
Network Product Group

TRANSFORMING

COMMUNICATIONS

The Data Plane Development

Kit (DPDK) – What it is and

where it’s going

John Ronciak, John Fastabend, Danny Zhou, Mark

Chen, Cunming Liang

TRANSFORMING COMMUNICATIONS2

Intel® DPDK Libraries

Buffer Management

Customer
Application

Linux*
Kernel space

Customer
Application

Customer
Application

Queue/Ring Functions

Flow Classification

NIC Poll Mode Drivers

What is the Intel® DPDK?

• A set of optimized software libraries and drivers that can be
used to accelerate packet processing on Intel® architecture

• Packets are delivered into user space directly

BSD Licensed with source available

• Offered as a free, unsupported standalone solution by Intel or
as part of commercial solutions from leading ecopartners

Intel® DPDK Fundamentals
• Implements a run to completion model or pipeline model

• No scheduler - all devices accessed by polling

• Supports 32-bit and 64-bit with/without NUMA

• Scales from Intel® Atom™ to Intel® Xeon® processors

• Number of Cores and Processors not limited

• Optimal packet allocation across DRAM channels

• Use of 2M & 1G hugepages and cache align structures

*Other names and brands may be claimed as the property of others.

Intel® Data Plane Development Kit

The Intel® DPDK embeds optimizations for the Intel® architecture platform, providing
breakthrough packet processing performance

Linux*
User space

Environment Abstraction
Layer (EAL)

TRANSFORMING COMMUNICATIONS3

Userspace

Ethernet

Intel® DPDK PMD

IP

TCP

Session

Presentation

Application

L3
 F

o
rw

ar
d

Kernel

10GbE 10GbE 10GbE 10GbE 10GbE

4K pages (64)
SKbuff

Intel® DPDK

2M (32)/ 1G (4) huge pages for cache aligned
structures.

KNI

PMD PMD PMD PMD

Intel® DPDK allocates packet memory
equally across 2, 3, 4 channels.
Aligned to have equal load over channels

Stacks available from

6WIND, Wind River, Tieto

Run to completion model

on each core used

Intel® DPDK model

IGB-UIO

IGB IXGBE

KNI

RYO

Stacks

RUMP

(NetBSD)

Events (2K 100B buffers)

Mempool (Ring) for cached buffers

Per core lists, unique per lcore. Allows packet
movement without locks

Packet Buffers (60K 2K buffers)

Mempools (Ring) for Events, Msgs, etc.

TRANSFORMING COMMUNICATIONS4

Kernel Bridging vs. L2Fwd Performance

Port 0 Port 1

User

Ixia port 0 Ixia port 1

Flow A: src-ip 0.0.0.0 Flow B: src-ip 1.1.1.1

DPDK PMD

L2Fwd

Kernel
igb_uio

Aggregated Performance at 64B small packet : 1.35 Mpps vs. 23.68Mpps

Kernel

ixgbe

Ixia port 0 Ixia port 1

Bridge

Flow A: src-ip 0.0.0.0 Flow B: src-ip 1.1.1.1

TCP/IP Stack

Port 0 Port 1

TRANSFORMING COMMUNICATIONS5

Motivation: What We Have & What To Build?

• Two software stacks are mutual exclusive

Kernel space

User space

Legacy
Network App.

Socket Lib

TCP/IP Stack

NIC Kernel Driver

DPDK
Lib and App.

DPDK PMD

UIO Framework

UIO Driver

Bifurcated kernel driver would enable on-demand NIC resource
partitioning while maintaining the high performance features

CID’ NIC Driver StackLAD’ NIC Driver Stack

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

Flow Director

…

Sl
o

w
 P

at
h

Fa
st

 P
at

h

R

X

R

X

NIC
Ingress Traffic

TRANSFORMING COMMUNICATIONS6

Design Principals

• Loosely-coupled integration to minimize code change on both sides
‒ Two mechanism can work and evolve independently
‒ Work together when needed based on agreed interface/protocols
‒ The whole DPDK package is purely in user space

• Master/salve mode
‒ Kernel driver as NIC master, DPDK PMD as NIC slave
‒ Rx/Tx queue pair allocation and control via master
‒ Slave only in charge of data-plane

• NIC’s flow director filters configuration only via ethtool

TRANSFORMING COMMUNICATIONS7

Software Architecture
DPDK

Lib and App.

DPDK PMD

Kernel space

User space

CID’ NIC Driver Stack

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

Flow Director

…R

X

R

X

NIC

Bifurcated Driver
(ixgbe + uio/VFIO + queue_manager)

Queue
Manager

UIO fd

• Accept kernel
parameter for queue
allocation

• Maintain internal data
structure of available
queues resource

• UIO/VFIO FD interface
allows queue
resource query,
request and allocation

ethtool

IOCTL()

Flow Director
Filters

UIO/VFIO Driver

mmap()

TRANSFORMING COMMUNICATIONS8

Startup Scripts
Set hugepage and load ixgbe_uio driver

mount -t hugetlbfs nodev /mnt/huge
modprobe uio
insmod ixgbe_uio.ko num_of_queue_pairs = 16

Setup a Linux bridge connecting two Niantic ports
brctl addbr br1
brctl addif br1 p786p1
brctl addif br1 p786p2
brctl show br1
ifconfig br1 up

Enable and setup flow director rules
ethtool -K p786p1 ntuple on # enable flow director
ethtool -N p786p1 flow-type udp4 src-ip 0.0.0.0 action 0 # direct flow to rxq 0 managed

by ixgbe
ethtool -N p786p1 flow-type udp4 src-ip 1.1.1.1 action 16 # direct flow to rxq 16

managed by DPDK

Start DPDK L2Fwd
l2fwd -c 0x3 -n 4 --use-device=0000:08:00.0 --use-device=0000:08:00.1 -- -p 0x1

TRANSFORMING COMMUNICATIONS9

Performance Measurement

All traffics
go to DPDK

All traffics
go to kernel

Traffic Ratio:
10%: vs. 90%

DROP_EN = ON

Traffic Ratio:
5%: vs. 95%

DROP_EN = ON

Traffic Ratio:
2%: vs. 98%

DROP_EN = ON

Traffic Ratio:
50%: vs. 50%

Traffic Ratio:
50%: vs. 50%

DROP_EN = ON

TRANSFORMING COMMUNICATIONS10

Why slow queue slow down fast queues?

MAC

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

R

X

Flow Director/Rx DMA Engine

…R

X

R

X

RX

RX

RX

RX

RX

.

.

.

Rx
FIFO

• Rx FIFO “head of line
blocking” in bifurcated
configurations

• Can only move as fast as the
quickest queues

• Solution: Enable
SRRCTL.DROP_EN drops
packets from Rx FIFO
‒ Only drops packets when no

buffers are available on Rx queue
to DMA into

‒ Allows faster rings to keep
processing while slower rings
drop packets

Slower queues polled by kernel Faster queues polled by DPDK

TRANSFORMING COMMUNICATIONS11

Bifurcated Driver Pros & Cons

Pros:
• Inherit DPDK’ high performance gene
• DPDK is GPL free: no KNI & igb_uio any more
• DPDK no need to keep track of new NIC variants with different PCIE

device ID
• Dynamically change the number of queues used for DPDK

Cons:
• Cross-dependency between ixgbe (or other NIC drivers) and DPDK
• DPDK can not control the NIC directly

TRANSFORMING COMMUNICATIONS12

Bifurcated Driver Upstream Patches

Patches for ixgbe pushed and accepted already, about to
push for i40e and push fm10k in 2016
• The main use in today’s driver is the use of Flow Director
• Made configuration and upstream acceptance easier
• Upstream patch need to be backport to the stand-alone versions of

the drivers (the Soureforge versions)
• Giving “Bifurcated” a new name, Queue Splitting

TRANSFORMING COMMUNICATIONS13

UIO Bottom Interface to DPDK

• Standard uio_pci_generic module included in the Linux
kernel provides the uio capability

• For some devices which lack support for legacy
interrupts, e.g. virtual function (VF) devices, the igb_uio
module may be needed in place of uio_pci_generic.

TRANSFORMING COMMUNICATIONS14

VFIO Bottom Interface to DPDK

• In order to use VFIO, your kernel must support it. The
VFIO kernel modules have been included in the Linux
kernel since version 3.6.0 and are usually present by
default.

• Also, to use VFIO, both kernel and BIOS must support
and be configured to use IO virtualization (such as Intel®
VT-d).

TRANSFORMING COMMUNICATIONS15

CID Software

Backup

TRANSFORMING COMMUNICATIONS16

Code Organization

• /lib/librte_eal/linuxapp/ixgbe_uio
‒ Based on ixgbe version 3.18.7, added UIO support
‒ No igb_uio needed any more, pci_unbind.py no longer needed

• /lib/librte_pmd_ixgbe
‒ Only data-plane related driver functions are valid

static struct eth_dev_ops ixgbe_hbd_eth_dev_ops = {

.dev_configure = ixgbe_dev_configure,

.dev_start = ixgbe_hbd_dev_start,

.dev_stop = ixgbe_hbd_dev_stop,

.dev_close = ixgbe_hbd_dev_close,

.link_update = ixgbe_hbd_dev_link_update,

.dev_infos_get = ixgbe_hbd_dev_info_get,

.rx_queue_setup = ixgbe_dev_rx_queue_setup,

.rx_queue_release = ixgbe_dev_rx_queue_release,

.rx_queue_count = ixgbe_dev_rx_queue_count,

.rx_descriptor_done = ixgbe_dev_rx_descriptor_done,

.tx_queue_setup = ixgbe_dev_tx_queue_setup,

.tx_queue_release = ixgbe_dev_tx_queue_release, };

‒ Return error code if DPDK control-plane related function are invoked by application
‒ NIC as well as Rx/Tx unit initialization disabled
‒ Retrieve ixgbe initialized Rx/Tx queue pairs range

NIC Control can not be done DPDK anymore under bifurcated mode

TRANSFORMING COMMUNICATIONS17

CID Software

