmetric TBTSO
flag principle to remove the fence from the fast path of
hazard pointers (§ 4) and biased locks (§ 5).

To devise the TBTSO flag principle, we first use TBTSO’s
global time to rephrase the original flag principle: If, when
Tj reads flagi at time t j, Ti’s write to flagi does not ap-
pear in memory (i.e., is not yet globally visible), then Ti will
necessarily see flagj raised when it reads flagj at time
ti > t j. This holds because if this happens, then Ti did not
yet execute its fence at time t j, whereas Tj’s write is already
globally visible at time t j because of its fence. TBTSO al-
lows us to break this symmetry by removing the fence from
T0 and placing the responsibility of guaranteeing the above
property on T1, which will wait ∆ time units before reading
T0’s flag:

T0 T1
flag0 := 1 flag1 := 1

TBTSO fence

flag wait ∆ time units

principle if (flag1) if (flag0)

print "saw T1" print "saw T0"

Now, if T0 reads flag1 at time t0 but T1’s flag write is
not yet globally visible, T0 is still guaranteed that T1 will
see flag0 raised—because in this case T1 has not yet issued
its fence at time t0 and thus will read flag0 at least ∆ time
units later, by which time T0’s write is globally visible. In
the opposite case, if T1 reads flag0 at time t1 but T0’s write
is not yet globally visible, then T0 has not written to its flag
before t1−∆. However, T1’s write is globally visible at t1−∆

since T1 issues a fence, and so T0 must observe flag1 flag
raised.

4. Fence-free hazard pointers (FFHP)
This section describes fence-free hazard pointers (FFHP),
a nonblocking fence-free SMR algorithm for TBTSO. (Al-
though we build on hazard pointers [28], the ideas described
here apply equally well to Herlihy et al.’s guards [19]—an
SMR method that differs from hazard pointers only in how
removed objects are stored before being reclaimed.)

4.1 Standard hazard pointers

In the hazard pointers method, each thread maintains several
hazard pointers, hp0,hp1, . . . ,hpk, which it uses to announce
objects it is about to access. Applying hazard pointers in

1 Data types:
2 struct MarkPtr {
3 next : pointer to Node
4 mark : boolean (stored in LSB of next)
5 }
6 struct Node {
7 key : keyType
8 nextPtr : struct MarkPtr
9 }

10 Shared variables:
11 head : MarkPtr (list head)
12 Per-thread local variables:
13 prev : pointer to MarkPtr
14 cur , next : pointer to Node
15 hp0, hp1, hp2 : hazard pointers (to Node)
16

17 lookup(key : keyType) {
18 return find(&head, key)
19 }
20

21 delete (key : keyType) {
22 while (true) {
23 if (! find (key)) return false
24 // above find () call initialized cur , next & prev
25 if (!CAS(&cur.nextPtr, <next,0>, <next,1>)) continue
26 if (CAS(prev, <cur,0>, <next,0>))
27 retire (cur)
28 return true
29 } }

30 find (head : pointer to MarkPtr, key : keyType) {
31 prev := head
32 retry :

33

<cur,mark> := *prev
hp1 := cur
fence
if (*prev 6= <cur,0>) goto retry

34 while (true) {
35 if (cur = null) return false

36

<next,mark> := cur.nextPtr
hp0 := next
fence
if (cur.nextPtr 6= <next,mark>) goto retry

37 ckey := ckey.key
38 if (∗prev 6= <cur,0>) goto retry
39 if (!mark) {
40 if (ckey ≥ key) return (ckey = key)
41 prev := &cur.nextPtr
42 hp2 := cur // copy hp1, no need for fence
43 // Section 4.1 explains why
44 } else {
45 if (CAS(prev, <cur,0>, <next,0>))
46 retire (cur)
47 else
48 goto retry
49 }
50 cur := next
51 hp1 := next // copy hp0, no need for fence
52 } }

Figure 1: Hazard pointers usage example in Michael’s nonblocking sorted linked list [27] (the insert operation is omitted).
Boxed code segments show setting of a hazard pointer and verifying that the object has not been removed in the meantime.

a concurrent data structure requires manually changing the
algorithm in two ways: First, removed objects may be freed
only via the retire() method of the hazard pointers. The
retire() method guarantees that an object is not reclaimed
as long as some thread’s hazard pointer points to it.

Second, every access to an object must be protected by
a hazard pointer, that is, one of the thread’s hazard point-
ers must point to the object continuously from a time at
which the object was definitely in the data structure (i.e., not
retire()ed). This entails the following sequence of opera-
tions in order to access an object: (1) writing to the hazard
pointer, (2) issuing a fence to ensure that the write is glob-
ally visible, (3) verifying (in a data structure specific way)
that the object is still part of the data structure and has not
been retired. Success of this validation implies that the ob-
ject was part of the data structure throughout steps (1)–(3),
so it is successfully protected. If the validation fails, the al-
gorithm typically retries the entire operation, since the state
of the data structure has changed under its feet.
Hazard pointers example Figure 1 shows Michael’s non-
blocking linked list algorithm [27], which uses hazard point-
ers to safely traverse the list in the presence of concur-

rent deletions. (Code is presented in C-like pseudo code.
Throughout the paper, we ignore the issue of compiler code
reordering and assume that memory operations are executed
according to the order shown in the pseudo code.) Deletions
are done in two steps: first the node is logically deleted by
setting the least significant bit of its next pointer, and only
then it is physically removed from the list and passed to
retire() (Lines 25–27). The find() method traverses the
list using three pointers, prev, cur and next, and always
protects a node with a hazard pointer before reading from it
(the boxes at Lines 33 and 36). The hazard pointer valida-
tion step consists of verifying that the node being protected
is still pointed to by its predecessor. Notice that the shared
variable head which points to the first element of the list is
an immutable sentinel, and therefore find() does not need
to protect head with a hazard pointer.
Copying hazard pointers Figure 1 demonstrates an addi-
tional way of setting hazard pointers. In Lines 42 and 51 the
value of a hazard pointer is copied from one pointer hpi to
another hpj. As we explain below, this does not compromise
the protection of the hazard pointer, provided that j > i.

1 Shared variables:
2 hplist : list of all hazard pointers in the system
3 Per-thread local variables:
4 rlist : list of object pointers (removed objects)
5 plist : list of object pointers (copies of hazard pointers)
6 rcount : int
7

8 retire (objp : pointer to object) {
9 rlist .add(objp)

10 rcount += 1
11 if (rcount ≥ R)
12 reclaim ()
13 }
14 reclaim () {
15 // find all non−null hazard pointers in the system
16 plist := /0
17 foreach (hp ∈ hplist , in ascending index order) {
18 if (hp 6= null)
19 plist .add(object pointed by hp)
20 }
21 // find all objects which can be removed safely
22 foreach (objp ∈ rlist) {
23 if (objp 6∈ plist) {
24 rcount −= 1
25 rlist . remove(objp)
26 free (objp)
27 } } }
28

(a) Standard hazard pointers [28]

29 Shared variables:
30 hplist : list of all hazard pointers in the system
31 Per-thread local variables:
32 2 rlist : list of <object pointer , time> pairs (removed objects)
33 plist : list of object pointers (copies of hazard pointers)
34 rcount : int
35

36 retire (objp : pointer to object) {
37 2 rlist .add(<objp, global clock ()>)
38 rcount += 1
39 2 while (rcount ≥ R) // executes at most ∆ times
40 reclaim ()
41 }
42 reclaim () {
43 // find all non−null hazard pointers in the system
44 plist := /0
45 2 now := global clock ()
46 foreach (hp ∈ hplist , in ascending index order) {
47 if (hp 6= null)
48 plist .add(object pointed by hp)
49 }
50 // find all objects which can be removed safely
51 2 foreach (<objp,time> ∈ rlist with time < now − ∆) {
52 if (objp 6∈ plist) {
53 rcount −= 1
54 2 rlist . remove(<objp,time>)
55 free (objp)
56 } } }

(b) Fence-free hazard pointers (FFHP)

Figure 2: Reclamation in hazard pointers and fence-free hazard pointers. Implementation differences are marked by 2.

Handling reclamation (Figure 2a) Each thread maintains
a list, rlist, of all objects it has retired. When the size
of rlist exceeds a prespecified bound R, the thread calls
the reclaim() routine to free memory (Lines 9–12). This
routine copies the hazard pointers of every thread into a
private list, plist (Lines 15–20). Next, reclaim() frees
any previously retired node which is not in plist, i.e., not
protected by a hazard pointer (Lines 21–27). (Notice that
each thread’s hazard pointers are scanned in ascending index
order, to guarantee that reclaim() does not miss a hazard
pointer being copied: If thread T copies value v from hpi
to hpj (j > i), overwrites hpi, and the reclaiming thread
observes hpi’s new value, then it will necessarily observe
v in hpj because stores are ordered under TSO.)
Progress guarantee The reclaim() subroutine is wait-
free [17], as it completes within a bounded number of steps.
As a result, hazard pointers can be used by nonblocking
algorithms without comprising their progress guarantee.
Complexity analysis Let N be the number of threads in the
system, and H ≥ N the total number of hazard pointers.
Recall that R is the maximum number of nodes a thread
may retire and that have not yet been reclaimed, which is

the amount of ”waste” memory the thread may hold. If the
set plist is implemented as a hash table and the set rlist
as a simple linked list, then a reclaim() does O(H +R)
work to reclaim at least R−H nodes. Therefore, if R =
H + Ω(H), reclaim() does an expected amortized O(1)
steps per retired node. In practice, however, it is simpler to
implement plist as an array, sort it and perform lookups
using binary search [28]. Doing this provides a worst-case
amortized bound of O(logH).

4.2 Fence-free hazard pointers implementation

This section presents the new fence-free reclamation method,
which we obtain by observing that hazard pointers apply the
flag principle: Here, a thread T0 about to reference an object
O interacts with T1, the thread reclaiming O’s memory af-
ter removing it from the data structure. T0 pointing a hazard
pointer at O constitutes “raising its flag,” and the subsequent
validation check “looks” at T1’s flag. Conversely, the re-
moval of O from the data structure forms T1’s “flag raising,”
and it “looks” at T0’s flag when scanning T0’s hazard point-
ers. (Note that this implies that the remove of O must be
globally visible when O is retired. This holds if the removal

performs an atomic operation, which flushes the store buffer.
Otherwise, retire() must issue a fence.)

In fence-free hazard pointers, we thus apply the TBTSO
flag principle as follows: (1) We omit the fence from the haz-
ard pointer validation code (e.g., from the boxes at Lines 33
and 36 of Figure 1). (2) We defer trying to reclaim O’s mem-
ory for ∆ clock ticks since its removal (Figure 2b). Impor-
tantly, this additional waiting time does not lie on the critical
path of the threads and so does not negatively impact their
performance. The ∆ clock ticks naturally overlap the time
period between consecutive memory reclamation attempts,
since a thread accumulates multiple retired objects before
trying to reclaim memory.
Retirement For each retired node, the thread records the
time (the value of the global clock, which we assume never
wraps around) at which the node was retired (Line 37).
Reclaiming memory is now done in a loop until some node
is freed, because (as explained below) a single invocation
of reclaim() is not guaranteed to free a node (Line 39).
However, as explained below (in Progress guarantee), this
loop is still guaranteed to be wait-free.
Reclamation For every retired object O, the reclaiming
thread checks whether some hazard pointer protects O only
if, at the time that the reclaim() has started, more than
∆ clock ticks have passed since O was retired (Lines 45
and 51). We implement rlist as a linked list to which
retire() appends, so scanning rlist from oldest to
newest retired objects is trivial and costs O(1) per object.
Notice that if no object O is old enough, reclaim() exits
without freeing any memory.
Progress guarantee The while loop which calls reclaim()
is wait-free [17], provided that R > H. Once ∆ time units
pass since the latest retirement, all R objects in the thread’s
rlist are checked, and thus at least one object is reclaimed.
Because ∆ is a fixed constant, the loop executes a bounded
number of times, overall—there is no indefinite waiting.

4.2.1 Space/time tradeoff

The complexity of the reclamation depends on how large is R
relative to ∆. There are two cases. The first is when R≥ c∆≥
H+Ω(H) for some c> 1. In this case, a reclaim() can find
at least (1− 1/c)R−H objects to reclaim, because in our
model every retired node receives a unique time stamp, and
so all but the last ∆ retired nodes are safe to check against
the hazard pointers. Therefore, reclaim() has the same
amortized complexity as in hazard pointers. In the remaining
case, ∆ > R > H. This constrained case can be detected in
advance (as ∆, R, and H are known) and requires changing
the reclaim() routine slightly, so that it does not do any
work until ∆ ticks have passed since the retirement time of
the oldest H+1 objects in the rlist. With this modification,
the worst-case running time of reclaim becomes O(∆).

To give a practical sense to these parameters, we note that
in experiments exercising Michael’s nonblocking linked list

algorithm [27] on an x86 machine with 80 hardware threads
we observe a maximal retirement rate of 1300 nodes per
millisecond per thread (see § 7). In § 6 we argue that such
a machine can implement TBTSO with ∆ on the order of 0.5
to 10 milliseconds. Therefore, setting R to 1300× 10× 2 =
26000 nodes—which may take up 2 megabytes—guarantees
that a reclaim() can always free at least R/2 nodes.

5. Fence-free biased locking (FFBL)
This section describes our fence-free biased lock (FFBL). A
biased lock is a lock in which a designated owner thread can
acquire the lock quickly if there is no contention, possibly
at the expense of the other non-owner threads whose lock
acquisition is slower [20, 30, 33].

5.1 FFBL algorithm

We present a mutual exclusion algorithm based on the flag
principle, which we then convert into our FFBL using the
TBTSO flag principle. The flag principle can be used to
implement two-thread mutual exclusion by having each
thread (1) raise its flag and check the other’s flag, (2) en-
ter the critical section if the other’s flag is not up, otherwise
lower its flag and try again, and (3) lower its flag when
it exits the critical section. However, such a scheme can
livelock if the two threads always see each other’s flag up
and thus never enter the critical section. Thus, mutual ex-
clusion algorithms based on the flag principle, such as Pe-
terson’s [31] and Dekker’s [12], introduce a mechanism to
break such livelocks. These mechanisms are quite intricate,
since the classic algorithms use only read and write oper-
ations. In contrast, we can use atomic operations, so long
as they do not degrade the owner’s fast path—accessing an
uncontended lock. Next, we describe this mechanism.
Baseline biased lock (top row of Figure 3) Because the
flag principle works for two threads, we introduce a standard
lock, L, to prevent multiple non-owners from participating
in the flag protocol. Therefore, from here on we shall speak
only of T0—the owner—and T1, which is some non-owner
that has acquired L. We also use the new lock L to break the
flag protocol’s symmetry and prevent livelock. If T0 sees that
flag1 is up, it lowers flag0 and tries to acquire L. For its
part, if T1 sees flag0 raised after raising its own flag1, then
it waits for T0 to lower flag0. This maintains the property
that a thread that does not see the other’s flag raised enters
the critical section immediately, but if both see each other’s
flag T1 will enter first. Nevertheless, because biased locks
are targeted at scenarios in which T1 participates rarely, in
the common case T0 immediately enters the critical section.
Fence-free biased lock (bottom row of Figure 3) Convert-
ing the baseline into an FFBL merely requires using the
TBTSO flag principle in place of the standard one. How-
ever, if the owner T0 acquires the lock very frequently—
as expected from biased locks, otherwise biasing does not
make a difference—then it will get delayed for ∆ time units

1 //
2 // Basic algorithm
3 //
4

5 Shared variables:
6 flag0 , flag1 : bits
7 L : standard lock
8

9

10

(a) Variables

11 lock () {
12 flag0 := 1
13 fence
14

15 if (flag1) {
16 flag0 := 0
17 L.lock ()
18 }
19 }
20

(b) Owner lock

21 unlock() {
22 if (flag0) {
23 flag0 := 0
24 } else {
25 L.unlock()
26 }
27 }
28

29

30

(c) Owner unlock

31 lock () {
32 L.lock ()
33 flag1 := 1
34 fence
35 await (flag0 = 0)
36 }
37 unlock() {
38 flag1 := 0
39 L.unlock()
40 }

(d) Non-Owner

41 //
42 // Fence-free
43 // algorithm
44 //
45

46 Shared variables:
47 flag0 , flag1 :
48 struct {v:63 bits , f :1 bit}
49 L : standard lock
50

51

52

53

(e) Variables

54 lock () {
55 flag0 := <0,1>
56 // no fence
57

58 while (flag1 . f) {
59 do
60 flag0 := <flag1.v,0>
61 while (L. is locked ())
62 if (L. try lock ())
63 break
64 }
65 }
66

(f) Owner lock

67 unlock() {
68 if (flag0 . f) {
69 flag0 := <0,0>
70 } else {
71 flag0 := <0,0>
72 L.unlock()
73 }
74 }
75

76

77

78

79

(g) Owner unlock

80 lock () {
81 L.lock ()
82 flag1 := <flag1.v+1,1>
83 fence
84 now = global clock ()
85 await ((global clock ()>now+∆)
86 or (flag0 .v=flag1 .v))
87 await (flag0 . f = 0)
88 }
89 unlock() {
90 flag1 := <flag1.v+1,0>
91 L.unlock()
92 }

(h) Non-Owner

Figure 3: Fence-free biased locking (FFBL) construction. Top: Basic (not fence-free) algorithm. Bottom: FFBL algorithm.

whenever T1 attempts to acquire the lock, which is subopti-
mal. This happens because once the owner, T0, sees T1’s flag
raised, it lowers its flag and tries to acquire L. But L is held
by T1 which is waiting for ∆ time units.

We turn this problem around, exploiting the fact that T0
frequently acquires the lock to speed up T1’s lock acquisi-
tion, which in turn speeds up T0 as well. We do this by hav-
ing T0 notify T1 whenever it sees flag1 raised (which causes
T0 to try to acquire the L lock). This signals to T1 that T0 is
waiting to acquire L, so T1 can stop the ∆ delay and enter the
critical section. To implement this notification we use echo-
ing [29]: We expand the flags to 64-bits, 63 of which are
used as version numbers that uniquely identify each write—
whenever T1 writes to flag1, it increases flag1’s version.
T0 uses this version to notify T1 that it is spinning while try-
ing to acquire L, by writing—or echoing—what it reads from
flag1 into flag0 (Lines 59– 63). (For simplicity, the code
implements a simple trylock loop to do this, but one can
incorporate echoing into the spin loop of any lock, e.g., to
guarantee that T0 acquires L by using a fair lock implemen-
tation.) Similarly, T1 looks for T0’s echoes as it spins waiting
for ∆ time units to pass, and stops waiting once it observes an
echo (Figure 3h). In practice the echoes reach memory much
faster than ∆ time units (§ 6.1.2), and so the gains from this
optimization can be substantial (§ 7.2).

6. Implementing TBTSO
This section discusses guaranteeing bounded-time store
buffering. (Modern x86 systems already support an invari-
ant timestamp counter that can be read cheaply and used as
a global clock [2, 32], thus satisfying the other requirement
for implementing TBTSO.)

We present a simple hardware design for implementing
TBTSO[∆] on x86 systems (§ 6.1). We estimate the design
can achieve a ∆ bound as low as≈ 6P µs on a system with P
hardware threads; as we discuss shortly, we unfortunately
cannot prove feasibility of the design and the ∆ bound,
as that requires proprietary implementation knowledge. We
further show how minimal OS support enables adaptation of
TBTSO algorithms to existing x86 systems (§ 6.2).

6.1 Enforcing TBTSO with hardware quiescence

x86 processors may delay propagating a store to the mem-
ory subsystem indefinitely if a resource required to do so—
e.g., a cache port—gets constantly used by another unit. In
practice, however, most stores propagate quickly. Our idea
is thus to detect a starving store that remains buffered for
a long time, and bail it out by invoking the system’s exist-
ing quiescence mechanism [39]. This pauses all competing
units, which enables the starving store to propagate to the
memory subsystem.

We cannot, unfortunately, provide a complete design and
calculate an exact worst-case ∆ bound. Doing that requires
accounting for any possible interaction between hardware
mechanisms that can delay the propagation of a store—many
of which are proprietary, undocumented, and/or obscure.
Instead, we (1) present a high-level design while pointing
out—and justifying—its assumptions on internal mecha-
nisms (§ 6.1.1), and (2) estimate its ∆ bound by extrapolating
from measurements performed on x86 hardware (§ 6.1.2).

6.1.1 TBTSO design

x86 processors retire a store instruction from the reorder
buffer without waiting for its value to propagate to the mem-
ory subsystem (caches and memory). The processor instead
holds a retired store’s data in a store buffer and propagates it
to memory asynchronously [2, 3].

Propagating a store to the memory subsystem—i.e., to the
L1 cache—uses hardware resources with limited capacity:
for example, (1) the number of ports through which an
instruction can access the L1 cache [3], (2) the number of
line fill buffers that are required to hold a missed cache line’s
data as it comes in [3], (3) the capacity of the communication
links and queues through which cache coherence messages
go through [16], and so on.

The system arbitrates access to these resources to decide,
in each cycle, which unit is granted access to each resource.
If arbitration is unfair, some unit may be prevented from
accessing a resource in the face of competition [36, Section
9.3.3]. For example, consider a policy favoring line fill buffer
allocation for loads over (buffered) stores (e.g., because a
load cannot complete without handling the miss). Then a
store followed by a sequence of loads, all of which miss in
the L1, will be prevented from being written to the L1 cache.
(We have found evidence of unfair policies in performance
counter documentation [3, Section B.6.9.3].)

However, the hardware can force a store out of the store
buffer by forcing quiescence—pausing all competition in
order to allow the store to drain out of the buffer. (Without
such a mechanism, the system would be vulnerable to absurd
situations, e.g., failing to retire a fence instruction because a
store cannot be drained.) Because a store may be starved by
system-wide competition—on interconnect links or memory
controllers—we must obtain system-wide quiescence, which
is already supported on modern x86 hardware [39].
Hardware design We propose to force quiescence whenever
a store remains buffered past a certain amount of time after
its retirement (discussed later). Then, once the system is qui-
escent, propagate every buffered store to the memory sub-
system. For this approach to achieve bounded store buffering
time requires that both forcing quiescence and then propa-
gating a store to the memory subsystem complete in bounded
time. Below, we justify these assumptions:
Bounded quiescence time (Assumption 1) We believe qui-
escence is obtained within bounded time based on the high-

level description of the x86 quiescence implementation [39]
(however, this property is not explicitly guaranteed). Essen-
tially, a quiescence request is signalled on a sideband chan-
nel, instructing cores and memory controllers to block new
memory operations (i.e., instructions or DMAs) [39]. Once
this happens, we are left with a finite number of pending
memory operations—and thus finite levels of competition
for resources—so the pending operations drain out within
bounded time, achieving quiescence.
Bounded quiescent propagation time (Assumption 2)
Propagating a store to the memory subsystem should com-
plete in bounded time on a quiescent system, because the re-
quired cache coherence transactions and memory writebacks
face no competition on the communication links and queues.
Additional delays may occur due to the memory (RAM) it-
self, but to our knowledge such delays are also bounded—
e.g., DRAM refresh events, or recoverable ECC errors that
generate exceptions which are handled asynchronously [2,
Section 15.5].

The only exception we are aware of is a store to the IO or
configuration space of a PCI device. Such a store waits for a
completion response from the device, which can delay arbi-
trarily before responding. (In contrast, writes to general de-
vice memory are posted and do not wait for an acknowledg-
ment [7, Chapter 2], and thus the former reasoning applies.)
Device IO/config stores do not compromise our design, as
we explain next.
Putting it together In our design the processor forces
system-wide quiescence if a store remains buffered for more
than τ cycles since its retirement, where τ is such that most
stores propagate to the memory subsystem in < τ cycles (in
§ 6.1.2, we estimate τ can be 10 µs). Stores propagate from
the store buffer in retirement order (due to TSO), and so the
timeout always expires first for the oldest store in the store
buffer, leading to quiescence and subsequent propagation of
all buffered stores. Crucially, x86 guarantees that a store to
device IO/config space drains the store buffer (including it-
self) when it retires [2, Section 11.3]. There can thus never
be buffered (retired) stores behind such an IO/config write,
and so the (arbitrary) delays of IO/config writes do not pre-
vent achieving a bound on standard store visibility.

6.1.2 Estimating achievable ∆ bound

To get a sense of what a feasible ∆ bound might be, we mea-
sure the time to force quiescence on real x86 hardware and
extrapolate from that. We also measure store visibility times
on this system, to estimate what the timeout that triggers qui-
escence can be—for good performance, we need a timeout
that expires rarely but that does not make the ∆ bound ex-
ceedingly large.

Our measurements use a system with four Xeon E7-4870
(Westmere EX) processors, each of which has 10 2.40 GHz
cores that multiplex 2 hardware threads, for a total of 80
hardware threads overall. Based on the measurements below,

12 4 8 16 24 32 40 48 56 64 72 80
Threads

100

101

102

103

104

105

106

na
no

se
co

nd
s/

op
(lo

g)

Quiescence
cost

Linear increase
due to serialization

Quiescing op
Normal op

Figure 4: Time to reach system-wide quiescence (log scale)
as the number of quiescing threads increases.

we estimate that similar TBTSO hardware could be imple-
mented with ∆ = 500 µs (or ≈ 6 µs per hardware thread).
Quiescence time We run a microbenchmark in which all
threads repeatedly perform an atomic operation that crosses
cache line boundary to a thread-private location, which
forces system-wide quiescence on our system [39]. We mea-
sure the average latency of an operation. For comparison, we
rerun the benchmark with each thread performing a standard
atomic operation to a thread-private location.

Figure 4 shows the results: Quiescing the system takes
≈ 5 µs, about 600× the cost of the normal operation. Be-
cause the system must serialize quiescence operations, the
time it takes a thread to enforce quiescence grows almost lin-
early with the number of threads. The results do not change
if cores not participating heavily load the system (we omit
plots due to space constraints), and thus we believe this mea-
surement represents worst-case time to achieve quiescence.
Store buffering time in practice We use a microbenchmark
with two threads: (1) a writer that writes the value of the
global timestamp counter to a shared variable v (initially 0),
and then issues an endless sequence of non-store instruc-
tions, and (2) a reader which reads v until it sees a non-
zero value. The reader then reports the difference between
the current time and the time read from v. We vary writers’
non-store sequence, to see if different instructions have dif-
ferent effect. For example, to see if the processor delays a
store in the store buffer so that it could be read more quickly,
we use a benchmark in which the writer repeatedly reads
v. To maximally exercise different scenarios, we (1) run the
benchmark with different placement of threads—hardware
threads of the same core, cores of the same processor, and
on different processors, (2) run the benchmarks alone, con-
currently, and with the memory-intensive STREAM bench-
mark [24] in the background. In all, we run 2 · 1010 execu-
tions.

Figure 5 shows the cumulative distribution of the ob-
served delays—99.9% of stores become visible after at most
10 µs. Notice that this benchmark overestimates the store
buffer delay—e.g., it also measures the time it takes the
reader to acquire v’s cache line.
Estimating ∆: Because quiescence forcing is serialized, we
estimate its worst-case time for this system at 80× 5µs =
400 µs (the maximal time measured was 300 µs). We as-
sume that quiescence time dwarves the time to subsequently
drain the store buffer. Still, as a safety margin, we extrapo-

103 104 105

Nanoseconds of observed delay (log)

30
40
50
60
70
80
90

100
110

%
(C

D
F)

Same core (HT)
Distinct cores on processor
Distinct processors

Figure 5: Cumulative distribution of observed store buffering
times (log scale) for various writer/reader thread placements.

late that a TBTSO hardware implementation can obtain a ∆

of 500 µs on a system similar to our test machine.

6.2 Adapting TBTSO algorithms to x86 with OS help

On the x86 architecture, a user/kernel transition—i.e., an
interrupt or context switch—drains the contents of the store
buffer to memory [2, Section 11.10]. By programming the
hardware to generate a timer interrupt on every core every
∆ time units, the OS can thus force periodic store buffer
flushes. (In fact, operating systems already use periodic per-
core timer interrupts to trigger expiration of process time
quanta and other housekeeping code [9].) Unfortunately, this
does not suffice to enforce TBTSO[∆]: First, timer interrupt
precision is not guaranteed—a timer interrupt might fire late.
Second, the interrupt only triggers a store buffer flush—
current hardware does not bound the time to complete the
flush (and hence the delivery of the interrupt).

In practice, however, timer interrupts rarely get delayed
arbitrarily, which means that a system with periodic inter-
rupts behaves similarly to a TBTSO system. We now show
how simple OS support allows adapting TBTSO algorithms
to benefit from this similarity.
OS support The OS maintains an array A in which each
core writes the current time when it receives a timer in-
terrupt or enters the kernel. This array is mapped read-
only into the address space of every process. (Similarly to
how OSes expose their time-keeping variables to implement
gettimeofday() without trapping into the kernel [8].)
Adapting TBTSO algorithms To establish that every store
retired by time t0 is globally visible, we can adapt the
TBTSO policy of “wait ∆ ticks” to wait instead for every
entry in A to indicate a time > t0. As in TBTSO, this only
adds work when we need to wait, and not at time t0. Thus,
in hazard pointers for example, we only add work to the
reclamation path and not to every object retirement. (In con-
trast, the bounded TSO[S] model [29], which does not have
a global clock, would require reading A when retiring an
object.)

Adapted TBTSO algorithms have two disadvantages.
First, the ∆ granularity must be coarse to minimize the over-
head of timer interrupt processing—e.g., current systems
use a timer interrupt period of 1 to 10 milliseconds [9].) Sec-
ond, adapted algorithms incur extra work in the slow path.
However, our evaluation shows this overhead is small.

7. Evaluation
This section evaluates our FFHP and FFBL algorithms. We
emulate a TBTSO system by using an x86 machine on which
we configure the algorithms to use ∆ = 0.5 ms. (This cor-
responds to the estimated obtainable ∆ bound for such a
machine from § 6.1.2.) We also evaluate the algorithms
adapted to run safely on x86 hardware, as described in § 6.2.
We emulate the required OS support in user space using
POSIX timers to interrupt each thread every ∆= 4 ms (a typ-
ical OS timer interrupt period). When describing FFHP and
FFBL results, we use the ∆ values to distinguish between the
TBTSO and the adapted variants that rely on period timers.
Platforms We use two test systems: (1) a server with four In-
tel Xeon E7-4870 processors, each with 10 2.40 GHz cores
that multiplex 2 hardware threads, for a total of 80 hardware
threads, and (2) a Core i7-4770 (Haswell) processor, which
has 4 3.4 GHz cores, each with 2 hardware threads.

7.1 Safe memory reclamation

We compare FFHP to several SMR algorithms in terms of
overhead imposed and memory consumption. We test the
following SMR methods: (1) hazard pointers (HP) [28], (2)
RCU [26], a widely used scheme [25] that imposes zero
overhead on the fast path, (3) drop the anchor (DTA) [6],
a quiescence-based method that guarantees bounded mem-
ory consumption but requires the fast path to periodically
issue an atomic operation, and (4) StackTrack [4], an SMR
method that uses hardware transactional memory in the fast
path.
Benchmark We use the same methodology as in prior work
on SMR [4, 6, 19, 25, 28]— a microbenchmark focusing on
a widely used data structure with a read-dominated opera-
tion mix, in which memory fences are a significant penalty.
Our benchmark, based on McKenney’s benchmark [25], is
written in C. It consists of n threads performing lookup()s,
insert()s and remove()s on a 1024-bucket concurrent
hash table with chaining. (Threads are pinned to the proces-
sors in a round-robin manner, so that every run has threads
on all processors.) We vary the size of the universe U from
which the key range is picked, allowing us to control the
average length L of each chain. We test chains of average
length L= 4 (short, as in real hash tables), L= 20 and L= 80
(medium), and L = 256 (long). Due to space constraints, we
focus on short and long chains, as the results for medium
chains are qualitatively similar to the long chains. We test
both read-only workloads, and workloads in which readers
and updaters work concurrently, as detailed below. Each ex-
ecution starts with U/2 random keys in the hash tables. The
chains are implemented with Michael’s nonblocking linked
lists [27], which support concurrent reading and updating.
We report median results from 10 runs, each lasting 10 sec-
onds. Results’ variance is negligible (we use a dedicated test
machine). The tests use the jemalloc memory allocator to
prevent the memory allocator from being a bottleneck.

Implementations To obtain the best possible performance,
we use the OS in tickless mode. We use McKenney’s imple-
mentation of hazard pointers [25]. All hazard pointers im-
plementations use R = 32000 (which translates to about 2
megabytes). We use the original authors’ implementation of
RCU [10] and DTA [6], and implement StackTrack follow-
ing [4]. To avoid irrelevant cache-related effects, the hash
table nodes are equally sized in all implementations.

7.1.1 Performance and overheads

Read-only workload (left column of Figure 6) This test
evaluates the overhead each SMR method imposes on read-
only code, modeling scenarios in which updates are rare.
All threads perform random lookup()s over the hash table.
Since no reclamation is done, the value of ∆ has no impact
on FFHP performance. FFHP and RCU perform similarly
(≈ 5% difference) in all tests, outperforming HP by 30% on
the Westmere-EX machine, and by 60% (short operations) to
15% (long operations) on the Haswell. (We do not include
Haswell plots due to space constraints.) FFHP’s advantage
is solely due to the omission of memory fences compared to
HP, as otherwise their lookup code is identical.

DTA and StackTrack do not perform as well as FFHP
and RCU. In DTA, every lookup() operation updates a per-
thread timestamp of when it begins and ends (including is-
suing a fence), and sets a per-thread anchor variable using
an atomic compare-and-swap at least once. This consti-
tutes significant overhead in short operations, causing DTA’s
throughput to be 30% worse than that of FFHP. Similarly,
StackTrack imposes overhead on the fast path by using trans-
actions, leading to 10% less throughput than FFHP for short
operations. In long operations, StackTrack starts to experi-
ence transaction capacity aborts [2], forcing it to split each
operation into multiple transactions [4]. As a result, Stack-
Track’s throughput is 0.3× that of FFHP.
Read/write workloads (last two columns of Figure 6) In
this test, we split the n threads into 3

4 n reader threads and 1
4 n

updater threads. A reader performs only lookup()s over
the entire universe, while an updater alternates between
insert()ing and remove()ing each item in an equally-
sized subset of the universe owned by it.

The middle column of Figure 6 shows the throughout ob-
tained by the readers. For all the SMR methods but DTA,
the throughput is about 60%− 70% of the throughput ob-
tained in the read-only case, but with essentially the same
throughput ratios between these methods. This is caused by
increased reader cache miss rates due to the updaters mod-
ifying the hash table. DTA suffers from additional cache
misses: updating a reader’s timestamp, which is read by up-
daters, now frequently causes a cache miss. Consequently,
DTA’s read throughput does not scale past 64 threads. The
periodic timer interrupts in the (adapted) FFHP[4 ms] exe-
cutions have no performance impact, due to their low fre-
quency.

1 4 8 16 24 32 40 48 56 64 72 80
Threads

0

100

200

300

400

500

600

M
op

s/
se

co
nd

(a) Read-only throughput, L = 4

FFHP (∆=0.5 ms)
FFHP (∆=4 ms)
HP
RCU
DTA

3/1 6/2 12/4 18/6 24/8 30/10 36/12 42/14 48/16 54/18 60/20
Threads: readers/updaters

0

50

100

150

200

250

300

M
op

s/
se

co
nd

(b) Read throughput, L = 4

3/1 6/2 12/4 18/6 24/8 30/10 36/12 42/14 48/16 54/18 60/20
Threads: readers/updaters

0

5

10

15

20

25

30

M
op

s/
se

co
nd

(c) Update throughput, L = 4

1 4 8 16 24 32 40 48 56 64 72 80
Threads

0

2

4

6

8

10

12

14

16

18

M
op

s/
se

co
nd

(d) Read-only throughput, L = 256

FFHP (∆=0.5 ms)
FFHP (∆=4 ms)
HP
RCU
DTA

3/1 6/2 12/4 18/6 24/8 30/10 36/12 42/14 48/16 54/18 60/20
Threads: readers/updaters

0

2

4

6

8

10

12

M
op

s/
se

co
nd

(e) Read throughput, L = 256

3/1 6/2 12/4 18/6 24/8 30/10 36/12 42/14 48/16 54/18 60/20
Threads: readers/updaters

0

1

2

3

4

5

6

7

M
op

s/
se

co
nd

(f) Update throughput, L = 256

Figure 6: Quad Westmere-EX hash table throughput, for various average bucket list sizes (L).

The right column of Figure 6 shows the updaters’ through-
out. There is little impact by the ∆ parameter, because R pro-
vides enough headroom so that a reclaim() finds enough
nodes to free without waiting. We also see that the extra
work in FFHP[4 ms] (scanning the per-core time array, see
§ 6.2) adds no noticeable overhead compared to the origi-
nal (TBTSO[0.5 ms]) version. On the Westmere-EX system,
FFHP and RCU perform the same (< 1% difference) on
high thread counts, obtaining the same throughput as HP in
short operations and improving on HP by 25% in long op-
erations. The reason is that as the chains grow longer, the
relative cost of the atomic operations an updater does di-
minishes, making the traversal cost more significant. On the
Haswell system, FFHP outperforms HP by 30% (short oper-
ations) to ≈ 50% (long operations). FFHP also outperforms
RCU by ≈ 60% and StackTrack by 10% in short operations.
Due to aborts and transaction splitting FFHP outperforms
StackTrack by 80% in long operations. DTA updates per-
form > 100× worse than other methods because an updater
reads each thread’s timestamp after removing a node [6], an
act that can cost more than the original hash chain traversal.

7.1.2 Retired nodes memory consumption

Here we quantify the impact that thread stalls—e.g., due to
context switches—have on the SMR schemes. We modify
the read/write test done above so that one reader stalls for s
milliseconds in one of its lookup()s, as would occur on a
context switch. We measure the peak memory consumption
of the benchmark (as reported by the OS) for various stall
times. Figure 7 depicts the results from the Westmere-EX
server, in which three trends are apparent.

First, FFHP keeps more removed nodes unreclaimed than
HP, because FFHP’s reclaim frees only the subset that was
removed ∆ milliseconds ago. In this test, this amounts to
at most 7% greater memory consumption than in HP. Sec-
ond, memory consumption with RCU is 40% greater than
when FFHP or HP are used even when there is zero stalling.
The reason is that the RCU library handles reclamation more
slowly than hazard pointers, since it uses background threads
which periodically wake up and free memory. Finally, mem-

ory consumption with RCU keeps growing as the stall time
increases, because RCU cannot free memory as long as a
thread is stalled inside an operation. At maximum stall time,
the benchmark using RCU consumes 6× (short operations)
to 2× (long operations) more memory than the FFHP.

7.2 Biased locks

We evaluate the FFBL on a benchmark C program that syn-
thesizes various access patterns to the lock. The benchmark
consists of two threads, the owner and non-owner, repeat-
edly acquiring the lock for a period of 10 seconds, with a
random interarrival delay (simulating application work) be-
tween lock acquisitions. We test FFBL versions with and
without the echoing optimization, comparing them to the de-
fault Linux pthreads lock and to our implementation of bi-
ased locking using safe points [33], in which we assume that
the owner reaches a safe point immediately when it exits the
critical section.

Figure 8 shows the throughput—lock acquisitions per
seconds—of both owner and non-owner, normalized to the
throughput obtained with pthreads. The first access pat-
tern, in which the owner arrives frequently and the non-
owner rarely (once a millisecond on average) simulates a
workload favorable to biased locking. Here the owner path
of the FFBL and safe point locks outperforms pthreads

by 5%–10%, and the non-owner is comparable, except for
FFBL[4 ms] without echoing. Here, due to the long delay
time, both owner and non-owner perform worse than with
pthreads.

The next two patterns challenge the locks by increas-
ing the frequency of non-owner arrivals until it equals the
owner’s frequency. This crystallizes the benefit of echoing,
as without it the throughput of the FFBL versions collapses.

The last pattern captures the case in which the owner
stalls for a long time—due to a context switch or long
computation. While all biased locks collapse compared to
pthreads in this case, we see the benefit of bounded de-
lay: the FFBL outperform the safe point lock by 50× (with
echoes) and by 7× (without echoes).

0 20 100 500 1000 2000
Stall time (millisec)

103

104

Pe
ak

m
em

or
y

us
ag

e
(M

B
)(

lo
g)

(a) 60 readers/20 updaters, L = 4

FFHP (∆=0.5 ms)
FFHP (∆=4 ms)
HP
RCU
DTA

0 20 100 500 1000 2000
Stall time (millisec)

103

104

Pe
ak

m
em

or
y

us
ag

e
(M

B
)(

lo
g)

(b) 60 readers/20 updaters, L = 20

0 20 100 500 1000 2000
Stall time (millisec)

104

Pe
ak

m
em

or
y

us
ag

e
(M

B
)(

lo
g)

(c) 60 readers/20 updaters, L = 256

Figure 7: Read/write test memory consumption (log scale) when one reader stalls in its operation.

100ns/10ms 100ns/20µs 20µs/20µs 10ms/20µs
Interarrival times: owner/non-owner

0

20

40

60

80

100

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(%

)

(a) Owner

100ns/10ms 100ns/20µs 20µs/20µs 10ms/20µs
Interarrival times: owner/non-owner

0

10

20

30

40

50

N
or

m
al

iz
ed

th
ro

ug
hp

ut
(%

)

10
1.

8

10
3.

5

57
.9

10
0.

0

10
0.

0

10
3.

5

58
.0

88
.4

10
3.

0

10
2.

0

57
.3

(b) Non-owner
FFBL+E (∆=0.5 ms)
FFBL (∆=0.5 ms)
FFBL+E (∆=4 ms)
FFBL (∆=4 ms)
Safe point

Figure 8: Biased locks throughput, normalized to standard pthreads lock.

8. Related work

Bounded reordering TSO[S] [29] is a spatially bounded
strengthening of TSO in which the store buffer has bounded
capacity, S. In TSO[S], a thread’s store can remain buffered
for an unbounded amount of time if the thread does not is-
sue further stores. This creates uncertainty about the thread’s
state, making TSO[S] unsuitable for nonblocking fence-free
algorithms—indeed, fence-free work stealing algorithms
based on TSO[S] require either relaxed semantics or block-
ing [29]. In contrast, TBTSO’s temporal reordering bound
facilitates nonblocking synchronization without relaxing se-
mantics, making it more broadly applicable.

Liu et al. [23] empirically observe that x86 processors
usually propagate stores to memory quickly, and exploit this
in designing a fence-free read/write lock. They do not ex-
plore how to guarantee bounded store buffering, and instead
use inter-processor interrupts to handle cases in which store
propagation is delayed. Dice et al. [11] consider methods for
an asymmetric fence-free flag principle and mutual exclu-
sion. One of their methods assumes a maximum store buffer
delay. However, they do not discuss how to obtain or enforce
this delay. They do not use echoing and thus may perform
poorly in some workloads (§ 7). Finally, they do not con-
sider safe memory reclamation.

In the context of distributed systems, the timed consis-
tency model of Torres-Rojas et al. [37] requires that a write
issued by a node become visible to all nodes after at most ∆

time units. Torres-Rojas et al. do not apply timed consistency
to shared memory systems as we do.
Safe memory reclamation Most quiescence-based mem-
ory reclamation methods, such as epoch-based reclama-
tion [15] and RCU [26], cannot be both nonblocking and
guarantee bounded memory consumption, in contrast to our
FFHP method. Braginsky et al.’s drop the anchor (DTA)
quiescence-based method [6] achieves both properties, but
introduces other limitations not present in FFHP: (1) DTA
requires intrusive changes to the data structure to support

DTA’s freezing operation, and (2) it performs poorly on short
operations such as in hash tables (see § 7). SMR methods
using hardware transactional memory (HTM) [4, 13] are
also nonblocking with bounded memory consumption, but
using transactions in the fast path imposes overhead (§ 7).
Biased locking FFBLs have a fence-free owner path and
allow a non-owner to enter the critical section in bounded
time (when the lock is not held). Prior work either blocks the
non-owner [33, 40] or uses fences in the owner path [30].
Eliminating fence penalty Several architectural proposals
aim at eliminating the penalty of memory fences [5, 14,
22, 35, 41]. However, TBTSO algorithms can be adapted
to work on existing machines with simple OS changes. In
addition, the modifications required to implement TBTSO in
hardware are modest compared to these designs, since they
rely on triggering existing quiescence mechanisms.

9. Conclusion
We have proposed TBTSO, a temporally bounded TSO
memory model that bounds the amount of time it takes for a
store to become globally visible, and shown that TBTSO en-
ables nonblocking fence-free asymmetric synchronization.

The TBTSO concept raises several research questions:
Are there additional applications for the TBTSO model, per-
haps in real-time systems? On the hardware side, we have
argued that to our understanding, a TBTSO implementation
is feasible. But are there obscure or undocumented internal
mechanisms that invalidate our understanding? Can we cal-
culate and verify a TBTSO bound for a real processor?

Acknowledgments
We thank the ASPLOS reviewers for their invaluable com-
ments, which helped us reshape and improve the paper.

This work was supported by the Israel Science Founda-
tion (grants 1227/10, 1749/14 and 1386/11) and by Yad-
HaNadiv foundation. Adam Morrison is supported in part
at the Technion by an Aly Kaufman Fellowship.

References
[1] The SPARC Architecture Manual Version 8. Prentice Hall,

1992.

[2] Intel 64 and IA-32 Architectures Software Develop-
ers Manual, Volume 3: System Programming Guide.
http://download.intel.com/products/processor/

manual/325384.pdf, June 2013.

[3] Intel 64 and IA-32 Architectures Optimization Ref-
erence Manual. https://www-ssl.intel.com/

content/www/us/en/architecture-and-technology/

64-ia-32-architectures-optimization-manual.

html, July 2013.

[4] D. Alistarh, P. Eugster, M. Herlihy, A. Matveev, and N. Shavit.
StackTrack: An Automated Transactional Approach to Con-
current Memory Reclamation. In Proceedings of the 9th Eu-
ropean Conference on Computer Systems, EuroSys ’14, pages
25:1–25:14, New York, NY, USA, 2014. ACM. ISBN 978-1-
4503-2704-6. .

[5] C. Blundell, M. M. Martin, and T. F. Wenisch. Invisifence:
Performance-transparent memory ordering in conventional
multiprocessors. In Proceedings of the 36th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’09, pages
233–244, New York, NY, USA, 2009. ACM. ISBN 978-1-
60558-526-0. .

[6] A. Braginsky, A. Kogan, and E. Petrank. Drop the anchor:
lightweight memory management for non-blocking data struc-
tures. In Proceedings of the 25th ACM Symposium on Paral-
lelism in Algorithms and Architectures, SPAA ’13, pages 33–
42, New York, NY, USA, 2013. ACM.

[7] R. Budruk, D. Anderson, and E. Solari. PCI Express System
Architecture. Pearson Education, 2003. ISBN 0321156307.

[8] J. Corbet. On vsyscalls and the vdso. http://lwn.net/

Articles/446528/, 2011. Linux World News.

[9] J. Corbet. (Nearly) full tickless operation in 3.10. http:

//lwn.net/Articles/549580/, 2013. Linux World News.

[10] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais,
and J. Walpole. User-Level Implementations of Read-Copy
Update. IEEE Transactions on Parallel and Distributed Sys-
tems, 23(2):375–382, 2012.

[11] D. Dice, H. Huang, and M. Yang. Asymmetric Dekker Syn-
chronization. http://home.comcast.net/~pjbishop/

Dave/Asymmetric-Dekker-Synchronization.txt,
2001.

[12] E. W. Dijkstra. Cooperating sequential processes. http://

www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF,
1968.

[13] A. Dragojević, M. Herlihy, Y. Lev, and M. Moir. On the
Power of Hardware Transactional Memory to Simplify Mem-
ory Management. In Proceedings of the 30th Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed
Computing, PODC ’11, pages 99–108, New York, NY, USA,
2011. ACM. ISBN 978-1-4503-0719-2. .

[14] Y. Duan, A. Muzahid, and J. Torrellas. WeeFence: toward
making fences free in TSO. In Proceedings of the 40th Annual

International Symposium on Computer Architecture, ISCA
’13, pages 213–224, New York, NY, USA, 2013. ACM. .

[15] K. Fraser. Practical lock-freedom. PhD thesis, University of
Cambridge, Computer Laboratory, University of Cambridge,
Computer Laboratory, February 2004.

[16] J. L. Hennessy and D. A. Patterson. Computer Architec-
ture, Fourth Edition: A Quantitative Approach. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2006. ISBN
0123704901.

[17] M. Herlihy. Wait-free synchronization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 13:124–
149, January 1991. .

[18] M. Herlihy and N. Shavit. The Art of Multiprocessor Pro-
gramming. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008. ISBN 0123705916, 9780123705914.

[19] M. Herlihy, V. Luchangco, P. Martin, and M. Moir. Nonblock-
ing memory management support for dynamic-sized data
structures. ACM Transactions on Computer Systems (TOCS),
23(2):146–196, May 2005.

[20] K. Kawachiya, A. Koseki, and T. Onodera. Lock Reser-
vation: Java Locks Can Mostly Do Without Atomic Opera-
tions. In Proceedings of the 17th ACM SIGPLAN Conference
on Object-oriented Programming, Systems, Languages, and
Applications, OOPSLA ’02, pages 130–141, New York, NY,
USA, 2002. ACM. ISBN 1-58113-471-1. .

[21] L. Lamport. How to Make a Multiprocessor Computer That
Correctly Executes Multiprocess Programs. IEEE Transac-
tions on Computers, 28(9):690–691, Sept. 1979. ISSN 0018-
9340. .

[22] C. Lin, V. Nagarajan, and R. Gupta. Address-aware fences.
In Proceedings of the 27th International Conference on Su-
percomputing, ICS ’13, pages 313–324, New York, NY, USA,
2013. ACM. .

[23] R. Liu, H. Zhang, and H. Chen. Scalable Read-mostly Syn-
chronization Using Passive Reader-Writer Locks. In Pro-
ceedings of the 2014 USENIX Annual Technical Conference,
USENIX ATC ’14, pages 219–230, Philadelphia, PA, June
2014. USENIX Association. ISBN 978-1-931971-10-2.

[24] J. D. McCalpin. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Soci-
ety Technical Committee on Computer Architecture (TCCA)
Newsletter, pages 19–25, Dec. 1995.

[25] P. E. McKenney. Structured deferral: synchronization via
procrastination. Communications of the ACM, 56(7):40–49,
July 2013. .

[26] P. E. McKenney and J. D. Slingwine. Read-copy update:
Using execution history to solve concurrency problems. In
Proceedings of the 10th International Conference on Parallel
and Distributed Computing and Systems, IASTED ’98, pages
508–518. ACTA Press, 1998.

[27] M. M. Michael. High performance dynamic lock-free hash
tables and list-based sets. In Proceedings of the 14th Annual
ACM Symposium on Parallel Algorithms and Architectures,
SPAA ’02, pages 73–82, New York, NY, USA, 2002. ACM.

[28] M. M. Michael. Hazard Pointers: Safe Memory Reclamation
for Lock-Free Objects. IEEE Transactions on Parallel and

http://download.intel.com/products/processor/manual/325384.pdf
http://download.intel.com/products/processor/manual/325384.pdf
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
https://www-ssl.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://lwn.net/Articles/446528/
http://lwn.net/Articles/446528/
http://lwn.net/Articles/549580/
http://lwn.net/Articles/549580/
http://home.comcast.net/~pjbishop/Dave/Asymmetric-Dekker-Synchronization.txt
http://home.comcast.net/~pjbishop/Dave/Asymmetric-Dekker-Synchronization.txt
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF
http://www.cs.utexas.edu/users/EWD/ewd01xx/EWD123.PDF

Distributed System, 15(6):491–504, June 2004.

[29] A. Morrison and Y. Afek. Fence-free Work Stealing on
Bounded TSO Processors. In Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, pages 413–
426, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2305-5. .

[30] T. Onodera, K. Kawachiya, and A. Koseki. Lock Reservation
for Java Reconsidered. In M. Odersky, editor, ECOOP 2004 –
Object-Oriented Programming, volume 3086 of Lecture Notes
in Computer Science, pages 559–583. Springer Berlin Heidel-
berg, 2004. ISBN 978-3-540-22159-3.

[31] G. L. Peterson. Myths about the mutual exclusion problem.
Information Processing Letters, 12(3):115–116, 1981. ISSN
0020-0190.

[32] W. Ruan, Y. Liu, and M. Spear. Boosting Timestamp-based
Transactional Memory by Exploiting Hardware Cycle Coun-
ters. ACM Transactions on Architecture and Code Optimiza-
tion (TACO), 10(4):40:1–40:21, Dec. 2013. ISSN 1544-3566.
.

[33] K. Russell and D. Detlefs. Eliminating Synchronization-
related Atomic Operations with Biased Locking and Bulk Re-
biasing. In Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA ’06, pages 263–272, New
York, NY, USA, 2006. ACM. ISBN 1-59593-348-4. .

[34] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O.
Myreen. x86-TSO: a rigorous and usable programmer’s
model for x86 multiprocessors. Communications of the ACM,
53(7):89–97, July 2010.

[35] A. Singh, S. Narayanasamy, D. Marino, T. Millstein, and
M. Musuvathi. End-to-end sequential consistency. In Pro-

ceedings of the 39th Annual International Symposium on
Computer Architecture, ISCA ’12, pages 524–535, Washing-
ton, DC, USA, 2012. IEEE Computer Society.

[36] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on
Memory Consistency and Cache Coherence. Morgan &
Claypool Publishers, 1st edition, 2011. ISBN 1608455645,
9781608455645.

[37] F. J. Torres-Rojas, M. Ahamad, and M. Raynal. Timed Con-
sistency for Shared Distributed Objects. In Proceedings of
the 18th Annual ACM Symposium on Principles of Distributed
Computing, PODC ’99, pages 163–172, New York, NY, USA,
1999. ACM. ISBN 1-58113-099-6. .

[38] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, scal-
able, concurrent hash tables via relativistic programming. In
Proceedings of the 2011 USENIX Annual Technical Confer-
ence, USENIX ATC’11, pages 145–158, Berkeley, CA, USA,
2011. USENIX Association.

[39] J. R. Vash, B. Jung, and R. Tan. System-wide quiescence
and per-thread transaction fence in a distributed caching
agent. http://www.google.com/patents/US8443148,
2013. US Patent 8443148 B2.

[40] N. Vasudevan, K. S. Namjoshi, and S. A. Edwards. Simple
and Fast Biased Locks. In Proceedings of the 19th Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, PACT ’10, pages 65–74, New York, NY, USA,
2010. ACM. ISBN 978-1-4503-0178-7. .

[41] T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos.
Mechanisms for store-wait-free multiprocessors. In Proceed-
ings of the 34th Annual International Symposium on Com-
puter Architecture, ISCA ’07, pages 266–277, New York, NY,
USA, 2007. ACM. .

http://www.google.com/patents/US8443148

	Introduction
	Fence-free asymmetric synchronization
	Implementing TBTSO

	Temporally bounded TSO (TBTSO[])
	TBTSO flag principle
	Fence-free hazard pointers (FFHP)
	Standard hazard pointers
	Fence-free hazard pointers implementation
	Space/time tradeoff

	Fence-free biased locking (FFBL)
	FFBL algorithm

	Implementing TBTSO
	Enforcing TBTSO with hardware quiescence
	TBTSO design
	Estimating achievable bound

	Adapting TBTSO algorithms to x86 with OS help

	Evaluation
	Safe memory reclamation
	Performance and overheads
	Retired nodes memory consumption

	Biased locks

	Related work
	Conclusion

