
The Cache Performance and Optimization

of Blocked Algorithms

Monica S. Lam, Edward E. Rothberg and Michael E. Wolf

Computer Systems Laboratory

Stanford University, CA 94305

Abstract

Blocking is a well-known optimization technique for improving

the effectiveness of memory hierarchies. Instead of operating on

entire rows or columns of an array, blocked algorithms operate on

submatrices or blocks, so that data loaded into the faster levels

of the memory hierarchy are reused. This paper presents cache

performance data for blocked programs and evaluates several op-

timization to improve this performance. The data is obtained by

a theoretical model of data conflicts in the cache, which has been

validated by large amounts of simulation.

We show that the degree of cache interference is highly sensitive

to the stride of data accesses and the size of the blocks, and can

cause wide variations in machine performance for different matrix

sizes. The conventional wisdom of frying to use the entire cache,

or even a fixed fraction of the cache, is incorrect. If a fixed block

size is used for a given cache size, the block size that minimizes

the expected number of cache misses is very small. Tailoring

the block size according to the matrix size and cache parameters
can improve the average performance and reduce the variance in

performance for different matrix sizes. Finally, whenever possible,

it is beneficial to copy non-contiguous reused data into consecutive

locations.

1 Introduction

Due to high level integration and superscalar architectural designs,

the floating-point arithmetic capability of microprocessors has in-

creased significantly in the last few years. Unfortunately, the in-

crease in processor speed has not been accompanied by a similar

increase in memory speed. To fully realize the potential of the

processors, the memory hierarchy must be efficiently utilized.

While data caches have been demonstrated to be effective for

general-purpose applications in bridging the processor and me-

mory speeds, their effectiveness for numerical code has not been

established. A distinct chmactenstic of numerical applications is

that they tend to operate on large data sets. A cache may only be

able to hold a small fraction of a matrix; thus even if the data are

reused, they may have been displaced from the cache by the time

they are reused.

This researchwas supported in part by DARPA conrrsct NOOO14-87-K-0828.
Permission to copy without fee all or part of this material is

grantad provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice a“d the

title of the publication and its date appear, and notice is given

that copying ia by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

imdtor specific permission.

e 1991 ACM 0-89791 -380-9 /91/0003 -0063 . ..$1 .50

63

1.1 Blocking

Consider the example of matrix multiplication for matrices of size
NxN:

fori:=l toNdo
fork:= lto Ndo

r = X{i,k]; /* register allocated */

forj:=l toNdo

Z~,j] += r* Y[k,j];

Figure l(a) shows the data access pattern of this code. The same

element X[i,lr] is used by all iterations of the innermost loop; it

can be register allocated and is fetched from memory only once.

Assuming that the matrix is organized in row major order, the

innermost loop of this code accesses consecutive data in the Y

and Z matrices, and thus utilizes the cache prefetch mechanism

fully. The same row of Z accessed in an innermost loop is reused

in the next iteration of the middle loop, and the same row of

Y is reused in the otftermost loop. Whether the data remains in

the cache at the time of reuse depends on the size of the cache.

Unless the cache is large enough to hold at least one N x N

matrix, the data Y would have been displaced before reuse. If

the cache cannot hold even one row of the dat% then Z data in

the cache cannot be reused. In the worst case, 2N 3 + N2 words

of data need to be read from memory in N 3 iterations. The high

ratio of memory fetches to numerical operations can significantly

slow down the machine.

(a) z

N .

(b)

.

if

Figure 1: Data access

matrix multiplication.

x

pattern in (a) unblocked and (b) blocked

It is well known that the memory hierarchy can be better uti-

lized if scientific algorithms are Mocked [1, 5, 6, 8, 10, 11, 12].

Blocking is also known as tiling. Instead of operating on indi-

vidual matrix entries, the calculation is performed on submatrices.

Blocking can be applied to any and multiple levels of memory

hierarchy, including virtual memory, caches, vector registers, and

scalar registers. As an example, when blocking is applied at both

the register and cache levels, we observe that matrix multiplication

speeds up by a factor of 4.3 on a DECStation 3100, and a factor

of 3.0 on an IBM RS/6000, a machine with a relatively higher

performance memory subsystem. The matrix multiplication code

blocked to reduce cache misses looks like this:

forkk:=lto Nby Bdo

forj:=lto Nby Bdo

for i:= I to Ndo
for k:= kk to min(kk+B-1, N) do

r = X[i,k]; /* register allocated */

for j:= ~ to min@+B-1, N) do

Z~J] += @Y[k,j];

Figure l(b) shows the data access pattern of the blocked code. We

observe that the original data access pattern is reproduced here,

but at a smaller scale. The blocking factor, 1?, is chosen so that

the B x B submatrix of Y and a row of length B of Z can fit in

the cache. In this way, both Y and Z are reused 1? times each time

the data rue brought in. Thus, the total memory words accessed

is 2N3/B + N2 if there is no interference in the cache.

Blocking is a general optimization technique for increasing the

effectiveness of a memory hierarchy. By reusing data in the faster

level of the hierarchy, it cuts down the average access latency.

It also reduces the number of references made to slower levels

of the hierarchy. Blocking is thus superior to optimization such

us prefetching, which hides the latency but does not reduce the
memory bandwidth requirement. This reduction is especially im-

portant for multiprocessors since memory bandwidth is often the

bottleneck of the system.

Blocking has been shown to be useful for many algorithms in

linear algebra. For example, the latest version of the basic linear

algebra librwy (BLAS 3) [4] provides high-level matrix opera-

tions to support blocked algorithms. LAPACK [2], a successor to

LINPACK, is an example of a package built on top of the BLAS

3 library.

Previous research on blocking focused on how to block an al-

gorithm manually and automatically [5, 7, 11, 12]. The procedure

consists of two steps [12]. The first is to restructure the code to

enable blocking those loops that carry reuse, and the second is to

choose the blocking factor that maximizes locality. It is the latter

step that is sensitive to the characteristics of the level of memory

hierarchy in question. Since the benefit of blocking increases with

the block size, previous approaches suggested choosing blocking

factors such that the faster memory hierarchy is fully occupied by

data to be reused. For example, the optimal blocking factor is
roughly @ for matrix multiplication on a machine with a local

memory of C words [9]. This is appropriate for registers or local

memories, where the data placement is fully controlled. This is

also a reasonable approach for fully associative caches with a least

recently used (LRU) replacement policy.

1.2 Impact of Cache Behavior on Blocking

In practice, caches are direct mapped or have at most a small de-

gree of set associativity. The address mapping may map multiple

rows of a matrix to the same cache lines, making it infeasible to

try to fully use the cache. This address mapping has a significant

effect on the performance of blocked code, causing it to deviate

from the simple trend of increased performance with increased

block size. Moreover, this performance varies drastically with

small changes to the matrix size.

Shown in Figure 2(a) is the performance of blocked matrix

multiplication on a DECstation 3100. For reference, an unblocked

matrix multiplication achieves roughly 0.9 MFLOPS. The DEC-

station 3100 has an 8K double word dkect-mapped cache and can

hold all the words reused within an 88 x 88 block. The graph plots

the performance levels obtained for three slightly different matrix

sizes across a range of blocking factors. We use two different

codes; one blocks for both the cache and registers [3], while the

other blocks only for the cache. While the performance curves for

the 300 x 300 matrix multiplication are well behaved those for

the other two drop sharply starting at different blocking factors

depending on the matrix size. More significant is the magnitude

of the variation for similarly sized matrices. Matrix multiplication

using a 56 x 56 block for a 300 x 300 matrix runs at twice the

rate of that of a 293 x 293 matrix.

(a) @ 450–

8
J
u. 4.00 -
z

3.50 –

3.00

250 —

2001..&

..’” ““a..
1.50

‘“”’EL...

““”~” H..... G ,,,,0
1.00

t

❑ N=293
_ Cache and register blocked

~,~o A N = 295

0 N=300 ““”
Cache blocked only

o.oo~

Blocking factor

c 1.oO-
0.—
~

.=
;
; 0.80 —

.—
z

❑ N=293

A N=295
0.60 –O N=300

a40 —

0.20 —

o.cm~
Blocking factor

Figure 2 (a) Performance and (b) miss rates for blocked matrix

multiplication, DECstation 3100

64

The variation in performance is due to the interference misses v and R(v) is the reuse factor of variable v. These are the intrinsic

in the cache. Shown in Figure 2(b) are the miss rates of the runs misses. Generally, we also have interference misses; if the reuse
for the cache-bkxked code of Figure 2(a), obtained via simulation. of the variable v misses at a rate of M(v), then the total number

The decrease in performance co~elates perfectly with the increase of misses for v is
in cache misses. These two sets of data suggest that the behavior

of a cache has a major impact on blocked code performance, and

(
~(v) ~ +

~(”) – 1 Jf(v)
must be considered when choosing the size of the block. t R(v))

(1)

1.3 Paper Overview

Our reseach focuses on optimizing cache performance via block-

ing. The approach is to first discover the behavior of caches un-

der blocking, then to improve its performance via software and/or

hardware techniques. The sensitivity of the miss rates to the size

of the input matrix makes it impossible to use a purely experimen-

tal approach. It is inadequate to simulate a sample of data points

and infeasible to simulate all possibilities. Our methodology is

to combine theory and experimentation together in understanding

the behavior of the cache. Drawing insights from the experimen-

tal data and the theory of data locality from our compiler research

[12], we have &veloped a model of data conflicts that has been

validated by simulating several representative data points. Using

this model, we are able to explain the cache performance observed,

derive the performance of all possible data sizes, evaluate existing

methods on how to choose a block size and propose new methods

and optimizations that can fully utilize a cache.

2 Data Locality in Blocked Algorithms

In this section, we present our cache model for the simple case of

a direct-mapped cache with one-word cache lines, and illustrate

the model with blocked matrix multiplication. The extension to

set-associative caches and multiple-word line sizes is described in

Section 5.

The reuse of a reference is carried by a loop if the same me-

mory locations or cache lines are used by different iterations of

that loop. There are two forms of reuse: temporal and spatial

reuse. Temporal reuse occurs when the same data are reused. For

example, in matrix multiplication, the temporal reuse of variables

X, Z and Y are carried by the innermost, middle and outermost

loops respectively. In this case, each variable is reused N times,

where N is the size of each loop. We say that N is the reuse

factor. Spatial reuse occurs when data in the same cache line are

used. For a cache with line size 1, the reuse factor is 1 if the data

is accessed in a stride one manner.

Reuse of data translates to a saving in memory accesses only if

intervening references between reuse do not displace the data from

the cache. If the iteration count of the innermost loop is large,

only reuse within the innermost loop can be exploited. Block-

ing localizes iterations across the outer dimensions by limiting the

intervening iterations executed from the innermost loop so that

cached data is reused before it is replaced. By choosing the block-

ing factor suitably, reuse carried by all loops within a block can

be exploited. The temporal reuse factor of data within a blocked

loop is simply the blocking factor, or the number of iterations in
a blocked loop.

2.1 Modeling Cache Interference

If all the data to be reused map to different cache locations, then

the number of cache misses per variable is simply D(v)/ R(v),

where D(v) is the total number of memory references for variable

A reused variable will miss in the cache if any of the memory

references between reuse occupies the same cache location. We

assume in this simple model that the interference is independent.

Suppose the locality of variable v is carried by loop p, and let V

be the set of variables used in the loop. The miss rate in reusing

v within loop p is

Mp(v) = 1 – J’J (1 – Ip(u, v)) ,

Uev

where 1P(u, v) is the probability that accesses to data u withk one

iteration of loop p interferes with the reuse. We partition inter-

ferences into two cases: cross interference, interference between

two different variables, and self interference, interference between

elements of the same array variable.

In the case of cross interference, we assume that the location

of reuse is umelated to the the cache locations of the interfering

accesses. We estimate the interference by the probability that the

location of reuse falls in the footpriti of the variable. The footprint

of a variable FP(u) for loop p is defined to be the fraction of the

cache used by variable u in one iteration of loop p. This footprint

measures the number of distinct elements of u used in one iteration

of loop p if these elements map to unique positions in the cache.

If u is accessed in a stride-one manner, uniqueness k guaranteed

unless the total size exceeds the cache size.

In the case of self interference, we can no longer ignore the

positioning of the reuse location and those of other elements within

the same array. There are two common cases. If the accesses are

of stride one, then no interference is possible as long as the number

of data accessed is smaller than the cache capacity. Otherwise,

accesses to the other elements in the same array can significantly

interfere with the reuse. The self interference SP (v) is defined to

be the fmction of accesses that map to non-unique locations in the

cache within one iteration of loop p.

In sum, the miss rate on the reuse of data v is

M(o) = 1- (1 - s(v)) J-J (1 – F(u)) (2)

Ucv-{”}

It is straightforward to extract the parameters of the reuse factors

and the footprirms from the code of a blocked algorithm. The self

interference term, however, can depend on the cache size and the

input matrix size, and is the factor that makes the cache behave
erratically.

2.2 Extracting the Model Parameters

Matrix multiplication is an interesting csse study because local-

ity is carried in three different loops by three different variables.

Similar reuse patterns can be observed in various other important

matrix operations as well, including Gaussian Elimination (without

pivoting) and Cholesky Factorization.

All the relevant parameters of the matrix multiplication code

are shown in Table 1. For example, the same element of Y is

reused in loop i; between each reuse, B distinct words of X and

65

Table 1: Matrix multiplication tmrameters.

Reuse Self-Interference Footprint References

RP s, Fp

i k j i k j i k ‘

x B - - 0 - - - I/c B;C N’/B

z - B - - 0 - - - 2B/C N3

Y - - N - - Si(Y) - B/C - N3

2B distinct words of Z would have been used, and hence the

corresponding footprbm. These parameters are easy to determine,

with the exception of self interferen~ for variable Y in loop i. We

simply represent the term as Si (Y) and will show how to derive

its value in the next section. Quantities that are of no interest for

this discussion we left blank.

The miss rates for each of the variable can now be easily eval-

uated. Since the vmiable X/_i,J is allocated to a register, the total

number of references to elements of the array is N 3/B and its

miss rate is simply O. Substituting the parameters in Table 1 into

Equation 2, the miss rates for Y and Z, M(Y) and M(Z), are

M(Y) = 1 -(1 -S:(Y)) (1 - :) (1 -:)

= S:(Y)+
3 (1 – S,(Y)) B

M(z) = l-(l-:)(l:;)=:

The tottd number of cache misses are therefore

‘; 1M(Y)) + N3 (+++W))~+ N3(++—

x N3 (3(1– Si(Y))B +B
~+ Si(Y)+ c -5) (3)

According to this equation, there are 2N 3/B intrinsic misses,

misses that are intrinsic to the algorithm given the blocking factor

and cannot be avoided even if the address mapping is perfect.

The factor S, (Y) is due to self interference of variable Y on

itself. The other two terms are due to cross interference between

different variables.

Thus far, we have modeled only the reuse within the block.

Theoretically, variables X and Z cart be reused in the frost and

second loop respectively. Reapplying the same modeling proce-

dure, we can refine our estimate to reflect this level of reuse. The

reuse is unlikely, however, except when the caches are large with

respect to N and the block size is small, since this would entail the
reused data surviving at hat 2N B other references. Our equa-

tion, as it stands, will overestimate the number of misses under

those circumstances.

3 Interference with Regular Stride

In this section, we examine self interference for the common case

where an array is accessed at a constant non-unit stride. The

reference pattern of a constant-stride array access is regular and so

is its self interference pattern. Intuitively, the data accessed might

not interfere with each other, but if they do, the interference is

regular and severe. We show that self interference can increase the

cache miss rate so drastically that it should be avoided altogether,

if possible. We have developed an algorithm to find the largest

blocking factor that avoids self interference for a given matrix

size. Tailoring the block size according to the mamix size yields

much better cache performance than trying to use a fixed block

size.

3.1 Computing Self Interference Misses

We assume that the address of Yfij), written &YflJ is Y* +

Ni + j, where Y*, the start address of array ~ and N, the matrix

size, are run-time constants. Two words use the same cache loca-

tion when & Y[iJJ z & Y/_i~j~ (mod C). (This is valid even for

caches that use physical addresse$ because many operating sys-

tems, including those of MIPS and SGI, allocate frames so that

a physical address maps to the same cache location as its virtual

address.) Therefore if Y[i,j and Y[i ‘J’] use the same location in

the cache, then so must Y[i+a,j+b] and Yfi’+~j’+b].

B1

92
Figure 3: Self interference in a direct-mapped cache.

The interference that results from this pattern is shown in Fig-

ure 3. Suppose a B1 x B2 block of the matrix is to be reused

but that the two words of the matrix marked with an ‘x’ fall in

the same cache location. Then, because of penodicity, all of the

shaded words of the array in the upper left hand portion of the

block will also interfere with the corresponding shaded words in

the lower right hand corner of the block. Likewise, if the word in

the lower left hand corner of the block interferes with any other

word, then a rectangle in the lower left hand corner will interfere

with a rectangle in the upper right hand corner. In either case,

once two words in a block interfere with each other, then increas-

ing the block size will lead to an increase in self interference.
Consequently, the largest block size that does not suffer from any

self interference, which we refer to as the critical blocklng factor
l?o, plays an important role in determining the total number of

misses.

Based on these observations, we have developed an efficient

algorithm that determines the amount of self interference given a

matrix size, a cache size and the blocking factors. The algorithm

executes in O(NI ~), where N is the matrix size and C is the

cache size.

3.2 Analyzing the Cache Misses

With the algorithm above, we can determine the self interference

parameter in Equation 3 and derive the predlctcd number of total

66

cache misses. The overall cache miss rate is a combination of

three kinds of misses: intrinsic misses, self-interference misses

and cross-interference misses. Figure 4 shows a breakdown of the

misses into the three categories for blocked matrix multiplication

on a cache of lK words.

Intrinsic misses /t

self-interference misses /’

cross-interference misses 8’

//

!’

l!
/f

6.0 -

4.0 –

2.0 -

/

. -<-.-.,-~ .-. ------- ------ ,-.-.-

.-, --- !

0.0-
I I I I I

4 e 12 16 20 24 % 32

Blocking factor

Figure 4 Breakdown of misses, IK word cache, N = 295.

To highlight the effect of the address mapping function of a

cache, the figure compares the cache miss numbers to those we

would have obtained if the machine had a local memory of the

same size. With a local memory, software has full control over

data placement, and can thus use the storage more effectively. We

refer to the misses occurring with a local memory as the “ideal”

number of misses. For a local memory of size C, the optimal

blocking factor is roughly m.

The first component refers to the intrinsic misses for particular

block sizes. From Section 2, we know that the number of intrinsic

misses is inversely proportional to the blocking factor. As the

blocking factor approaches ~, it reaches the ideal number of

misses.

Self interference misses are misses incurred due to conflicts

among the elements in the Y array. As discussed above, there is a

critical blocking factor B. such that blocking factors greater than

BO lead to significant self interference. Any blocking factor lower

than B. causes no self interference. The critical blocking factor

can be very different for similar matrix sizes and identical cache
sizes.

The third component is cross interference, the interference be-

tween different mrays. The cross interference is a function of the

footprint and is linear with respect to B. Since we classify a

reused data item suffering from both self and cross interference as

a self interference miss, the cross interference curve may appear

to taper off after self interference begins.

The self interference term explains the cache behavior shown
in Figure 2(b). The total cache miss curves decline smoothly with

the blocking factor until the critical blocking factor is reached. Be-

yond the critical blocking factor, the self interference component

dominates and causes the overall miss rate to rise sharply.

To validate our model, we compare the predicted cache misses

to actual cache misses for a blocked matrix multiplication across

different cache sizes and blocking factors (Figure 5). The figure

shows that the model predicts the cache behavior accurately, ex-

cept when the cache is large and the blocking factors are small,

as discussed in Section 2.2.

= l.oo —

g
~

— actual

. predicted lK
.=
:

4K

al
g 0.20

.—
2

.2SK

0.s0 -

0.60. -

t6K

0.20, -

O.m +
I I I I 1

4 s 16 32 66 la

Blocldng factor

Figure 5: Actual versus predicted cache misses across different

cache sizes (in words), N = 295.

3.3 Using a Fixed Blocking Factor

With our model, we are now ready to evaluate different strategies

for choosing the blocking factor. Clearly, trying to use the entire

cache, as we would in the case of a local memory, would be

disastrous. Let us first evaluate the simple strategy of attempting

to use only a fixed fraction of the cache.

Assuming that the matrix size, N, is randomly distributed we

compute an expected value for each possible blocking size by

averaging the performance over all possible N ‘s, The average

value is not particularly interesting to a user per se since he or she

is interested only in the performance for the particular matrix size

used. Thus we include also the standard deviation to indicate the

likelihood for achieving a prdcular miss rate.

Figure 6 shows the average cache behavior of matrix multi-

plication on a lK word cache for a given blocking factor. The

average is obtained by calculating the misses using our model for

each N in the range C to 2C’ – 1, which captures all possible self

interference patterns in the cache, where C is the cache size. The

average and standard deviation of the miss rates were calculated

for blocking factor B from four to @in increments of four. If

the block is chosen to use the entire cache, i.e. B = @, the

miss rate is more than 10 times the optimal, and has a large stan-

dard deviation. A blocking factor of 12 gives the best average;

whereas a blocking factor of 8 has only a slightly higher average,

but a substantially lower standard deviation. If we want to express

the targeted block size as a fraction of the cache, the number is

extremely small (6% or 14% for a blocking factor of 8 or 12,
respectively).

The actual miss rates for a range of cache sizes are shown

in Figure 7. Without blocking, the miss rate is approximately 2

misses per iteration if the cache cannot hold a few rows in the

cache, and 1 miss per iteration if it can. Blocking reduces the

miss rate to about an average of 0.5 and 0.1 misses per iteration

for a relatively small (.25K word) and large (16K word) cache,

.

o.o~a
Blocking factor

Figure 6 Average misses in lK word cache. Vertical lines indicate

the standard deviation.

respectively. This reduction typically

impact on overall system performance.

translates to a significant

Several unexpected conclusions can be drawn from these

graphs. FirsL the trends of the curves are very different from the

ideal. The ideal is simply an inverse function of the block fac-

tor; the larger the block the better the performance. The curves

in the figure indicate that increasing the blocking factor can in

fact degrade performanw significantly. The block size choice that

minimizes the average cache miss rate uses a small fraction of the

cache. The fraction of the cache used in the optimal case decreases

with increasing cache sizes, from 15% for a 0.25K word cache to

3% for a 16K word cache. More importantly, as shown in Figure

6, there is a large standrmd deviation associated with the average

case. This means that the execution time can vary significantly

for different matrix sizes.

o.q--.lo
Block size (as fraction of cache size)

Figure 7: Miss rate (averaged over all matrix sizes) versus block

size, across different cache sizes (in words).

3.4 Tailoring the Blocking Factor

Since the miss rates are highly sensitive to the problem size, we

now consider the approach of tailoring the blocking factor to the

problem size. By doing so, we hope to improve the average miss

rate and, more importantly, to reduce the variance.

From our model, we know that the cache miss rate hinges on

the critical blocking factor Bo, the maximal factor with no self

interference. Due to the penodicity in the addressing of a direct-

mapped cache and the constant-stride accesses, it is relatively easy

to determine Bo. The algorithm to determine the largest square

block with no self interference is presented in Figure 8.

algorithm FindB(N, C: integer) return integer;
add~ di,dj,max Width: integer;

max Width := min(N, C);

addr:= NB;

while true do
addr:= addr + C;

di:= ado? riiv N;

dj:= abs((addr mod N) - NP);
if di > min(max Width, dj) then

ret urn min(max Width,di);

max Width := min(max Width, dj);

end while;

end algorithm;

Figure 8: Algorithm to compute the largest square block without

self interference.

Our approach is based on a few simple observations. The self

interference pattern of any block of computation is identical since

the conflict between a pair of data depends only on the differ-

ence of their addresses. Similmly, if & YfiJ ~ & Y/7idi~’+dj]

(mod C), then BO can be no larger than max(ld~l, IdJ). The algo-

rithm begins with the array word & YIO,NflJ assuming Y* = O

(mod C), which is valid since the absolute location of the array in

memory is not significant. The algorithm then finds which array

words of the form Y[di,Nfl~dj] are mapped to the same location

in the cache. Each new array word mapping to the same location

puts a further restriction on how large the block size may be be-

fore self interference begins. The blocking factor cannot be larger

than W, so the run time of the algorithm is O(N/@), which

is fast enough to use in a compiler or at run time if the matrix size

is not known statically. This algorithm can be easily extended to

find the largest rectangular block.

The different maximal blocking factors for the entire range of
strides ~e shown in Figure 9. The function is periodic; the. inter-

ference is at its maximum if the matrix dimension is a multiple of

the cache size. This figure explains why the optimal fixed block

size is so small. If BO is large, then there is a diminishing return

for choosing larger and larger block sizes. However, if BO is small,

then the self interference becomes very large even for moderate

block sizes. The data indicate that the critical blocking factor is

sensitive to small changes in the matrix dimension N. Moreover,

for many array dimensions, a fairly large blocking factor can be

used. Choosing a fixed block size to optimize the average case

penalizes those cases for which a good blocking factor exists.
When there is no self interference, the number of misses from

Equation 3 becomes N 3(2/B+ 4B/C’), which has a minimum at

B = ~. l%us, even if BO exceeds ~, cross interference

68

.6 22

$

.-
;~
m

24

20

16

12

a

4

?(

.:+:++ :+:++ +- +++++ ++:+; + +- +
++++

mH+tH.+*++tt+tt$t-Hi+t++*+tHtHt:$
.-IF +Htttttt -l+ —HH—HHH -t+ ttttttl-it it
4+--s- +-l+ ++ +t+t++++tt* -H-+ +++ -s--s-
+i-+it-+t-tt -IS-+-H- -l-t-Hi-t ++-+ tl-1+-+-s-+1
+-IF-H- +-s-it+ ++++ ++ -H--W++

+S-+-+ M-+-+ wt-+++-l--lt+si+ +-w-w -W--S+
*+l-l-tF+ +++il--tttt +++iitii-+ +++-tl-W-+t-

++H#- +s- +*****+ -8+ +~ +t
u+
++++ +++++ + +- +W—l+H— + + * +-H+ +tr+
++l-+-it i+itit+i+++ i++i+it-1+-tt+-tt+

++t-tl+h ++-+ -S- S--H-+
I:+++ +itititt.+tt+i+ ++++il
+ —sHH+H+ *+ *~~+*+~:it +.S. +t—WtWF +
+++ +++
+ i-t ++ ++-tt
+ + ++ -s- ++ +++ +:+ +*-j*J+++-F-- ‘1 :
i-++
+ -l-t i+++;++ + +

+-s-+

+++
++++ i++ +-J. +

+
+++ +

-++ *
+

+
+++ ++ : ii-t++ + ‘F&$ + +*+:++ +

1- +
k “++””””+””””:+”
1-

+
+ ++

F
++ +

+-+- +
1-

++ +
+

}
+ +-

-i- +

I I I I I +

t 1200 1400 1600 1800 2000

N

Figure 9: The largest square block without self interference, lK

word cache.

limits the optimal blocking factor to ~. In this case, the

number of misses is 2 ~ or 2.8 times the ideal number of misses.

If we had used a blocking factor of m, the misses would be

three times the optimal even if there were no self interference. If

self interference begins before fit tie self interference will
dominate the cache behavior, in which case it can be shown that

the optimal blocking factor is typically 130 but also can be BO + 1.

Figure 10 shows the ratio of misses for each N with the best

block size to the ideal number of misses for that cache size. For

this graph the block size for a given N is the block size from

Figure 9 or ~, whichever is smaller.

+-

+

+ +

4- ++

+

+

+ +

+ ++ i-
+

I I I I I
0 1200 1404 1600 1800 2000

N

Figure 10: Miss rates for best square block, 1K word cache.

We can average over the number of misses in Figure 10 to

determine the average performance obtained by choosing a block

size that depends on N. The average is 3.4+2. 1 times the ideal. If

instead a blocking factor of 12 were always used (the best choice

from Figure 7), then the number of misses is 4.6+ 3.3 of ideal.

Both the mean and the standard deviation of misses are signif-

icantly lower when block sizes are chosen using N. Figure 11

shows the results of this analysis for a vwiety of cache sizes.

For comp~ison, Figure 11 also includes data for the best data-

dependent rectangular block without self interference. It shows

that best square/rectangular schemes outperform the fixed block

size approach in terms of both the average misses and variance

over a wide range of cache sizes. As the cache gets larger, the

miss rate for the best fixed block size gets farther and farther fkom

ideal, with an increasing standard deviation. However, if N is

used in considering the block size, then on average the behavior

of the block remains within a constant of the optimal.

15

10

t

● Best fixed tkd size

Cache size
Eli

I

::::

:::.
::::::::

Figure 11: Miss rates using best fixed block size, be~t data-

dependent square block size, and best data-dependent rectangular

block size.

4 Self Interference for Non-Constant

Strides

After analyzing the cache behavior with constont stride data ac-

cesses, we now turn to other access patterns. We first study the

cache behavior for triangular matrices, then pushing the irregu-

larity of data access to the limi~ we consider the case when the

stride is totally random.

4.1 Triangular Matrices

A typical data organization of a triangular matrix is to store the

rows of data consecutively. The stride of a column access varies

from 1 to N where N is the matrix dimension. Thus we expect

that the cache behavior of the entire multiplication to be similar

to the average of cache misses obtained for square matrices.

69

. ..
—

(
Square matrix average

1OOOxl000 triangular matrix

I [I I I
0.20 0.40 0.60 0.s0 1.00

Block size (as fraction of cache size)

Figure 12: Comparing miss rates of triangular matrix multiplica-

tion with the average miss rates for square matrix multiplication,

across different cache sizes (in words).

In Figure 12, we compare the cache miss figures for multiplying

two triangukm matrices with 1000 elements on a side with the av-

erage obtained for multiplication of square matrices for the entire

range of strides. Indeed, the simulation confirms the prediction.

Unlike square matrices, the cache performance of a blocked

triangular matrix multiplication algorithm is predictable for any

array size, provided that it is relatively large. That is, the perfor-

mance obtained is similar to the average we compute for square

matrices. The optimal block size is smell; about 10% of the cache

for a lK cache, and 3’70 for a 16K cache. Since the miss rate

function is highly sensitive to the choice of the blocking factor, it

is important to choose this number correctly. Since the variance

in optimal block size is high even for small changes in N, it is

difficult to improve the cache performance by modifying the block

size for different parts of the triangular matrix.

4.2 Random Stride

Given that we have shown caches may behave rather poorly for

regulw strides, we wish to investigate if they would behave any

better if the rows were randomly placed. We model the accesses

to each row in the same array es independent accesses. Each

access to B consecutive locations of data decreases the hit rate

by a factor of 1 – B/C. Thus the self interference of accessing
B – 1 rows of Y before the same data is reused is

Si(Y) = (1 – ~)~-’.

Substituting this self interference term into Equation 3 and very-
ing the cache and block sizes, we obtain the data in Figure 13.

Differentiating the expression of misses with respect to the block-

ing factor B, we find that the asymptotic minimum number of

cache misses occurs when B is w. The fraction of the cache

used is thus C ~. The cache use decreases from about 12’?ZOin

the lK cache case to about l~o in a cache of 16K words. These

figures are just slightly lower then those obtained for the average

for square matrices.

70

I I I I 1
0.20 0.40 0.60 0.s0 1.00

Block size (as fraction of cache size)

Figure 13: Miss rate versus block size for random stride, across

different cache sizes (in words).

In summary, when accesses are random, reuse of data is un-

likely unless the number of intervening independent data accesses

is small. Constant but non-unit stride accesses found commonly

in matrix operations do not in general improve the cache per-

formance. However, if the s~ide is regular, it is possible for a

compiler or run-time library to tailor the blocking factor accord-

ing to the stride. The improvement is significant but there is still a

relatively high variance in cache misses for different matrix sizes.

5 Different Cache Parameters

So far in this paper we have considered only duect-mapped caches

with single-word cache lines. In this section we consider two com-

mon variations in cache design, a higher degree of associativity

and longer cache lines, and discuss how they affect the cache be-

havior of blocked algorithms. We re-apply the same techniques

used in analyzing dkect-mapped caches with single-word lines and

use the resulting models to generate data for different cache sizes,

matrix sizes, and block sizes. Again, we compare the performance

of the strategies of choosing a data independent block size and a

data dependent block size. We then draw conclusions about the

impact of set associativity and multiple-word line sizes on blocked

algorithms.

5.1 Set Associativity

Since conflict misses play a significant part in the cache behavior

of blocked algorithms, it is natural to examine if set associativity

can reduce the misses significantly. We consider a relatively large

but reasonable set associativity of four. The interference model

presented in Section 2 extends readily to set-associative caches.

Briefly, with en a-way set-associative LRU cache, a set holding

more than a block entries reused at the same level is assumed to

miss on all accesses to those entries; otherwise, they all hit. The
validity of our model is shown in Figure 14(a). As before, the

model overpredicts misses when the cache size is large and the

block size is small.

(a) Acturd versus predicted cache misses across different
sizes (in words), N = 295.

= 1.00
.$2~

[

— actual
g

‘~ O.se
. predicted .AK

%.—
z i

cache

Blocking factor

(b) Miss rate (averaged over all matrix sizes) versus block size,

across different cache sizes (in words).

o.%~oo
Block size (as fraction of cache size)

(c) Miss rates using best fixed block size and best data-dependent

square block size.

g

i

] ● aestfixed M* size

5 9 Best datadepmlent square UOCAsize

10

Figure 14: Data corresponding to Figures 5, 7 and 11 for a four-
way set-associative cache with single-word line size.

71

Figure 14(b) shows the performance of a set-associative cache

if a fixed block size is chosen for all problem sizes. Unlike the

direct-mapped cache, the average miss rates remain relatively flat

as the block size increases. This is because the critical blocklng

factors now have much larger values. Although the fraction of

cache used remains small, it is larger than that of the direct-mapped

cache and yields a significantly lower average miss rate. While

the average remains fairly flat, the standard deviation (not shown

in the graph) increases steadily with the block size, thus favoring

a smaller block size. This high standard deviation means that the

execution time for some problem sizes can be significantly worse

than others.

Figure 14(c) focuses on the averages and standard deviations

of the miss rates for a variety of cache sizes. Again, we compare

two strategies for choosing block sizes: the fixed square block

scheme and the problem size dependent squwe block scheme 1.

While the average ratio to the ideal increases for the fixed block

size scheme, it remains quite constant when we vary the block

sizes for different problem sizes. More importantly, it has a much

smaller standard deviation. If we take the strategy of choosing

our block sizes based upon N, an associativity of 4 allows us to

drop the miss rate by an average of over 30% and cut the standard

deviation in half relative to the same strategy on a direct-mapped

cache.

5.2 Line Size

To exploit spatial locality, most caches today have multi-word

cache lines. Spatiaf locality can be modeled in a manner similar

to temporal locality. We say that spatial locality is cmied by a

loop if the stride of data access is less than the cache line size. The

reuse factor is simply the cache line size divided by the stride. The

miss rate can be calculated from the footprint and self interference

in a similar manner, although the footprint and self interference

terms need to be adjusted to account for the fact that every access

brings in an entire cache line. In Figure 15 we show the results

of applying our model to a cache with a four-word line size.

In the ideal case, a line size of 1 words would reduce the miss

rate by a factor of 1. However, such a reduction is not observed
when we compare Figure 15(b) with Figure 7; the miss rate is only

reduced by a factor of just over two for the smallest caches and a

factor of three for the largest one. The reason for the less than ideal

behavior is as follows: when a row of a blocked matrix is brought

into the cache, the beginning and end of the row do not necessarily

align to cache line boundaries. This results in unaccessed data

being loaded into the cache, effectively increasing the row length.

This excess data can knock out useful data, increasing the miss

rate. In particular, self interference starts at a somewhat smaller

blocking factor. The relative cost of cache misalignment decreases

as the block size is increased, which is why the decrease in the

miss rate at the best block size is closer to four for larger caches

than for smaller caches. This also explains why the miss rates for
the data-dependent block strategy decrease with increasing cache
size (Figure 15(c)): the alignment effect becomes less significant.

The ratios of miss rates to ideal are still in each case greater than
those in Figure 11 because the miss rate for the longer line size is

not reduced by a full factor of 1.

‘In the direct-mappxl case, the model shows !Aat the best square block is nor

Eargerthm @o.a side ~eset-Msotiative mdelcm”@m*easpA.a

prediction. We use the heuristic that the blocking factor shoutd not be larger than

/-ti*ecachehasassaiativity .,sticemwstitiemn. efitishw

with increasing set aswxiativit y,

(a) Actual versus predicted cache misses across different cache

sizes (in words), N = 295.

.25K lK

0.10 -
t 6K

0.00 * I I I J
4 8 16 32 0$ l’a

Blocking factor

(b) Miss rate (averaged over all matrix sizes) versus block size,

across different cache sizes (in words).

o.q~oo
Block size (as fraction of cache size)

(c) Miss rates using best fixed block size and best data-dependent

squme block size.

al
:
2 ● Bestfixed tjock E&,

2 E Best data-dependent square Mock size

I~Ceclw size

Figure 15: Data corresponding to Figures 5, 7 and 11 for a direct-

mapped cache with four-word line size.

72

0.60.- — actual
.. ~..~ predicted

0.40 -

0.2U -

4K

~lsK .

0.00.
I I I I I

4 a 16 22 S4 12s

Blocking factor

Figure 16: Actual versus predicted cache misses across different

cache sizes (in words), N = 295.

6 Copy Optimization

Neither associativity nor multiple-word line sizes can eliminate

the large variance in the performance of a blocked algorithm. We

now investigate a totally different approach that eliminates self

interference altogether, thus guaranteeing a high cache utilization

for all problem sizes. The approach is to copy non-contiguous data

to be reused into a contiguous area [6]. By doing so, each word

within the block is mapped to its own cache location, thus making

self interference within a block impossible. This technique, when

applicable, can bound the cache misses to a factor of two of the

ideal. If the reuse factor is large, then the cost incurred in copying

the data is negligible.

Let us first consider copying the B x B block of Y data in matiix

multiplication to contiguous locations. By setting the Si (Y) term

in Equation 3 to zero, the number of misses becomes

2N3 4N3B

7+7”

Figure 16 compares the cache miss numbers predicted by this

model with the misses observed in simulation. As discussed in

Section 2, the cache miss function achieves its minimum value

at B = W, and the minimum number of misses is 2fi times

the ideal. Without self interference, the number of misses is not

nearly as sensitive to the block size. For example, a block can

be chosen to fill anywhere from one-fourth of the cache up to the

whole cache without increasing the number of misses by more

than 6V0 over the minimum.

Misses can be further reduced by copying the Z data as well,

placing them at the end of the same contiguous block so that they

do not interfere with the Y data. The number of misses is:

2N3 2N3B

7+7

which achieves its minimum at B = m. The resulting cache

miss numbers are twice ideal. The overhead of copying the desti-

nation row is substantially higher than that of copying the reused

block. An entry from the reused block is used N times once it

has been copied. An entry from the destination row, on the other

hand, is reused only B times. Thus, even though the number of

cache misses can be reduced by 30~0 by copying txsth the reused

block and the destination row, the overhead of copying the des-

tination row could overwhelm the benefit of fewer cache misses.

In fac~ our experience sugges~ that copying both sets of data is

typically not advantageous for microprocessor systems today.

Copying can take full advtmtage of a cache with a longer line

size. It can use at least half of the cache in each blocked loop nest,

thus making the penalty due to cache line misalignment negligible.

Thus, nearly all the words prefetched in the cache line will be used

fully, so when copying is used with a cache line size of J, the miss

rate can be reduced by a factor of L

When the cache is set associative, we have an opportunity to

reduce the minimum miss rate by eliminating not just self inter-

ference, but cross interference as well. With a set associativity a,

we use (a – 1)/a of the cache for matrix Y and use the other I/a

of the cache for fetching data from X and Z. In this case, cross

interference only occurs when words from rows of X and Z are

mapped to the same set. Since each of the footprints of the rows

of X and Z are only B/C, the probability of cross interference

is small with this strategy. Thus, by choosing a blocking factor

of ~-, we can avoid nearly all but intrinsic misses.

This results in a miss rate of ~- times the ideal. For

example, if a = 4, the miss rate is 1.15 of ideal, compared with

2 to 2.8 for a direct-mapped cache. Copying the Z data into a

contiguous block so that Y and Z fill up (a — 1)/a of the cache

removes the already negligible cross interference, but otherwise

has little effect.

To demonstrate the effect of copying on real machines, we com-

pare the absolute performance of a blocked matrix multiplication

code with and without the copying optimization on a DECsta-

tion 3100 (Figure 17). We show the data only for the N = 293

case, the example which suffered the most from self interference

(see Figure 2(a)). Copying allows the blocked code to deliver a

consistently high level of performance for all matrix sizes.

g
CJ4.at -

3

3.s0 -

3.00, -

2.% - A copied
❑ not copied

2.00 –

,..~a 16s6az 404a Sow?zwa

Blocking factor

Figure 17: Performance of copying versus no copying, N

DECstation 3100,

= 293,

There are several cases in which copying cannot be applied
or can be applied only with difficulty. Firs~ if the reuse factor is

small, then the cost of copying can be greater than the misses saved

73

via copying. A small reuse factor can arise because the locality

withht the computation is minimal, e.g. the reuse of spatial locality

is a small constant. Second the reused portion of a variable may

not ix exactly the same each time through a block. When the

reused portion shifts, copying cam be implemented with a circular

buffer, with the additional addressing overhead that entails. Lastly,

if a reasonably large fraction of data fits into the cache, then paying

the cost of copying the data throughout may incur an unnecessary

overhead.

7 Conclusions

This paper presents a comprehensive analysis of the performance

of blocked code on machines with caches. While blocking has

been accepted as an important optimization for scientific code, its

performance on machines with caches was not well understood.

By using a combination of theory and experimentation, this paper

shows that blocking is effective generally for reducing the memory

access latency for caches. The magnitude of the bcnefi~ however,

is highly sensitive to the problem size.

We have developed a model for understanding the cache be-

havior of blocked code. Through the model, we demonstrate that

this cache behavior is highly dependent on the way in which a

matrix interferes with itself in the cache, which in turn depends
heavily on the stride of the accesses. We have derived cache miss

models for four different strides: unit stride, non-unit constant

stride, triangular stride, and random stride. Each of these models

is validated with empirical results.

The performance of the cache is highly dependent on the prob-

lem size and the block size. The same block size can give rise

to widely varying cache miss rates for very similar problem sizes.

The conventional wisdom of using the entire cache, or even a

fixed fraction of the cache, is incorrect. If a fixed block size is
chosen, we have found that the optimal choice occupies only a

small fraction of the cache, typically less than 10YO. The fraction

of the cache used for this optimal block size decreases as the cache

size increases. More importantly, there is a large variance in the

performance obtained.

The effect of the various optimizations studied in this paper are

summarized in Table 2. A multi-word line size reduces the number

of cache misses but increases the memory traffic. Set associativ-

ity improves the average cache miss rate, but does not reduce the

large performance variations between problem sizes. Regardless

of the line size and the set associativity, it is useful to tailor the

block size according to the problem size. For the non-unit constant

stride case, the optimal block is the largest block which does not

interfere with itself in the cache. We have presented an algorithm

that determines the optimal block choice efficiently. This tech-

nique decreases the average number of cache misses as well as

the variation across different problem sizes substantially. Copying

is yet a better technique if it is applicable, It yields a much lower

miss rate and delivers the same high performance for all matrix
sizes.

Our recommendation when blocking numerical codes for a

cache is to always accompany the blocking with some blocking

optimization. First, use block copying if applicable. It provides

the fewest cache misses and the most robust performance of the

options that we have considered. If copying is not appropriate,
then choose the largest block size possible that does not incur self

interference within an array.

Table 2: Summarv of cache miss rates. 4K word cache. as comuared to ideal.

Basic Model Set Associativity = 4 ‘ Line Size = 4

Ideal 2N3/dC 2N3/~C 2N3/(4~C)

Method Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Fixed Block Size 5.4 5.4 3.4 5.0 6.8 7.0

Best Block Size 3.4 2.4 2.0 1.1 4,4 5.2

copy Block 2.8 0 1.2 0 2.8 0

copy ROW and Block 2.0 0 1.2 0 2.0 0

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

W. Abu-Sufah, D. J. Kuck, and D. H. Lawrie. Automatic pro-

gram transformations for virtual memory computers. Proc.

of the 1979 National Computer Conference, pages 969-974,

June 1979.

E. Anderson and J. Dongarra. LAPACK working note 18,

implementation guide for LAPACK. Technical Report CS-

90-101, University of Tennessee, Apr 1990.

D. Callahan, S. Cars, and K. Kennedy, Improving register

allocation for subscripted variables. In Proceedings of (he

ACM SIGPLAN ’90 Conference on Programming Language

Design and In@ementatioq June 1990.

J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of

level 3 basic linear algebra subprograms. ACM Tran.wdion.r

on Mathematical Software, pages 1-17, March 1990.

K. Gallivan, W. Jalby, U. Meier, and A. Sameh. The im-

pact of hierarchical memory systems on linear algebra algo-

rithm design. Technical Report UIUCSRD 625, University

of Illinios, 1987.

D. Gannon and W. Jalby. The influence of memory hier-

archy on algorithm organization: Programming FFTs on a

vector multiprocessor, In Tk Characlerislics of Purallel Al-

gorithms. MIT Press, 1987.

D. Gannon, W. Jalby, and K. Gallivan. Strategies for cache

and local memory management by global program trans-

formation. Journal of Parallel and Distributed Computing,

5:587-616, 1988.

G. H. Golub and C. F. Van Loan. Matrix Computations.

Johns Hopkins University Press, 1989.

J.-W. Hong and H. T. Kung. 1/0 complexity: The red-blue
pebble game, In Proceedings of zhe Thir(eenfh Annual ACM

Symposium on Theory of Computing, pages 326-333. ACM

SIGACT, May 1981.

A. C. McKeller and E. G. Coffman. The organization of

matrices and matrix operations in a paged multiprogramming

environment. CACM, 12(3): 153–165, 1969.

A. Porter field. Sofiware Methods for Improvement of Cache

performance on Supercomputer Applications. PhD thesis,

Rice University, May 1989.

M. E. Wolf and M. S. Lam. A data locality
algorithm. Submitted for publication., 1990.

optimizing

74

